Image
Marta Martínez Vázquez
Marta Martínez Vázquez
Senior Staff Engineer

Communications and sensing technologies have transformed the automotive industry. More and more, cars include features and systems to interact with their environment, gaining awareness of the surrounding space, networking with each other and with the infrastructure, and detecting possible sources of danger. We can consider that vehicles have acquired their own “senses”: they know where they are, and can now see, hear and feel what happens around them.

Image
Sensors, navigation and communications: The “senses” of a car.
Figure 1: Sensors, navigation and communications: The “senses” of a car.

Automotive sensors are key to improve road traffic safety and reach levels 4 and 5 of autonomous driving. The use of advanced sensor technologies will allow preventing accidents through warning signals and automated safety functions, and thus reaching the Vision 0 objectives: 0 deaths in traffic accidents by 2050. In this sense, the European Parliament approved in 2019 a law making safety features such as intelligent speed assistance, advanced emergency-braking system and lane-keeping systems compulsory for all new vehicles as from May 2022 for new models and as from May 2024 for existing models.

Also, safety measures have become increasingly important when buying a car. For this reason, the European New Car Assessment Programme (Euro NCAP) includes since 2020 emergency braking systems in their evaluations. This has forced the industry to increase their efforts and include new detection features in their vehicles.

1.  Automotive sensors for ADAS/AS

Different options are available for sensing the environment around a vehicle. Yet, for fully autonomous driving a combination of different sensing technologies will be required, to be able to provide full 360° detection. The full system can be seen as the “senses” of a car, providing the means to interact with the surroundings and creating a safety “cocoon”. Each technology has its pros and cons, as listed in Table 1 below, so that full autonomous driving with require the combination of different sources, as shown in Figure 2.

Table 1: Pros and cons of different sensor technologies for automotive applications

  checkPROS closeCONS
Optical imaging (video) Large field of view
High resolution
Limited by weather and light conditions
High processing workload
Ultrasonic Operation in all weather & light conditions
Very low cost
Very short range
Infrared Operation in low light conditions Short detection range
Lidar High accuracy (range, resolution & position) Limited by weather conditions (fog, snow)
No direct information about velocity
Radar Less sensitive to weather conditions
Long detection range
Good resolution and position estimation
Complex angle measurement
Complex target classification
Not mature for fully AD
Image
ADAS/AD system trend: integration of sensors.
Figure 2: ADAS/AD system trend: integration of sensors.

2.  Automotive radar

Radar is a well-known technology, which relies on sending and receiving electromagnetic waves to measure, detect and locate obstacles in the environment. Radar is specially indicated automotive applications, as vehicles are good reflectors for the electromagnetic waves, and thus their distance, position and velocity can be determined accurately.

In automotive environments, Frequency Modulated Continuous Wave (FMCW) radar is used in different frequency bands, depending on the application. The principle of FMCW radar will be explained in the next radar blog entry. The basic topology of the radar is shown in Figure 3. It includes one or more radar MMIC transceivers, connected to a high-performance processing unit (MCU or SoC). The topology and number of chips will depend on the location of the radar module on the vehicle and the application it has to cover, as also shown in Figure 4.

Image
Example of radar architecture
Figure 3: Example of radar architecture.
Image
Combinations for different radar applications
Figure 4: Combinations for different radar applications.

The International Telecommunications Union (ITU) defines two categories of automotive radar systems, depending of their function:

  • Category 1: It includes radar systems which provide comfort functions for the driver, enabling more stress-free driving. This category comprises adaptive cruise control (ACC) and collision avoidance (CA) radar, for measurement ranges up to 250 metres.
  • Category 2: It defines sensors for high resolution applications, which add to the passive and active safety of a vehicle, as for example blind spot detection, lane-change assist and rear-traffic-crossing-alert, detection of pedestrians and bicycles near a vehicle. The range is lower than Category 1, with a maximum of 50m to 100m, depending on the application. The purpose of these systems is improving traffic safety by increasing the passive and active safety of a vehicle.

