

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2002/05/31

1/1

HITACHI SEMICONDUCTOR TECHNICAL UPDATE

Classification
of Production

Development Environment No TN-CSX-038A/E

THEME
SuperH RISC engine C/C++ Compiler
Ver.7.0 bug report (2)

Classification of
Information

1 Spec change
2 Supplement of

Documents
3 Limitation of Use

4 Change of Mask
5 Change of Production Line

Lot No. Rev. Effective Date

PRODUCT
NAME

SH-1,SH-2,SH-2E,
SH2-DSP,SH-3,
SH3-DSP,SH-4 All

Reference
Documents

1 Eternity

Attached is the description of the known bugs in Ver. 7.0 of the SuperH RISC engine C/C++ compiler.
Inform the customers who have the package version in the table below of the bugs.

Package version Compiler version
7.0B 7.0B

P0700CAS7-MWR 7.0.01 7.0.03
7.0.02 7.0.04
7.0B 7.0B

P0700CAS7-SLR 7.0.02 7.0.03
7.0.03 7.0.04
7.0B 7.0B

P0700CAS7-H7R 7.0.02 7.0.03
7.0.03 7.0.04

The checker of the bugs is on the URL below for downloading.

http://www.hitachisemiconductor.com/sic/jsp/japan/eng/products/mpumcu/tool/download/caution7002.html

Attached: P0700CAS7-020514E
 SuperH RISC engine C/C++ Compiler Ver. 7
 Known bugs in this release (2)

(Note)
URL described on the body was changed to the following.
http://tool-support.renesas.com/eng/toolnews/shc/shcv7/dr_shv7.html

P0700CAS7-020514E

SuperH RISC engine C/C++ compiler Ver.7
Known bugs in this release (2)

The known bugs in this release of the compiler are described below. Instances of those bugs in the
program except those of item 4, 7, 9, and 12 can be found using the checker on the URL below.

http://www.hitachisemiconductor.com/sic/jsp/japan/eng/products/mpumcu/tool/download/caution7002.
html

1. Illegal deletion of the save/restoration of PR register
 When the following program is compiled with the speed option, the saving and restoring code of
PR register may be illegally deleted.
[Example]
int x;

extern void f1();

extern void f2();

void f() {

 if (x == 2){

 f1(); // The then-clause ends with a function call

 }

 f2(); // The function end with a function call

 return;

}

_f:

 MOV.L L14,R6 ; _x

 MOV.L @R6,R0

 CMP/EQ #2,R0

 BT L11

L12:

 MOV.L L14+4,R2 ; _f2

 JMP @R2 ; The function ends with a function call,

 NOP ; so JSR changed into JMP and RTS is deleted

L11:

 MOV.L L14+8,R2 ; _f1

 JSR @R2 ; Saving and restoring code of PR register is

 NOP ; deleted though a function call exists

 BRA L12

 NOP

 [Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The speed option is specified.
(2) The function ends with a function call.
(3) The if-then clause exists before the function call of (2), and the last statement of then-clause is

function call.
(4) The function call is not in-line expanded.

(Note)
URL described on the body was changed to the following.
http://tool-support.renesas.com/eng/toolnews/shc/shcv7/dr_shv7.html

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Specify the nospeed or size option.
(2) Modify the source program as shown in the example below.
[Example]

 #include <machine.h> // for nop()

 void f() {

 if (x == 2) {

 f1();

 }

 f2();

 nop(); // add nop() before the return statement

 return;

 }

2. Illegal reference of T-bit in SR register
 In the following case, conditional branch may be illegally done.
 (1) When following program is compiled:
 [Example]
 #include <machine.h>

 extern void f();

 int a;

 void func() {

 int b;

 b = (a == 0); // Sets the result of comparison to variable b

 f(); // Exists function call or set_cr()

 if (b) { // Compares variable b with 0 or 1

 a=1;

 }

 }

 _func:

 STS.L PR,@-R15

 MOV.L L13,R6 ; _a

 MOV.L @R6,R2

 TST R2,R2 ; Sets the result of comparison to T-bit

 MOV.L L13+4,R2 ; _f

 JSR @R2 ; T-bit may be changed in the callee

 NOP ; function

 BF L12 ; Refers to T-bit and branch

 MOV.L L13,R6 ; _a

 MOV #1,R2

 MOV.L R2,@R6

 L12:

 LDS.L @R15+,PR

 RTS

 NOP

 (2) When the class with destructor call which is declared in a local block in a function is written in
 the C++ program

