
 APPLICATION NOTE

R01AN0724EU0170 Rev.1.70 Page 1 of 28
February 6th, 2013

RX600 & RX200 Series
Virtual EEPROM for RX

Introduction
Many users wish to use the data flash on their MCUs as they would an EEPROM. The problem with this is that many
data flashes on RX MCUs do not have 1-byte write or 1-byte erase capabilities. Even if their RX MCU did offer this
granularity there would also be the issue of wear leveling and record management. To help solve these issues the
Virtual EEPROM project (VEE for short) was created. The VEE project offers these features:

• Users can write any amount of data regardless of the data flash’s true programming size

• Wear leveling is used to increase data flash longevity

• Easy to use API interface to safely read and write

• Built-in record management for simple reading and writing

• Uses background operation feature of MCUs so data flash operations do not block the user application

• Automatically recovers from resets or power downs that occur during programs and erases

• Adapts to flashes with different program sizes, erase sizes, block sizes, and number of data flash blocks

• Highly configurable to adjust to unique needs of each user

Target Device
The following is a list of devices that are currently supported by this API:

• RX621, RX62N Group

• RX62T Group

• RX62G Group

• RX630 Group

• RX631, RX63N Group

• RX63T Group

• RX210 Group

Contents

1. Overview ... 2

2. API Information .. 5

3. API Functions .. 14

4. Demo Projects ... 25

Website and Support ... 28

R01AN0724EU0170
Rev.1.70

February 6th, 2013

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 2 of 28
February 6th, 2013

1. Overview
The Virtual EEPROM (VEE) project is a software layer that sits on top of the Renesas provided Flash API as shown in
Figure 1.

Virtual EEPROM (Software)

Flash API (Software)

MCU (Hardware)
Figure 1 : Project Layers

1.1 Use of Background Operations
The Virtual EEPROM requires that the user’s MCU have hardware support for background operations (BGO) on the
data flash and that the Flash API has software support. Background operation means that flash operations do not block.
In a blocking system (one that does not have support for BGO) when a flash operation is started, control is not given
back to the user application until the operation has completed. With a system that supports BGO, control is given back
to the user application immediately after the operation has been successfully started. The user will be alerted by a
callback function, or can poll to see if the operation has completed. Since the VEE project uses the BGO capabilities of
the MCU this means less time is taken away from the user application.

1.2 Records
When data is written to the VEE it is done using VEE Records. Each record has some information that must be filled in
by the user as well as a pointer to the data to be stored. Users can store as much data as they wish with each record.
When the user writes a record to the VEE it stores the data and the record information together. Each record is
identified by a unique ID. If the user writes a record with the same ID as a record that was previously written then it
will be written as a new record and the older record will no longer be valid. The reason this is done is for wear leveling
purposes. The user does have the option of configuring the VEE code to ignore duplicate writes. An example of how
records are stored is shown in Section 1.4.

1.3 Data Management
With the VEE project the MCU’s data flash area is split up into VEE Sectors. These do not correspond to real sectors
on the MCU. The VEE project requires at least one VEE Sector. Each VEE Sector is made up of at least two VEE
Blocks. Each VEE Block can be made up of one or more flash blocks on the MCU. One VEE Block has the latest
stored data for that VEE Sector at any given time.

The VEE Blocks ping-pong data back and forth as one becomes full. When a write occurs and there is no room left in
the current VEE Block a defrag occurs in which the latest data is transferred to the next VEE Block in the VEE Sector.
Once the data has been transferred the old VEE Block can be erased so that it will be ready when the new VEE Block
becomes full. This moving of data is used for wear leveling purposes.

Having different VEE Sectors allows the user to separate data. One reason for doing this would be to separate
frequently written data from infrequently written data. An example is if a user had one large block of data that was
written once a day and a small block of data that was written every minute. The small block will fill up the current
block quickly and will force a defrag very often which means the large block of data that has not been changed will
need to be transferred even though the data is the same as before. The large block can also cause defrags to happen
more often since it can take up a significant portion of the VEE Block’s available space.

The user writes VEE Records, described in Section 1.2, to the VEE. After the record has been written to the virtual
EEPROM the user can retrieve the data using the unique ID. If the user wants to store a new version of the record they
can send in the same ID as before. The record does not have to be the same size as before, the API takes care of this.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 3 of 28
February 6th, 2013

1.4 Example of VEE in Action
This section explains how data is managed in a 1 sector, 2 block VEE setup. As explained earlier, VEE Records are
stored in VEE Blocks. At least 2 VEE Blocks are needed to make a VEE Sector. At any point in time within the VEE
project there is a maximum of one valid record per unique ID. As records with the same ID are written, the newest
record becomes the valid record and the previously written records are ignored. Figure 2 shows what the VEE might
look like during use. Notice that each record is represented twice in VEE Block 0. Only the record that is lower
(records are stored downward in this example) is valid.

Figure 2 : Filling up Block 0

When a VEE write is issued to a VEE Block that does not have a enough room for the record, a defrag is needed. A
defrag will move all valid records to another VEE Block. This is shown in Figure 3 where the write of VEE Record 1
will not fit into VEE Block 0. This forces a defrag where all valid records will be moved to VEE Block 1.

Figure 3 : Defrag moves data to Block 1

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 4 of 28
February 6th, 2013

Notice that only the valid versions of each record are copied. The older records are ignored and later erased.

Figure 4 : Defrag only copies valid records

After the defrag has completed the previous VEE Block will be erased. Figure 5 shows the state of the VEE after the
defrag and erase have completed. All of the valid records have been moved to VEE Block 1 and VEE Block 0 has been
erased. Now that VEE Block 0 has been erased, it will be ready when a defrag is needed for VEE Block 1.

