LENESANS

-
»
@
ﬁ‘
7)
<
Q
-
c
O

SuperH™ RISC engine C/C++ Compiler,
Assembler, Optimizing Linkage Editor

Compiler Package V.9.04 User's Manual

Renesas Microcomputer Development Environment System

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics

WWW.renesas.com Rev.1.02 Mar 2022

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation

characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Preface

This manual explains how to use the C/C++ compiler, assembler, and optimizing linkage editor
for the SuperH RISC engine microcomputers. This system translates source programs written in
C/C++ language, DSP-C language*! or assembly language into relocatable object programs for
SuperH RISC engine microcomputers.

Be sure to read this manual thoroughly and that you grasp its contents before using the compiler.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[] Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

| Indicates that one of the items must be selected.

This manual is intended for the software running under Microsoft® Windows® 2000, Windows®
XP, Windows® Vista, or Windows® 7*2 on IBM PC*? and compatible computers.

Notes: 1. DSP-C was proposed to the ISO Standardization Committee in 1998 by ACE
(Associated Compiler Experts) of the Netherlands, based on their research into
language extensions necessary for DSP compiler implementation.

2. Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the
United States and other countries.

3. IBM PC is a registered trademark of International Business Machines Corporation.

R20UT0704EJ0102 Rev. 1.02 Page i of viil
Mar 01, 2022 RENESAS

All trademarks and registered trademarks are the property of their respective owners.

Page ii of vii R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

Contents

Section I OVEIVIEW....cccuevuieriiiiieiieiieieeee st
1.1 Procedures for Developing Programscccceevevvieveeieseenreennens
1.2 COMPILET i
1.3 ASSCMDICT ..ot
1.4 Optimizing Linkage Editorccccocevinenininieniininincncnenceee
1.5 PrelinKer...oocoiiieieieeseeeeeeee e
1.6 Standard Library GEneratorcccceeeeeeververeeneenseesreneeseesseennens
1.7 Call WalKer ..c..eiiieiiiieieeeeeee e
Section 2 Compiler Options.........ccccvveeeveeerieeenieeenieeerieeenns
2.1 Option Specification RUIESccccoerineniriniinienininenceeeeeeen
2.2 Interpretation Of OPHONS.......c.eccverieerieerieeieeie e et eee e seee e
2.2.1 SOUICE OPLONS...cvrerrierierieeierreseerteesseesseesesssesseessaeseesens
2.2.2 ODbJect OPLiONSecvvierieerierieeiierieereereereseeseesreesaeesseennens
2.2.3 LiSt OPLiONS ..cceeereeeeieiieiiieiieeiieieete et see e
224 OptiMizZe OPHONS ..cveeeieueieiieetieiieieeieete e siee st sae e
2.2.5 Other OPtiONS......coceeieteriinieniinieneeeeeeeetentese e eieeenens
2.2.6 CPU OPHONSvvevieiieieeieeiesteseesreesseeseesesssesseessaesessens
2.2.7 Options Other Than AbOVe.........cccccvevvieriievieeieeiesieieeene
Section 3 Assembler Options.........ccceeeecvveerieeenieeeriieeerieeenns
3.1 Command Line FOrmat..........cccoeoiriiiiiniiiniiiee e
3.2 LiSt Of OPtONS ..coviiiiiriiriieiieiietctereeene ettt
3.2.1 SoUICE OPtiONS.....cccvvevieeeeeieerienieeieeieeae e seeseesaeessessnenns
3.2.2 ODbjJect OPLiONS.....cccvievieeieeieeriesiieieeieeresaeseeseesseessessnenns
3.2.3 LiSt OPLiONS ..ccveevveeiieiieeiieeieeieesteeieereereeee e sreesaeesneennens
324 Other OPtioncoceeiuieiieiieiieeieeeieee e
3.2.5 CPU OPtiONScoivieeieiieiiieiieetieieeie ettt
3.2.6 Options Other than AbOVe........c.ccocevereeienicneninencreenene
Section 4 Optimizing Linkage Editor Options
4.1 Option SPECIfiCAtIONS.......ccvievieierrierieieete ettt sae e
4.1.1 Command Line Format...........cccocenieriiniinininienieceene
4.1.2 Subcommand File Format............cccoooiiiiniiiiininiieeene
4.2 LiSt OF OPLIONS ..eoutiiiiiriieiiiieeiietetee ettt
4.2.1 INPUt OPLIONSoovvveniieiieeieeie e see et eee e eereeeeesseesseennens

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page iii of viii

4.2.2 OUPUL OPLIONS. c..cnviririiriiriieieetetete sttt ettt ettt sbe ettt et et saesbesbe b eaeeneen 133

4.2.3 LISt OPLIONS wevveuiiniiieniieiieieeitetetete sttt ettt st sttt sa e b b sae et eneen 158
424 OptiMiZe OPLIONS..c.ueervierireiieieeieriresteeieesteesesaestesseesseesseessessesssesssesseessessses 162
4.2.5 SeCtiON OPLIONS.....ccuiiruieiieiieiieteeeeesteesreeteeseeaesreesreesseesseessessseessesssesseesseessens 170
4.2.6 VErify OPHONS ..cveevviivieiieiieiieeeet ettt steesteesteesaeessesssessaesseesseenseessens 175
427 Other OPLIONS. ...c.eeiuieiiieieeie ettt ettt et e st e sae et et e st e eaeesbeeneeeneeas 180
4.2.8 Subcommand File Options........c.cccccrereririeiieniineninineeeeeeteenieee e 192
4.2.9 CPU OPLON «viniiiieieieeteee ettt ettt sttt sttt ettt st ene e 194
4.2.10 Options Other Than ADOVE........c.cccuevieriierieeienie et eee s 195
Section 5 Standard Library Generator Operating Methodccccccvveenneee. 199
5.1 Option SPECIfICATIONS ... ccuuieueieeieitietieieeie et te sttt ettt et et e e eeeeseeesaeesaeeneeeeeenee e 199
5.2 Option DESCIIPLIONS ...c.eeuveiiriiriiniiriieiteietenteete sttt ettt st ettt s s eae 199
52,1 Additional Options......c..ceeeceerieriiriineninietetetestese sttt ettt eanene 200
5.2.2 Options Not Available for the Standard Library Generator............c..cccceceeueeee. 203
5.2.3 Notes on Specifying OPtiONSccceevvieriieiieiieieniesieere e ereseesee e saeeneeneens 205
Section 6 Operating CallWalker..........c.coovieeiiiieiiiecieeee e 207
LTS B O 1< 4 1< OSSPSR 207
6.2 Starting the CallWalKer........c.cooiiiiiiiiiiiienieeetcteeese ettt 207
Section 7 Environment Variables...........ccccovieiirieniiiinieieeneeeeseeeee 209
7.1 Environment Variable List.........ocooiiiiiiiiiiiiiii e 209
7.2 Compiler Implicit Declarationceceeiiiierieiieii e 213
Section 8 File SPecifiCationsc.ceeeeriieriieniieniieeie et 215
8.1 NAMING FIlES..cuiiiiiiiieiicii ettt sttt ettt et e e e esbessaessaesseeseenseensenes 215
8.2 COMPIIET LISHINES ..ooveeviiiieiiieiieeiieie et eie ettt ettt e ev e et e st esbeesbeessessnesenesaeesseenseennens 218
8.2.1 Structure of Compiler LiStiNgS.......cccveeviiieriierieriieieeiieeeeeesieere e e 218
LI N 10101 (Tl BT 1 oSSR SS 219
8.2.3 ODBJECt LISHING ettt sttt 221
8.2.4 Statistics INfOrmMation..........cceeruierieiiiiiieeie et 223
8.2.5 Command Line SPecifiCationccecvervierierieriierieeie e eae e 224
8.3 ASSCMDLY LISTINES....ueiitiiiiieiiiiiciicieeie ettt ettt et et ebeeebeseae e e saeesseenneennens 225
8.3.1 Structure of Assembly LiStiNgccecevivviiivieriiriieiieiicieeeeee e 225
8.3.2 Source List INfOrmationccceoeeieiiiiieiieniecee e 225
8.3.3 Cross Reference LiStINgG.......ccccoiviririreeieieninieneeeneeeeeeeeie st 228
8.3.4 Section Information LiStNGccccveririeieiiiniiniininineeececceneee e 229
8.4 LINKAZE LSt ..eiiiiiiiiiiieiieieeieetestte ettt sttt et ee e st e st e et e e b e enbeesaesraessaeseenneenneens 230
8.4.1 Structure of LinKage LiSt........ccccoieriiiiiiiiiiieieerieeie et 230
Page iv of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

8.4.2 Option INfOrmationceceeviiriirinininiiteceneee et 232

8.4.3 Error INfOrmationceeoueiieiierieiieie ettt 232
8.4.4 Linkage Map Informationcccceeevieriieiieiinienieseeieeie et see e esae e eene e 233
8.4.5 Symbol INfOrmation..........cceecuiiiiiieniieiieiieteeeese ettt es 234
8.4.6 Symbol Deletion Optimization Informationcccceeeveeeveiierieeneenieeieeeeans 235
8.4.7 Cross-Reference Information............cocoeiiiiiiiiiiiiiieiiee e 236
8.4.8 Total SECION SIZEcueeieeeeiieiierieeie ettt eneeene e e 237
8.4.9 Vector INfOrmationccoeceeiierienieiieeeieeeeee et 237
8.4.10 CRC INfOIMALION ..c.euviiiiieiienieierieetesi ettt st 238
8.5 LIDIAry LASHNES....ceeeieiiieiieieeiieiieiteeste ettt e ettt eteesbeesaesaaesaeesaeebeesseesseessesseenseenseas 239
8.5.1 Structure of Library LiStiNgcccoieviiiviieiiiienienieeie et see e esveeneenens 239
8.5.2 Option INfOrmAationceoueriiiiiiiet et 240
8.5.3 Error INfOrmationcceeoueeieiieiiei ettt 241
8.5.4 Library INformationcccccouevirinininirieiicienene ettt 241
8.5.5 Module, Section, and Symbol Information within Librarycccvevurennnne 242
Section 9 Programmingcccveeecuieeriieeniiieeriie e eereeeree e e eeeeeeeeee e 243
0.1 Program SIIUCTUIEeeiuieiieieeiie ittt ettt ettt ettt esteeeteeeee st e e s te e et emeeeneeeneesbeeseeneeas 243
LT O T () T 243
9.1.2 C/CH+ Program SECHIONSccueruerreririerieieeieienientestesieeieeetestetenee e saesneeaeenees 244
9.1.3 Assembly Program SECLIONSc.ccverveerieerierierienieseenieeeeereseeeseeesseeseessens 248
9.1.4 LinKiNG SECHIONS ...cveiviiiieiieiiieiteeteesteeteereereesaesteesteesaeesaeessesssesssesssesseessesssens 250
9.2 Creation of Initial Setting PrOgramsccccceeeerierieerieeieiieieese et eee e sreesreesneas 253
9.2.1 Memory AllOCAtION.......ccueeiieiieiieetieteeie ettt ettt 254
9.2.2 Execution Environment Settings..........ccecceveeierieneninenenenieieieneneneeieeeeneen 262
9.3 Linking C/C++ Programs and Assembly Programs..........c..cocoecevveeeecienencnincncneenens 300
9.3.1 Method for Mutual Referencing of External Names............cceceeveeienienieennens 300
9.3.2 Function Calling INterfacec.cccvevrieriieiiieiicieieeceeseee et 302
9.3.3 Examples of Parameter AIlOCAtiONccceeevevvereeiierieenieeie e eeeesreesveennens 312
9.3.4 Using the Registers and Stack Area........ccccoeverieiiiiienieniee e 315
9.4 Important Information on Programming........c..cecceceeeeierienininienenierienieneneseseeeenens 316
9.4.1 Important Information on Program Codingcccceceverervenienieninencneneene. 316
9.4.2 Important Information on Compiling a C Program with the C++ Compiler.... 321
9.4.3 Important Information on Program Development...............cccoeeveeveeiereenneennen. 322
Section 10 C/C++ Language Specificationsccceeeeveeevieeenieesiieeeieeeeene 323
10.1 Language SPECIfiCAtiONScceeeiiiiriirieriinienieiteteteteste ettt eanens 323
10.1.1 Compiler SPeCifiCatiONS......c.cecuetirieririiririeeietete ettt 323
10.1.2 Internal Data Representation.........c.cccuevverieerieecienienieseeieeieseeseeseesseeaeenne e 331
10.1.3 Floating-Point Number Specifications.............ccoccveevereerieerresieieereesreeie e 348
R20UT0704EJ0102 Rev. 1.02 Page v of viii

Mar 01, 2022 RENESAS

10.1.4 Operator Evaluation Order..........c.ccoerirerieieoiininenineeeeeeeeee e 357

10.2 DSP-C SPECIfICALIONSeuveutiiiiiiiniiriieiieteienteetesie ettt ettt sttt sae et eaeeanens 358
10.2.1 Fixed-Point Data TYPES ...ccvecverieriieiieieeieeiesieeieeieeiesteseneseesseesseesesnsessnenns 358
10.2.2 QUALTIETS ...veiieieeiee ettt ettt e et e et e et e et e e veeeeaeeereeeneeenes 358
10.2.3 CONSLANTSvviiiiiiiieeciiiie ettt eeta e et e e e et e e e etae e e eaaeeeeeateeeeeaseeeenaneeas 361
10.2.4 TYPE CONMVETSION.eutieiieiiieitieittertt ettt ettt e stee st e e e e eeteseeeseeeseeeseeaeeneeeneeeas 362
10.2.5 Arithmetic CONVEISION.cccveeeeereeeeeeeee e eeeeeeeeeeeeeeeeeeeeeae e e e e eeenreeeeenneens 364
10.2.6 POINter CONVEISIONeeeeeerieeeieieeeeeeeeeeeeeeeeeeeee e e e eeeaaeeeeeneeeeereeeeennneeeeenneens 365
TO.2.7 OPETALOTSeeeueieeiiieeiieeiieeite ettt eriteeieeettesbeeebtesbtesbtesabeesnbeesabeesnseesnseesnseesnne 365
1O.2.8 LIDIAIIES ...cuveiivieeiie ettt ettt ettt eete e et e et e e eteeeeteeeteeeteeeeaeeereeereeenns 366
10.3 Extended SPeCifiCatiONS.......c.cccuiiiiriieriieiieiieieeeesieeteereeeeseae e e sreeseesneesesesesseesseesseas 369
10.3.1 #pragma EXtension SPECIfiersccceririiirierieniieiieieeie et 369
10.3.2 Section Address OPErator...........coeeererereeterienienenienieeeeeereneente st sieeieeanens 408
10.3.3 IntrinSic FUNCHIONScooiiviiiiiiee e 410
104 C/CH LIDTATIES ..veeeveeeiii ettt ettt et ettt e et etveeetee e eaveeetseesabeeeaseeseseesaseesaveesaneeas 487
10.4.1 Standard C LiDIari€Sc...cooveeeiiiiieecie e et eetee et eeteeeeteeeeteeeeveeeeaeeeeveeeeaee e 487
10.4.2 ECH+ Class LIDIari€S....c...covueieuiiiiieeeieeeeiee et eeteeeeeeeeteeeeteeeeveeeeveeeeaeeeeveeeevee e 665
10.4.3 Reentrant LiDIaryccooeeeiiiiieiieeee ettt 753
10.4.4 Unsupported LIDIariesccceoerererirerieieieninenesieeieeieeseneenie s sieeneeneens 759
10.4.5 DSP LIDIATY ...ooviieiieiiciieieieiesie sttt ettt ea et be s eteesaessessessesessessesssassassans 760
Section 11 Assembly SpecifiCationscceecuverieeiiiinieiiiienieeie e 817
11.1 Program EICMENTS........c.occviiiiiieiieieeieeic ettt ae e sreesbeeaeesneesaesaaesaeesreenneas 817
T1.1.1 SoUICEe StAtCIMENES.......eeiieieie ettt e ettt e e e e et e e e et e e e eeaae e e eeaeeeas 817
11.1.2 RESEIVEA WOTAS.....coouveieieeiee e e 821
T1.1.30 SYMDOIS ottt st 821
T1.1.4 CONSLANTSuviiiiiiiieeiiiieeciiee et ettt e ee e e e et e e e s bt e e e eatbeeeeesaeeesarseeeennseeeenseeas 824
11.1.5 LOCAtioN COUNTETeeeeviiieiieietieeeieeeeteeeetee et eeteeeetee et e et e eeteeeeveeeeaeeeveeeaeeenns 834
T1.1.6 EXPIESSIONSueeivieiieeiieeteitteiteesteesteesteeteesresseesseesseesseesseessesssesssesseesseesseesessseans 835
11.1.7 String LIteralSoeouieiieieee ettt 844
L ST 1o Yo% 1 0 I 1) SRR 845
11.2 Executable INStIrUCHIONSveiiieerieeeceeee et et e e et e e e eenneeeeenneeeens 847
11.2.1 Overview of Executable INStructions..........c...covveeiiieiieeciieeieeiee e 847
11.2.2 Notes on Executable INStructions...........cccoovvieiiieiieieiieeeiee e 853
11.3 DSP INSEIUCHIONS ..eeouvveiiiiiiie ettt ettt eete et ettt eteeeeaeeeetaeeeteeeeaaeeeaaeeeveeeaseeeaseeeaneeas 884
11.3.1 Program CONLENLSceouerieriieriieriieieeie et etteeteestee e eteeetesseesseesbeeseeenaeeeeeneeens 884
11.3.2 DSP INStIUCHIONS ...eeeevieeeeeieee e e e e e e ereeeennreeeeenneens 888
11.4 ASSEMDICT DITECHIVESveeiieiieeetiee e e e et eeenaeeeeeaneeeens 897
11.5 File Inclusion FUNCHONociiiiiiiiciiiicieccee et 964
11.6 Conditional Assembly FUNCHONccveeviiiiiiiiciieiicieeicce et 967
Page vi of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

