Customer: Renesas
Project: Renesas Computer Vision and CNN
PROJECT MANAGEMENT OFFICE @
RT-RK Automotive LLC
08-11-2021
RT-RK - Renesas core team

Overview

- **Team size:** 30
 - with strong potential to grow (max ~5-10 per year)

- **Strengths:**
 - Versatile background (computer engineering / embedded / mathematics)
 - Strong expertise in Computer Vision and CNN IMP-X5+ optimizations
 - Growing expertise in Computer Vision and CNN Algorithm development

- **Relations with Renesas:**
 - Scaling partner – striving to be excellence center for Europe
 - RCar Consortium Members
 - Access to cutting edge boards and libraries
RCar Expertise

Technology Overview - current

- **IMP-X5+**:
 - CVe: MTMD parallelization
 - IMPc: configurable pre-processing-post pipeline (100 transformations)
 - PSC: pyramidal image scaling
 - Memory Pipeline: $DDR \leftrightarrow Scratchpad \leftrightarrow LWM$

- **CNN**:
 - **CNN FE**: improving configurability and usage of CNN Toolchain
 - **CNN FW**: from Caffe model to optimized forward propagation
 - **Custom Layer** - development: Fully Connected, Convolution 1x1, other on demand
 - **CNN Toolchain** – customer integration support
RCar Expertise
Technology Overview - current

• **VisionIP:**
 - Stereo Block Matching IP – usage and configuration
 - Optical Flow IP – usage and configuration
 - Classifier IP - usage and configuration

• **Image Processing:**
 - IMR – camera capture integration into pipeline
 - ISP – usage and configuration, customization, development of advanced pipelines
RCar Testbed

- **RENESAS RCar boards available:**
 - H3SK x 1
 - HAD SK x 1
 - RazorMotion x 1
 - V3M Eagle:
 - v1.0 x 1
 - v2.0 x 5
 - V3H SK v1.0 x 2
 - V3H Condor v1.0 x 2
 - V3H Condor v1.1 x 8
 - V3U x 1
 - V4H, V4U – Q1/2022
Team Overview
Project Portfolio
Expertise Growth
Renesas Optimizations

IMP-X5+ & CNN Training
Renesas IMP-X5+ & CNN

RT-RK Training Offer

• **Modules (separate):**
 - Basic training (CVe, IMPc, PSC, iDMA, TGDMAc) - 4 days x 2 hours
 - Advanced training (CNN) - 2 days x 2 hours

• **Form:** webinar or onsite

• **Target Groups:** Computer Vision embedded engineers

• **Goal:** gain understanding of IMP-X5+ and CNN IP architectures, advantages and limitations, with a solid basic and advanced practical hands-on
Basic RCar Training (IMP-X5+)

Agenda

- **Session B.1 - Introduction**
 - Team presentation
 - Renesas RCar overview and roadmap
 - IMP-X5+ architecture overview
 - Introduction to IMP-X5+ programming material

- **Session B.2 - Toolchain**
 - Toolchain overview and configuration
 - [OPTIONAL] e2Studio + IMP-PCTOOLS install

- **Session B.3 - CVe**
 - CVe overview (MTMD, CL execution, RECT/POINT, dataplanes, registers, intrinsics)
 - Hands on - CVe Programming material (simple/advanced)

- **Session B.4 - Memory handling**
 - Memory handling pipeline (scratchpad, LWM, GWM)
 - Core synchronization
 - iDMA (configuration, limits, example)
 - TGDMAC (configuration, limits, example)

- **Session B.5 - IMPc, PSC, advanced concepts**
 - IMP/PSC Core introduction and code usage
 - [OPTIONAL] Advanced optimization techniques
Advanced RCar Training (CNN)

Agenda

• **Session C.1 - CNN Overview**
 • Overview of CNN IP
 • Overview of CNN Framework deploy tool

• **Session C.2 - CNN Framework hands on**
 • Hands on session: go through the pipeline step-by-step
 • Tips and tricks: guidelines and constraints
Renesas RCar based project portfolio
Computer Vision expertise