Figure 5 : Delete Block 0 after defrag

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 5 of 28
February 6th, 2013

2. API Information
The VEE API follows the Renesas API naming standards.

2.1 Hardware Requirements
This middleware requires your MCU support the following features:

• Flash with background operation (BGO) feature

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this middleware requires. Unless explicitly stated, these resources
must be reserved for the middleware and the user cannot use them.

2.2.1 Data Flash
For safe operations the user should reserve the entire data flash on their MCU for VEE operations. If this rule is not
followed then user will be responsible for making sure other data flash operations do not interfere with VEE operations.

2.3 Software Requirements
This middleware is dependent upon the following packages:

• Simple Flash API for RX600 (R01AN0544EU) v2.40 or higher

• Renesas FIT Board Support Package (r_bsp) v2.00 or higher

2.4 Limitations
While data flash operations outside of the Virtual EEPROM can be performed using the Flash API, the user must be
cautious to not interfere with VEE operations. For example, if the user writes to the data flash using the Flash API and
then reads VEE record data from the data flash before the write finishes then a flash error will occur.

2.5 Supported Toolchains
This middleware is tested and working with the following toolchains:

• Renesas RX Toolchain v1.02

2.6 Header Files
All API calls are accessed by including a single file, r_vee_if.h, which is supplied with the VEE project code. This
header file in turn references r_vee_config.h which has the user’s VEE configuration information.

2.7 Integer Types
This project uses ANSI C 99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 6 of 28
February 6th, 2013

2.8 Configuration Overview
This section covers the definitions located in the r_vee_config.h file and discusses how each one changes the behavior
of the VEE project.

Configuration options found in r_vee_config.h

VEE_NUM_SECTORS

This defines the number of VEE Sectors that will be used. This
definition will choose a sector configuration found in the
r_vee_config_<target>_<df_size>.h file. For example, if a
RX62N with 32KB data flash is being used with 2 VEE Sectors
then there must be a 2 sector VEE configuration defined in
r_vee_config_rx62x_32kb.h.

VEE_MAX_RECORD_ID

The number of unique records to be used in the system. It is not
recommended to put more entries than you will use since there is a
cache entry for each possible unique ID. If you attempt to issue a
VEE operation for a VEE Record with an ID greater than or equal
to this value then the API will return an error. This value sets the
maximum number of unique records but the actual maximum
record number will be this value minus 1. For example, if 8 is
chosen for this macro then there will be 8 unique records but the
maximum record ID would be 7 since record numbers start at 0.

VEE_IGNORE_DUPLICATE_WRITES

This option allows the user to select to ignore record writes where
the record being written is the same (data matches) as the record
already stored in the VEE. This will potentially save space in VEE
and lead to less defrags but takes extra time to check for existing
matches when performing a write.

VEE_CACHE_FILL_ALL

This configuration value lets you choose whether you want to fill
the cache all at once, or one record at a time. If this definition is
uncommented then when a read is performed and a record is not
found in the cache (e.g. first read after reset) then all the records
will be searched for and the entire cache will be filled in at once.
If this is commented out then only the record which was requested
will be searched for. This comes down to do you want to spread
out the time required for searching or do you want to get it all of
out of the way at the very beginning so that subsequent reads will
not require searching?

VEE_USE_DEFAULT_CHECK_FUNCTIONS

Lets the user choose whether to use the default
R_VEE_GenerateCheck() and vee_check_record() functions or
whether they want to write their own. For example, if the user
wanted to use a checksum instead of the default static flag check
then they could comment out this define and write their own
functions. If the user writes their own function they must still use
the same function name and arguments.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 7 of 28
February 6th, 2013

VEE_CALLBACK_FUNCTION

There are 2 parts to this configuration item. The first part is
whether the definition VEE_CALLBACK_FUNCTION is defined
or not. If it is not defined then callbacks will not be used in the
VEE project and the user must poll to see if an operation has
finished. If it is defined then the definition should be the name of
the callback function the user is going to write. For example, if
the user defined VEE_CALLBACK_FUNCTION to be
‘MyCallback’ then the user would write the MyCallback()
function in their application and this function will be called when
a VEE operation completes.

Table 1 : Description of Configuration Definitions

2.8.1 Using the r_bsp Package
Starting with v1.50, the VEE middleware uses the Renesas FIT Board Support Package (r_bsp). The r_bsp package
includes startup code and MCU information for different RX boards. The VEE code gets the information it needs about
the MCU being used from the files in the r_bsp package. Users are encouraged to add their own boards to the r_bsp
package. By having a clear foundation for middleware to be built on top of this should enable RX middleware to be
more easily integrated.

2.9 VEE Sector Configuration
This section covers VEE Sector configuration using the r_vee_config_<target>_<df_size>.h (e.g. for RX62N with
32KB data flash this filename is r_vee_config_rx62x_32kb.h) file. The definitions and data structures presented in this
section configure the VEE Sectors, VEE Blocks, and VEE Records used in the VEE project. The data structures are
defined in r_vee_config_<target>_<df_size>.h but the space is actually allocated in r_vee.c.