11.6.1 Overview of the Conditional Assembly Function.......c..cc.ccceeeeeveninencncnnenee. 967

11.6.2 Conditional Assembly DIr€CtiVescoceeeeierienierineninieecierencsene e 973
11.7 MACTO FUNCHON ...ttt ettt st 988
11.7.1 Overview of the Macro FUNCtioncceceeiieiiinininenieieeee e 988
11.7.2 Macro Function DIT€CHIVESccueruerueririeiieieieie ettt 991
11.7.3 MaCTO BOAY ...t 995
11.7.4 MaCTO Call ...ooniiiniieiiieieeeeeee ettt et sneeae e e 999
11.7.5 String Literal Manipulation FUNCtions............cccceceverenenireenienenineneneneenes 1001
11.8 Automatic Literal Pool Generation FUNCtion...........ccccoceviveriiinieiienienenencecnceeene 1005
11.8.1 Overview of Automatic Literal Pool Generation...........ccceceevevenenenencncenee. 1005
11.8.2 Extended Instructions Related to Automatic Literal Pool Generation............. 1006
11.8.3 Size Mode for Automatic Literal Pool Generationccceceveerieneenneennne 1006
11.8.4 Literal POOl OULPUL ...c..ocvevuiriiiiiiiiiniierceieeteeeresesie ettt 1007
11.8.5 Literal Sharingc..ccccoeeueriiiiieiiieniieeneeeet ettt 1010
11.8.6 Literal Pool Output SUPPIESSION......c.eevvieruieriieieeieetienteeteeiesseseeeseeesseesseesnenns 1012
11.8.7 Notes on Automatic Literal Pool Generation.............cceceeeeeenienieneneneseneenee. 1013
11.9 Automatic Repeat Loop Generation FUNCHONcoceeviieiiiiieiiciiciieieeie e 1016
11.9.1 Overview of Automatic Repeat Loop Generation Functionccccceeeeneene 1016
11.9.2 Extended Instructions of Automatic Repeat Loop Generation Function 1017
11.9.3 REPEAT DESCIIPLION. ..c..eoueruieuieiiieniintenieetteitetete sttt ettt see e eeeenees 1017
11.9.4 Coding EXAMPIES......cccccvieriieiiieiieieiierienie et eeeeee e ebeesbesaessaesseesseenseennenns 1018
11.9.5 Notes on the REPEAT Extended InStruction...........cccceoeeeeienienenenencncecnee. 1021
11.10 Extended Automatic Repeat Loop Generation Functionccccceeeveviveveecnennesnnenne. 1023
11.10.1 Overview of Extended Automatic Repeat Loop Generation Function 1023
11.10.2 Extended Instructions of Extended Automatic Repeat Loop Generation
FUNCLION ...ttt ettt 1024
11.10.3 EREPEAT DESCIIPLION ...eouvveuvieiiieiiesiiesiiesieeieeeteeteesteesteebeesseseneseaesseesseensessnenns 1024
11.10.4 Coding EXAMPIES......cceeciiiriirieiieiieiieieeste ettt sveebeesaeeaesreesaeesaeeseenne e 1025
11.10.5 Notes on the EREPEAT Extended InStruction............c.cceeeevenienenienenencneenee. 1027
Section 12 Compiler Error MesSagescccvvevveeeriieeiieeeiee e e 1029
12.1 Error Format and Error Levels.........ccooieiiriirieiiecieee e 1029
12.2 EITOT IMESSAZES. . uvveeutieiiieeiieeieeetteeite st e st e st e steesabeesabeesabeesabeesateesabeesaseesaseesnseesnneens 1029
12.3 Standard Library EIror MESSAZES........ccverveeviriiiieiierieenieeteeeeeseesseesseeseessesssesssesseesnes 1098
Section 13 Assembler Error MeSSagesc.eeevveeeeieeeiieeeiiee e eiee e 1103
13.1 Error Message Format and Error Levels........c.ccocveoevinininniiiniciicccnceesceeene 1103
13.2 EITOT MESSAZES.cuieiieniieiieiieiteettete ettt et sttt et et ettt e esanesanesaeenee 1103
R20UT0704EJ0102 Rev. 1.02 Page vii of viii

Mar 01, 2022 RENESAS

Section 14 Error Messages for the Optimizing Linkage Editor 1127

14.1 Error Format and Error Levels.......c.ccoceiiviiiiiiiiiiiiececeeee e 1127
14.2 Return Values fOr EITOTSoouiiiiiiiiieieee sttt 1127
14.3 LiSt Of MESSAZES ...vvevieurieiiieiieiiieiieesteeste et et e et e teebeesbeesbeesaeseaesaeeseesseesseessesssesseesesnsens 1128
Section 15 Limitations........cccueeiuieriiiiiieniieiie it 1147
15.1 Limitations of the COMPIET.........cccoceririiiriiiinininceeceeereere et 1147
15.2 Limitations of the ASSEMDIET.........ccceriiiiriiiiriirineeeeeeee et 1150
Section 16 Notes on Version Upgradecccveeeveieeeiieeniieeniieeeieeeeeee e 1151
16.1 Notes on Version UPGrade.........coievieiieriieiiiieiesieeieeie ettt 1151
16.1.1 Guaranteed Program OpPerationcecceceeeeevenieneneneneeeeneneenieneseseeeenens 1151
16.1.2 Compatibility with Earlier Version.........c.cccceeevinenineneneeicnenencnenceeenene 1152
16.1.3 Compatibility with Objects for Earlier Version.........c..ccceceevevenenincncneenne 1153
16.1.4 Command-line INterfacecccoveririiiiieieiesesee e 1154
16.1.5 Provided COnteNts.........ceieierierieriieiesieeeeeiteiee sttt s eneene 1157
16.1.6 List File SpecifiCation.........cccceiierieriiiiee ettt 1158
16.2 Additions and IMProVEMENtScccceeeieriirierininenieeeeteesteete ettt eanens 1158
16.2.1 Common Additions and Improvements (Package: Ver. 6)ccccoceecenerennnene 1158
16.2.2 Added and Improved Compiler FUNCHONS.........cccevverieecieiieiiesieeeie e 1158
16.2.3 Added and Improved Assembler FUnctions............cceceeeveeieiieneenieenieeieenens 1165
16.2.4 Added and Improved Optimizing Linkage Editor Functions.............ccccceceeue. 1165
Section 17 APPENAIXvviiiiiiiiiie ettt e b e eavee s 1171
17.1 S-Type and HEX File FOrmat........c.cceceeoieriiniininininiiieicicntceteniceeee et 1171
17.1.1 S-Type File FOrmMat.......c..cccevciiiieriieniieiieieeieetieteeieete e svesne e saeeseeaesene e 1171
17.1.2 HEX File FOIMALocuiiiiiiiiieieie et 1173
17.2 ASCIL COAE LISt ..ottt sttt st 1176
Page viii of viii R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

Section 1 Overview

1.1 Procedures for Developing Programs

Figure 1.1 shows the procedures for developing programs. The shaded part shows software
provided in the SuperH RISC engine C/C++ compiler package.

The C/C++ compiler, assembler, optimizing linkage editor, standard library generator, and call
walker are explained in this manual.

R20UT0704EJ0102 Rev. 1.02 Page 1 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

include

file

SuperH RISC engine
C/C++ compiler

A A

Standard
include
files

———»| Additional

information
file*

User | Assembly External SuperH RISC engine
assembly source symbol- standard library generator
program program allocation

SuperH RISC engine > Relocatable
assembler object
file

Standard

library

library
file

file

Optimizing
linkage editor

A
Y
Load Profile Stack
module information information
A
y g \ 4
Note: - Input/output Debugger | Stack analysis tool
------ » : Initiation
Additional information files include:
- Template information files
- Parameter information files
- Instance information files) Calleq
- Tentative defined variable information files information

Figure 1.1 Procedures for Developing Programs

Page 2 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

Outlines of the C/C++ compiler, assembler, optimizing linkage editor, prelinker, standard library
generator, and call walker are given in the following instructions.

1.2 Compiler

The SuperH RISC engine C/C++ compiler (hereinafter referred to as compiler) is software that
takes source programs written in C or C++ language as inputs, and produces relocatable object
programs or assembly source programs for SuperH RISC engine microcomputers.

Features of this compiler are as follows:

1. Generates an object program that can be written to ROM for installation in a user system.

2. Supports an optimization that improves the speed of execution of object programs and
minimizes program size.

3. Supports the C and C++ programming languages.

4. Supports functions that are essential for the programming of embedded programs but are not
supported by the C and C++ languages as extended functions. Such functions include interrupt
functions and descriptions of system instructions.

5. The output of debugging information to enable C/C++ source-level debugging by the debugger
is supported.

6. Either an assembly source program or a relocatable object program can be selected for output.

7. Supports an inter-module optimization information output to execute optimization for the
optimizing linkage editor.

1.3 Assembler

The SuperH RISC engine assembler (hereinafter referred to as assembler) is software that takes
source programs written in assembly language, and outputs relocatable object programs for
SuperH RISC engine microcomputers.

Features of this assembler are as follows:

1. Enables the efficient writing of source programs by providing the preprocessor functions
listed below:

— File include function
— Conditional assembly function
— Macro function

2. The mnemonics for execution instruction and assembly directives conform to the naming rules
laid out in the IEEE-694 specifications, and the system is uniform.

R20UT0704EJ0102 Rev. 1.02 Page 3 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

1.4 Optimizing Linkage Editor

The optimizing linkage editor is software that takes multiple object programs output by the
compiler or assembler and produces load modules or library files.

Features of this optimizing linkage editor are as follows:

1. Optimization can be applied to a set of several object files, depending on memory allocation
and relations among function calls which cannot be optimized by the compiler.

N

Any of the following five types of load modules can be selected for output:
— Relocatable ELF format
— Absolute ELF format
— S-type format
— HEX format
— Binary format
Generates and edits library files.
Outputs symbol reference count list.
Deletes debugging information from library and load module files.

S v kW

Specifies the output of a stack information file for use by the call walker.

1.5 Prelinker

The prelinker is called from the optimizing linkage editor. When a C++ program template or
runtime type-detection function is used, the prelinker calls the compiler and instructs it to generate
the necessary object files. When neither a C++ program template nor the runtime type-detection
function is used, the speed of linkage can be improved by specifying the noprelink option for the
optimizing linkage editor.

1.6 Standard Library Generator

The SuperH RISC engine standard library generator (hereinafter referred to as the standard library
generator) is a software system for the reconfiguration of standard library files provided, using
user-specified options.

The standard library functions provided with the compiler include the standard set of C library
functions, a set of C++ class library functions for embedded systems, and a set of runtime routines
(arithmetic operations that are necessary for the execution of a program). In some cases, runtime
routine will be necessary, even though library functions are not used in source programs.

Page 4 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 1 Overview

1.7 Call Walker

The call walker is software that takes the stack information file that is output by the optimizing
linkage editor and calculates the size of the stack that will be used by C/C++ programs.

R20UT0704EJ0102 Rev. 1.02 Page 5 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 1 Overview Optimizing Linkage Editor

Page 6 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Section 2 Compiler Options

2.1 Option Specification Rules

The format of the command line to initiate the compiler is as follows:
shc[A<option>...] [A<file name>[A<option>...] ...]
<option>:-<option>[=<suboption>][,...]

2.2 Interpretation of Options

In the command line format, uppercase letters indicate the abbreviations and characters underlined
indicate the defaults.

The format of the dialog menus that correspond to the integrated development environment is
category name [Item].

The order of options corresponds to that of the tabs in the integrated development environment.

Note that conditions apply to the application of some options related to optimization, i.e. some
may not be applicable. Check the output code to see whether or not the optimization has actually
been performed.

R20UT0704EJ0102 Rev. 1.02 Page 7 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

2.2.1 Source Options

Table 2.1 Source Category Options

Item Command Line Format Dialog Menu Specification

Include file Include = <path name>[,...] Source Specifies include-file include
directory [Show entries for :] path name.

[Include file directories]

Default include PREInclude =

Source

Includes the specified files at

file <file name>[,...] [Show entries for :] the head of compiling units.
[Preinclude]
Macro name DEFine = <sub>[,...] Source Defines <string literal> as
definition <sub>: [Show entries for :] <macro name>.
<macro name> [Defines]
[=<string literal>]
Information MEssage Source Output
message NOMEssage [Show entries for :] Not output
[= <error number> [Messages]

[- <error number>][,...]]

[Display information
level messages]

Inter-file inline

expansion
directory
specification

FILE_INLINE_PATH =
<path name>[,...]

Source
[Show entries for :]
[File inline path]

Specifies the path name
where obtains a file for inline
expansion between files.

Message level

CHAnNnge_message
=<sub>[,...]
<sub>:<level>
[=<n>[-m],...]
<level>:{Information
| Warning
| Error }

Source
[Message level]

Changes message level.

Page 8 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Include: Include File Directory

Source[Show entries for :][Include file directories]

Command Line Format

Include = <path name>[,...]

Description

Specifies the name of the path where the include file is stored.

Two or more path names can be specified by separating them with a comma (,).

System include files are retrieved in the order of the include option specification directory, the
environment variable SHC INC specification directory, and the environment variable
SHC_LIB specification directory. User include files are retrieved in the order of the current
directory, the include option specification directory, the environment variable SHC INC
specification directory, and the environment variable SHC LIB specification directory.
Example

shc —-include=c:\usr\inc,c:\usr\shc test.c

Directories c:\usr\inc and c:\usr\shc are retrieved as include file paths.

PREInclude: Default Include File

Source[Show entries for :][Preinclude]

Command Line Format
PREInclude = <file name>[,...]
Description

Includes the specified file contents at the head of the compiling unit. Two or more file names
can be specified by separating them with a comma (,).

Example

shc -preinclude=a.h test.c
— Contents of <test.c>

int a;
main() {...}

— Interpretation at compilation

#include "a.h"

int a;
main() {...}
R20UT0704EJ0102 Rev. 1.02 Page 9 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

DEFine: Macro Name Definition

Source[Show entries for :][Defines]

Command Line Format
DEFine = <sub> [,...]
<sub>: <macro name> [= <string literal>]
Description
This option is the same as #define described in the C/C++ source file.
When <macro name>=<string literal> is specified, <string literal> is defined as a macro
name.
When only <macro name> is specified for a suboption, the macro name is assumed to be
defined. Names or integer constants can be written in <string literal>.