P0700CAS7-020514E

[Condition]
 This problem may occur when either (1) to (3) or (4) to (5) conditions are satisfied.
 <for C program>
 (1) The optimize=1 option is specified.
 (2) A result of a comparison is set to a variable.
 (3) The variable of (2) is compared with 0 or 1 after a function call or set_cr().
 or
 <for C++ program>
 (4) The optimize=1 option is specified.
 (5) The class with destructor call which is declared in a local block in a function is written in the
 C++ program

[How to avoid the bug]
 The bug can be avoided with either method of the following.
 <for C program>

(1) Specify the optimize=0 option.
(2) Qualify the variable to store the result of a comparison as volatile.
(3) Modify the source program as shown in the example below.

 (a) b = (a == 0) ? 1 : 0;

 (b) if (a == 0) {

 b = 1;

 } else {

 b = 0;

 }

 <for C++ program>
Specify the optimize=0 option.

3. Illegal unification of constant values
 When following program is compiled with the optimize=1 option, the constant values may be
illegally unified.
[Example]
#define a (*(volatile unsigned short *)0x400)

#define b (*(volatile unsigned short *)0x4000)

#define c (*(volatile unsigned short *)0x402)

int d;

void func() {

 a = 0x8000; /* (A) */

 b = 0x8000; /* (A') */

 d = c + 0x8000; /* (B) */

}

P0700CAS7-020514E

_func:

 MOV.W L15,R6 ; H'8000 set R6 to 0xFFFF8000

 MOV #4,R5

 MOV #64,R2

 SHLL8 R5

 SHLL8 R2

 MOV.W R6,@R5 ; (A) set variable a to 0x8000

 MOV.W R6,@R2 ; (A') set variable b to 0x8000

 MOV.W @(2,R5),R0

 EXTU.W R0,R2

 ADD R6,R2 ; set R2 to (c+0xFFFF8000)

 MOV R2,R6

 MOV.L L15+4,R2 ; _d

 RTS

 MOV.L R6,@R2 ; (B) set variable d to (c+0xFFFF8000)

; (c+0x00008000) is correct

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) The same value from 128 to 255 or from 32768 to 65535 is used more than once in the

function.
(3) The value of (2) is used with different sizes.
 For above example, (A) and (A’) are used as a 2-byte value and (B) is used as a 4-byte value.

[How to avoid the bug]
The bug can be avoided with either method of the following.

(1) Specify the optimize=0 option.
(2) Modify the source program as shown in the example below.
[Example]

 int value = 0x8000;

 void func() {

 a = value; /* (A) */

 b = value; /* (A') */

 d = c + value; /* (B) */

 }

4. Illegal generation of a literal pool
 When a program is compiled with the align16 option, the reference to a literal pool may be illegal.
 When both code=machinecode and goptimize are specified, the error may occur at linkage.
 When code=machinecode is specified, an illegal object code may be created at compilation.
 When code=asmcode is specified, the error may occur in assembling.

P0700CAS7-020514E

[Example]
 :

 MOV.L L154+2,R2 ; (1) L158 refers to literal (A)

 MOV.L R2,@R15

 MOV.L L154+6,R2 ; (2) _printf refers to literal (B)

 JSR @R2

 NOP

 :

 .ALIGN 16

L86:

 ADD #1,R2

 BRA L153 ; unconditional branch is created and

 MOV.L R2,@R4 ; a literal pool is generated

L154:

 .RES.W 1

 .DATA.L L158 ; (A) literal which cannot be reached

; from (1)

 .DATA.L _printf ; (B) literal which cannot be reached

; from (2)

 .ALIGN 16

L153:

 :

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The align16 option is specified.
(2) An unconditional branch is created and a literal pool is generated.

[How to avoid the bug]
 The bug can be avoided with the following method.

(1) Do not specify the align16 option.

5. Illegal code motion to a delay slot
 When a program is compiled with the optimize=1 option, an instruction may be illegally moved to
a delay slot.
[Example]
 <before>
 :

 SHLL R2

 MOV R2,R0

 MOVA L88,R0

 BRA L144

 NOP

 :

 <after>
 :

 SHLL R2

; instruction is moved to a delay slot

 MOVA L88,R0 ; set R0

 BRA L144

 MOV R2,R0 ; destroy R0

P0700CAS7-020514E

 :

[Condition]
 This problem may occur when the following condition is satisfied.

(1) The same register is updated consequtively by more than one instruction.

[How to avoid the bug]
 The bug can be avoided with the following method.

(1) Specify the optimize=0 option.