2.9.1 Number of VEE Sectors
The number of VEE Sectors to be used is defined by the VEE_NUM_SECTORS #define in r_vee_config.h. See Section
2.8 for more information.
2.9.2 Assigning VEE Records to VEE Sectors
VEE Records are assigned to VEE Sectors at compile time via the g_vee_RecordLocations[] array. There is one entry
in this array per unique ID in the VEE project. How many unique IDs there are in the VEE project is controlled by the
VEE_MAX_RECORD_ID definition discussed in Section 2.8. The value for each entry in the array is which VEE
Sector the record will be located in. Below is an example configuration where there are 2 VEE Sectors and we want the
first 4 records to be located in VEE Sector 0 and the last 4 records to be located in VEE Sector 1.

const uint8_t g_vee_RecordLocations[VEE_MAX_RECORD_ID] = {
 0, /* Record 0 will be in sector 0 */
 0, /* Record 1 will be in sector 0 */
 0, /* Record 2 will be in sector 0 */
 0, /* Record 3 will be in sector 0 */
 1, /* Record 4 will be in sector 1 */
 1, /* Record 5 will be in sector 1 */
 1, /* Record 6 will be in sector 1 */
 1, /* Record 7 will be in sector 1 */
};

2.9.3 Allocating VEE Blocks
After defining how many VEE Sectors will be used the user must decide where the VEE Blocks inside of the sectors
will be allocated. This is done using two separate arrays. The names presented below are the defaults used.

The first array is named g_vee_sect#_block_addresses[] where the ‘#’ is replaced with the sector number. Each entry of
the array defines the starting address of a VEE Block in this particular sector. There will be one of these arrays defined
for each VEE Sector.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 8 of 28
February 6th, 2013

The second array is named g_vee_sect#_df_blocks[][2] where the ‘#’ is once again replaced with the sector number.
This is 2D array so each entry is another array. The internal array is an array that holds the first and last data flash
blocks on the MCU that make up this VEE Block. There will be one of these arrays defined for each VEE Sector.

An example is shown below of a system with the following setup:

• 2 VEE Sectors
• 2 VEE Blocks per VEE Sector
• 4 MCU data flash blocks per VEE Block
• VEE Sector 0 will be allocated lower in memory than VEE Sector 1

/* Sector 0 */
const uint32_t g_vee_sect0_block_addresses[] =
{
 0x100000, /* Start address of VEE Block 0 */
 0x102000 /* Start address of VEE Block 1 */
};

const uint16_t g_vee_sect0_df_blocks[][2] =
{
 {BLOCK_DB0, BLOCK_DB3}, /* Start & end DF blocks making up VEE Block 0 */
 {BLOCK_DB4, BLOCK_DB7} /* Start & end DF blocks making up VEE Block 1 */
};
/* Sector 1 */
const uint32_t g_vee_sect1_block_addresses[] =
{
 0x104000, /* Start address of VEE Block 0 */
 0x106000 /* Start address of VEE Block 1 */
};
const uint16_t g_vee_sect1_df_blocks[][2] =
{
 {BLOCK_DB8, BLOCK_DB11}, /* Start & end DF blocks making up VEE Block 0 */
 {BLOCK_DB12, BLOCK_DB15} /* Start & end DF blocks making up VEE Block 1 */
};

The data flash block #defines (e.g. BLOCK_DB0) are defined by the Simple Flash API for RX package.

2.9.4 Data Structure that Holds VEE Project Data Configuration
The g_vee_Sectors array is the data structure that is used in the VEE project code for obtaining information about the
current system’s VEE data configuration. Each entry defines a VEE Sector and holds the following information:

• The ID of the sector
• How many VEE Blocks make up this sector
• The size (in bytes) of this sector
• The starting MCU addresses for each VEE Block in this sector

o Discussed in Section 2.9.3.
• The number of MCU data flash blocks per VEE Block
• The start and end MCU data flash blocks for each VEE Block

o Discussed in Section 2.9.3.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 9 of 28
February 6th, 2013

An example is shown below of a VEE project with 3 different sized VEE Sectors.

const vee_sector_t g_vee_Sectors[VEE_NUM_SECTORS] =
{
 /* Sector 0 */
 {
 /* ID is 0 */
 0,
 /* There are 2 VEE Blocks in this sector */
 2,
 /* Size of each VEE Block */
 8192,
 /* Starting addresses for each VEE Block */
 (const uint32_t *)g_vee_sect0_block_addresses,
 /* Number of data flash blocks per VEE Block
 (End Block # - Start Block # + 1) */
 4,
 /* Start & end DF blocks making up VEE Blocks */
 g_vee_sect0_df_blocks
 }
 ,
 /* Sector 1 */
 {
 /* ID is 1 */
 1,
 /* There are 2 VEE Blocks in this sector */
 2,
 /* Size of each VEE Block */
 6144,
 /* Starting addresses for each VEE Block */
 (const uint32_t *)g_vee_sect1_block_addresses,
 /* Number of data flash blocks per VEE Block
 (End Block # - Start Block # + 1) */
 3,
 /* Start & end DF blocks making up VEE Blocks */
 g_vee_sect1_df_blocks
 }
 ,

 /* Sector 2 */
 {
 /* ID is 2 */
 2,
 /* There are 2 VEE Blocks in this sector */
 2,
 /* Size of each VEE Block */
 2048,
 /* Starting addresses for each VEE Block */
 (const uint32_t *)g_vee_sect2_block_addresses,
 /* Number of data flash blocks per VEE Block
 (End Block # - Start Block # + 1) */
 1,
 /* Start & end DF blocks making up VEE Blocks */
 g_vee_sect2_df_blocks
 }

 /* To add more sectors copy the one above and change the values */
};

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 10 of 28
February 6th, 2013

2.10 API Data Structures
2.10.1 VEE Record
When reading and writing to the VEE using the provided API functions the user sends in data using a VEE Record data
structure. This structure is shown below and is located in r_vee_if.h.