MEssage, NOMEssage: Information Message

Source[Show entries for :][Messages][Display information level messages]

Command Line Format

MEssage

NOMEssage [= <error number> [- <error number>][,...]]

Description

This option specifies whether or not the information-level messages are output.

When the message option is specified, the compiler outputs information-level messages.

When the nomessage option is specified, the compiler inhibits the output of the information-
level messages. When the error number is specified by a suboption, the output of the specified
information-level messages will be inhibited.

A range of error numbers to be inhibited can be specified by using a hyphen (-), that is, in the
form <error number> - <error number>.

The default for this option is nomessage.
Example
shc -message test.c

Information-level messages will be output.

Page 10 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

FILE_INLINE_PATH: Inter-file Inline Expansion Directory Specification
Source[Show entries for :][File inline path]

¢ Command Line Format
FILE INLINE PATH = <path name> [,...]

e Description
Specifies the name of the path where a file for inter-file inline expansion is stored.
Two or more path names can be specified by separating them with a comma (,).
Files for inter-file inline expansion are retrieved in the order of the file_inline_path option
specification directory and the current directory.

e Example
shc -file inline path=c:\usr\file -file inline=test2.c test.c
Directory c:\usr\file is considered as the inter-file inline expansion specification directory to
retrieve test2.c specified by the file_inline option.

R20UT0704EJ0102 Rev. 1.02 Page 11 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CHAnge_message: Message Level

Source[Message level :]

Command Line Format

CHAnge message = <sub>[,...]
<sub> : <error level>[=<error number>[- <error number>][,...]]
<error level> : { Information | Warning | Error }

Description

Changes the message level of information-level and warning-level messages.

Example

change message=information=<error number>

Warning level messages with the specified error numbers are changed to Information level
messages.

change message=warning=<error number>

Information level messages with the specified error numbers are changed to Warning level
messages.

change message=error=<error number>

Information and Warning level messages with the specified error numbers are changed to
Error level messages.

change message=information

All warning-level messages are changed to Information level messages.

change message=warning

All information-level messages are changed to Warning level messages.

change message=error

All information-level and warning-level messages are changed to Error level messages.
Remarks

Output of the messages which were changed to the information-level can be disabled by
nomessage specification.

Page 12 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

2.2.2 Object Options

Table 2.2 Object Category Options

Item Command Line FormatDialog Menu Specification
Pre-processorPREProcessor Object Outputs source program after
expansion [= <file name>] [Output file type :] preprocessor expansion.
[Preprocessed source
file]
NOLINe [Suppress #line in Disables #line output at
preprocessed source preprocessor expansion.
file]
Object type Code = Object
[Output file type :]
{ Machinecode [Machine code] Outputs machine code program.
| Asmcode } [Assembly source code] Outputs assembly-source
program.
Debugging DEBug Object Output
information NODEBug [Generate debug Not output
information]
Section name SEction = <sub>[,...] Object
<sub>:{ [Code generation]
Program= [Section :]
<section name> [Program section (P)]

Program area section name
Constant area section name
Initialized data area section name
Non-initialized data area section

| Const=<section name> [Const section (C)]
| Data=<section name> [Data section (D)]
| Bss=<section name> [Uninitialized data

} section (B)] name
Area of string STring = { Const Object Outputs string literal to constant
literal to be [Code generation] section (C).
output | Data } [Store string datain:] Outputs string literal to initialized
data section (D).
Object file OBjectfile = <file name> Object Outputs the object file of the
name [Output directory:] specified file name.
specification
R20UT0704EJ0102 Rev. 1.02 Page 13 of 1176

Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.2 Object Category Options (cont)
Item Command Line Format Dialog Menu Specification
Template Template={ None Object Does not generate instances.
instance [Code generation]
generation | Static [Template :] Generates instances as internal
linkage only for referenced
templates.
| Used Generates instances as external
linkage only for referenced
templates.
| ALI Generates instances for templates
declared or referenced.
|,AUto } Generates instances at linkage.
ABS16/20/ <ABS>=<sub>[,...] Object Specifies the memory space
28/32 <ABS>: [Code generation2] where the label addresses or
declaration {ABs16 [Address declaration] runtime routines belonging to the
| ABS20 specified section are to be
| ABS28 allocated.
| ABS32}
<sub>:
{ Program
| Const
| Data
| Bss
| Run
| All }
Method of Dlvision = Cpu = Object Uses the CPU’s division
division [Code generation] instruction.
[except for {Inline [Division sub-options :] Converts division to
SH-1] multiplication and performs inline
| Runtime} expansion.
Calls run-time routine.
Disabling of IFUnc Object Disables save and restore of
save and [Code generation] floating-point registers.
restore of [Use no FPU
floating-point instructions]
registers
[SH-2E,
SH2A-FPU,
SH-4,
and SH-4A]

Page 14 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.2 Object Category Options (cont)
Item Command Line Format Dialog Menu Specification
16-byte or ALIGN16 Object Every first label appear an
32-byte [Code generation] unconditional branch instruction in
alignment of [Alignment of branch a program section is aligned on a
labels destination] 16-byte boundary.
ALIGN32 Every first label appear an
unconditional branch instruction in
a program section is aligned on a
32-byte boundary.
NOALign Does not necessarily place labels
on a 16-byte or 32-byte boundary.
TBR relative TBR [= <section name>] Object Calls functions using TBR relative
function call [Code generation2] addresses.
[SH-2A and [TBR specification]
SH2A-FPU]
Order of BSs_order = Object
uninitialized {DEClaration [Code generation2] Outputs in the order of
variables [Order of uninitialized declarations
| DEFinition } variables :] Outputs in the order of definitions
Disposition of STUff [= {Bss | Data Object Assigns variables according to the
variables | Const} [,...]] [Code generation2] size of variables
[Disposition of
NOSTuff variables :] Do not assign variables
Disposition of STUFF_GBR Object Assigns variables according to the

variables in
$G0/$G1

[Code generation2]
[Disposition of

Variables in $G0/$G1]

size of variables in $G0/$G1

Alignment of ALIGN4 ={
bran_ch _ ALL |
destination

LOOP |

INMOSTLOOP }

Object

[Code generation]
[Alignment of Branch
Destination]

Alignment of branch destination:
- All branch destination addresses
- Start addresses of all loops

- Start addresses of the innermost
loops

Allocate constCONST_VOLATILE = {

volatile

Object
[Code generation]

Allocate const volatile variables to
the initialized data area

DATA |
variables [const volatile Allocate const volatile variables to
CONST ; .
} variables] the constant area
R20UT0704EJ0102 Rev. 1.02 Page 15 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

PREProcessor, NOLINe: Preprocessor Expansion

Object[Output file type :][Preprocessed source file]

[Suppress #line in preprocessed source file]

Command Line Format

PREProcessor [= <file name>]

Description

Outputs a source program processed by the preprocessor.

If no <file name> is specified, an output file with the same file name as the source file and
with a standard extension is created. The standard extension after C compilation is p (if the
input source program is written in C), and that after C++ compilation is pp (if the input source
program is written in C++).

When preprocessor is specified, no object file is output from the compiler.

When noline is specified, disables #line output at preprocessor expansion.

Remarks

When preprocessor is specified, other than the following options become invalid:
show=source, include, expansion, width, length, tab, listfile, define, include, comment, euc,
sjis, latin1l, subcommand, preinclude, message, lang, logo, cpu, change_message

Code: Object Type

Object[Output file type :][Machine code][Assembly source code]

Command Line Format

Code = { Machinecode | Asmcode }
Description

Specifies an object file output type.

When code=machinecode is specified, a relocatable object program (machine code) is
generated.

When code=asmcode is specified, an assembly source program is generated.
The default for this option is code=machinecode.
Remarks

When code=asmcode is specified, show=object and goptimize become invalid.

Page 16 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DEBug, NODEBug: Debugging Information
Object[Generate debug information]

e Command Line Format
DEBug
NODEBug

e Description
When the debug option is specified, debugging information will be output to object files.
The debug option is valid regardless of whether or not the optimization option is specified.
When nodebug option is specified, no debugging information will be output to the object file.
The default for this option is nodebug.

SEction: Section Name

Object[Code generation][Section :][Program section (P)][Const section (C)][Data section (D)]
[Uninitialized data section (B)]

e Command Line Format
SEction = <sub> [,...]
<sub>: { Program=<section name>
| Const= <section name>
| Data= <section name>
| Bss= <section name>
}
e Description
Specifies the section name of an object program.
section=program=<section name> specifies the section name in the program area.
section=const=<section name> specifies the section name in the constant area.
section=data=<section name> specifies the section name in the initialized data area.
section=bss=<section name> specifies the section name in the non-initialized data area.

The <section name> must be alphabetic, numeric, or underscore () or $. The first character
must not be numeric. The section name must be specified within 8192 characters.

The default for this option is section=program=P, const=C, data=D, bss=B.

R20UT0704EJ0102 Rev. 1.02 Page 17 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Remarks

For details on correspondence between programs and section names, refer to section 9.1,
Program Structure. The same section name cannot be specified for different areas of the
section.

STring: String Literal Output Area

Object[Code generation][Store string data in :]

Command Line Format

STring = { Const | Data }

Description

Specifies the destination where string literals are output.

When string=const is specified, the compiler outputs the string literals to the constant area.
When string=data is specified, the compiler outputs the string literals to the initialized data
area.

The string literals output to the initialized data area can be modified at program execution;
however, the initialized data area must be allocated in both ROM and RAM in order to transfer
the string literals to RAM from ROM at the beginning of program execution. For details on
the initial settings of the initialized data area or on memory allocation, refer to section 9.2.1
Memory Allocation.

The default for this option is string=const.

OBjectfile: Object File Output

Object[Output directory :]

Command Line Format

OBjectfile = <object file name>
Description

Specifies an object file name to be output.

If this option is not specified, the object file name becomes the same as that of the source file
and the extension becomes obj for a relocatable object program and sre for an assembly source
program, which is determined by code.

Page 18 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Template: Template Instance Generation

Object[Code generation][Template :]

Command Line Format

Template = { None

| Static

| Used

| ALI

| AUto }

Description

Specifies the condition to generate template instances.

When template=none is specified, instances are not generated.

When template=static is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the internal linkage.

When template=used is specified, instances of templates referenced in the compiling unit are
generated. However, generated functions contain the external linkage.

When template=all is specified, instances of all templates declared or referenced in the
compiling unit are generated.

When template=auto is specified, instances needed at linkage are generated.
Remarks
When code=asmcode is specified, template=static must be specified.

ABs16, ABS20, ABS28, ABS32: ABS16/20/28/32 Declaration

Object[Code generation2][Address declaration]

Command Line Format

ABs16 = { Program | Const | Data | Bss | Run | All }[,...]
ABS20 = { Program | Const | Data | Bss | Run | All }[,...]
ABS28 = { Program | Const | Data | Bss | Run | All }[,...]
ABS32 = { Program | Const | Data | Bss | Run | All }[,...]
Description

Specifies the memory space where the label addresses or runtime routines belonging to the
section specified by the suboption are to be allocated.

The default for this option is abs32=all.

R20UT0704EJ0102 Rev. 1.02 Page 19 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.3 Address Ranges

Address Range

Option Beginning End

abs16 0x00000000 0x00007FFF
0xFFFF8000 OxFFFFFFFF

abs20 0x00000000 0x0007FFFF
0xFFF80000 OxFFFFFFFF

abs28 0x00000000 0x07FFFF7F*
0xF8000000 OxFFFFFFFF

abs32 0x00000000 OxFFFFFFFF

Note: * Note that the end of the address range is 0xO7FFFF7F.

Table 2.4 Suboptions

Suboption Description
program Allocates the program areas to the specified memory space.
const Allocates the constant areas to the specified memory space.
data Allocates the initialized data areas to the specified memory space.
bss Allocates the uninitialized data areas to the specified memory space.
run Allocates the runtime routines to the specified memory space.
all Allocates all areas to the specified memory space.
e Example
Program

-abs20=program -abs28=const,data
— Same as -abs20=program -abs28=const,data -abs32=bss,run
-abs20=data -absl6=data
— Outputs a warning message and —abs16=data becomes valid
e Remarks

When this option and #pragma abs16|abs20|abs28|abs32 are specified simultaneously, the
#pragma specification is valid.

When this option and #pragma gbr_base|gbr_basel are specified simultaneously, this option
specification is not applied to the variables specified by #pragma gbr_base|gbr_basel.

abs20|abs28 is only valid when cpu=sh2a|sh2afpu is specified.

Page 20 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DIlvision: Division Method Selection

Object[Code generation][Division sub-options :]/CPU[Division :]

Command Line Format

Dlvision = { Cpu [= { Inline | Runtime }]

| Peripheral

| Nomask }

Description

Selects the method of integer type division and residue.

When division=cpu=inline is specified, division operations on constants are converted into

multiplications and inline-expanded, and for division operations on variables, the DIVS or

DIVU instruction is selected when cpu is SH-2A or SH2A-FPU; otherwise, the runtime

routine for the DIV 1 instruction is selected. This option is invalid when cpu=sh1 is specified.

When division=cpu=runtime is specified, if a division cannot be performed through shift

operations, the DIVS or DIVU instruction is selected when cpu is SH-2A or SH2A-FPU;

otherwise, the runtime routine for the DIV 1 instruction is selected. This option is invalid when

cpu=shl is specified.

When only division=cpu is specified, either division=cpu=runtime is assumed when the size

option is specified, and division=cpu=inline is assumed when the speed or nospeed option is

specified.

When division=peripheral is specified, the runtime routine that uses the divider is selected

(sets interrupt mask level to 15). Executable only if cpu is SH-2 (SH7604).

When division=nomask is specified, the runtime routine that uses the divider is selected (no

change in interrupt mask level). Executable only if cpu is SH-2 (SH7604).

When specifying peripheral or nomask, note the following:

1. Division by 0 is not checked and errno is not set up.

2. When nomask is specified, if an interrupt occurs during operation of the divider, and if the
divider is used in the interrupt processing routine, the result is not guaranteed.

3. Overflow interrupt is not supported.

4. Results of division by zero and overflow depend on specifications of the divider, and may
differ from the results obtained when the cpu suboption is specified.

The default for this option is division=cpu.

R20UT0704EJ0102 Rev. 1.02 Page 21 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

IFUnc: Disabling of Save and Restore of Floating-Point Registers

Object[Code generation][Use no FPU instructions]

Command Line Format

IFUnc

Description

Disables saving and restoring of floating-point registers.

Remarks

This specification can be made for each function unit using #pragma ifunc.

When a source program that generates floating-point instructions is compiled with this option
specified, an error occurs.

This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.

ALIGN16, ALIGN32, NOALign: 16-Byte or 32-Byte Alignment of Labels

Object[Code generation][Align Labels after unconditional branches 16/32 byte boundaries]

Command Line Format
ALIGN16

ALIGN32

NOALign

Description

When align16 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 16-byte boundary.

When align32 is specified, every first label within the program section to appear after an
unconditional branch instruction is aligned with a 32-byte boundary.

When noalign is specified, labels appearing after unconditional branch instructions are not
aligned with 16- or 32-byte boundaries.

The default for this option is noalign.
Remarks
align16 and align32 cannot be specified simultaneously.

When the noalign16 option is specified, it is considered that noalign has been specified.

Page 22 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

TBR: TBR Relative Function Call

Object[Code generation2][TBR specification]

Command Line Format

TBR [= <section name>]

Description

Calls functions using TBR relative addresses.

When <section name> is specified, the function address table for function definitions is output
to the STBR<section name> section.

When <section name> is omitted, the function address table for function definitions is output
to the $TBR section.

For details, refer to section 10.3.1 (2), #pragma tbr.

Remarks

This option is only valid when cpu=sh2a or sh2afpu is specified.

When this option and #pragma tbr are specified simultaneously, the #pragma tbr
specification is valid. When this option and pic=1 are specified simultaneously, this option is
invalid.

When the number of functions to be included in the function address table exceeds 255, an
error message will be output.