6. Illegal offset of a GBR-relative logical operation
 When a program is compiled with the optimize=1 option and the compiler creates a GBR-relative
logical operation to a 1-byte struct member, the offset may be illegal.
[Example]
struct {

 int a;

 unsigned char b;

} ST;

char c;

void f() {

 ST.b |= 1;

 c &= 1;

}

_f:

 STC GBR,@-R15

 MOV #0,R0 ; H'00000000

 LDC R0,GBR

 MOV.L L11+2,R0 ; H'00000008+_ST <- (ST+4) is correct

 OR.B #1,@(R0,GBR)

 MOV.L L11+6,R0 ; _c

 AND.B #1,@(R0,GBR)

 RTS

 LDC @R15+,GBR

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) Either the gbr=user option is specified and #pragma gbr_base/gbr_base1 is used, or the

gbr=auto option is specified and the map option is not specified.
(3) A global struct with a 1-byte member exists in a program.
(4) This 1-byte member is not located at the top of the struct.
(5) This member is used for logical operation in a function.
(6) This member is not used except (5).
(7) A global variable except this member exists in a function.

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Specify the optimize=0 option.
(2) Modify the source program as shown in the example below.
[Example]

 struct {

 int a;

 unsigned char b;

 } ST;

 char c;

 unsigned char temp; // for reference

 void f() {

 ST.b |= 1;

 c &= 1;

 temp = ST.b; // adds a reference to ST.b

 }

7. Illegal EXTU after SWAP instruction
 When a program is compiled with the optimize=1 option and a pointer is used to store the return
value of swapb, swapw, or end_cnvl intrinsic function, EXTU may be illegally created after the
SWAP instruction.
[Example]
#include <machine.h>

unsigned short *a,*b;

void func() {

 *b=swapb(*a);

}

_func:

 MOV.L L13+2,R2 ; _a

 MOV.L L13+6,R5 ; _b

 MOV.L @R2,R6

 MOV.W @R6,R2

 SWAP.B R2,R6

 MOV.L @R5,R2

 EXTU.B R6,R6 ; The result of SWAP instruction is illegally expanded

 RTS

 MOV.W R6,@R2

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) A swapb, swapw, or end_cnvl intrinsic function is used.
(3) A pointer is used to store the return value of this intrinsic function.

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Specify the optimize=0 option.
(2) Modify the source program as shown in the example below.
[Example]

 void func() {

 unsigned short temp;

 temp=swapb(*a);

 *b=temp;

 }

8. Illegal bitfield data
 When an initial value is set to a struct with an anonymous bitfield, the initial value may be illegal.
[Example]
struct st {

 short a:4;

 short b;

 short :12; // anonymous bitfield

 short c:4;

} ST={1,1,3};

_ST:

 .DATA.W H'1000

 .DATA.W H'0001

 .DATAB.B 1,0 ; ".DATA.W H’0003"

 .DATA.W H'0300 ; is correct.

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) A struct has a bitfield, an anonymous bitfield, and a member which is not a bitfield, and
 they are defined in the order shown below.

struct A {

 :

 bitfield

 :

 member which is not bitfield

 anonymous bitfield // (A)

 bitfield // (B)

 :

}

(2) The size of the underlying type of (A) and (B) is 2-byte or 4-byte.
(3) The bitwidth of (B) is 8-bit or more.
(4) The total bitwidth size of (A) and (B) is below.
 (a) When the sizes of the underlying type of (A) and (B) is 2-byte : 16-bit or less
 (b) When the sizes of the underlying type of (A) and (B) is 4-byte : 32-bit or less
(5) The struct declared with an initial value.

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Change the anonymous bitfield into one with a name (e.g. dummy).
[Example]

 struct st {

 short a:4;

 short b;

 short dummy:12; // dummy

 short c:4;

 } ST = {1,1,0,3};

9. Illegal loop expansion
 When the speed option or the loop option is specified, a loop conditional expression may be
illegally replaced.
[Example]
int a[100];

void main(int n) {

 int i;

 for (i=0; i<n; i++) {

 a[i] = 0;

 }

}

_main:

 MOV R4,R7

 ADD #-1,R4 ; When a value of R4 is 0x80000000, underflow occurs

; and R4 will have 0x7FFFFFFF.

 MOV R4,R6

 CMP/PL R4 ; The result of the comparison is incorrect.

 MOV #0,R4

 BF L12

 ADD #-1,R6

 :

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The speed option or the loop option is specified.
(2) A loop statement is used in a function.
(3) The loop upper bound is in the range shown below.