/* VEE Record Structure */
typedef struct
{
 /* Unique record identifier, cannot be 0xFF! */
 vee_var_data_t ID;
 /* Number of bytes of data for this record */
 vee_var_data_t size;
 /* Valid or error checking field */
 vee_var_data_t check;
 /* Which VEE Block this record is located in, user does not set this */
 vee_var_data_t block;
 /* Pointer to record data */
 uint8_t far * pData;
} vee_record_t;

2.11 API Typedefs
2.11.1 Return Values
The possible return values from the VEE API functions are listed in the following typedef from r_vee_if.h.

/* Return values for functions */
typedef enum
{
 VEE_SUCCESS,
 VEE_FAILURE,
 VEE_BUSY,
 VEE_NO_ROOM,
 VEE_NOT_FOUND,
 VEE_ERROR_FOUND
} vee_return_values_t;

2.11.2 VEE States
The possible states that the VEE project can be in are listed below and can be found in r_vee_if.h. One of these states
will be returned by the R_VEE_GetState() function.

/* Defines the possible states of the VEE */
typedef enum
{
 VEE_READY,
 VEE_READING,
 VEE_WRITING,
 VEE_ERASING,
 VEE_DEFRAG,
 VEE_ERASE_AND_DEFRAG,
 VEE_WRITE_AND_DEFRAG,
 VEE_ERASE_AND_WRITE
} vee_states_t;

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 11 of 28
February 6th, 2013

2.11.3 VEE Commands for R_VEE_Control() Function
When using the R_VEE_Control() function, the user must input a command to be executed. This typedef defines
available commands.

/* VEE Record Structure */
typedef enum
{
 /* This command will reset the VEE even if it is in the middle of an
 operation. This should only be used when a flash error (e.g. data flash
 access during VEE operation) has occurred and you need to return the VEE
 to a working state. */
 VEE_CMD_RESET
} vee_command_t;

2.12 MCU Specific Typedefs
There are two typedefs used in the VEE project that change depending on the data flash characteristics of the MCU
being used. These two typedefs are vee_var_min_t and vee_var_data_t and will be found in r_vee.h.

The size of vee_var_min_t should be set to the minimum program size of the data flash. For example, the RX62N
group has 8-byte minimum writes on its data flash so uint64_t (8-byte integer) would be used. On the RX63N, which
has 2-byte writes, vee_var_data_t would be set to uint16_t (2-byte integer).

The vee_var_data_t typedef is used in the VEE Record structure as can be seen in Section 2.10. The size of
vee_var_data_t has to be at least the size of vee_var_min_t and can be larger. The more bytes used for vee_var_data_t,
also means the more bytes of overhead per VEE Record. This is discussed in more detail in Section 2.13. Therefore,
the smallest value for vee_var_data_t that can be used in your system should be used. The user would set the size of
vee_var_data_t to be larger than the minimum write size of the data flash in the event that they needed the extra range.
For example, on the R8C/38C the vee_var_data_t typedef could be set to uint8_t (1-byte integer) but this would limit
the size of the data for each VEE Record to 255 bytes (0xFF).

Below is an example setup for the R8C/3x Group.

/* Set size of vee_var_data_t to the minimum write size of MCU's data flash
 or larger. This is the size of the variables in a record structure. */
typedef uint16_t vee_var_data_t;
/* Set size of vee_var_min_t to the minimum write size of MCU's data flash */
typedef uint8_t vee_var_min_t;

2.13 Overhead Associated with VEE Records
The overhead of each VEE Record can be seen by looking at the vee_record_t data structure used in Section 2.10.
Other than the data being stored there are 4 members of type vee_var_data_t. This means that the overhead of each
VEE Record will be ‘4 * sizeof(vee_var_data_t)’. For example, using the default settings shown in Section 2.12 for the
R8C/3x, there will be 8-bytes of overhead since vee_var_data_t is set to be 2-bytes. On the RX62N, vee_var_data_t is
set to 8-bytes by default, meaning that the overhead will be 32-bytes per record.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 12 of 28
February 6th, 2013

2.14 Reading Data from VEE
To read a record out of the VEE the user calls the R_VEE_Read(vee_record_t * vee_temp) API function. If found the
VEE will set the pData pointer to the address of the data in the data flash. The user can then use this pointer to read the
data. A very important thing to remember is that after performing a read the R_VEE_ReleaseState() function must be
called before any other VEE API functions can proceed other than another read command. This is enforced for safety
reasons. The reason this is required is that when using BGO data flash operations there is no way to guarantee the data
can be safely read unless the user has exclusive access to the data flash. Below is an example of how a problem could
occur if these precautions were not in place.

1. User calls R_VEE_Read() for VEE Record 0 and gets address of data in data flash.
2. User reads data for VEE Record 0.
3. User calls R_VEE_Write() and writes VEE Record 1 to the VEE.
4. The R_VEE_Write() function returns successfully and the write is going on in the background using BGO.
5. The user reads data again from VEE Record 0, the address of which was obtained earlier.
6. A data flash access violation error occurs because a read was attempted to the data flash before the write of

VEE Record 1 finished.

This same scenario could occur during a VEE erase or defrag. There are safety precautions in place to help prevent this
from occurring. Even with these built-in precautions the user must still be aware of what they are doing. For example,
the VEE project has no way of preventing a user from using a VEE Record data pointer that was obtained earlier during
a current data flash operation. In order for users to protect themselves from this scenario they must make sure to always
read, or re-read, data using the R_VEE_Read() command after any of the following commands:

• R_VEE_Write()
• R_VEE_Erase()
• R_VEE_Defrag()

For example, even if VEE Record 0 was read earlier, the R_VEE_Read(ID=0) command should be used before reading
the data again after the R_VEE_Write(ID=2) command was issued. Below is an example of how a user should read and
use data from the VEE and how API functions will try to enforce safe use.