BSs_order: Order of Uninitialized Variables

Object[Code generation2][Order of uninitialized variables]

Command Line Format
BSs_order = {declaration | definition}
Description

When bss_order=declaration is specified, uninitialized variables are output in the order of
declarations.

When bss_order=definition is specified, uninitialized variables are output in the order of
definitions.

The default for this option is bss_order=declaration.

Example

extern int al;
extern int a2;

int a3;

R20UT0704EJ0102 Rev. 1.02 Page 23 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

extern int a4;
int ab;
int a2;
int al;

int a4;

<bss_order=declaration is specified>
.SECTION B, DATA,ALIGN=4
_al:
.RES.L 1
_az:
.RES.L 1
_a3:
.RES.L 1
_a4d:
.RES.L 1
as:

.RES.L 1

<bss_order=definition is specified>
.SECTION B, DATA,ALIGN=4
_a3:

.RES.L 1

_ab:

.RES.L 1

_az:

.RES.L 1

_al:

.RES.L 1

_ad:

.RES.L 1

e Remarks

When the stuff option is specified, uninitialized variables are output in the order of
declarations regardless of the bss_order setting.

Page 24 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

STUff
NOSTuff: Disposition of Variables

Object[Code generation2][Disposition of variables :]

e Command Line Format
STUff [= <section type>][,...]]
NOSTuff
<section type> : {Bss | Data | Const}
e Description

When the stuff option is specified, the variables that belong to the <section type> are assigned
to 4-byte, 2-byte, or 1-byte boundary alignment sections depending on the size of the variables
(see table 2.5).

When <section type> is omitted, any variable is applicable.

C, D, and B are the section names specified by the section option or #pragma section. The
data assigned to each section are arranged in the order of definitions (bss_order option setting
is ignored).

Table 2.5 Relationship between Size of Variable and Section Name

Size of Variable (Byte)

Section Type 4an 4n-2 2n-1
const-type variables const C$%4 C$2 C$1
Initialized variables data D$4 D$2 D$1
Uninitialized variables bss B$4 B$2 B$1

When the nostuff option is specified, all variables are assigned to 4-byte boundary alignment
sections.

The data assigned to sections C and D are arranged in the order of definitions, and the data
assigned to section B are arranged according to the bss_order option.

The default for this option is nostuff.

R20UT0704EJ0102 Rev. 1.02 Page 25 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Example

int a;

char b=0;

const short c=0;
struct {

char x;

char vy;

} ST;

<stuff is specified>

.SECTION C$2,DATA,ALIGN=2

Cc:
.DATA.W H’ 0000

.SECTION D$1,DATA,ALIGN=1

b:

.DATA.B H'00

.SECTION B$4,DATA,ALIGN=4

a:

.RES.L 1

.SECTION B$2,DATA,ALIGN=2

_ST:
.RES.B 2

<nostuff is specified>
.SECTION C,DATA,ALIGN=4
_c:

.DATA.W H’ 0000

.SECTION D, DATA,ALIGN=4
_b:

.DATA.B H’'00

.SECTION B, DATA,ALIGN=4

_a:
.RES.L 1
_ST:

.RES.B 2

Page 26 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

e Remarks

This option is invalid for variables with #pragma gbr_base | gbr_basel or #pragma
global_register.

STUFF_GBR

Description Format: C/C++ <Object> [Code generation2] [Disposition of Variables in
$G0/$G1]

Command Line Format: STUFF_GBR

Description: Assigns a #pragma gbr_base|gbr_basel-specified variable to sections
listed in table 2.6 depending on the size of the variable. This reduces the
amount of gap area generated by boundary alignment.

Table 2.6 Size of the Variable and Section Names

Size of the Variable (in Bytes)

4n 4n-2 2n-1
With #pragma gbr_base $G0%4 $G0%2 $G0%1
With #pragma gbr_base1 $G1%4 $G1%2 $G1$1
Note: nis integer.
Remarks: This option is valid only when gbr=user has been specified. Sections

starting with $GO0 or $G1 should be assigned as shown in table 2.7.

R20UT0704EJ0102 Rev. 1.02 Page 27 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.7 Allocation of Sections

Section Name

Allocation

$GO

The start address should be a multiple of 4.

$G0$1, $G0%$2, $G0$4

The section should be within 128 bytes from the start
address of $G0.

$G1 The start address should be 128 bytes far from the start
address of $GO0.

$G1$1 The section should be within 256 bytes from the start
address of $GO0.

$G1%2 The section should be within 512 bytes from the start
address of $GO0.

$G1%4 The section should be within 1024 bytes from the start
address of $GO0.

ALIGN4

Description Format:

Command Line Format:

Description:

Remarks:

C/C++ <Object> [Code generation] [Alignment of Branch Destination]
ALIGN4 = { ALL |

LOOP |

INMOSTLOOP }

When align4=all is specified, all branch destination addresses are
aligned to the 4-byte boundary.

When align4=loop is specified, the start addresses of all loops are
aligned to the 4-byte boundary.

When align4=inmostloop is specified, the start addresses of the
innermost loops are aligned to the 4-byte boundary.

This option is not available when align16 or align32 has already been
specified. When align4 is specified, the start address of the function is
always aligned to the 4-byte boundary. All functions with align4 will
not be optimized at linkage.

Page 28 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

CONST_VOLATILE
Description Format:
Command Line Format:

Description:

Allocate const volatile variables
Object [Code generation] [const volatile variables:]
-CONST VOLATILE={ DATA | CONST}

This option specifies the area where const- and volatile-qualified
variables should be allocated.

When const_volatile=const, the variables will be allocated to the
constant area.

When const_volatile=data, the variables will be allocated to the
initialized data area.

The default for this option is const_volatile=data.
[Examples]

(1) Where variable ¢ of const volatile int ¢=3; will be allocated
const_volatile=data: Initialized data area (section D)
const_volatile=const: Constant area (section C)
const_volatile=const -stuff : Constant area (section C$4)

const_volatile=const -section=const=N: Constant area (section N)

(2) Where variable x of X const volatile __fixed x=0.5r; will be
allocated

const_volatile=data: Initialized data area (section $XD)

const_volatile=const: Constant area (section $XC)

R20UT0704EJ0102 Rev. 1.02 Page 29 of 1176

Mar 01, 2022

RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

223 List Options

Table 2.8 List Category Options

Item Command Line Format Dialog Menu Specification
Listing file Listfile [= <file name>] List Output
NOListfile [Generate list file]Not output
Listing SHow = <sub>[,...] List
contents <sub>:{ [Contents]
and format SOurce | NOSOurce With/without source list
| Object | NOObject With/without object list
| STatistics | NOSTatistics With/without statistics information
| Include | NOlInclude With/without list after include expansion
| Expansion | NOExpansion With/without list after macro expansion
| Width = <numeric value> Maximum characters per line:
0or80to 132
| Length = <numeric value> Maximum lines per page:
0 or 40 to 255
| Tab={4 |8} } Number of columns when Tab is used: 4
or8

Listfile, NOListfile: List File

List[Generate list file]

Command Line Format

Listfile [= <file name>]

NOListfile

Description

Specifies whether a listing file is output or not.

When listfile option is specified, a listing file will be output. By specifying <file name>, a file
name can also be specified.

When nolistfile is specified, a listing file will not be output.
A listing file name should be specified in accordance with section 8.1, Naming Files.

If no file name is specified, a listing file with the same name as the source and a standard
extension (Ist/lpp) is created. The standard extension for filenames in C compilation is Ist, and
that for filenames in C++ compilation is lpp.

The default for this option is nolistfile.

Page 30 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SHow: List Contents and Format

List[Contents]
e Command Line Format

SHow= <sub>[,...]
<sub>: { SOurce | NOSOurce

Object | NOObject
STatistics | NOSTatistics
Include | NOInclude

|
|
|
| Expansion | NOExpansion
| Width= <numeric value>
| Length= <numeric value>
| Tab={4|8}
e Description
Specifies the contents and format of the list output by the compiler, and the cancellation of
listing output.
For examples of each list in this section, refer to section 8.2, Compiler Listings.
The default for this option is show=nosource, object, statistics, noinclude, noexpansion,
width=0, length=0, tab=8.
e Remarks

Table 2.9 shows a list of suboptions.

R20UT0704EJ0102 Rev. 1.02 Page 31 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 2.9 List of Suboptions of show Option

Suboption Description

source Outputs a list of source programs
nosource Outputs no list of source programs
object Outputs a list of object programs
noobject Outputs no list of object programs
statistics Outputs a list of statistics information

nostatistics

Outputs no list of statistics information

include

Outputs a source program listing after include file expansion. If the
nosource suboption and the include suboption are specified
simultaneously, the include suboption will be invalid, and no source
program listing will be output to a file.

noinclude

Outputs a source program listing before include file expansion. If the
nosource suboption and the noinclude suboption are specified
simultaneously, the noinclude suboption will be invalid, and no
source program listing will be output to a file.

expansion

Outputs a source program listing after macro expansion. If the
nosource suboption and the expansion suboption are specified,
simultaneously the expansion suboption will be invalid, and no
source program listing will be output to a file.

noexpansion

Outputs a source program listing before macro expansion. If the
nosource suboption and the noexpansion suboption are specified
simultaneously, the noexpansion suboption will be invalid, and no
source program listing will be output to a file.

width=<numeric value>

The number specified by <numeric value> is set as the maximum
number of characters in a single line of a listing. The <numeric
value> can specify decimal numbers from 80 to 132 or 0.

If <numeric value> is specified as 0, the maximum number of
characters in a single line is not specified.

length=<numeric value>

The number specified by <numeric value> is set as the maximum
number of lines on a single page of a listing. The <numeric value>
can specify decimal numbers from 40 to 255 or 0.

If <numeric value> is specified as 0, the maximum number of lines on
a single page of a listing is not specified.

tab={4|8}

Specifies the tab size when a listing is displayed.

Page 32 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Section 2 Compiler Options

2.2.4 Optimize Options

Table 2.10 Optimize Category Options

Command Line

Item Format Dialog Menu Specification
Optimization OPtimize = Optimize Outputs object without optimization.
{0 [Optimization] Outputs object with optimization.
|1 Outputs a code that does not affect the
| Debug_only} debugging information.
Optimized for Optimize Selects the optimization item.
speed [Speed or size :]
SPeed [Optimize for speed]
Slze [Optimize for size]
NOSPeed [Optimize for both
speed and size]
Inter-module Goptimize Optimize Outputs information for inter-module
optimization [Generate file for optimization.
information inter-module

optimization :]

Optimized for MAP = <file name> Optimize

access to [Optimization for
external access to external
variables variables :]

[Inter-module]

Optimized for access to external
variables.

Optimization SMap Optimize Optimizes access to external variables
of external [Optimization for defined in the file to be compiled.
variable access to external
access variables :]

[Inner-module]
Automatic GBr = { Auto Optimize Automatically creates GBR-relative
creation of [Gbr relative access codes.
GBR relative | User} operation :] Does not automatically create GBR-
access code relative access codes.
switch CAse = { Ifthen Optimize Expands by if _then method.
statement | Table } [Switch statement :] Expands by jumping to a table.
expansion
method
Shift- SHIft = { Inline Optimize Performs inline expansion.
operation | Runtime } [Shift operation :] The runtime routine will be called if shift
expansion operations have a large number of

instructions to be expanded.

R20UT0704EJ0102 Rev. 1.02

Page 33 of 1176

Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification
Transfer-code BLOckcopy = Optimize Performs inline expansion.
expansion {/Inline [Transfer code The runtime routine will be called
| Runtime } development :] when a large block of memory is to be
transferred.
Unaligned Unaligned = Optimize Performs inline expansion.
data transfer {Inline [Unaligned move :] The runtime routine will be called.
| Runtime}
Automatic INLine Optimize Performs inline expansion
inline [= <numeric value>] [Details] automatically.
expansion NOINLine [Inline] Does not perform inline expansion
[Automatic inline automatically.
expansion]
Inter-file inlineFlILe_inline = Optimize Specifies a file for inter-file inline
expansion <file name>[,...] [Details] expansion.
[Inline]
[inline file path]
External GLOBAL_Volatile = {0 Optimize External variables declared with
variables [Details] volatile are not handled (excluding
handled as [Global variables] external variables declared with
volatile [Treat global volatile).
| 1} variables as volatile All external variables are handled as if
qualified] declared with volatile.
External OPT_Range = { All Optimize Optimizes external variables within the
variable [Details] entire function.
optimizing | NOLoop [Global variables] Disables loop control variables or
range [Specify optimizing external variables in a loop from being
range :] moved outside the loop.
| NOBlock } Disables optimization of external
variables which extend across loops
or branches.
Vacant loop DEL_vacant_loop = {0 Optimize Disables elimination of vacant loops.
elimination | 1} [Details] Eliminates vacant loops.
[Miscellaneous]
[Delete vacant loop]
Loop unroll LOop Optimize Performs loop unrolling.
NOLOop [Details] Does not perform loop unrolling.

[Miscellaneous]
[Loop unrolling]

Page 34 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification

Maximum MAX_unroll = <numeric Optimize Specifies the maximum number of
number of value> [Details] times a loop is expanded.

loop <numeric value>: 1 to 32 [Miscellaneous] Default: 1 (2 when speed or loop is
expansions [Specify maximum specified)

unroll factor :]

Elimination of INFinite_loop ={ 0 Optimize Disables elimination of an assignment
expression [Details] expression for external variables
preceding [Global variables] preceding an infinite loop.
infinite loop |13} [Delete assignmentEliminates an assignment expression
to global variables for external variables preceding an
before an infinite infinite loop.
loop]
External GLOBAL_Alloc ={0 Optimize Disables allocation of external
variable [Details] variables to registers.
register |1} [Global variables] Allocates external variables to
allocation [Allocate registers registers.
to global
variables :]
Structure/ STRUCT_Alloc ={0 Optimize Disables allocation of structure/union
union [Details] members to registers.
member |1} [Miscellaneous] Allocates structure/union members to
register [Allocate registers registers.
allocation to struct/union
members :]
const CONST_Var_propagate = Optimize
constant {0 [Details] Disables constant propagation of
propagation [Global variables] external constants declared by const.
|13} [Propagate Performs constant propagation of

variables which are external constants declared by const.
const qualified :]

Expansion of CONST_Load = { Inline Optimize Expands instructions for loading
constant [Details] constants.
loading | Literal } [Miscellaneous] Accesses literal pool for loading
instructions [Load constant constants.

value as :] Default: When size is specified, up to
two or three instructions are
expanded. In other cases, the default

is literal.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

Page 35 of 1176

RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

Table 2.10 Optimize Category Options (cont)

Command Line

Item Format Dialog Menu Specification
Instruction SChedule = {0 Optimize[Instructions are not scheduled.
scheduling |13} Details] Instructions are scheduled.
[Global variables]
[Schedule
instructions :]
Software SOftpipe Optimize Validates software pipelining.
pipelining [SH- [Details]
2A, SH2A- [Miscellaneous]
FPU, SH-4, [Software
SH-4A and pipelining :]
SH4AL-DSP]
Division of SCOpe Optimize Optimizing ranges are divided.
optimizing NOSCope [Details] Optimizing ranges are not divided.
ranges [Miscellaneous]
[Not divide the
optimization range]
GBR relative LOGIc_gbr Optimize Generates code that uses GBR
logic [Gbr relative relative addresses for logic operations
operation operation] of external variables.
generation
Preventing CPP_NOINLINE C/C++ <Optimize> C++ Inline functions are not expanded
expansion of [Details]
C++ Inline [Inline]
functions [Doesn't Expand
C++ Inline
Functions]
Optimization ~ ALIAS = {ANSI | Optimize Optimization considering type of
considering [Details] object indicated by pointer is applied.
type of object NOaANS]) [Miscellaneous] optimization considering type of
indicated by [Optimization object indicated by pointer is not
pointer considering type of

o= applied.
object indicated by

pointer]

Page 36 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

OPtimize: Optimization

Optimize[Optimization]

Command Line Format

OPtimize = { 0 | 1 | Debug_only }

Description

Specifies the level of compiler optimization for the object program.

