特長
- OE、PD#、PPS、DFCの制御機能としてOEピンの機能を設定可能
- PLL帯域幅の設定可能/ジッタピーキングの最小化
- PPS:エンドデバイスのパワーダウン・モード時に電力を節約するプロアクティブ省電力機能
- PPB:Performance- Power Balancing機能により、必要な性能に応じた最小限の電力消費を実現
- DFC:Dynamic Frequency Control機能により、最大4つの異なる周波数をダイナミックに切り替え可能
- スペクトラム拡散クロックに対応し、システムEMIの低減を実現
- I2Cインタフェース
-
水晶振動器の入力にも対応
-
AEC-Q100準拠、グレード2(-40℃〜+105℃)バージョンで利用可能
説明
製品比較
| 5P35023 | 5L35021 | 5L35023 | 5P35021 | |
| Outputs (#) | 7 | 5 | 7 | 5 |
| Output Type | LP-HCSL, LVCMOS, LVDS, LVPECL | LP-HCSL, LVCMOS | LP-HCSL, LVCMOS | LP-HCSL, LVCMOS, LVDS, LVPECL |
| Core Voltage (V) | 3.3 | 1.8 | 1.8 | 3.3 |
| Output Voltage (V) | 1.8, 2.5, 3.3 | 1.8 | 1.8 | 1.8, 2.5, 3.3 |
| Pkg. Dimensions (mm) | 4.0 x 4.0 x 0.9 | 3.0 x 3.0 x 1.0 | 4.0 x 4.0 x 0.9 | 3.0 x 3.0 x 1.0 |
パラメータ
| 属性 | 値 |
|---|---|
| App Jitter Compliance | PCIe Gen1, PCIe Gen2, PCIe Gen3 |
| Outputs (#) | 7 |
| Output Type | LVCMOS, LVPECL, LP-HCSL, LVDS |
| Output Freq Range (MHz) | 0.032768 - 500 |
| Input Freq (MHz) | 1 - 160 |
| Inputs (#) | 1 |
| Input Type | Crystal, LVCMOS, LVPECL, LVDS, LP-HCSL |
| Output Banks (#) | 5 |
| Core Voltage (V) | 3.3 |
| Output Voltage (V) | 1.8, 2.5, 3.3 |
| Phase Jitter Typ RMS (ps) | 3 |
| Prog. Interface | I2C, OTP |
| Spread Spectrum | Yes |
パッケージオプション
| Pkg. Type | Pkg. Dimensions (mm) | Lead Count (#) | Pitch (mm) |
|---|---|---|---|
| VFQFPN | 4.0 x 4.0 x 0.9 | 24 | 0.5 |
アプリケーション・ブロック図
|
|
ペット監視用カメラロボット
リアルタイムの映像、音声、ワイヤレスコントロールが可能なモバイルペット監視用カメラロボット。
|
|
|
高性能な集中制御式サーモスタットシステム
集中制御式サーモスタットシステムは、複数のサーモスタットを統合し、スマートな空調制御と効率化を実現します。
|
|
|
AI機能付きビデオ会議カメラ
デュアルカメラとビームフォーミングオーディオを搭載したAI搭載360°ビデオ会議システム。
|
|
|
ハイエンドの機能豊富なHMIプラットフォーム
ディスプレイ解像度、オーディオ、スピーカなどの豊富な機能をサポートする柔軟なHMIプラットフォーム。
|
|
|
シングルボードコンピュータゲートウェイ
Arm Cortex-A55およびArm Cortex-M33コアを搭載したSBCゲートウェイは、効率的な処理、柔軟性、および接続性を提供します。
|
|
|
AI物体検出とモーションセンシングを備えたバッテリ駆動カメラ
効率的なモーション検出、高速起動、低電力のオブジェクト分類を実現するAI搭載のバッテリ駆動カメラ。
|
|
|
NFC、カメラ、静電容量式タッチ認証を備えたアクセス制御システム
アクセス制御システムは、NFC、Wi-Fi、PoE、ローカルストレージ、および柔軟なOSサポートにより、セキュリティを確保します。
|
|
|
コンピュータビジョン用システムオンモジュール(SoM)
ルネサスのSoMは、AI、コスト効率、シームレスなSMARC 2.1統合により、コンピュータビジョンを強化します。
|
|
|
モバイルPOS(Point of Sale)端末
安全なワイヤレスのマルチペイメントをサポートするモバイルPOSで、どこでもシームレスな取引が可能です。
|
|
|
MPUベースのシングルボードコンピュータ
Linuxサポート、ワイヤレス接続、組み込みアプリケーション向けのコンパクトなフォームファクタを備えたSBC。
|
|
|
Bluetooth Low Energyメッシュ用ネットワークゲートウェイ
デュアルコアMPU、Bluetooth LEメッシュ、Wi-Fi、ローカル/クラウドストレージ、アラーム、セキュア通信を備えたゲートウェイ設計。
|
|
|
RISC-V MPU を搭載したスケーラブルな SMARC 2.1 ゲートウェイ SoM
IIoTゲートウェイ向けのスケーラブルなSMARC 2.1 SoM設計は、低消費電力、強力な接続性、柔軟性を備えています。
|
|
|
RTOSベースのRZ/A3UL HMI SMARC SoM
スマートビルディングでの低電力およびリアルタイムHMI制御に最適化された電力を備えたSOM。
|
|
|
将来のE/Eアーキテクチャのための車載コンピュータ
高度なE/Eアーキテクチャを高い計算能力で実現する次世代車載コンピュータシステム。
|
|
|
シングルコアArm Cortex-A55 MPU用SMARCシステム
Arm Cortex-A55 MPUを搭載したAI対応SMARC SoMにより、低消費電力のHMIおよび産業用制御を実現します。
|
フィルター
ソフトウェア/ツール
サンプルコード
シミュレーションモデル
This video introduces IDT's VersaClock 3S Programmable Clock Generators, known for their innovative power-saving features and compact design that eliminates multiple timing components. Designed for applications in consumer, industrial, computing, and automotive sectors, these devices offer low power consumption and low jitter scalability, meeting PCI Express® Gen 1/2/3 standards.