(a) When the loop control variable, say i, is incremented like i += step,
 the value is in the range from 0x80000000 to 0x80000000+step-1

(b) When the loop control variable, say i, is decremented like i -= step,
 the value is in the range from 0x7FFFFFFF to 0x7FFFFFFF-step+1
When loop upper bound is in a variable and its value is in the range above, the behavior may be
incorrect.

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Neither the speed option nor the loop option is specified.
(2) The noloop option is specified.

10. Illegal reference to a struct or an array parameter
 When a struct, a union or an array is used in a parameter of a function and this parameter is referred
to in the function, the address to refer to this parameter may be illegal.
[Example]
typedef struct{

 int A[10];

 double B;

 char F[20];

} ST;

extern ST f(ST a,ST b);

ST S;

extern int X;

void func(ST a,ST b) {

 ST t;

 if (a.B!=f(S,t).B){

 X++;

 }

 if (a.B!=b.B){

 X++;

 }

}

 :

L12:

 MOV R15,R2

 MOV.W L15+2,R0 ; H'014C

 ADD R0,R2

 MOV R15,R0

 MOV.W L15+4,R0 ; H'0190 R0 is destroyed illegally.

 ADD R0,R0

 MOV.L @R2,R4

 MOV.L @(4,R2),R7

 MOV R0,R2

 MOV.L @R2,R6 ; An address which b.B is not located is accessed.

 :

 [Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) A function has a struct, a union or an array parameter.
(2) This parameter is referred to in the function.

P0700CAS7-020514E

[How to avoid the bug]
 The bug can be avoided with the following method.

(1) Change a parameter into pointer.
[Example]

 void func(ST *a,ST *b) {

 ST t;

 if (a->B!=f(S,t).B){

 X++;

 }

 if (a->B!=b->B){

 X++;

 }

 }

11. Illegal deletion of a JMP instruction
 When the speed option is specified, a JMP instruction may be deleted.
[Example]
void f(){

 int i,j=0;

 for (i=0; i<10; i++)

 if (j%2) j++;

 sub();

}

void sub() {

 :

}

_f:

 :

L20:

 ADD #-1,R5

 TST R5,R5

 BF L11

 MOV.L L23,R2 ; _sub These instructions are deleted.

 JMP @R2 ; |

 NOP ; V

L18:

 MOV R6,R0

 AND #1,R0

 BRA L16

 MOV R0,R2

L13:

 MOV R6,R0

 AND #1,R0

 BRA L14

 MOV R0,R2

_sub:

 :

P0700CAS7-020514E

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The speed option is specified.
(2) The function ends with a function call.
(3) This function call is not in-line expanded.
(4) The definition of the callee function follows that of the caller function.
(5) A loop statement or a conditional statement is used in the caller function.

 [How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Specify the nospeed or size option.
(2) Change the location of the function definitions so that the callee function does not follow
 the caller function.
(3) Add the nop intrinsic function at the tail of the caller function.
[Example]

 #include <machine.h> // for nop
 void f(){
 int i,j=0;
 for (i=0; i<10; i++)
 if (j%2) j++;
 sub();
 nop(); // adds
 }

12. Illegal loop expansion
 When the following program is compiled with the optimize=1 option, a loop conditional expression
may be illegally replaced.
[Example]
void f1()

{

 int i;

 for (i=-1; i<INT_MAX; i++) {

a[i] = 0;

 }

}

_f1:

 MOV.L L13,R2 ; _a

 MOV #-4,R6 ; H'FFFFFFFC

 MOV R6,R5

 MOV #0,R4 ; H'00000000

 ADD #-4,R2

L11:

 ADD #4,R6

 MOV.L R4,@R2

 CMP/GE R5,R6 ; compare with H’FFFFFFFC

 ADD #4,R2

 BF L11

 RTS

 NOP

P0700CAS7-020514E

[Condition]
 This problem may occur when all of the following conditions are satisfied.

(1) The optimize=1 option is specified.
(2) A loop statement is used in the function.
(3) The result of (loop upper bound – loop lower bound) overflows.
 For example : for(i=-1; i<0x7FFFFFFF; i++)

 [How to avoid the bug]
 The bug can be avoided with either method of the following.

(1) Specify the optimize=0 option.
(2) Split a loop as shown in the example below.
 [Example]

 for (i =-1;i<0x7FFFFFFF;i++) {

 func(i);

)

 ↓
 func(-1);

 for(i=0;i<0x7FFFFFFF;i++) {

 func(i);

 }