When optimize=debug_only is specified, the compiler does not optimizes the object program.
The output has highly accurate debugging information, which eases debugging at the source
level.

When optimize=0 is specified, the compiler optimizes some parts of the object program,
allocating automatic variables to registers, consolidating function-exit blocks, consolidating
multiple functions where this is possible, etc. Accordingly, the code size may become smaller
than that compiled with the optimize=debug_only setting. When optimize=1 is specified, the
compiler optimizes the object program.

The default for this option is optimize=1.

SPeed, Slze, NOSPeed: Optimization for Speed

Optimize[Speed or size :][Optimize for speed][Optimize for size]
[Optimize for both speed and size]

Command Line Format

SPeed

Slze

NOSPeed

Description

Table 2.11 is a list of the items optimized for the speed, size, and nospeed options.
These optimization items can be controlled by option.

The default for this option is nospeed.

R20UT0704EJ0102 Rev. 1.02 Page 37 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Table 2.11 List of Optimization Items

Expansion Expansion

Automatic Optimize Expansion of of Integer Unaligned
Inline for Loop of Shift Transfer Constant Data
Option Expansion Expansion Code Code Division Transfer
speed inline=20 loop inline inline inline inline
size noinline noloop runtime runtime runtime runtime
nospeed noinline noloop inline inline inline inline

Goptimize: Inter-Module Optimization

Optimize[Generate file for inter-module optimization]

Command Line Format

Goptimize

Description

Outputs the additional information for the inter-module optimization.

For the file specified with this option, the inter-module optimization is performed at linkage.

MAP: External Variable Access Optimization

Optimize[Optimization for access to external variables :][Inter-module]

Command Line Format

MAP = <file name>

Description

This option sets the base addresses by using an external symbol-allocation information file
created by the optimizing linkage editor and creates code that performs access to external or
static variables relative to the base address. When gbr=auto is specified, the compiler may set
the base address in the GBR register, and may create code that performs access to external or
static variables relative to the value in GBR.

Compile the program before using this option. At linkage, specify map=<file name> to create
the external symbol-allocation information file. Then specify map=<file name> and compile
the program again.

Example

Source program (test.c)

Page 38 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

int A,B,C;

void main ()

Q W oM o~
Il
o

(1) Command: shc test.c
<Output code>

_main:

MOV.L L11,R6 ;A

MOV #0,R2

MOV.L R2, QR6

MOV.L L11+4,R6 ; B

MOV.L R2, @R6

MOV.L L11+8,R6 ; C

RTS

MOV.L R2, @R6

L1l1l:

.DATA.L A

.DATA.L B

.DATA.L _C
R20UT0704EJ0102 Rev. 1.02 Page 39 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

(2) Command: shc test.c
optlnk -map=test.bls -start=P/400,B/1000 test.obj
shc —-map=test.bls test.c

Data allocation after linkage

0x100
g 0x100
C 0x100

<Output code>

~main:

MOV.W L11,R1 ; A Sets the address of A as the base address.
MOV #0, R0

MOV. L RO, @R1

MOV.L RO, @ (4,R1)

RTS

MOV.L RO, @(8,R1)

L11l:

DATAW A The address of A consists of 2 bytes.
Remarks

When the order of the definitions of external variables has been changed, a new external
symbol-allocation information file must be created.

If any option other than the map option in the previous compilation differs from the one in the
current compilation, or if any contents of a function are changed, the result of the object code
is not guaranteed. In such a case, a new external symbol-allocation information file must be
created.

Page 40 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SMap: Optimization of External Variable Access
Optimize[Optimization for access to external variables :][Inner-module]

e Format
SMap
e Description

Specifies a base address for external or static variables defined in the file to be compiled, and
generates code that uses addresses relative to the base address for access to the variables.

When gbr=auto is specified, the compiler specifies a base address in the GBR according to the
conditions and generates code that uses GBR relative addresses for access to external or static
variables.

e Example
int A,B,C;
void main ()

{

A = 0;
B = 0:
c = 0;
}
MOV.L L11,R6 ; A
MOV #0,R2 ; H'00000000
MOV.L R2, @R6
MOV.L R2,@(4,R6)
RTS
MOV.L R2,@(8,R6)
e Remarks

When this option and map=<file name> are specified simultaneously, the map option is valid.

R20UT0704EJ0102 Rev. 1.02 Page 41 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

GBr: Automatic Creation of GBR Relative Access Code
Optimize[Gbr relative operation :]

e Command Line Format
GBr = { Auto | User }

e Description
When gbr=auto is specified, the compiler will automatically create GBR-relative code for
logic operations by certain conditions. When gbr=auto and map=<file name> are specified,
the compiler may set a base address in GBR and may create code that performs access to
external or static variables relative to the value in GBR by certain conditions.
When gbr=user is specified, the user must specify the setting of and references to GBR and
access relative to the value in GBR by using the #pragma extensions #pragma gbr_base or
#pragma gbr basel, or intrinsic functions that are related to GBR. The default for this option
is gbr=auto.

e Example
Program
char A,B,C;
void main()
{
Al=1;
B &=1;
Cr=1;
}
<Output code(gbr=auto)>
_main:
STC GBR,@-R15 ; Saves the contents of GBR
MOV #0,RO
LDC R0O,GBR ; Sets 0 to GBR
MOV.L L11+2,R0 ; RO <- Address of A
OR.B #1,@R0O,GBR) ;A|=1
MOV.L L11+6,R0 ; RO <- Address of B
AND.B #1,@(R0O,GBR) ;B &=1
MOV.L L11+10,R0 ; RO <- Address of C
XOR.B #1,@(R0O,GBR) ;C"=1
RTS
LDC @R15+,GBR ; Restores the contents of GBR
L11:
Page 42 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 2 Compiler Options
.RES.W 1
.DATA.L A
.DATA.L B
.DATA.L C
e Remarks

When gbr=auto is specified in compiling a program in which #pragma gbr_base or #pragma
gbr_basel is used, a warning message will be displayed and the specifications by the
#pragma extensions will be ignored.

When gbr=auto is specified in compiling a program in which intrinsic functions that are
related to GBR are used, an error will occur.

When gbr=auto is specified, the contents of the GBR register will be saved and restored

CAse: switch Statement Expansion Method

Optimize[Switch statement :]

Command Line Format

CAse = { Ifthen | Table }

Description

Specifies a switch statement expansion method.

When case=ifthen is specified, the switch statement is expanded using the if then method,
which repeats, for each case label, comparison between the evaluated value of the expression
in the switch statement and the case label value. If they match, execution jumps to the
statement of the case label. This method increases the object code size depending on the
number of case labels in the switch statement.

When case=table is specified, the switch statement is expanded using the table method, which
stores the case label jump destinations in a jump table and enables a jump to the statement of
the case label that matches the expression in the switch statement by accessing the jump table
only once. This method increases the jump table size in the literal pool depending on the
number of case labels in the switch statement, but the execution speed is always the same.

If this option is not specified, the compiler automatically selects one of the methods for
expansion.

R20UT0704EJ0102 Rev. 1.02 Page 43 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

SHIft: Shift Operation Expansion

Optimize[Shift Operation :]

Command Line Format
SHIft = { Inline | Runtime }
Description

Selects the method for shift operations where shifting is by a constant number of bits greater
than 0 and less than (length in bits of the left operand - 1).

When shift=inline is specified, all shift operations are expanded.

When shift=runtime is specified, the runtime routine will be called if some instructions are to
be expanded.

When the size option has been specified, the default for this option is shift=runtime. When the
speed or nospeed option has been specified, the default for this option is shift=inline.

BLOckcopy: Transfer Code Expansion

Optimize [Transfer code development :]

Command Line Format

BLOckcopy = { Inline | Runtime }

Description

When blockcopy=inline is specified, (the instructions of) all coding for transfer between areas
of memory are expanded.

When blockcopy=runtime is specified, the runtime routine will be called when a large block
of memory is to be transferred.

When the size option has been specified, the default for this option is blockcopy=runtime.
When the speed or nospeed option has been specified, the default for this option is
blockcopy=inline.

Page 44 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Unaligned: Unaligned Data Transfer
Optimize[Unaligned move :]

e Command Line Format
Unaligned = { Inline | Runtime }
e Description
When unaligned=inline is specified, unaligned data transfer are expanded.

When unaligned=runtime is specified, the runtime routine will be called if a large block of
unaligned data is to be transferred.

When the size option has been specified, the default for this option is unaligned=runtime.
When the speed or nospeed option has been specified, the default for this option is
unaligned=inline.

e Remarks

This option is used for transfer of a structure whose alignment value is 1.
INLine, NOINLine: Automatic Inline Expansion
Optimize[Details][Inline][Automatic inline expansion]

e Command Line Format
INLine=[<numeric value>]
NOINIline

e Description
Specifies whether to automatically perform inline expansion of functions.
When the inline option is specified, the compiler automatically performs inline expansion.
The user is able to use inline=<numeric value>, to specify the allowed increase in the
program’s size due to the use of inline expansion. For example, when inline=50 is specified,
inline expansion will be applied until the program has grown to 150% of its size (gain of 50%).
When the noinline option is specified, automatic inline expansion is not performed.
When the speed option has been specified, the default for this option is inline=20. When the
nospeed or size option, or optimize=0 has been specified, the default is noinline.

R20UT0704EJ0102 Rev. 1.02 Page 45 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

FILe_inline: Inter-file Inline Expansion

Optimize[Details][Inline][Inline file path]

Command Line Format
FILe_inline=<file name>[,...]
Description

Performs inline expansion for functions that extend across files for the files specified with
<file name>.

Example
<a.c>

func () {

By compiling a program with she —file_inline=b.c a.c specified, calling of function g() in a.c
is expanded as follows:

func () {

h();

}
Remarks

If the file_inline option and noinline option are specified simultaneously, inline expansion is
performed for only the functions specified with #pragma inline.

If an extern function is defined with the same name in more than one function specified with
the file_inline option, no operation is guaranteed (using a single function definition randomly
selected for inline expansion).

The extension of the file name specified by <file name> cannot be omitted.
A file to be compiled cannot be specified with the file_inline option.

A wild card (* or ?) cannot be specified for <file name>.

Page 46 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

GLOBAL_Volatile: Handling External Variables as volatile
Optimize[Details][Global variables][Treat global variables as volatile qualified]

e (Command Line Format
GLOBAL Volatile= {01}
e Description

When global_volatile=0 is specified, the external variables not declared with volatile are
optimized. Accordingly, the access count and access order for external variables may differ
from those in the written C/C++ program.

When global_voelatile=1 is specified, all external variables are handled as if they were
declared with volatile. Accordingly, the access count and access order for external variables
are exactly the same as those in the written C/C++ program.

The default for this option is global_volatile=0.

R20UT0704EJ0102 Rev. 1.02 Page 47 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

OPT_Range: External Variable Optimizing Range Specification

Optimize[Details][Global variables][Specify optimizing range :]

Command Line Format

OPT_Range = { All | NOLoop | NOBlock }

Description

When opt_range=all is specified, the compiler optimizes external variables within the entire
function.

When opt_range=noloop is specified, external variables in a loop and external variables used
in a loop iteration condition are not to be optimized.

When opt_range=noblock is specified, external variables extending across branches
(including loops) are not to be optimized.
When optimize=0 or optimize=debug_only is specified, the default for this option is
opt_range=noblock. For any other case, the default for this option is opt_range=all.
Examples
(1) Optimization extending across a branch (done when opt_range=all or opt_range=noloop
is specified)
int A,B,C;
void f (int a) {

A =1;
if (a)
B =1;

= A;

<Source program image after optimization>
int A,B,C;
void f (int a) {

B
C=1; /*Reference of A is eliminated and A = 1 is propagated */

Page 48 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

(2) Optimization in a loop (done when opt_range=all is specified)
int A,B,C[100];
void f {
int 1i;
for (i=0;i<A;i++) |
Cl[i] = B;
}
}
<Source program image after optimization>
int A,B,C[100];
void f {
int 1i;
int temp A, temp B;
temp_A = A; /* Reference of A by loop iteration condition is moved outside the loop */
temp B = B; /* Reference of B in the loop is moved outside the loop */
for (i=0;i< temp_A;i++) { /* Reference of A in the loop is eliminated */
C[i] =temp_B; /* Reference of B in the loop is eliminated */
}
}

e Remarks
When opt_range=noloop is specified, max_unroll=1 is always the default.

When opt_range=noblock is specified, max_unroll=1, const_var_propagate=0, and
global_alloc=0 are always the default.

R20UT0704EJ0102 Rev. 1.02 Page 49 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

DEL_vacant_loop: Vacant Loop Elimination

Optimize[Details][Miscellaneous][Delete vacant loop]

Command Line Format
DEL vacant loop={0]|1}
Description

When del_vacant_loop=0 is specified, even when there is no loop internal processing, a loop
is not eliminated.

When del_vacant_loop=1 is specified, loops with no internal processing are eliminated.
The default for this option is del_vacant_loop=0.
Remarks

Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the
SH C/C++ compiler.

— Up to Ver. 7.0.04: Vacant loops are eliminated.
— Ver. 7.0.06 or later: Vacant loops are not eliminated.

LOop, NOLOop: Loop Unrolling

Optimize[Details][Miscellaneous][Loop unrolling :]

Command Line Format

LOop

NOLOop

Description

Specifies whether to perform loop unrolling.

When the loop option is specified, optimization is performed in compiling loop statements (for,
while, and do-while).

When the noloop option is specified, optimization is not performed in compiling loop
statements.

When optimize=1 and speed are specified, the default for this option is loop. For any other
case, the default for this option is noloop.

Page 50 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

MAX_ unroll: Loop Expansion Maximum Number Specification
Optimize[Details][Miscellaneous][Specify maximum unroll factor :]

e Command Line Format
MAX unroll = <numeric value>
e Description

Specifies the maximum number of loops to be expanded. An integer from 1 to 32 can be
specified for <numeric value>. If any other value is specified, an error will occur.

If speed or loop is specified, the default for this option is max_unroll=2. For any other case,
the default for this option is max_unroll=1.

e Remarks

When opt_range=noloop or opt_range=noblock is specified, the default for this option is
max_unroll=1.

R20UT0704EJ0102 Rev. 1.02 Page 51 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

INFinite_loop: Elimination of Expression Preceding Infinite Loop
Optimize[Details][Global variables][Delete assignment to global variables before an infinite loop]

e Command Line Format
INFinite loop={0]|1}
e Description

When infinite_loop=0 is specified, an assignment expression for external variables, which is
located immediately before an infinite loop is not eliminated.

When infinite_loop=1 is specified, an assignment expression that is located immediately
before an infinite loop and is for external variables that are not referenced from the infinite
loop is eliminated.

The default for this option is infinite_loop=0.
e Example
int A;
void f()
{
A= 1; /* Assignment expression for external variable A */
while (1) {} /* Aisnotreferenced */
}
<Source program image when infinite_loop=1 is specified>
void f()
{
/* Assignment expression for external variable A is eliminated */
while (1) {}
}

e Remarks

Note that the default differs from that for earlier versions of Ver. 7.0 (up to Ver. 7.0.04) of the

SH C/C++ compiler.

— Upto Ver. 7.0.04: An assignment expression that is located immediately before an
infinite loop and is for external variables that are not referenced from
the infinite loop are eliminated.

— Ver. 7.0.06 or later: An assignment expression for external variables, which is located
immediately before an infinite loop is not eliminated.

Page 52 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

GLOBAL_Alloc: External Variable Register Allocation

Optimize[Details][Global variables][Allocate registers to global variables :]

Command Line Format

GLOBAL Alloc={0]1}

Description

When global_alloc=0 is specified, allocation of external variables to registers is disabled.
When global_alloc=1 is specified, external variables are allocated to registers.

Remarks

When opt_range=noblock or optimize=debug_only is specified, the default for this option is
global_alloc=0.

Note that when optimize=0 is specified, the default differs from that for earlier versions of Ver.
7.0 (up to Ver. 7.0.04) of the SH C/C++ compiler.

— Up to Ver. 7.0.04: External variables are allocated to registers.
— Ver. 7.0.06 or later: Allocation of external variables to registers is disabled.