Key features highlighted include Proactive Power Saving, Performance-Power Balancing, Dynamic Frequency Control, and Overshoot Reduction Technology. The video showcases the VersaClock 3S models, including the 5P35023 with multiple outputs and the 5P35021 with a 32.768KHz clock for RTC reference, supported by IDT's Timing Commander software for easy programming.
The VersaClock 3S devices deliver innovative power-saving features while saving board space by eliminating the need for multiple discrete timing components. Delivering low power and low jitter scalability, the VersaClock 3S devices meet requirements for widely used standards including PCI Express® Gen 1/2/3, and are ideal for consumer, industrial, computing, and automotive applications.
The 5P35023 and 5P35021 chips deliver a unique set of features offering an optimal combination of performance, power, and flexibility.
Description
IDT's innovative support tool, Timing Commander™, expedites development cycles by empowering customers to program sophisticated timing devices with an intuitive and flexible Graphical User Interface. IDT's Timing Commander is a Windows™-based platform designed to serve user-friendly configuration interfaces, known as personalities, for various IDT products and product families. With a few simple clicks, the user is presented with a comprehensive, interactive block diagram offering the ability to modify desired input values, output values, and other configuration settings. The software automatically makes calculations, reports status monitors, and prepares register settings without the need to reference a datasheet. The tool also automatically loads the configuration settings over USB to an IDT evaluation board for immediate application in the circuit. Once the device has been configured and tuned for optimal system performance, the configuration file can be saved for factory-level programming before shipment. For more information about Timing Commander, visit our Timing Commander page.
Resources
IDT provides a brief overview of the timing solutions optimized for various configurations using the NXP (Freescale) QorIQ / Layerscape processors.
Resources
IDT provides a brief tutorial on the timing solutions required for NXP (Freescale) QorIQ / Layerscape processor-based systems.
Presented by Ron Wade, PCI Express timing expert. For more information about IDT's timing solutions, visit www.IDT.com/go/clocks.
TRANSCRIPT
Hi there, this is Ron Wade with IDT and today we're going to talk about NXP, formerly known as Freescale, CPUs. Specifically the QorIQ and Layerscape CPUs and the timing requirements that they have. So, it's basically divided into a couple of parts here. There's some timing that the CPU itself requires and then there's timing that depends upon your system and the number of SerDes links you have in your design and in your CPU. So, if we talk about the CPU part itself, we have the CPU cores which get a clock, and we have the memory controller inside the CPUs which gets a clock as well. And the memory controller clock is called the DDR clock. The CPU clock is called the SYS_CCB clock in the Freescale nomenclature, excuse me, the NXP nomenclature and those frequencies - they're single-ended clocks and they range, like the DDR from 66.66 MHz up to 100 MHz, and the CPU clocks range from 66.66 up to 133.33 MHz, in some cases. Those are single-ended LVCMOS input clocks. Additionally, some of the CPUs have a USB interface which may require a 24 MHz single-ended clock. And there's also an Ethernet interface built in, a one-gigabit Ethernet interface, that is, takes a 125 MHz single-ended clock as well and that's at 2.5 volts.
So, in the Layerscape series of CPUs which are based on the ARM core, Freescale has put into them, what they call a reduced oscillator mode where all the clocks over here basically are reduced by a single differential 100 MHz non-spreading clock, and this saves you from having to figure out and generate all these clocks. However, it has to be non-spread because the USB clock is also derived from it, so, if you're planning to use spread spectrum, you really can't use this mode. And, currently, it's only available in the Layerscape devices, not the legacy QorIQ devices.
So, that's the basics for the CPU and the memory controller. Then the SerDes is really dependent upon the particular CPU you're using and how many SerDes lanes you need in your design. So, the SerDes clocks, on the other hand, basically range from 125 MHz differential clock for Gigabit Ethernet, if you're using 10 Gigabit Ethernet, a 156.25 MHz clock is required. And then if you're using PCI Express, you'd use a standard 100 MHz PCI Express clock. All these happen to be differential and the number of SerDes lanes and their capabilities depends on the CPU you're using. So, this gives you an outline of how to just do a quick tally of what kind of clocks you need and in another video, I'll talk about the solutions that IDT has for NXP's devices.