Operation Result

R_VEE_Read(ID=1) Successful

R_VEE_Write(ID=2) Not successful, VEE_BUSY returned

R_VEE_Read(ID=2) Successful

Use data from VEE Records 1 & 2 using previously obtained data pointers Successful

R_VEE_Erase(…) Not Successful, VEE_BUSY returned

R_VEE_ReleaseState() Successful

R_VEE_Erase(…) Successful

R_VEE_Write(ID=3) Successful

R_VEE_Read(ID=2) Successful

Use data from VEE Record 2 using previously obtained data pointer Successful

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 13 of 28
February 6th, 2013

2.15 Error Recovery
When the R_VEE_Write() or R_VEE_Defrag() API functions are used the API will check the current VEE Sector for
errors. Errors occur when a reset or power down occurs during a VEE operation. For example, if a reset occurs during
a VEE write operation then the record’s data will stop abruptly in the data flash. The VEE does protect users from
reading records that were not completely programmed by using the ‘check’ member of the VEE Record structure. The
‘check’ member is written last and checked when a VEE read occurs.

The error recovery mechanisms built into the VEE project will try to recover as much data as possible. There is one
case where the latest written record can be lost. This scenario is described below.

1. VEE Record 0 is written using R_VEE_Write().
2. There was not enough room for VEE Record 0 so a defrag occurs.
3. Defrag starts off by writing VEE Record 0 to new VEE Block.
4. After VEE Record 0 is written a reset occurs before the defrag can finish.
5. User tries to read VEE Record 0 using R_VEE_Read().

At this point there are two options. The first option is that the VEE will return the last written record for VEE Record 0
that was in the previous VEE Block that was being defragged before the reset occurred. The other option is to find the
newer record that is located in the new VEE Block. The first option is chosen for simplicity and quickness. The main
problem in this case is that there is no safe place to store the newer record while the invalid VEE Block is erased so that
the defrag can be stored again. It is possible the record could be stored in RAM but this means the VEE would require
the user to allocate a portion of RAM that is the maximum size of a record they might write and it would usually never
be used. Even if this plan was followed the record could still be lost in the event that a power down occurs again while
the record is being stored in RAM. If this were to occur the record would be lost entirely.

The R_VEE_Read() function does not check VEE Sectors for corruption which means that records can be returned in
the quickest time possible. This is especially critical to customers that need data as quick as possible on power-up.
When the next write occurs to the VEE Sector in question it will detect the error and will erase the new block and then
start the defrag operation again.

2.16 Adding Middleware to Your Project
Follow the steps below to add the VEE code to your project. These steps assume that the Flash API has already been
added to your project.

1. Copy the ‘r_vee’ directory (packaged with this application note) to your project directory.
2. Add the file r_vee.c to your project.
3. Add the C Source file for your MCU port to your project from the ‘src/targets/’ directory.

a. e.g. for RX62x this file is named r_vee_rx62x.c in the r_vee/src/targets/rx62x folder.
4. Add an include path to the ‘r_vee’ directory.
5. Add an include path to the ‘r_vee\src’ directory.
6. Copy the reference configuration file 'r_vee_config_reference.h' from the ‘ref’ folder to your project and

rename it r_vee_config.h.
7. Configure the middleware using r_vee_config.h.
8. Add a #include for r_vee_if.h to any source files that need to use the VEE API.

2.17 Detecting Flash Errors
In the event that a data flash error occurs the user will be alerted using the FlashError() callback function. This is the
same callback function that is used by the Flash API. The Flash API will reset the Flash Control Unit on the MCU
before calling the callback function. Since it is a callback function the user should write the function in their own
application. The prototype for the function is shown below.

void FlashError(void);

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 14 of 28
February 6th, 2013

3. API Functions
3.1 Summary
The following functions are included in this API:

Function Description

R_VEE_Read() Read a record from the VEE

R_VEE_Write() Write a record to the VEE

R_VEE_Defrag() Cause a defrag on a VEE sector now

R_VEE_Erase() Erase a VEE sector

R_VEE_GetState() Get the current processing state of the VEE

R_VEE_ReleaseState() Release the read state of the VEE so other non-read operations can continue

R_VEE_GenerateCheck() Generate the ‘check’ member for an input record

R_VEE_Open() Initialize the VEE’s data structures and internal state

R_VEE_Control() Extensible VEE function for various tasks.

R_VEE_GetVersion() Returns the version of the VEE code

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 15 of 28
February 6th, 2013

3.2 R_VEE_Read
Attempts to find a record in the VEE.

Format
uint8_t R_VEE_Read(vee_record_t * vee_temp);

Parameters
vee_temp

Pointer to structure with record information to look for.

Return Values
VEE_SUCCESS: Successful, structure members set accordingly
VEE_NOT_FOUND: Record not found
VEE_BUSY: Other VEE operation in progress, try again later
VEE_INVALID_INPUT: Record sent in had invalid data.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function is called to try and retrieve a record from the VEE. The user sends in a VEE Record structure with the ID
filled in for the record they wish to find. The VEE will first search the VEE Cache. If the record is not found in the
cache then it will be searched for in the data flash. If the record is found in the data flash then its location will be stored
in the cache for future reads.

Reentrant
Yes, but only when a VEE write, defrag, or erase is not on-going. When one of these operations is on-going, the
function will return VEE_BUSY.