For any other case, the default for this option is global_alloc=1.

STRUCT _Alloc: Structure/Union Member Register Allocation

Optimize[Details][Miscellaneous][Allocate registers to struct/union members]

Command Line Format
STRUCT Alloc={0]|1}
Description

When struct_alloc=0 is specified, allocation of structure or union members to registers is
disabled.

When struct_alloc=1 is specified, structure or union members are allocated to registers.
Remarks

If struct_alloc=1 is specified when opt_range=noblock or global_alloc=0 is specified, only
local structure or union members are allocated to registers.

When optimize=debug_only is specified, the default for this option is struct_alloc=0. Note
that when optimize=0 is specified, the default differs from that for earlier versions of Ver. 7.0
(up to Ver. 7.0.04) of the SH C/C++ compiler.

— Up to Ver. 7.0.04: Structure or union members are allocated to registers.
— Ver. 7.0.06 or later: Allocation of structure or union members to registers is disabled.

For any other case, the default for this option is struct_alloc=1.

R20UT0704EJ0102 Rev. 1.02 Page 53 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CONST_Var_propagate: const Constant Propagation

Optimize[Details][Global variables][Propagate variables which are const qualified :]

Command Line Format
CONST Var propagate={0]1}
Description

When const_var_propagate=0 is specified, constant propagation for external variables
declared by const is disabled.

When const_var_propagate=1 is specified, constant propagation is performed for even
external variables declared by const.

Example

const int x = 1;

int A;

void f() {

A = xX;

}

<Source program image when const_var_propagate=1 is specified>
void f() {

A = 1; /*x=1Iispropagated */

}

Remarks

Variables declared by const in a C++ program cannot be controlled by this option (constant
propagation is always performed).

When optimize=0, optimize=debug_only, or opt_range=noblock is specified, the default for
this option is const_var_propagate=0. For any other case, the default for this option is
const_var_propagate=1.

Page 54 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

CONST_Load: Constant Loading Instruction Expansion
Optimize[Details][Miscellaneous][Load constant value as :]

e Command Line Format
CONST Load = { Inline | Literal }

e Description
When const_load=inline is specified, the instructions for loading constants within 2 bytes with
a sign are expanded.
When const_load=literal is specified, the literal pool is accessed for loading constants of two
bytes or more.

The following shows the default for this option.

Option Specified Default
-optimize=1 and -speed const_load=inline
-optimize=1 and -size The default for this option is const_load=inline when instruction

expansion for a 2-byte constant is possible with two instructions
or when instruction expansion for a 4-byte constant is possible
with three instructions. For any other case, the default for this
option is const_load=literal.

-optimize=1 and -nospeed

-optimize=0 or const_load=literal
-optimize=debug_only

e Example
int f£(){
return (257);
}

R20UT0704EJ0102 Rev. 1.02 Page 55 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

(1) const_load=inline or speed is specified

MOV #1, RO ; RO <=1

SHLLS8 RO ; RO <- 256 (1<<8)
RTS

ADD #1,R0 ; RO <= 257 (256+1)

(2) const_load=literal, or size or nospeed is specified

MOV .W #L11,R0
RTS

NOP

L11l:

.DATA.W H’ 0101

SChedule: Instruction Scheduling
Optimize[Details][Global variables][Schedule instructions :]

e (Command Line Format
SChedule= {01}
e Description

When schedule=0 is specified, instructions are not scheduled. Accordingly, processing is
performed in the same order the instructions have been written in the C/C++ program.

When schedule=1 is specified, instructions are scheduled taking into consideration pipeline
processing and superscalar (SH-2A, SH2A-FPU, SH-4, SH-4A, or SH4AL-DSP).

The default for this option is schedule=0 when optimize=0 or optimize=debug_only is
specified, and schedule=1 otherwise.

SOftpipe: Software Pipelining
Optimize[Details][Miscellaneous][Software pipelining :]

e Command Line Format
SOftpipe
e Description
Validates software pipelining.
e Remarks
This option is only valid when cpu=sh2a, cpu=sh2afpu, cpu=sh4, cpu=sh4a, or
cpu=sh4aldsp is specified.

Page 56 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SCOpe, NOSCope: Division of Optimizing Ranges

Optimize[Details][Miscellaneous][Not divide the optimization range :]

Command Line Format

SCOpe

NOSCope

Description

When the scope option is specified, the compiler divides the optimizing ranges of the large-
size functions into many sections.

When the noscope option is specified, the compiler does not divide the optimizing ranges.
When the optimizing range is expanded, the object performance is generally improved
although the compilation time is delayed. However, if registers are not sufficient, the object
performance may be lowered.

Use this option at performance tuning because it affects the object performance depending on
the program.

LOGIc_gbr: GBR Relative Logic Operation Generation

Optimize[Gbr relative operation]

Format

LOGIc_gbr

Description

Generates code that uses GBR relative addresses for logic operations of external variables.
Remarks

When gbr=auto is specified, this option is invalid.

When using this option, specify the $GO section start address by intrinsic function set_gbr().

R20UT0704EJ0102 Rev. 1.02 Page 57 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

CPP_NOINLINE

Description Format:

Command Line Format:

Description:

Remarks:

C/C++ <Optimize> [Details] [Inline] [Doesn't Expand C++ Inline
Functions]

CPP_NOINLINE

In compilation of a C++ source program, this option prevents inline
expansion of an inline-specified function or a member function defined
in a class or structure and generates a code as a calling static function
with internal linkage.

This option is valid only in compilation of C++ source programs. If the
inline or speed option is specified or #pragma inline is used, the inline
expansion of a function that is supposed to be prevented by
CPP_NOINLINE may be carried out.

Page 58 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

ALIAS: Optimization considering type of object indicated by pointer

Optimize[Details][Miscellaneous][Optimization considering type of object indicated by pointer]

Command Line Format

ALIAS = {ANSI | NOANSI }

Description

When alias=ansi is specified, the compiler performs optimization considering type of object
indicated by pointer in compliance with the ANSI standard. Although, this generally produces
object code with better performance than that when alias=noansi is specified, the results of
execution may differ from those for code produced by old versions of the compiler.

When alias=noansi is specified, the compiler does not perform ANSI-complaint optimization
considering type of object indicated by pointer. The default for this option is alias=noansi.

Examples
long x,n;

void func (short * ps)

n=1;
*ps = 2;
X = n;

[alias=noansi is specified]
;7 The possibility of the value of n being overwritten by *ps = 2;

;7 1s considered, so the value of n is reloaded by (A)

MOV #1,R2 ; H'00000001
MOV.L L11+2,R6 ;o n
MOV.L R2,@R6 ;N
MOV #2,R2 ; H'00000002
MOV .W R2,@R4 ;7 *(ps)
MOV.L @R6,R2 ; n (A) n is reloaded
MOV.L L11+6,R6 P
RTS
MOV.L R2,@R6 ;X
R20UT0704EJ0102 Rev. 1.02 Page 59 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

[alias=ansi is specified]

;7 Since the types of *ps and n are different, we assume that the

;7 n value will not overwritten by *ps = 2, and n = 1 is reused at
;7 (B). Accordingly, the results will differ if the value of n was
;; overwritten by *ps = 2;.

MOV #1,R2 ; H'00000001
MOV.L L11+2,R6 ;o n
MOV.L R2, QRO ; n
MOV #2,R2 ; H'00000002
MOV .W R2, QR4 ; *(ps)
MOV #1,R2 ; H'00000001 (B) n = 1 is reused
MOV.L L11+6,R6 P
RTS
MOV.L R2,@R6 'S
Remarks

This option is only valid when optimize=1 has been specified.

Page 60 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

2.2.5 Other Options

Table 2.12 Other Category Options

Command Line

Item Format Dialog Menu Specification

Embedded ECpp Other Checks syntax according

C++ language [Miscellaneous options :] to the Embedded C++
[Check against EC++ language specifications.
language specification]

DSP-C DSpc Other Checks syntax according

language [Miscellaneous options :] to the DSP-C language

[SH2-DSP, [Check against DSP-C specifications.

SH3-DSP and language specification]

SH4AL-DSP]

Comment COMment = Other

nesting { Nest [Miscellaneous options :] Permits comment (/* */)
[Allow comment nest] nesting.

| NONest } Does not permit comment

(/* */) nesting.

MAC register Macsave ={0

Other
[Miscellaneous options :]

[Callee saves/restores MACH
and MACL registers if used]

Does not guarantee the
MAC register contents
before and after a
function is called.
Guarantees the MAC
register contents before
and after a function is
called.

Saving and SAve_cont_reg={0 Other Does not save or restore
restoring SSR [Miscellaneous options :] SSR and SPC registers.
and SPC |1} [Saves/restores SSR and SPC Saves and restores SSR
registers registers] and SPC registers.
[SH-3 to SH-4]
Extension of RTnext Other Creates a sign-extension
return value [Miscellaneous options :] or zero-extension of the
[Expand return value to 4 byte] return value
NORTnext Creates no sign-

extension or zero-
extension of the return
value

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

RENESAS

Page 61 of 1176

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.12 Other Category Options (cont)

Command Line
Item Format

Dialog Menu

Specification

Converting the APproxdiv
floating-point

constant

divisions to

multiplications

Other
[Miscellaneous options :]

[Approximate a floating-point

constant division]

Converts the division of
floating-point constant to
multiplication

Avoiding PAtch=7055 Other Avoids the creation of a

SH7055 illegal [Miscellaneous options :] program that includes

operation [Avoid illegal SH7055 instructions] operations that are illegal

[SH-2E] for the SH7055 due to the
order of instructions.

FPSCR FPScr = { Safe Other The FPU is guaranteed to

register [Miscellaneous options :] be in single-precision

switching [Change FPSCR register if double mode before and after

[SH2A-FPU, data used] function calls.

SH-4, and | Aggressive The FPU is not

SH-4A] guaranteed to be in
single-precision mode
before and after function
calls.

Suppress Volatile_loop Other Suppresses optimization

optimization of [Miscellaneous options :] of loop iteration condition

loop iteration [Treats loop condition as volatile

condition qualified]

Enumeration AUto_enum Other Automatically selects the

data size [Miscellaneous options :] enumeration data size.

[enum size is made the smallest]

Preferential ENAble_register Other Allocates preferentially

allocation of [Miscellaneous options :] the variables with register

register [Enable register declaration] storage class

storage class specification to registers.

variables

Page 62 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

Table 2.12 Other Category Options (cont)

Command Line

Item Format Dialog Menu Specification

ANSI STRIct_ansi Other Conforms to the ANSI

conformance [Miscellaneous options :] standard for the following

[Obey ansi specifications more processing:
strictly] e unsigned int and long
type operations
e Associativity of

floating-point
operations

Conversion to FDIv Other Converts integer division

floating-point [Miscellaneous options :] to floating-point division.

division [Change integer division into

[SH-2E, SH2A- floating-point]

FPU, SH-4, and

SH-4A]

Floating-point to FIXED_Const Other Handles floating-point

fixed-point [Miscellaneous options :] values as fixed-point

conversion [Floating-point constant is handled values.

[SH2-DSP, as a fixed-point constant]

SH3-DSP and

SH4AL-DSP]

Conversion of 1.0 FIXED_Max
to _ _fixed type
maximum value

Other Handles 1.0r (1.0R) as
[Miscellaneous options :] the maximum value of
[treats 1.0 as maximum number of _ _fixed (long _ _fixed)

[SH2-DSP, fixed type] type.

SH3-DSP and

SH4AL-DSP]

Omitting type FIXED_Noround Other Omits type conversion for
conversion for [Miscellaneous options :] the operation result of
__fixed [delete type conversion after fixed _ _fixed type
multiplication multiple] multiplication.

result

[SH2-DSP,

SH3-DSP and

SH4AL-DSP]

DSP repeat loop REPeat Other Uses a DSP-expansion

[SH3-DSP and
SH4AL-DSP]

[Miscellaneous options :]
[DSP repeat loop is used]

repeat loop.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

/{ Page 63 of 1176
KENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.12 Other Category Options (cont)

Command Line
Item Format

Dialog Menu

Specification

Omitting range SIMple_float_conv Other

check for
conversion
between floating-
point number and

[Miscellaneous options :]

[Not check the range in conversion
between floating point number and
integer]

Generates a code that
does not include a check
of the target value range
for the type conversion
between an unsigned

integer integer and a floating-pint
[SH-2E, SH2A- number

FPU, SH-4, and

SH-4A]

Suppress DIVS NOUSE_DIV_INS Other Suppress generation of
and DIVU T [Miscellaneous options :] the DIVU and DIVS
instruction [Suppress DIVS and DIVU instructions

generation instruction generation]

Change FLOAT_ORDER Other Change operation order

operation order
for floating-point
expression

[Miscellaneous options :]
[Change operation order for
floating-point expression
aggressively]

for floating-point
expression aggressively

Page 64 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

ECpp: Embedded C++ Language

Other[Miscellaneous options:][Check against EC++ language specification]

Command Line Format

ECpp

Description

The compiler checks the syntax of the C++ source program according to the Embedded C++
language specifications. The Embedded C++ language specifications do not support such
keywords as catch, const_cast, dynamic_cast, explicit, mutable, namespace,
reinterpret_cast, static_cast, template, throw, try, typeid, typename, and using. Therefore,
if these keywords are written in the source program, the compiler will output an error message.
Remarks

The Embedded C++ language specifications do not support a multiple inheritance or virtual
base class. If a multiple inheritance or virtual base class is written in the source program, the
compiler will display error message "C5882 (E) Embedded C++ does not support multiple or
virtual inheritance" at compilation.

This option and the exception option cannot be specified simultaneously.

DSpc: DSP-C Language

Other[Miscellaneous options :][Check against DSP-C language specification]

Command Line Format
DSpc
Description

The compiler checks the syntax of the DSP-C source program according to the DSP-C
language specifications. For details on the DSP-C language specifications, refer to
section 10.2, DSP-C Specifications.

Remarks
This option can only be specified for cpu=sh2dsp, sh3dsp, or sh4aldsp.

This option cannot be specified for a C++ source program.

R20UT0704EJ0102 Rev. 1.02 Page 65 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

COMment: Comment Nesting

Other[Miscellaneous options :][Allow comment nest]

Command Line Format
COMment={Nest | NONest}
Description

When comment=nest is specified, nested comments are allowed to be written in the source
program.

When comment=nonest is specified, and if nested comments are written, an error will occur.

The default for this option is comment=nonest.

Example

/* This is an example of/* nested */ comment */
T
(1

When comment=nest is specified, the compiler handles the above line as a nested comment;
however, when comment=nonest is specified, the compiler assumes (1) as the end of the
comment.

Macsave: MAC Register

Other[Miscellaneous options :][Callee saves/restores MACH and MACL registers if used]

Command Line Format

Macsave={ 0|1}

Description

Specifies whether or not to guarantee the contents of the MACH and MACL registers before
and after a function call.

When macsave=0 is specified, the contents of the MACH and MACL registers before and
after a function call are not guaranteed.

When macsave=1 is specified, the contents of the MACH and MACL registers before and
after a function call are guaranteed.

Functions compiled with macsave=0 specified cannot be called from functions compiled with
macsave=1 specified. On the contrary, functions compiled with macsave=1 specified can be
called from functions compiled with macsave=0 specified.

The default for this option is macsave=1.

Page 66 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SAve_cont_reg: Saving and Restoring SSR and SPC Registers

Other[Miscellaneous options :][Saves/restores SSR and SPC registers]

Command Line Format

SAve cont reg={0]1}

Description

Specifies whether or not to save and restore the contents of the SSR and SPC registers.

When save_cont_reg=0 is specified, the contents of the SSR and SPC registers are not saved
or restored.

When save_cont_reg=1 is specified, the contents of the SSR and SPC registers are saved and
restored.

This option is only valid when cpu=sh3, sh3dsp, sh4, sh4a, or shd4ldsp is specified and
#pragma interrupt is specified.

The default for this option is save_cont_reg=1.

