RZ/A2M Group

RZ/A2M Simple Applications Package for GR-MANGO Release Note

Introduction

This Software Package has several simple applications for RZ/A2M.

The Software Package shows how easy it is to create a professional, user-friendly and platform-independent user interface for your product. The entire application source code is included in the workspace enabling the Software Package to be ported to the platform of your choice.

This package is one of RZ/A2M Software Package. RZ/A2M Software Package is a software development kit for the RZ/A2M that supports various RZ/A2M functions such as DRP (Dynamically Reconfigurable Processor), camera input, LCD output, and image adjustment. This package has the structure of the red frame in the following figure. However, device driver and middleware are only included what is necessary for the sample application.

![RZ/A2M Software Package Configuration](image)

Figure below shows the relation of RZ/A2M Software Package and this package. For details, refer following URL:

https://www.renesas.com/software-tool/rza2m-freertos-software-package

The relation of RZ/A2M Software Packages and this package

Note that each software project includes only driver software and middleware used by each application. If you want to add software that is not included in the project, please use Smart Configurator. For more detail,
please refer “RZ/A2M Software Package Quick Start Guide for GR-MANGO”(R01QS0042) bundled in this package.

Following sample applications are bundled in this package.

Example of initialization:
This sample is a simple sample program that blinks the LED on the RZ/A2M evaluation board. You can use this application as base project of your product and you can add various functions using Smart Configurator. Refer “RZ/A2M Software Package Quick Start Guide for GR-MANGO”(R01QS0042) bundled in this package.

Example of FreeRTOS:
This sample is a simple sample program that blinks the LED on the RZ / A2M evaluation board. In this sample, FreeRTOS is used. You can use this application as base project of your product and you can add various functions using Smart Configurator. Refer “RZ/A2M Software Package Quick Start Guide for GR-MANGO”(R01QS0042) bundled in this package.

Camera and Display sample application:
This program captures video from the MIPI CSI-2 interface camera module (Raspberry pi camera module V2.1) and displays it on the display. In this sample, FreeRTOS is used.

JPEG Codec Unit "JCU" Sample Application:
This is a program that decodes JPEG files stored in the serial flash and displays them on the display. JPEG decoding is performed at high speed using JCU (JPEG Coded Unit) which is a function of RZ/A2M. In this sample, FreeRTOS is used.

Sprite Engine sample:
This is a sample application using the sprite engine which is the function of RZ/A2M. In the sample, it uses a sprite engine, slides in and out of icons, displays it on the display. In this sample, FreeRTOS is used.
DRP basic sample program

The DRP basic sample program provides the following sample. In this sample, FreeRTOS is used.

- **DRP Basic Operation Sample Program**
 - Converts the input image from MIPI camera to grayscale image using DRP Library and outputs to display.
- **DRP Parallel Operation Sample Program**
 - Converts the input image from MIPI camera to grayscale image at high speed using parallel operation function of DRP Library and outputs to display.
- **DRP Dynamic Loading Sample Program 1**
 - Detects the edges of the input image from MIPI camera by Canny method using DRP Library and outputs to display.
- **DRP Dynamic Loading Sample Program 2**
 - Detects the corners of the input image from MIPI camera by the Harris corner detector using DRP Library and outputs to display.
- **DRP Dynamic Loading Sample Program 3**
 - After detecting the edges of the input image from MIPI camera by Canny method using DRP Library, performs contour detection using FindContours application.
 - The results output to display.
- **DRP Simple ISP sample program 1**
 - Corrects the color and noise of the input image from MIPI camera using DRP Library, and the image with high color reproducibility is output to the Display.

Ethernet sample program

This sample program connects the RZ / A2M evaluation board and the PC via Ethernet, outputs data to the Echo server of the PC, and confirms the response. In this sample, FreeRTOS is used.

SCIFA using DMAC Sample Application

This sample program outputs text via debugging-serial with combination between DMA controller and UART(SCIFA). In this sample, FreeRTOS is used.

Example of Low power mode

This sample program handles the stand-by mode process. (Stand-by in/out). In this sample, FreeRTOS is NOT used.

SDHI FAT Sample Application

This sample program accesses to SD card via FatFS filesystem middleware. This package bundles both FreeRTOS version and OS-less version of this sample.