Example
vee_record_t example_record;

/* We want to find VEE Record 1 */
example_record.ID = 1;

/* Search VEE for record */
if (VEE_SUCCESS == R_VEE_Read(&example_record))
{
 /* Send data */
 for (loop = 0; loop < example_record.size; loop++)
 {
 TransmitByte(example_record.pData[loop]);
 ...
 }
}

Special Notes:
This function will not cause recovery methods to be started in the event that the VEE is corrupt. For example, if a reset
or power down occurs during a VEE write, erase, or defrag then the VEE system will be left in a corrupt state. If a VEE
read is issued when the MCU powers back on then the read will be issued on the corrupt system. This function will
ignore the corrupt system and will attempt to read the latest valid VEE Record with the supplied ID. The reason this
function operates this way is for users to be able to read their data as quick as possible after a reset. If recovery methods
were started with this function then the user’s application would have to stall waiting for the VEE system to be fixed.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 16 of 28
February 6th, 2013

3.3 R_VEE_Write
Writes a record to the VEE.

Format
uint8_t R_VEE_Write(vee_record_t * vee_temp);

Parameters
vee_temp

Pointer to structure with record to write

Return Values
VEE_SUCCESS: Successful, write in progress
VEE_BUSY: Other VEE operation in progress, try again later
VEE_NO_ROOM: No room, need to call R_VEE_Erase()
VEE_FAILURE: Data flash operation failed
VEE_INVALID_INPUT: Record sent in had invalid data.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function is used to write a VEE Record to the data flash. When sending in the VEE Record the user should fill in
the following members:

• ID
• size
• check
• pData

If the function returns VEE_SUCCESS then the record has not yet been written. It is in the process of being written. If
the user chose to use the VEE callback function then it will be called when the write has finished. Otherwise, the user
can use the R_VEE_GetState() function to poll the VEE. When a record is written it is automatically entered into the
VEE Cache for faster retrieval in the future.

Reentrant
No, but is protected by lock to prevent errors from concurrent function calls

Example
vee_record_t example_record;

/* Fill in data for VEE Record 1 */
example_record.ID = 1;
example_record.size = sizeof(record_data);
example_record.pData = &record_data[0];

/* Generate ‘check’ field */
R_VEE_GenerateCheck(&example_record);

/* Write record */
if (VEE_SUCCESS == R_VEE_Write(&example_record))
{
 ...
}

Special Notes:
This function will check the current VEE Sector for errors and will attempt to fix any that are detected. If recovery
operations are needed then the API will return VEE_BUSY and the user will need to issue the write again later.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 17 of 28
February 6th, 2013

3.4 R_VEE_Defrag
Defrags a sector of the VEE.

Format
uint8_t R_VEE_Defrag(uint8_t sector);

Parameters
sector

ID of which VEE Sector to defrag

Return Values
VEE_SUCCESS: Successful, defrag in progress
VEE_BUSY: Other VEE operation in progress, try again later
VEE_NOT_FOUND: No ACTIVE block found to defrag
VEE_INVALID_INPUT: Invalid sector input.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function is used to defrag a sector. Defrags will be done automatically when R_VEE_Write() is called and there is
no more room in the active VEE Block. The user might want to use this function to force a defrag during idle time so
that a defrag will have less chance of happening during a more busy ‘writing’ phase.

If the function returns VEE_SUCCESS then the defrag has not yet finished. It is in the process of being defragged. If
the user chose to use the VEE callback function then it will be called when the defrag has finished. Otherwise, the user
can use the R_VEE_GetState() function to poll the VEE.

Reentrant
No, but is protected by lock to prevent errors from concurrent function calls

Example
uint8_t sector;

for (sector = 0; sector < VEE_NUM_SECTORS; sector++)
{

 /* Defrag sector */
 ret = R_VEE_Defrag(sector);

 /* Check result */
 if (VEE_SUCCESS == ret)
 {
 ...
 }

 /* Wait for defrag to finish */
 ...
}

Special Notes:
This function will check the current VEE Sector for errors and will attempt to fix any that are detected. If recovery
operations are needed then the API will return VEE_BUSY and the user will need to issue the defrag again later.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 18 of 28
February 6th, 2013

3.5 R_VEE_Erase
Erases a sector of the VEE.

Format
uint8_t R_VEE_Erase(uint8_t sector);

Parameters
sector

ID of which VEE Sector to erase

Return Values
VEE_SUCCESS: Successful, erase in progress
VEE_BUSY: Other VEE operation in progress, try again later
VEE_FAILURE: Data flash operation failed
VEE_INVALID_INPUT: Invalid sector input.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function is used to erase the data in a VEE Sector. If no active VEE Block is found in the given VEE Sector then
VEE_SUCCESS will be returned. If an active VEE Block is found then that block will be erased. This function uses
the VEE Block’s flags to determine whether it is empty or not. It does not check every memory location in a VEE
Block.

If the function returns VEE_SUCCESS then the erase has not yet finished. It is in the process of being erased. If the
user chose to use the VEE callback function then it will be called when the erase has finished. Otherwise, the user can
use the R_VEE_GetState() function to poll the VEE.

Reentrant
No, but is protected by lock to prevent errors from concurrent function calls

Example
uint8_t sector;

/* Erase all data from VEE */
for (sector = 0; sector < VEE_NUM_SECTORS; sector++)
{

 /* Erase sector */
 ret = R_VEE_Erase(sector);

 /* Check result */
 if (VEE_SUCCESS == ret)
 {
 ...
 }

 /* Wait for erase to finish */
 ...
}

/* VEE is empty */

Special Notes:
The VEE project has no way of invalidating VEE Record structures the user may have in their project when the VEE
Sector that the records are stored in is erased. To prevent any errors from this the user should take care to not read data
using a data pointer to a VEE Sector that has been erased. Instead the user should always use the R_VEE_Read()
function after an erase to make sure they have valid data.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 19 of 28
February 6th, 2013

3.6 R_VEE_GetState
Returns the current state of the VEE.

Format
vee_states_t R_VEE_GetState(void);

Parameters
None

Return Values
State of VEE. Refer to Section 2.11.2 for information on possible VEE states.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function returns the current state of the VEE. This function can be used to poll the VEE to detect when a VEE
operation has finished.