RTnext, NORTnext: Return Value Extension

Other[Miscellaneous options :][Expand return value to 4 byte]

Command Line Format

RTnext

NORTnext

Description

Specifies whether to perform sign or zero extension of a return value in register RO when a
type of a return value is char, signed char, unsigned char, short, signed short, or unsigned short
in a function where function prototype has been declared.

When the rtnext option is specified, sign or zero extension of the function return value is
performed.

When the nortnext option is specified, sign or zero extension of the function return value is
not performed.

The default for this option is nortnext.

R20UT0704EJ0102 Rev. 1.02 Page 67 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

APproxdiv: Converting Floating-point Constant Division to Multiplication

Other[Miscellaneous options :][Approximate a floating-point constant division]

Command Line Format
APproxdiv
Description

Converts divisions of floating-point constants into multiplications of the corresponding
reciprocals as constants.

Remarks

When this option is specified, the speed of execution of floating-point constant division will be
improved. The precision of operation may, however, be changed, so take care on this point.

PAtch: Avoiding SH7055 Illegal Operation

Other[Miscellaneous options :][Avoid illegal SH7055 instructions]

Command Line Format
PAtch = 7055
Description

Avoids the output of a program that includes operations that are illegal for the SH7055 due to
the order of instructions.

Remarks

This option is only valid when cpu=sh2e has been specified.

FPScr: FPSCR Register Precision Mode Switching

Other[Miscellaneous options :][Change FPSCR register if double data used]

Command Line Format

FPScr = { Safe | Aggressive }

Description

Specifies whether or not to guarantee the precision mode for the FPSCR register before and
after a function call.

In the SH2A-FPU, SH-4, or SH-4A, single or double precision mode is specified for the
FPSCR register when executing float or double operation.

When fpscr=safe is specified, the compiler always switches the precision-mode setting of the
FPSCR register to single precision after return from function calls.

When fpscr=aggressive is specified, the contents of the FPSCR register in terms of precision
mode after return from function calls are not guaranteed.

Page 68 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

This option is valid when cpu=sh2afpu|sh4|sh4a is specified and neither fpu=single nor
fpu=double is specified.

The default for this option is fpscr=aggressive.
Volatile_loop: Disabling Loop Iteration Condition Optimization
Other[Miscellaneous options :][Treats loop condition as volatile qualified]

e Command Line Format
Volatile loop
e Description

Disables optimization of the loop iteration condition if the loop iteration condition includes an
external variable.

Note however that if type conversion is performed, if two or more external variables are
included, or if composite operation is performed, optimization may be performed.

e Remarks

Without this option, if the loop iteration condition is invariant in the loop, the loop iteration
condition may be eliminated.

R20UT0704EJ0102 Rev. 1.02 Page 69 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

AUto_enum: Enumeration Data Size
Other[Miscellaneous options :][enum size is made the smallest]

e Command Line Format
AUto_enum
e Description

Processes the enum data as the minimum data type with which the enum value can fit in. The
default for this option is to process the enum value as the int type. Table 2.13 shows the
relationship between the possible enum values and data types.

Table 2.13 Relationship between enum Values and Data Types

Enumerator

Minimum Value Maximum Value Data Type
-128 127 signed char

0 255 unsigned char
-32768 32767 signed short

0 65535 unsigned short
Other than above Other than above int

ENAble_register: Preferential Allocation of register Storage Class Variables
Other[Miscellaneous options :][Enable register declaration]

e Format

ENAble register
e Description

Allocates preferentially the variables with register storage class specification to registers.
e Remarks

If a variable cannot be allocated to a register, message C0102 (I) Register is not
allocated to "variable name" in "function name" will be output. Note, however,
that this message will not be output if a parameter is not allocated to a register.

Page 70 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

STRIct_ansi: ANSI Conformance

Other[Miscellaneous options :][Obey ansi specifications more strictly]

Format
STRIct ansi
Description
Conforms to the ANSI standard for the following processing:
— unsigned int and long type operations
Example:
long sl;
unsigned int ui;

sl /= ui; /* When strict_ansi has been specified, unsigned int is applied for
operation. Otherwise, long is applied. */

— Associativity of floating-point operations
Remarks

When this option is specified, the operation results may be different from those of former-
version compilers.

FDIv: Conversion to Floating-Point Division

Other[Miscellaneous options :][Change integer division into floating-point]

Format
FDIv
Description

Converts integer division to floating-point division, which improves the speed of division
operation.

Remarks
This option is only valid when cpu=sh2e, sh2afpu, sh4, or sh4a is specified.

This option is invalid when the ifunc option is specified and is invalid for the function
specified with #pragma ifunc.

When cpu=sh2afpu, sh4, or sh4a and fpu=double are specified, this conversion is applied to
division when divisor and dividend are both four bytes or less. In other cases, this conversion
is applied to division when divisor and dividend are both two bytes or less.

R20UT0704EJ0102 Rev. 1.02 Page 71 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

FIXED_Const: Floating-Point Values to Fixed-Point Values Conversion

Other[Miscellaneous options :][Floating-point constant is handled as a fixed-point constant]

Command Line Format
FIXED_ Const

Description

Generates an object with converting floating-point values to fixed-point values.

Remarks

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp and dspc are
specified.

When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

FIXED_ Max: Conversion of 1.0 to _ _fixed Type Maximum Value

Other[Miscellaneous options :][treats 1.0 as maximum number of fixed type]

Command Line Format
FIXED_ Max
Description

Generates an object with converting 1.0r to the maximum value of the __fixed type, and
converting 1.0R to the maximum value of the long __fixed type.

For details on the maximum value, refer to the description on fixed.h in section 10.4.1 (8),
Standard C Libraries.

Remarks

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.

Page 72 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

FIXED Noround: Omitting Type Conversion for _ _fixed Multiplication Result

Other[Miscellaneous options :][delete type conversion after fixed multiple]

Command Line Format
FIXED Noround
Description

Onmits converting the long _fixed type result obtained from fixed type multiplication to
the fixed type.

Remarks

When this option is specified, the precision of operation may be changed.

This option is only valid when cpu=sh2dsp, cpu=sh3dsp or cpu=sh4aldsp, and dspc are
specified.

When the expression format of the floating-point constant is explicitly used, an object is
generated as the floating-point constant even if this option is specified.

REPeat: DSP-expansion Repeat Loop

Other[Miscellaneous options :]J[DSP repeat loop is used]

Command Line Format
REPeat
Description

When the repeat option is specified, the loop may be expanded as the code that uses the DSP-
expansion repeat loop.

Remarks
The expansion-repeat loop is only available for the CPU that supports the LDRC instruction.
This option is only valid when cpu=sh3dsp or cpu=sh4aldsp has been specified

SIMple_float_conv: Omitting Range Check for Conversion between Floating-Point Number
and Integer

Other[Miscellaneous options :][Not check the range in conversion between floating point number
and integer]

Command Line Format

SIMple float conv

R20UT0704EJ0102 Rev. 1.02 Page 73 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor

e Description

The compiler generates a code that does not include a check of the target value range for the
type conversion between unsigned integers and floating-point numbers.

e Examples

(1) unsigned long func(float f)

{

return ((unsigned int)f);

}

[Without simple_float_conv setting]

MOV
SHLLS
SHLL16
LDS
FSTS
FCMP/GT
BT

FADD
FSUB
L12:
FTRC
STS

#79,R2
R2

R2

R2, FPUL
FPUL, FR8
FR4, FR8
L12

FR8, FR8
FR8, FR4

FR4, FPUL
FPUL, RO

’

’

’

’

’

0x0000004F

0x4F000000

; When f > 0x4F000000,
; (f- 0x4F800000) is used as the value before conversion.

Conversion from float to signed long

[With simple_float_conv setting]

FTRC
STS

FR4,FPUL ; Conversion from float to signed long

FPUL, RO

Page 74 of 1176

R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

(2) float func2(unsigned long u)
{

return ((float)u):;

}

[Without simple_float_conv setting]

LDS R4, FPUL

CMP/PZ R4

BT/S L12

FLOAT FPUL, FRO ; Conversion from signed long to float
MOVA L13+2,R

FMOV.S @QRO, FRO ; When u > 0x80000000u,

FADD FR9, FRO ; 0x4F800000 is added to the value after conversion.
L12:

RTS

NOP

L13:

RES.W 1

DATA.L H'4F800000

[With simple_float_conv setting]

LDS R4, FPUL

RTS

FLOAT FPUL, FRO ; Conversion from signed long to float
e Remarks

This option is valid when cpu is sh2e, sh2afpu, sh4, or sh4a.

Correct operation is not guaranteed when the value before type conversion is not an integer
from 0 to 2147483647 or a floating-point number from 0.0 to 2147483647.0. When using a
value outside of these ranges, do not specify this option.

R20UT0704EJ0102 Rev. 1.02 Page 75 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

NOUSE_DIV_INST: Inhibiting generation of the DIVU and DIVS instructions

Other[Miscellaneous options :][Suppress DIVS and DIVU instruction generation]

Command Line Format
-NOUSE_DIV_INST

Description

Expands all integer-type division operations and remainder operations into code which does
not use the DIVU and DIVS instructions.

This option is only valid when the cpu=sh2a | sh2afpu specification has been made.

FLOAT_ORDER: Change operation order for floating-point expression aggressively

Other[Miscellaneous options :]J[Change operation order for floating-point expression aggressively]

Command Line Format
-FLOAT _ORDER
Description

The compiler aggressively optimizes floating-point expressions by changing the order of
operations.

Although the object code generally has better performance than when float_order is not
specified, the precision of operations may differ from that for code produced by earlier
versions of the compiler.

Examples
/* —-float order is specified, performed as * (b + c) * 100.0f */
float a,b,c;
£()
{
a=Db * 100.0f + ¢ * 100.0f;
}
Remarks
This option is only valid when optimize=1 is specified.

Page 76 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

2.2.6 CPU Options

Table 2.14 CPU Tab Options

Item Command Line Format Dialog Menu Specification
CPU/operating CPu ={SH1 CPU Generates SH-1 object.
mode | SH2 [CPU 1] Generates SH-2 object.
| SH2E Generates SH-2E object.
| SH2A Generates SH-2A object.
| SH2AFPU Generates SH2A-FPU object.
| SH2DSP Generates SH2-DSP object.
| SH3 Generates SH-3 object.
| SH3DSP Generates SH3-DSP object.
| SH4 Generates SH-4 object.
| SH4A Generates SH-4A object.
| SH4ALDSP } Generates SH4AL-DSP object.
Byte order ENdian = { Big CPU Specifies big endian.
[SH-3 to SH-4] | Little } [Endian :] Specifies little endian.
Floating-point FPu = { Single CPU Processes double-precision
operation mode [FPU 1] floating-point operation in
[SH2A-FPU, single precision.
SH-4, and | Double } Processes single-precision
SH-4A] floating-point operation in
double precision.
Rounding mode Round = { Zero CPU Rounds to zero.
[SH2A-FPU, | Nearest } [Round to :] Rounds to nearest.
SH-4, and
SH-4A]
Denormalized DENormalize = { OFF CPU Processes denormalized
numbers [Denormalized numbernumbers as zeros.
[SH4 and | ON} allower as a result] Processes denormalized
SH-4A] numbers as they are.

Program section Pic={0
position

independent

[other than SH-1] | 1

CPU

[Position independent

code (PIC)]
}

Generates no position
independent codes for the
program section.
Generates position
independent codes for the
program section.

R20UT0704EJ0102 Rev.
Mar 01, 2022

1.02

RENESAS

Page 77 of 1176

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Table 2.14 CPU Tab Options (cont)

Item

Command Line Format Dialog Menu

Specification

double to float DOuble=Float CPU Handles a double-type
conversion [Treat double as float] variable as a float-type
[other than variable.
SH2A-FPU,
SH-4, or
SH-4A]
Bit field order Blt_order={Left CPU Stores bit-field members
specification [Bit field’s members are from the upper bit.
| Right } allocated from the lower bit] Stores bit-field members
from the lower bit.
Boundary PACK ={1 CPU Assumes the boundary
alignment of [Pack struct, union and alignment value to be 1.
structure, union, |4} class] Follows the boundary
and class alignment.
members
Exception EXception CPU Enables exception
handling [Use try, throw and catch of handling function
NOEXception C++] Disables exception
handling function.
Runtime type RTTI= {ON CPU Enables dynamic_cast
information [Enable/disable runtime and typeid.
| OFF } information] Disables dynamic_cast
and typeid.
Method of Dlvision = { Cpu CPU Uses the CPU’s division
division* [Division :] instruction.
[SH-2] | Peripheral Uses a divider
(interrupts are masked).
| Nomask } Uses a divider
(interrupts are not
masked).
Note: For details of this option, see section 2.2.2, Object Options.

Page 78 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

Section 2 Compiler Options

CPu :CPU
CPU[CPU ;]

e (Command Line Format

CPu= {SH1
SH2
SH2E
SH2A
SH2AFPU
SH2DSP
SH3
SH3DSP

SH4A
SH4ALDSP

e Description

|
|
|
|
|
|
|
| SH4
|
|
}

Specifies the CPU type for the object program to be generated. Suboptions are listed in

table 2.15.

The default for this option is cpu=shl.

Table 2.15 Suboptions for cpu Option

Suboption Description

sh1 Generates SH-1 object.

sh2 Generates SH-2 object.

sh2e Generates SH-2E object.
sh2a Generates SH-2A object.
sh2afpu Generates SH2A-FPU object.
sh2dsp Generates SH2-DSP object.
sh3 Generates SH-3 object.
sh3dsp Generates SH3-DSP object.
sh4 Generates SH-4 object.

shda Generates SH-4A object.
sh4aldsp Generates SH4AL-DSP object.

R20UT0704EJ0102 Rev. 1.02

Mar 01, 2022

RENESAS

Page 79 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

ENdian: Memory Byte Order

CPUJ[Endian :]

Command Line Format

ENdian = { Big | Little }

Description

When endian=big is specified, data bytes are arranged in the big endian order.
When endian=little is specified, data bytes are arranged in the little endian order.

Little endian object programs do not run on the SH-1, SH-2, SH-2E, SH-2A, SH2A-FPU, or
SH2-DSP.

The default for this option is endian=big.

FPu: Floating-point Operation Mode

CPU[FPU :]

Command Line Format

FPu = { Single | Double }

Description

When fpu=single is specified, double-precision floating-point operation is carried out in single
precision.

When fpu=double is specified, single-precision floating-point operation is carried out in
double precision.

Specify fpu=single if floating point calculations are not used in the program.

This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.

Note

When the fpu option is not specified or when fpu=single is specified, the precision mode
might need to be set to perform single-precision floating-point operation in an interrupt
function. For details, see section 9.4.1 (6) Interrupt Functions When the CPU Type Is SH2A-
FPU, SH4, or SH4A.

Page 80 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

Round: Rounding Mode

CPU[Round to :]

Command Line Format

Round = { Zero | Nearest }

Description

Specifies the rounding method when floating-point constants are converted to object codes.
When round=zero is specified, values are rounded to zero.

When round=nearest is specified, values are rounded to nearest.

This option is valid only when cpu=sh2afpu|sh4|sh4a is specified.

The default for this option is round=zero.

DENormalize: Denormalized Numbers

CPU[Denormalized number allower as a result]

Command Line Format
DENormalize = { OFF | ON }
Description

Specifies the operation when denormalized numbers are used to describe floating-point
constants.

When denormalize=off is specified, denormalized numbers are treated as zeros.
When denormalize=on is specified, denormalized numbers as treated as they are.
This option is valid only when cpu=sh4|sh4a is specified.

The default for this option is denormalize=off.

R20UT0704EJ0102 Rev. 1.02 Page 81 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

Pic: Position Independent Code

CPU[Position independent code (PIC)]

Command Line Format

Pic={0]1}

Description

When pic=1 is specified, a program section after linkage can be allocated to any address and
executed. A data section can only be allocated to an address specified at linkage. When using
this option as a position independent code, a function address cannot be specified as an initial
value. At C++ compilation, a pointer to a virtual function or function member requires a
function address as the initial value. Therefore, C++ programs containing virtual functions and
pointers to member functions cannot be executed as position independent codes.