SD driver used in this sample does not support High-Speed mode and Ultra-High-Speed mode. RZ/A2M group SD Package (R01AN4680) contains driver and sample project that supports these modes. To get this package, please contact [Renesas sales](mailto:).
USB HOST FAT Sample Application
This sample program accesses to USB flash memory via FatFS filesystem middleware. This package bundles both FreeRTOS version and OS-less version of this sample.

USB HOST HID Sample Application
This sample program receives the USB mouse information. In this sample, FreeRTOS is used.

USB Function CDC Sample Application
This sample program echo backs the data from USB host. This package bundles both FreeRTOS version and OS-less version of this sample.

RTC Counter Sample program
This sample program uses RTC to perform time count and alarm detection in calendar count mode / binary count mode. In addition, it works with the LPM driver to return from deep standby mode when an alarm occurs. In this sample, FreeRTOS is NOT used.

GPT-PWM Sample program
This sample program outputs a PWM waveform using GPT. In this sample, FreeRTOS is NOT used.

Firmware Update Sample program
This sample program rewrites the serial flash with the update image input from the debug UART and executes the updated image. In this sample, FreeRTOS is used.

SSIF Sample program
This sample program inputs and outputs audio using the Cirrus audio codec WM8978. In this sample, FreeRTOS is used.

Target Device / Target Board
Target Device: RZ/A2M
Target Board Kit: GR-MANGO
Contents

1. Package Contents ...6
 1.1 Software ..6
 1.2 Documents ..7
2. Folder Structure ...8
3. How to use the projects bundled in this package ...10
4. Reference Application Notes ...10
5. Restrictions ..10
6. Precautions ..11
7. Used open source software and licenses ..12
Revision History ..13
1. Package Contents

1.1 Software

This package contains the following software.

Table 1-1 Software of this package

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RZ/A2M Group Example of Initialization</td>
<td>rza2m_blinky_sample_osless_gcc.zip</td>
</tr>
<tr>
<td>2</td>
<td>RZ/A2M Group Example of FreeRTOS</td>
<td>rza2m_blinky_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>3</td>
<td>RZ/A2M Group Camera and Display sample application</td>
<td>rza2m_cam_and_disp_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>4</td>
<td>RZ/A2M Group JPEG Codec Unit "JCU" Sample Application</td>
<td>rza2m_jpeg_codec_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>5</td>
<td>RZ/A2M Group Sprite Engine sample</td>
<td>rza2m.sprite_engine_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>6</td>
<td>RZ/A2M Group DRP Basic Operation sample program</td>
<td>rza2m_drp_basic_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>7</td>
<td>RZ/A2M Group DRP Parallel Operation sample program</td>
<td>rza2m_drp_parallel_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>8</td>
<td>RZ/A2M Group DRP Dynamic Loading sample program1</td>
<td>rza2m_drp_dynamic_sample1_freertos_gcc.zip</td>
</tr>
<tr>
<td>9</td>
<td>RZ/A2M Group DRP Dynamic Loading sample program2</td>
<td>rza2m_drp_dynamic_sample2_freertos_gcc.zip</td>
</tr>
<tr>
<td>10</td>
<td>RZ/A2M Group DRP Dynamic Loading sample program3</td>
<td>rza2m_drp_dynamic_sample3_freertos_gcc.zip</td>
</tr>
<tr>
<td>11</td>
<td>RZ/A2M Group DRP Simple ISP Sample Application</td>
<td>rza2m_drp_simple_isp_sample1_freertos_gcc.zip</td>
</tr>
<tr>
<td>12</td>
<td>RZ/A2M Group Ethernet sample program</td>
<td>rza2m_ethernet_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>13</td>
<td>RZ/A2M Group SDHI FAT Sample Application (FreeRTOS)</td>
<td>rza2m_sdhi_fat_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>14</td>
<td>RZ/A2M Group SDHI FAT Sample Application (OS-less)</td>
<td>rza2m_sdhi_fat_sample_osless_gcc.zip</td>
</tr>
<tr>
<td>15</td>
<td>RZ/A2M Group USBH MSC FAT Sample Application (FreeRTOS)</td>
<td>rza2m_usbh_msc_fat_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>16</td>
<td>RZ/A2M Group USBH MSC FAT Sample Application (OS-less)</td>
<td>rza2m_usbh_msc_fat_sample_osless_gcc.zip</td>
</tr>
<tr>
<td>17</td>
<td>RZ/A2M Group USBH HID Sample Application (FreeRTOS)</td>
<td>rza2m_usbh_hid_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>18</td>
<td>RZ/A2M Group USBF CDC Sample Application (FreeRTOS)</td>
<td>rza2m_usbf_cdc_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>19</td>
<td>RZ/A2M Group USBF CDC Sample Application (OS-less)</td>
<td>rza2m_usbf_cdc_sample_osless_gcc.zip</td>
</tr>
<tr>
<td>20</td>
<td>RZ/A2M Group GPT-PWM Sample Application</td>
<td>rza2m_gpt-pwm_sample_osless_gcc.zip</td>
</tr>
<tr>
<td>21</td>
<td>RZ/A2M Group Firmware Update Sample Application</td>
<td>rza2m_fw_update_sample_freertos_gcc.zip</td>
</tr>
<tr>
<td>22</td>
<td>RZ/A2M Group SSIF Sample Application</td>
<td>rza2m_ssif_sample_freertos_gcc.zip</td>
</tr>
</tbody>
</table>
1.2 Documents

