Introduction

Dynamic switching is used in order to reduce power consumption. An analog comparator generates HIGH-level signal on output when signal on positive input is higher than signal on negative input. The Analog Comparator is used when it is needed to monitor a certain level of voltage.

Dynamic Switching Comparator Circuit Design

The screen capture of dynamic switching comparator with logic output is shown on Figure 3. It was created in GreenPAK2 designer software. Reference voltage of ACMP0 is 600mV. Analog comparator is connected to PIN3, which is configured as analog input without any pull up/down resistors. Output of 2-bit LUT1 will be HIGH when IN1 is HIGH and IN0 is HIGH too. Output is configured as push-pull. Delay0 is configured to be 140μs rising edge delay.

Dynamic Switching Comparator Circuit Analysis

Figure 2 shows the functionality waveform of the design. If the voltage on analog input will be higher than 600mV and PIN4 will go from LOW to HIGH an analog comparator turns on, but OUT (PIN12) will be LOW during 140μs, because after being switched ON comparator output state is undefined for maximum 100μs. 2-bit LUT2 operates as a POR controlled valve. After the chip is turned ON it makes possible the signal from PIN4 to propagate to the Delay0 input.

Related Files

Programming code for GreenPAK Designer.

Conclusion

Other features can also be included in the design such as adding a POR signal to the input logic to force initial states or creating multiple pulses. Many designs can benefit from the usage of a dynamic switches circuit which is easy to create in the GreenPAK family of programmable mixed-signal ASICs.
Figure 3. Dynamic switching comparator block diagram
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING Datasheets), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.