Summary

This application note describes an operation example using Single Edge Nibble Transmission (RSENT) of RH850/E2x.

Although the operation example written in this application note was checked in software, be sure to check your operating environment when you use it.
Table of Contents

1. Introduction .. 3
 1.1 Functionality to Be Used ... 3
 1.2 Functional Overview of RSENT ... 3
 1.3 Communication Format ... 3

2. Operation Example of RSENT ... 4
 2.1 Specification Overview ... 4
 2.2 System Configuration .. 4
 2.3 Software Description ... 4
1. Introduction

This application note describes the usage of Single Edge Nibble Transmission (RSENT) of RH850/E2x and provides its sample software.

1.1 Functionality to Be Used

RH850/E2x hardware functionality used in this application note is shown below:

- Single Edge Nibble Transmission (RSENT)

1.2 Functional Overview of RSENT

The RSENT interface supports the following functions defined by the standard specification SAE J2716_201604:

- Triple speed expansion tick time: Clock cycle (1 μs to 90 μs)
- Variable data transmission rate
 - 24.7 kbps to 64.9 kbps: Based on 6 nibble data at 3 μs clock rate
 - 74.1 kbps to 194.7 kbps: Based on 6 nibble data at 1 μs clock rate
- Unidirectional communication: Between a sensor and the MCU
- Bidirectional communication: Between a sensor and the MCU (supported in SPC mode)
- Single edge data transmission: Coded by the temporal distance of two serially-detected falling edges on a data line
- Transmission frame with up to 8 data nibbles + status / communication nibbles
- Data transmission protected with CRC is available
- Calibration phrase in each data frame
- 1-wire interface
- Multiple sensors can be connected to each RSENT channel that has the standard expansion function
- Received data from sensors is detected by software or DMA
- Timestamp function is supported: Master mode can only be set for RSENT0. Slave mode alone can be set for other RSENT modules.

1.3 Communication Format

Figure 1-1 shows the communication format used in this operation example.

- 6 data nibbles
- Pause pulse absent
- 1 tick = 3 μs

![Figure 1-1 Communication Format](image-url)
2. Operation Example of RSENT

2.1 Specification Overview
This section describes a receive operation using RSENT0.

Assign the P02_8 pin to RSENT0RX, enable a receive interrupt and operation, and store the receive data in variables in the receive interrupt.

![Receive Operation Diagram](image)

Figure 2-1 Receive Operation

2.2 System Configuration
Figure 2-2 shows the system configuration.

![System Configuration Diagram](image)

Figure 2-2 System Configuration

2.3 Software Description
- Module description
The list of modules in this operation example is shown below:

<table>
<thead>
<tr>
<th>Module name</th>
<th>Label name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>main_pe0</td>
<td>Performs various settings and starts applications.</td>
</tr>
<tr>
<td>RSENT initialization routine</td>
<td>rsent_init</td>
<td>Performs RSENT0 initial settings.</td>
</tr>
<tr>
<td>Interrupt initialization routine</td>
<td>inic_init</td>
<td>Performs interrupt function initial settings.</td>
</tr>
<tr>
<td>Port initialization routine</td>
<td>port_init</td>
<td>Performs port initial settings.</td>
</tr>
<tr>
<td>Interrupt processing routine</td>
<td>rsent0_int</td>
<td>An interrupt function which stores the receive data in variables.</td>
</tr>
</tbody>
</table>
- Register settings

The register settings of each function in this operation example are shown below:

Table 2-2 RSENT0 Register Settings

<table>
<thead>
<tr>
<th>Register name</th>
<th>Set value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSR_KCPROT</td>
<td>0xA5A5A501</td>
<td>Module standby register: To enable write access to protected registers</td>
</tr>
<tr>
<td></td>
<td>0xA5A5A500</td>
<td>Module standby register: To disable write access to protected registers</td>
</tr>
<tr>
<td>MSR_RSENT</td>
<td>0xFFFFFFFE</td>
<td>Puts RSENT0 in operating mode.</td>
</tr>
<tr>
<td>RSENT0MDC</td>
<td>0x00000001↓</td>
<td>Changes RSENT0 to CONFIGURATION mode</td>
</tr>
<tr>
<td></td>
<td>0x00000005</td>
<td>Changes RSENT0 to OPERATION ACTIVE mode</td>
</tr>
<tr>
<td>RSENT0CC</td>
<td>0x0000064A</td>
<td>Slow channel CRC check: Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast channel CRC check: Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serial message format: Short serial message format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pause pulse configuration: Pause pulse absent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of data nibbles: 6 data nibbles</td>
</tr>
<tr>
<td>RSENT0BRP</td>
<td>0x00020401</td>
<td>Time tick integer: 3 μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample clock division value: 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample clock multiplication value: 2</td>
</tr>
<tr>
<td>RSENT0IDE</td>
<td>0x00000001</td>
<td>Fast channel receive interrupt enable: Interrupt enabled</td>
</tr>
</tbody>
</table>

Table 2-3 Interrupt Register Settings

<table>
<thead>
<tr>
<th>Register name</th>
<th>Set value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIBD422</td>
<td>0x00000000</td>
<td>Interrupts are bound to PE0 (CPU0).</td>
</tr>
<tr>
<td>EIC422</td>
<td>0x0040</td>
<td>Table reference method / Priority level 0</td>
</tr>
</tbody>
</table>

Table 2-4 Port Register Settings

<table>
<thead>
<tr>
<th>Register name</th>
<th>Set value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKC_CPROT</td>
<td>0xA5A5A501</td>
<td>Enables write access of the PWE (Port Write Enable) register.</td>
</tr>
<tr>
<td></td>
<td>0xA5A5A500</td>
<td>Disables write access of the PWE (Port Write Enable) register.</td>
</tr>
<tr>
<td>PWE</td>
<td>0x00000004</td>
<td>Enables write access for port group P02 registers.</td>
</tr>
<tr>
<td></td>
<td>0x00000000</td>
<td>Disables write access for port group P02 registers.</td>
</tr>
<tr>
<td>PCR02_8</td>
<td>0x00000054</td>
<td>P02_8: RSENT0RX</td>
</tr>
</tbody>
</table>
Operation flowchart
The operation flowchart of this operation example is shown below.

![Operation Flowchart](image-url)
Website and Contact Information

- Renesas Electronics Website
 http://japan.renesas.com/
- Contact
 http://japan.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Issued Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>August 6, 2018</td>
<td>—</td>
<td>New Release</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
 — Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 — The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 — Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 — After applying a reset, only release the reset line after the operating clock signal has become stable.
 When switching the clock signal during program execution, wait until the target clock signal has stabilized. When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 — Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to products of different type numbers, implement a system-evaluation test for each of the products.
1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain usage conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or reusing the Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Rev.3.0-1 November 2016)