This package contains the following documents.

Table 1-2 Documents of this package

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RZ/A2M Group</td>
<td>R01AN5595</td>
</tr>
<tr>
<td></td>
<td>RZ/A2M Simple Applications Package for GR-MANGO Release Note</td>
<td>(This document)</td>
</tr>
</tbody>
</table>

Also, each project indicated in Table 1-1 includes the sample program’s application notes.
Each driver folder includes the document for the driver.
2. Folder Structure

Folder structure of this package and outline of contents are shown in Figure 2.1. Figure 2.2 shows an example of the sample application's folder structure. The DRP basic sample application is used in the Figure 2.2.

```
TOP
|-- rza2m_blinky_sample_osless_gcc.zip : RZ/A2M Group Example of Initialization
|-- rza2m_blinky_sample_freertos_gcc.zip : RZ/A2M Group Example of FreeRTOS
|-- rza2m_cam_and_disp_sample_freertos_gcc.zip : RZ/A2M Group Camera and Display Sample
|-- rza2m_dmac_sclfa_sample_freertos_gcc.zip : RZ/A2M Group SCIFA using DMA Sample Application
|-- rza2m_drp_basic_sample_freertos_gcc.zip : RZ/A2M Group DRP Basic Operation sample program
|-- rza2m_drp_dynamic_sample1_freertos_gcc.zip : RZ/A2M Group DRP Dynamic Loading sample program 1
|-- rza2m_drp_dynamic_sample2_freertos_gcc.zip : RZ/A2M Group DRP Dynamic Loading sample program 2
|-- rza2m_drp_dynamic_sample3_freertos_gcc.zip : RZ/A2M Group DRP Dynamic Loading sample program 3
|-- rza2m_drp_parallel_sample_freertos_gcc.zip : RZ/A2M Group DRP Parallel Operation sample program
|-- rza2m_drp_simple_isp_sample1_freertos_gcc.zip : RZ/A2M Group DRP Simple ISP sample program 1
|-- rza2m_ethernet_sample_freertos_gcc.zip : RZ/A2M Group Ethernet sample program
|-- rza2m_fw_update_sample_freertos_gcc.zip : RZ/A2M Group Firmware Update Sample Application
|-- rza2m_gpt-pwm_sample_osless_gcc.zip : RZ/A2M Group GPT-PWM Sample Application
|-- rza2m_jpeg_codec_sample_freertos_gcc.zip : RZ/A2M Group JPEG Codec Unit “JCU” Sample Application
|-- rza2m_lpm_sample_osless_gcc.zip : RZ/A2M Group Example of Low power mode
|-- rza2m RTC sample osless gcc.zip : RZ/A2M Group RTC Counter Sample Program
|-- rza2m_sdhi_fat_sample_freertos_gcc.zip : RZ/A2M Group SDHI FAT Sample Application (FreeRTOS)
|-- rza2m_sdhi_fat_sample_osless_gcc.zip : RZ/A2M Group SDHI FAT Sample Application (OS-less)
|-- rza2m_sprite_engine_sample_freertos_gcc.zip : RZ/A2M Group Sprite Engine sample
|-- rza2m_ssi_f_sample_freertos_gcc.zip : RZ/A2M Group SSIF Sample Application
|-- rza2m_usbh_msc_fat_sample_freertos_gcc.zip : RZ/A2M Group USB HOST FAT Sample Application (FreeRTOS)
|-- rza2m_usbh_msc_fat_sample_osless_gcc.zip : RZ/A2M Group USB HOST FAT Sample Application (OS-less)
|-- rza2m_usbh_hid_sample_freertos_gcc.zip : RZ/A2M Group USB HOST HID Sample Application
|-- rza2m_usbh_cdc_sample_freertos_gcc.zip : RZ/A2M Group USB Function CDC Sample Application (FreeRTOS)
|-- rza2m_usbh_cdc_sample_osless_gcc.zip : RZ/A2M Group USB Function CDC Sample Application (OS-less)
|-- r01an5595ej0200-rza2m-swpg-k-mango-gcc.pdf : RZ/A2M Group Simple Applications Package for GR-MANGO Release Note (this document)
|-- r01an5595ij0200-rza2m-swpg-k-mango-gcc.pdf : RZ/A2M Group Simple Applications Package for GR-MANGO Release Note (Japanese)
|-- r01qs0042ej0200-rza2m-quick-guide-mango-gcc.pdf : RZ/A2M Group RZ/A2M Software Package for GR-MANGO Quick Start Guide (English)
|-- r01qs0042j0200-rza2m-quick-guide-mango-gcc.pdf : RZ/A2M Group RZ/A2M Software Package for GR-MANGO Quick Start Guide (Japanese)
```