Reentrant
Yes.

Example
uint8_t sector;

/* Erase all data from VEE */
for (sector = 0; sector < VEE_NUM_SECTORS; sector++)
{

 /* Erase sector */
 ret = R_VEE_Erase(sector);

 /* Check result */
 if (VEE_SUCCESS == ret)
 {
 ...
 }

 while (VEE_READY != R_VEE_GetState())
 {
 /* Wait for erase to finish */
 }
}

/* VEE is empty */

Special Notes:
None.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 20 of 28
February 6th, 2013

3.7 R_VEE_ReleaseState
After a successful read this function sets the VEE State to VEE_READY so that VEE operations can continue.

Format
uint8_t R_VEE_ReleaseState(void);

Parameters
None

Return Values
VEE_SUCCESS: Successful, state released
VEE_FAILURE: Can only release state when state is VEE_READING

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function attempts to release the state of the VEE so that other VEE operations can occur. This function is
necessary to call after the user has read a record from the VEE using the R_VEE_Read() function. For more
information on why this is required please refer to Section 2.14. This function should only be called after a successful
read. If the user uses this function after a VEE write, defrag, or erase then the function will return VEE_FAILURE.

Reentrant
Yes.

Example
vee_record_t example_record;
uint8_t ret;

/* We want to find VEE Record 1 */
example_record.ID = 1;

/* Search VEE for record */
if (VEE_SUCCESS == R_VEE_Read(&example_record))
{
 /* Read data and use it */
 ...
}

/* Release state so other VEE operations can occur */
ret = R_VEE_ReleaseState();

Special Notes:
None.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 21 of 28
February 6th, 2013

3.8 R_VEE_GenerateCheck
Generates the ‘check’ field for a record.

Format
uint8_t R_VEE_GenerageCheck(vee_record_t * record);

Parameters
record

Pointer to structure with record info to generate ‘check’ from

Return Values
VEE_SUCCESS: Successful, ‘check’ field is filled in
VEE_FAILURE: Invalid record was input

Properties
Prototyped in file r_vee_if.h
Implemented in port source file for your MCU (e.g. r_vee_rx62x.c).

Description
This function will generate the ‘check’ field for an input record. By default the VEE just uses a constant flag value for
checking purposes. This serves the purpose of letting the VEE know if the record was successfully written or not. If the
user would rather use a CRC or checksum then they can rewrite this file to meet their needs.

Reentrant
Yes.

Example
vee_record_t example_record;

/* Fill in data for VEE Record 1 */
example_record.ID = 1;
example_record.size = sizeof(record_data);
example_record.pData = &record_data[0];

/* Generate ‘check’ field */
R_VEE_GenerateCheck(&example_record);

/* Write record */
if (VEE_SUCCESS == R_VEE_Write(&example_record))
{
 ...
}

Special Notes:
If the user decides to modify this function to implement their own error checking (e.g. CRC) then they will also need to
modify the vee_check_record() function as well. The R_VEE_GenerateCheck() function is used for generating the
‘check’ field for the user. The vee_check_record() function is used internally to the VEE to check a record for
corruption. If vee_check_record() is not updated then all records have the possibility of being marked as corrupt.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 22 of 28
February 6th, 2013

3.9 R_VEE_Open
Initializes VEE data structures and internal state.

Format
uint8_t R_VEE_Open(void);

Parameters
None

Return Values
VEE_SUCCESS: Successful, ‘check’ field is filled in

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function will initialize the internal VEE state. It will also invalidate the internal record cache.

Reentrant
Yes.

Example

/* Initialize the Virtual EEPROM */
R_VEE_Open();

Special Notes:
None.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 23 of 28
February 6th, 2013

3.10 R_VEE_Control
Extensible VEE function for various tasks.

Format
uint8_t R_VEE_Control(vee_command_t command, void * pdata);

Parameters
command

The command to be executed
pdata

Data to be input to command, output from command, or both

Return Values
VEE_SUCCESS: Successful, ‘check’ field is filled in
VEE_BUSY: Other VEE operation in progress, try again later
VEE_INVALID_INPUT: Command not supported or bad input data

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function is used to perform various tasks inside the VEE. These tasks usually serve utility functions and are
combined in this function for extensibility. This function takes a command which instructs the function which task to
complete. It also has another argument that can be used to pass data in, send data out, or both. See the vee_command_t
typedef in r_vee_if.h for available options. You can also see these options in Section 2.11.3.

Reentrant
Yes.

Example
/* A data flash access violation occurred and the VEE is in a locked state.
 Reset the VEE to start recovery. */
if (VEE_SUCCESS == R_VEE_Control(VEE_CMD_RESET, (void *)FIT_NO_PTR))
{
 /* VEE has been reset. The next write or defrag of the VEE will start any
 needed recovery operations. */
 ...
}

Special Notes:
If you are using the FIT r_bsp then when the pdata argument is not used it is recommended to use the FIT_NO_PTR
macro as shown in the example above.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 24 of 28
February 6th, 2013

3.11 R_VEE_GetVersion
Returns the current version of the VEE.

Format
uint32_t R_VEE_GetVersion(void);

Parameters
None

Return Values
Version of VEE.