<table>
<thead>
<tr>
<th>Client</th>
<th>Algorithm</th>
<th>KPI</th>
<th>Image size</th>
<th>Technology used</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>CMRS: HoG + Int. Image + Classification (5 stages)</td>
<td>60 fps (20 x gain)</td>
<td>1 MPix</td>
<td>IMP-X5+: CVe IMPc iDMA (scratch) TGDMAc (LWM)</td>
<td>V3M Eagle v1.0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>Trailer detection: Sobel + Median + Voting+ Kalman</td>
<td>60 fps (15x gain)</td>
<td>1 MPix</td>
<td>IMP-X5+</td>
<td>V3M SK v2.0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>aKAZE: Scharr + Gauss + NLD</td>
<td>3x gain</td>
<td>0.6 MPix</td>
<td>IMP-X5+</td>
<td>V3M Eagle v2.0 Limited 3 week optimization</td>
</tr>
<tr>
<td>Tier 1</td>
<td>Trailer 2: warp + NCC</td>
<td>60 fps (15x gain)</td>
<td>1 MPix</td>
<td>IMP-X5+</td>
<td>V3M Eagle v1.0</td>
</tr>
<tr>
<td>Tier 1</td>
<td>3CAM: rectification+ feature extraction and matching</td>
<td>30 fps (10 x)</td>
<td>1 MPix</td>
<td>IMP-X5+</td>
<td>V3M Eagle v1.0</td>
</tr>
</tbody>
</table>
Algorithm:
- Histogram of Oriented Gradients + Integral Image + Classification (5 stages)

DSP Optimizations:
- **Overall:**
 - Algorithmic modifications and simplifications
 - Processor and Memory load analysis - adaptation to target cores (CVe, IMPc)
- **HoG:**
 - Parallelization on 2 CVe (64 threads)
 - Memory pipeline: use of 0$ cache, scratchpad and iDMA
 - LUT in scratchpad
- **Integral Image:**
 - Parallel use of IMPc and 2 CVe on parts of image
 - Memory pipeline: use of 0$ cache, scratchpad and iDMA
- **Classification (1st stage):**
 - Parallelization on 2 CVe (64 threads)
 - ROI processing order analysis and load balancing on 2 CVe
 - Fully memory pipeline: scratchpad (iDMA) and LWM (TGDMAc)

KPI: \textit{Start}: 3 fps \textit{Final}: 60 fps
Trailer detection and angle calculation 1 & 2

- **Algorithm:**
 - V1.0: Polar Image Preprocess + Sobel + Median8/16 + Salient Gradient + Vote
 - V2.0: Template Matching

- **DSP Optimizations:**
 - **Overall:**
 - Processor and Memory load analysis - adaptation to target cores (CVe, IMPc)
 - **Polar Image Preprocess:**
 - Color space conversion: YUV422-to-GRAY8
 - Transformations: cropping, rectified2polar
 - **Sobel, Salient Gradient, Vote:**
 - Parallelization on 2 CVe (64 threads)
 - Memory pipeline: use of 0$ cache, scratchpad and iDMA
 - **Median:**
 - Parallelization on 4 IMPc
 - Memory pipeline: scratchpad (iDMA)

- **KPI:** *Start*: 5 fps *Final*: 60 fps
Algorithm:
- V2.0: Color conversion + Rectification + Feature Extraction & Matching

DSP Optimizations:
- Overall:
 - Processor and Memory load analysis - adaptation to target cores (CVe, IMPc)
- Image Preprocess:
 - Color space conversion: YUV422-to-GRAY8, YUV422-to-RGB, RGB-to-GRAY8
- Rectification:
 - Parallelization on 2 CVe (64 threads)
 - Full memory pipeline: 0$ cache, scratchpad (iDMA) and LWM (TGDMAc)
 - LUT in scratchpad
- Feature Extraction & Matching (delivery pending)