Figure 2.1 Folder Structure
Figure 2.2 Folder Structure of DRP basic sample programs
3. How to use the projects bundled in this package
Regarding how to use, refer to the documents in each folder in this package.

4. Reference Application Notes
Following is the list of application notes related to this software package.

RZ/A2M Group RZ/A2M Software Core Package (R01AN5680).
Drivers and middleware for RZ/A2M that can be added to the project bundled in this package.

5. Restrictions
The Restrictions of this package are shown as follow.

Table 5-1 Restrictions

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DRP Driver*</td>
<td>The following API Functions are not supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- R_DK2_Uninitialize</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- R_DK2_Inactivate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If these functions are called, these functions occur an error and return</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"R_DK2_ERR_INTERNAL".</td>
</tr>
<tr>
<td>2</td>
<td>DRP Driver *</td>
<td>The function that load the configuration data in background is not supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This function validates when argument "pload" of R_DK2_Load Function is set to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>anything other than NULL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the version in this package this function occurs an error and return "R_DK2_ERR_INTERNAL".</td>
</tr>
<tr>
<td>3</td>
<td>DRP Driver *</td>
<td>R_DK2_Load Function notifies the return value "R_DK2_ERRDEVICE", when</td>
</tr>
<tr>
<td></td>
<td></td>
<td>detects a transfer error of the configuration data. In the version in this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>package this function is not supported.</td>
</tr>
<tr>
<td>4</td>
<td>DRP Driver *</td>
<td>Processing Completion Callback Function notifies the argument "result" is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"R_DK2_ERR_DEVICE", when detects a transfer error in DRP. In the version in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>this package this function is not supported.</td>
</tr>
<tr>
<td>5</td>
<td>DRP Driver *</td>
<td>Processing Completion Callback Function notifies the argument "result" is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"R_DK2_ERR_STOPPED", when detects a transfer stopped by calling R_DK2_Unload</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Function of R_DK2_Inactivate Function. In the version in this package this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>package this function is not supported.</td>
</tr>
<tr>
<td>6</td>
<td>Driver (USBH)</td>
<td>Full Speed Hub is not supported.</td>
</tr>
</tbody>
</table>

Note 1 Please refer to “RZ/A2M Group DRP Driver User's Manual(R01US0355)” for details of DRP Driver's function.
6. Precautions

The Precautions of this package are shown as follow.