Properties
Prototyped in file r_vee_if.h
Implemented in r_vee.c

Description
This function will return the version of the currently installed Flash API. The version number is encoded
where the top 2 bytes are the major version number and the bottom 2 bytes are the minor version number.
For example, Version 4.25 would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed VEE. */
cur_version = R_VEE_GetVersion();

/* Check to make sure version is new enough for this application’s use. */
if (MIN_VERSION > cur_version)
{
 /* This Virtual EEPROM version is not new enough and does not have XXX
 feature that is needed by this application. Alert user. */

}

Special Notes:
This function is specified to be an inline function in r_vee.c.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 25 of 28
February 6th, 2013

4. Demo Projects
This application note contains demo projects for both HEW and E2Studio. For HEW the demo is packaged as an entire
HEW workspace which contains projects for each Renesas development board. For E2Studio, each Renesas
development board has its own zipped project that can be imported into an existing E2Studio workspace. This version
of the VEE package includes projects for the following boards:

• RSKRX62N • RSKRX62T

• RSKRX63N • RSKRX630

• RDKRX63N • RDKRX62N

• RSKRX62G • RSKRX63T_64PIN

• RSKRX63T_144PIN • RSKRX210

4.1 HEW Workspace
The HEW workspace that comes packaged with this application note has a project for each supported Renesas
development board. The only code that changes between these projects is the board support code that is used along with
the demo and VEE code. To choose a project follow these steps:

1. Open the HEW workspace

2. Right-click on the project you wish to load in the navigation pane (by default on left) and click ‘Set as Current
Project’.

3. The VEE API code and demo workspace use the r_bsp package for startup code, board support code, and for

getting MCU information. The r_bsp package is easily configured through the platform.h header file which is
located in the r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include
for the board you are using. For example, to run the demo on a RSK+RX63N board, the user would
uncomment the #include for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board #includes are
commented out.

4. You can now build and execute the demo.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 26 of 28
February 6th, 2013

4.2 E2Studio Projects
E2Studio handles workspaces differently than HEW and therefore projects must be imported into your existing
E2Studio workspace. In order to use the demo for your development board follow these steps:

1. The E2Studio projects are distributed as a self-extracting archive with this application note. The first thing that
will need to be done is to extract this archive. Double click on the self-extracting archive file (should be *.exe
under Workspace\e2studio directory).

2. Choose where to extract the projects and click Extract.

3. Open your E2Studio workspace

4. Click File >> Import

5. Choose General >> Existing Projects into Workspace and click Next.

6. Click ‘Select archive file’ and click browse.

7. Browse to the directory where you extracted the E2Studio projects and choose the zip file for your
development board.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 27 of 28
February 6th, 2013

8. Check the box next to the project you wish to import and click Finish. In this screenshot the RDKRX63N
project is being imported.

5. The VEE API code and demo workspace use the r_bsp package for startup code, board support code, and for
getting MCU information. The r_bsp package is easily configured through the platform.h header file which is
located in the r_bsp folder. To configure the r_bsp package, open up platform.h and uncomment the #include
for the board you are using. For example, to run the demo on a RSK+RX63N board, the user would
uncomment the #include for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board #includes are
commented out.

6. You can now build and execute the demo.

RX600 & RX200 Series Virtual EEPROM for RX

R01AN0724EU0170 Rev.1.70 Page 28 of 28
February 6th, 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/�
http://www.renesas.com/inquiry�

A-1

Revision Record

Rev.

Date

Description
Page Summary

1.00 Jul.15.11 — First edition issued
1.50 Jan.03.12 — Added support for RX63x Group. Revised document to reflect

different location of VEE Sector configuration definitions. Other
minor changes due to code being updated to be compliant with
latest coding standard.

1.60 Sep.14.12 — Added R_VEE_GenerateCheck() to API function list. Updated
code to be compliant with FIT spec v0.7.

1.70 Feb.06.13 — • Updated code to be compliant with FIT spec v1.0.
• Added Summary subsection to API Functions section.
• Revised Adding Middleware to Your Project subsection.
• Added Limitations subsection.
• Added Supported Toolchains subsection.
• Added R_VEE_Open(), R_VEE_Control() functions and

documented in API Functions section.
• Documented R_VEE_GetVersion() function.
• Updated Demo Workspace section to discuss using HEW

and E2Studio projects.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

	1. Overview
	1.1 Use of Background Operations
	1.2 Records
	1.3 Data Management
	1.4 Example of VEE in Action

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 Data Flash

	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.8.1 Using the r_bsp Package

	2.9 VEE Sector Configuration
	2.9.1 Number of VEE Sectors
	2.9.2 Assigning VEE Records to VEE Sectors
	2.9.3 Allocating VEE Blocks
	2.9.4 Data Structure that Holds VEE Project Data Configuration

	2.10 API Data Structures
	2.10.1 VEE Record

	2.11 API Typedefs
	2.11.1 Return Values
	2.11.2 VEE States
	2.11.3 VEE Commands for R_VEE_Control() Function

	2.12 MCU Specific Typedefs
	2.13 Overhead Associated with VEE Records
	2.14 Reading Data from VEE
	2.15 Error Recovery
	2.16 Adding Middleware to Your Project
	2.17 Detecting Flash Errors

	3. API Functions
	3.1 Summary
	3.2 R_VEE_Read
	3.3 R_VEE_Write
	3.4 R_VEE_Defrag
	3.5 R_VEE_Erase
	3.6 R_VEE_GetState
	3.7 R_VEE_ReleaseState
	3.8 R_VEE_GenerateCheck
	3.9 R_VEE_Open
	3.10 R_VEE_Control
	3.11 R_VEE_GetVersion

	4. Demo Projects
	4.1 HEW Workspace
	4.2 E2Studio Projects

	Website and Support