Example 1:

extern int £ ();

int (*fp) () = £; <-- Cannot be specified
Example 2:

struct A {virtual void f();}; <--Cannot be specified
void (A::*ap) () = &A::f; <-- Cannot be specified
When epu=shl1 is specified, pic=1 is ignored.
The default for this option is pic=0.

Page 82 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

DOuble=Float: double to float Conversion
CPU[Treat double as float]

e Command Line Format
DOuble=Float

e Description
Generates an object with converting double-type (double-precision floating-point) values to
float-type (single-precision floating-point) values.

e Remarks

This option is invalid when cpu=sh2afpu|sh4|sh4a is specified, and assumes that fpu=single
is specified.

BIt_order: Bit Field Order Specification
CPU[Bit field’s members are allocated from the lower bit :]

e Command Line Format
BIt order={ Left | Right }

e Description
Specifies the order of bit field members.
When bit_order=left is specified, members are allocated from the upper bit.
When bit_order=right is specified, members are allocated from the lower bit.
The default for this option is bit_order=left.

e Remarks

For details on allocation of bit field members, refer to section 10.1.2, Internal Data
Representation, and the description on #pragma bit_order in section 10.3.1, #pragma
Extension Specifiers.

R20UT0704EJ0102 Rev. 1.02 Page 83 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 2 Compiler Options Optimizing Linkage Editor

PACK: Boundary Alignment of Structure, Union, and Class Members

CPU[Pack struct, union and class]

Command Line Format

PACK = {14}

Description

Specifies the boundary alignment value for structure, union, and class members.

The boundary alignment of structure members can also be specified by the #pragma pack

extension. If both this option and a #pragma extension are specified, the #pragma
specification is valid.

The boundary alignment value for structures, unions, and classes equals the maximum
boundary alignment of members.

For details, refer to section 10.1.2 (2), Compound Type (C), Class Type (C++).

Remarks

When the iodefine.h file created by the Renesas High-Performance Embedded Workshop is in
use, if #pragma or an option is used to set the alignment value to 1, the members of I/O
register structures will not specify the correct addresses. To avoid this problem, place
#pragma pack4 at the start of iodefine.h and place #pragma unpack at the end of iodefine.h.
Table 2.16 shows the boundary alignment values for structure, union, and class members when
pack is specified.

Table 2.16 Boundary Alignment for Structure, Union, and Class Members when the pack

Option is Specified

Member Type pack=1 pack=4 Not Specified

(unsigned) char 1 1 1

unsigned) short, and long _ _fixed 1 2 2

unsigned) int, (unsigned) long, 1 4 4
unsigned) long long, long _ _fixed,

_ _accum, long _ _accum,
floating-point type, and pointer type

Structures, unions, and classes aligned to 1 1 1
a 1-byte boundary

Structures, unions, and classes aligned to 1 2 2
a 2-byte boundary

Structures, unions, and classes aligned to 1 4 4
a 4-byte boundary

Page 84 of 1176 R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

EXception, NOEXception: Exception Handling
CPU[Use try, throw and catch of C++]

e Command Line Format
EXception
NOEXception

e Description

When the exception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes valid.

When the noexception option is specified, the C++ exceptional handling function (try, catch,
throw) becomes invalid.

When the exception option is specified, the code performance may be reduced.
The default for this option is noexception.
e Remarks

In order to use the C++ exceptional handling function among files, specify rtti=on at
compilation, and do not specify the noprelink option at linkage.

The exception option and ecpp option cannot be specified simultaneously.

Object files created by using the exception option must not be registered with libraries or
output as relocatable files by the optimizing linkage editor. Doing so will lead to a duplicate-
definition or no-definition error.

RTTI: Runtime-Type Information
CPUJ[Enable/disable runtime information]

e (Command Line Format

RTTI= { ON
| OFF }

e Description
Enables or disables runtime type information.
When rtti=on is specified, dynamic_cast and typeid are enabled.
When rtti=off is specified, dynamic_cast and typeid are disabled.
The default for this option is rtti=off.

e Remarks

Do not define object files which are created by specifying this option in a library, and do not
output files with this information as relocatable object files through the optimizing linkage
editor. A symbol double definition error or symbol undefined error may occur.

R20UT0704EJ0102 Rev. 1.02 Page 85 of 1176
Mar 01, 2022 RENESAS

Section 2 Compiler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

2.2.7 Options Other Than Above

Table 2.17 Options Other Than Above

Command Line

Item Format Dialog Menu Specification

SelectingCor LAng={C — Compiled as C source program.

C++ language | CPp} (Determined by an Compiled as C++ source program.
extension)

Disable of LOGO — Outputs copyright.

copyright NOLOGO (nologo is always valid) Disables output of copyright.

output

Character code Euc — Selects euc code.

selectin string SJis Selects sjis code.

literals LATin1 Selects latin1 code.

Japanese OUtcode ={EUc — Selects euc code.

character code | SJis } Selects sjis code.

specified within

object

Subcommand SUbcommand = — Command option is fetched from the
file specified <file name> file specified with <file name>.

LAng: Selecting C or C++ Language

None (Always determined by an extension)

e (Command Line Format
LAng={C|CPp}

e Description

Specifies the language of the source program.

When lang=c is specified, the compiler will compile the program file as a C source program.

When lang=cpp is specified, the compiler will compile the program file as a C++ source

program.

If this option is not specified, the compiler will determine whether the source program is a C or
a C++ program by the extension of the file name. If the extension is ¢, the compiler will
compile it as a C source program. If the extension is ¢cpp, cc, or ¢p, the compiler will compile
it as a C++ source program. If there is no extension, the compiler will compile the program as
a C source program.

Page 86 of 1176

R20UT0704EJ0102 Rev. 1.02

RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor Section 2 Compiler Options
e Example

shc test.c Compiled as a C source program.

shc test.cpp Compiled as a C++ source program.

shc -lang=cpp test.c Compiled as a C++ source program.
shc test Assumed to be test.c and thus be compiled as a
C source program.

e Remarks

If lang=c is specified, ecpp is invalid.
LOGO, NOLOGO: Copyright Output Control
None (nologo is always available)

e Command Line Format
LOGO
NOLOGO
e Description
Disables the copyright output.
When the logo option is specified, copyright display is output.

When the nologo option is specified, the copyright display output is disabled.

The default for this option is logo.
Euc, SJis, LATin1: Character Code Select in String Literals
None

e Command Line Format
Euc
Slis
LATinl

e Description

Use this option to specify the Japanese character code or ISO-Latinl code written in a string

literal, a character constant, or a comment.

Table 2.18 shows character code in the string literals for three types of host computers.

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022 RENESAS

Page 87 of 1176

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Table 2.18 Relationship between the Host Computer and Character Code in String Literals

Option Specification

Host Computer euc sjis latin1 Not Specified
PC euc sjis latin1 sjis
SPARC euc sjis latin1 euc
HP9000/700 euc sjis latin1 sjis

e Remarks
When the latinl option is specified, the outcode option will become invalid.

OUtcode: Japanese Code Conversion in Object Code
None

e Command Line Format
OUtcode = { EUc | SJis }
e Description

Specifies the Japanese character code to be output to the object program when Japanese is
written in string literals and character constants.

When outcode=euc is specified, the compiler outputs the Japanese character code in the euc
code.

When outcode=sjis is specified, the compiler outputs the Japanese character code in the sjis
code.

Option euc or sjis can be specified for the Japanese character code in a source program.

Page 88 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 2 Compiler Options

SUbcommand: Subcommand File
None

e Format
SUbcommand = <file name>
e Description

Specifies the subcommand file where options used at compiler initiation are stored. The
command format in the subcommand file is the same as that on the command line.

e Example
opt.sub: -listfile -show=object -debug
Command line specification: shc -cpu=sh4 -subcommand=opt.sub test.c

Interpretation at compilation: shc -cpu=sh4 -listfile -show=object -debug
test.c

R20UT0704EJ0102 Rev. 1.02 Page 89 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 2 Compiler Options Optimizing Linkage Editor

Page 90 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Section 3 Assembler Options

3.1 Command Line Format
The format of the command line to initiate the assembler is as follows:

asmsh [A<option> ..] [A<file name> [,..]] [A<option> ..]

<option>:-<option> [=<suboption> [,..]]

Note: When the user specifies multiple source files, the assembler will merge and assemble
these files as one unit in the order they were specified. In this case, the user must
write .END only in the file that was specified last.

3.2 List of Options

In the command line format, uppercase letters indicate the abbreviations. Characters underlined
indicate the default assumptions.

The format of the dialog menus for the integrated development environment is as follows:
Category [Item]

Options are described in the order of tabs in the integrated development environment’s option
dialog box.

R20UT0704EJ0102 Rev. 1.02 Page 91 of 1176
Mar 01, 2022 RENESAS

Section 3 Assembler Options

SuperH™ RISC engine C/C++ Compiler, Assembler,

Optimizing Linkage Editor

3.2.1 Source Options

Table 3.1 Source Category Options

Item Command Line Format Dialog Menu Specification

Include file Include = <path name>[,...] Source Specifies include-file
directory [Show entries for:] destination path name.

[Include file directories]

Replacement DEFine = <sub>[, ...]

Source

Defines replacement string

symbol <sub>: [Show entries for:] literal.
definition <replacement symbol> [Defines]
= "<string literal>"
Integer ASsignA = <sub>[, ...] Source Defines integer preprocessor
preprocessor <sub>: [Show entries for:] variable.
variable <variable name> [Preprocessor
definition = <integer constant> variables]
Character ASsignC = <sub>[, ...] Source Defines character preprocessor
preprocessor <sub>: [Show entries for:] variable.
variable <variable name> [Preprocessor
definition = "<string literal>" variables]

Page 92 of 1176

RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Include

Source [Show entries for:] [Include file directories]

Command Line Format

Include = <path name> [,...]

Description

The include option specifies the include file directory. The directory name depends on the
naming rule of the host machine used. As many directory names as can be input in one
command line can be specified. The current directory is searched first, and then the directories
specified by the include option are searched in the specified order.

Example: asmsh aaa.src —-include=C:\common,C:\local

(.INCLUDE "file.h" is specified in aaa.src.)
The current directory, C:\common,C:\local are searched for file.h in that order.

Relationship with Assembler Directives

Option Assembler Directive Result
include (regardless of any specification) (1) Directory specified
by .INCLUDE
(2) Directory specified by
include”
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory specified by the include option is added before that specified by .INCLUDE.

DEFine

Source [Show entries for:] [Defines]

Command Line Format

DEFine = <sub>[,...]

<sub>:<replacement symbol>="<string literal>"

Description

The define option defines the specified symbol as the corresponding string literal to be
replaced by the preprocessor.

Differences between define and assignc are the same as those between .DEFINE
and .ASSIGNC.

R20UT0704EJ0102 Rev. 1.02 Page 93 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,
Section 3 Assembler Options Optimizing Linkage Editor

Relationship with Assembler Directives

Option Assembler Directive Result

define .DEFINE * String literal specified by define
(no specification) String literal specified by define

(no specification) .DEFINE String literal specified by .DEFINE

Note: When a string literal is assigned to a replacement symbol by the define option, the
definition of the replacement symbol by .DEFINE is invalidated. This replacement is not
applied to the .AENDI, . AENDR, .AENDW, .AIFDEF, .END, and .ENDM directives.

ASsignA
Source[Show entries for:][Preprocessor variables]

e Command Line Format
ASsignA = <sub>[,...]
<sub>:<preprocessor variable>=<integer constant>

e Description
The assigna option sets an integer constant to a preprocessor variable. The naming rule of
preprocessor variables is the same as that of symbols. An integer constant is specified by
combining the radix (B', Q', D', or H') and a value. If the radix is omitted, the value is assumed
to be decimal. An integer constant must be within the range from —2,147,483,648 to
4,294,967,295. To specify a negative value, use a radix other than decimal.

Relationship with Assembler Directives

Option Assembler Directive Result

assigna ASSIGNA* Integer constant specified by assigna
(no specification) Integer constant specified by assigna

(no specification) ASSIGNA Integer constant specified by. ASSIGNA

Note: When a value is assigned to a preprocessor variable by the assigna option, the definition of
the preprocessor variable by .ASSIGNA is invalidated.

Example: asmsh aaa.src -assigna=_ S$=H'FF

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

Page 94 of 1176 R20UT0704EJ0102 Rev. 1.02
RENESAS Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

ASsignC
Source [Show entries for:][Preprocessor variables]

e Command Line Format
ASsignC = <sub>[,...]
<sub>:<preprocessor variable>="<string literal>"
e Description
The assignc option sets a string literal to a preprocessor variable.
The naming rule of preprocessor variables is the same as that of symbols.
A string literal must be enclosed with double-quotation marks (").

Up to 255 characters (bytes) can be specified for a string literal.

Relationship with Assembler Directives

Option Assembler Directive Result

assignc .ASSIGNC* String literal specified by assignc
(no specification) String literal specified by assignc

(no specification) .ASSIGNC String literal specified by .ASSIGNC

Note: When a string literal is assigned to a preprocessor variable by the assignc option, the
definition of the preprocessor variable by .ASSIGNC is invalidated.

Example: asmsh aaa.src -assignc=_$="ON!OFF"

String literal ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

R20UT0704EJ0102 Rev. 1.02 Page 95 of 1176
Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options

Optimizing Linkage Editor

3.2.2 Object Options

Table 3.2 Object Category Options

Item Command Line FormatDialog Menu Specification
Debugging Debug Object Controls output of debugging
information NODebug [Debug information:] information.
Pre-processorEXPand Object Outputs preprocessor expansion
expansion [= <output file name>] [Generate assembly result.
result source file after
preprocess]

Literal pool LITERAL = <point> [, ...]Object Specifies the point to output literal
output point <point>: [Generate literal pool pool.

{Pool | Branch | Jump after:]

| Return}
Object Object Object Controls object module output.
module [= <output file name>] [Output file directory:]
output NOObject
Unresolved Dlspsize = {4 | 12} Object Specifies the size of unresolved
symbol size [Selects displacement symbols.
[SH-2A and size]
SH2A-FPU]

Page 96 of 1176
RENESAS

R20UT0704EJ0102 Rev. 1.02
Mar 01, 2022

SuperH™ RISC engine C/C++ Compiler, Assembler,
Optimizing Linkage Editor Section 3 Assembler Options

Debug, NODebug
Object [Debug information:]

e (Command Line Format
Debug

NODebug
e Description

When the debug option is specified, debugging information is output. When the nodebug
option is specified, no debugging information is output. The debug and nodebug options are
only valid in cases where an object module is generated. The default is nodebug.

e Remarks

Debugging information is required when debugging a program with the debugger. Debugging
information includes information about source statement lines and symbols.

Relationship with Assembler Directives

The assembler gives priority to specifications made by options.

Option Assembler Directive Result
debug (regardless of any specification) Debugging information is output.
nodebug (regardless of any specification) Debugging information is not
output.
(no specification) .OUTPUT DBG Debugging information is output.
.OUTPUT NODBG Debugging information is not
output.
(no specification) Debugging information is not
output.
R20UT0704EJ0102 Rev. 1.02 Page 97 of 1176

Mar 01, 2022 RENESAS

SuperH™ RISC engine C/C++ Compiler, Assembler,

Section 3 Assembler Options Optimizing Linkage Editor

EXPand

Object [Generate assembly source file after preprocess]

Command Line Format
EXPand [= <output file name>]
Description
The expand option outputs an assembler source file for which macro expansion, conditional
assembly, and file inclusion have been performed.
When this option is specified, no object will be generated.
When the output file parameter is omitted, the assembler takes the following actions:
— If the file extension is omitted:
The file extension will be exp.
— If the specification is completely omitted:

The source file name will be the same name as that of the input source file (the source file
specified first) and the file extension will be exp.

Note: Do not specify the same file name for the input and output files.

LITERAL

Object [Generate assembly source file after preprocess]

Command Line Format

LITERAL = <point>],...]

<point>: {Pool|Branch|Jump|Return}

Description

The literal option specifies the point where the literal pool that was created by the automatic
literal pool creation function is placed.

— pool: The literal pool is output at the location of .POOL.

— branch: The literal pool is output after the BRA/BRAF instruction.

— jump: The