Table 6-1 Precautions

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Document</td>
<td>The application notes of each sample program included in this package are created for RZ/A2M Evaluation Board Kit. Please read the H/W dependency part as GR-MANGO environment as appropriate.</td>
</tr>
<tr>
<td>2</td>
<td>Environment</td>
<td>If it is happened a build error while building the project of this package as it is, the setting of environment may be incorrect. Check following items:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Follow section 3 of "RZ/A2M Software Package Quick Start Guide for GR-MANGO"(R01QS0042)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install e2 studio v7.3 or later again.</td>
</tr>
<tr>
<td>3</td>
<td>Environment</td>
<td>To avoid build error, expand the project to the folder with short full-path.</td>
</tr>
<tr>
<td>4</td>
<td>Environment</td>
<td>To avoid build error, expand the project to the folder without multi-byte character.</td>
</tr>
<tr>
<td>5</td>
<td>Environment</td>
<td>The project to generate the boot loader is not bundled in this package. Please access following site to obtain the boot loader project: https://www.mxic.com.tw/en-us/support/technical-documentation/Pages/Serial-NOR-Flash.aspx</td>
</tr>
<tr>
<td>6</td>
<td>File System</td>
<td>If you use the USBH MSC and SD at the same time, the file system will be connected to the USBH MSC.</td>
</tr>
<tr>
<td>7</td>
<td>File System</td>
<td>src\fatfs\documents.zip includes *.c files. If you unzipped the zip file, exclude the documents\res from your build.</td>
</tr>
<tr>
<td>8</td>
<td>File System</td>
<td>Long file name support is disabled. For details, refer to the following files in the sample project. src\fatfs\documents.zip</td>
</tr>
<tr>
<td>9</td>
<td>Ethernet</td>
<td>You cannot add the TCP / IP protocol stack to my project using SmartConfigurator. When using the TCP / IP protocol stack, use the "Ethernet sample program" included in this package as the base project.</td>
</tr>
<tr>
<td>10</td>
<td>TES Guiliani</td>
<td>TES Guiliani cannot be added to an existing project. When using TES Guiliani, please use Guiliani 2.4 SDK for RZ / A2M Software Package as a base project.</td>
</tr>
<tr>
<td>11</td>
<td>TES Guiliani</td>
<td>If you want to use TES Guiliani and TCP / IP protocol stack at the same time, please contact below. https://www.renesas.com/contact-us</td>
</tr>
<tr>
<td>12</td>
<td>OS Abstraction</td>
<td>Added support for e2 studio virtual console input / output. For details on the usage procedure, refer to the RZ / A2M Software Package Quick Start Guide (R01QS0027) included in this package.</td>
</tr>
<tr>
<td>13</td>
<td>DRP Driver</td>
<td>In Ver.0.94, the problem that the processing completion callback function may be called multiple times (problem before Ver.0.93) has been fixed.</td>
</tr>
</tbody>
</table>
7. Used open source software and licenses

Open source software used in this package and license of them are shown as following:

- newlib is used under the license described in following site:
 https://www.sourceware.org/newlib/COPYING.NEWLIB
- FreeRTOS™ is a trade mark of Amazon Web Services, Inc.
- FreeRTOS is used under MIT license described in following site:
 https://www.freertos.org/a00114.html
 https://github.com/aws/amazon-freertos/blob/master/LICENSE
 https://aws.amazon.com/freertos/faqs/
- FatFs is used under the license described in following site:
 http://elm-chan.org/fsw/ff/doc/appnote.html#license

SD Host/Ancillary Product License Agreement (SD HALA) is required to develop SD host-related products. Refer https://www.sdcard.org/developers/licensing/ for detail:

8. Request for tool user registration

Renesas Electronics provides a service to send the latest information on tool products by e-mail to registered customers via tool news. We will also inform you of the latest information on the RZ / A2M Software Package in Tool News, so please [register as a tool user]. Please refer to [here] for the product classification, product model name, version number, serial number, etc. to be entered when registering.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep. 30, 2020</td>
<td>First Edition issued</td>
</tr>
<tr>
<td>2.00</td>
<td>May. 31, 2021</td>
<td>Added an application that is included in the package</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JCU Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sprite Engine sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethernet sample program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCIFA using DMAC Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example of Low power mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USBF CDC Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USBH MSC FAT Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTC Counter Sample Program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPT-PWM Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firmware Update Sample Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added SDHI FAT Sample Application (OS-less)</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
 Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that require the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.