KPI: Start: 17 fps Final: 56 fps
Algorithm:

- Scharr + Gauss + NLD

DSP Optimizations:

- Overall:
 - Algorithmic modifications and simplifications
 - Processor and Memory load analysis - adaptation to target cores (CVe, IMPc)

- Scharr + Gauss + NLD:
 - Parallelization on 2 CVe (64 threads)
 - Fully memory pipeline: scratchpad (iDMA) and LWM (TGDMAc)

KPI: **Start**: 900 ms **Final**: 300 ms
<table>
<thead>
<tr>
<th>Client</th>
<th>Algorithm</th>
<th>KPI</th>
<th>Image size</th>
<th>Technology used</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AlexNet + Stereo Block Matching</td>
<td>16 fps + 45 fps</td>
<td>0.6 MPix</td>
<td>CNN + STV IP</td>
<td>Network porting and retraining + Fully Connected</td>
</tr>
<tr>
<td>SphereFace-20</td>
<td>(face recognition)</td>
<td>NA</td>
<td>1.3 MPix</td>
<td>CNN + IMP-X5+</td>
<td>Optimization ongoing + custom layer design in progress</td>
</tr>
<tr>
<td>MobileNet-SSD</td>
<td>(object detection)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SqueezeNet/VGG16/ResNet</td>
<td>(scene recognition)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renesas CNN Toolchain</td>
<td>Development</td>
<td>NA</td>
<td>NA</td>
<td>CNN</td>
<td>Contribution since 2018</td>
</tr>
<tr>
<td>Lidar Pixel Segmentation</td>
<td>and Classification</td>
<td>60 fps</td>
<td>NA</td>
<td>CNN + CVe</td>
<td>Contribution since 2017</td>
</tr>
</tbody>
</table>
AlexNet + Stereo Block Matching

- **Algorithm:**
 - AlexNet: 5 x (convolution + reLU + MAXpool) + 3 x Fully Connected
 - Stereo Block Matching: disparity = 80, block = 15

- **DSP Optimizations:**
 - AlexNet @ CNN IP
 - modifications and simplifications to match architecture + retraining (80% accuracy)
 - Fully Connected (FC) @ CVe:
 - Implementation from the scratch + Full Optimization (64 threads + memory pipeline) + Integration
 - Configurable size: 256x2x2 -> 4096x1x1 -> 1000x1x1
 - Stereo Block Matching @STV IP
 - Evaluation of STV IP simulator and benchmarking

- **KPI:** *Final*: AlexNet w/ FC 16 fps + STV 45 fps
• Algorithm:
 • SphereFace-20 (face recognition)
 • MobileNet-SSD (object detection)
 • SqueezeNet/VGG16/ResNet (scene recognition)
 • LSTM (keyword spotting/speech recognition)

• DSP Optimization Goals (N.B. project at the beginning):
 • Custom Layer Optimization + Integration @ CVe @CNN
 • Implementation from the scratch + Full Optimization (64 threads + memory pipeline)
 • CNN IP benchmarking

• KPI: **Final**: TBD
Goal: development of Renesas CNN Toolchain steps 0 and 1

• **CNN FE:**
 - Automation of the rest of CNN Toolchain pipeline
 - Enabling user configuration through individual files

• **CNN FW:**
 - Import/Export support for Caffe/ONNX
 - Optimization of intermediate representation (graph-2-HW mapping)
 - Support New HW acceleration feature (V4H, V3U, V4U)

• **Support**
 - CNN Toolchain - customer integration support
Team Overview
Project Portfolio
Expertise Growth
Expertise growth
Future Roadmap

• **OS:**
 - Yocto kernel modules/drivers
 - FreeRTOS / QNX / GreenHills
 - (Adaptive) AUTOSAR

• **Security & Safety:**
 - ISO26262 SW development
Contact us

RT-RK Automotive
Narodnog fronta 23D-E
21000 Novi Sad
Serbia

www.rt-rk.com
info@rt-rk.com