The types of radar can also be classified depending on the measurement range (Figure 5):

  • Short Range Radar (SRR), with a large field of view and high resolution and a range up to 50 m.
  • Mid-Range Radar (MRR), with medium field of view and range up to 100 m,
  • Long Range Radar (LRR), which does not require high resolution or wide field of view, but aims to the highest possible range, up to 250m.
Image
Typical range and Field of View for automotive radar
Figure 5: Typical range and Field of View for automotive radar.

To provide 360° coverage, different radar sensors with different functions need to be placed on the car, as in Figure 6. The obtained data must be combined to obtain real time accurate information on the surroundings.

Image
Placement of radar sensors on a car for 360° coverage
Figure 6: Placement of radar sensors on a car for 360° coverage.

Radar sensors can easily be installed behind common elements of the car, like bumpers or company emblems, so that they are invisible and do not affect the aesthetics. This integration gets easier with higher frequencies of operation, as the size of the antennas, which determines the size of the module, is linearly proportional to the wavelength, and thus inversely proportional to the operating frequency. There used to be four main frequency bands used in automotive radar systems, two in the K-band (around 24GHz) and two in the E-band (between 76 and 81GHz), as depicted in Figure 7.

Image
Frequency bands for automotive radar
Figure 7: Frequency bands for automotive radar.

However, the 24GHz bands are to be discontinued, due to interference with radio astronomy and earth exploration applications. As an alternative, the frequency band from 76 GHz to 81 GHz has been accepted by most countries as the frequency band for automotive radars. There, 1GHz bandwidth is reserved for LRR (76 to 77GHz), while 4 GHz bandwidth are available for applications requiring better resolution, as summarized in Table 2.

Table 2: Typical automotive radar characteristics in the frequency band 76-81 GHz, according to ITU Recommendation ITU-R M.2057-0

Radar type (ITU classification) A B C D E
  Automotive radar
For front applications
Automotive high-resolution radar
For front applications
Automotive high-resolution radar
For corner applications
Automotive high-resolution radar Automotive high-resolution radar
Very short range applications
Application examples ACC, collision avoidance Lane monitoring Blind spot detection, lane-change assist and Rear-traffic-crossing-alert Parking aid, pedestrian detection, emergency braking at low speed
Typical range ≤250m ≤100m ≤100m ≤100m ≤50m
Typical range resolution 75cm 7.5cm 7.5cm 7.5cm 7.5cm
Frequency band 76-77 GHz 77-81GHz 77-81GHz 77-81GHz 77-81GHz
Maximum bandwidth 1GHz 4GHz 4GHz 4GHz 4GHz
Maximum e.i.r.p. 55dBm 33dBm 33dBm 45dBm 33dBm

3.  Radar market

The integration of new safety and comfort features in new vehicles has led to a surge in the radar market. Automotive is the fastest growing segment for this market, expected to surpass US$10 billion in 2025, as shown in Figure 8.

Image
Evolution of the radar market
Figure 8: Evolution of the radar market (Source: Yole Report 2020)

If we only consider the radar MMIC transceiver, the market forecast is more than US$1.2 billion, with GaAs technology almost disappearing and CMOS experiencing a rapid growth to become the dominant technology by 2025.

Image
Evolution of the radar MMIC market per technology
Figure 9: Evolution of the radar MMIC market per technology (Source: Yole Report 2020)

4.  Conclusion

Radar modules have become a standard feature in modern vehicles. While they have some disadvantages with respect to other technologies in terms of range resolution, their reliability and versatility make them irreplaceable parts in modern ADAS/AD systems. The shift to higher frequencies from 76 to 81 GHz has brough new technological challenges but make this an exciting field for new developments by the semiconductor sector.

In the next entry on the blog dedicated to radar, we will have a look at the basic principles behind FMCW radar.

Share this news on

Log in or register to post comments

descriptionDocumentation

file_downloadDownloads

Share this news on