

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 1 of 49

SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler Use guide] Option Guide

This document explains the compiler options available in version 9 of the SuperH RISC
engine C/C++ compiler.

Table of contents

1. Optimization Options ... 2
1.1 Basic options (Optimize for speed, Optimize for size, Optimize for both speed and size) 2
1.1.1 Automatic inline expansion.. 4
1.1.2 Loop unroll... 8
1.1.3 Shift-operation expansion.. 10
1.1.4 Transfer-code expansion... 12
1.1.5 Method of division (microcomputer other than SH-1) ... 14
1.1.6 Unaligned data transfer ... 16
1.1.7 Expansion of constant loading instructions ... 18
1.2 Advanced options for improving performance... 20
1.2.1 Specifies address range.. 20
1.2.2 Disposition of variables ... 21
1.2.3 Optimized for access to external variables ... 24
1.2.4 GBR Relative Logic Operation Generation ... 27
1.2.5 Division of optimizing ranges... 29
1.2.6 MAC register.. 30
1.2.7 Extension of return value... 32
1.2.8 Enumeration data size... 34
1.2.9 Switch statement expansion method .. 36

2. Useful Options... 37
2.1 Debugging Information Output Mode .. 37
2.2 Pre-processor expansion .. 39
2.3 External variables handled as volatile... 41
2.4 Vacant loop elimination ... 43
2.5 Elimination of expression preceding infinite loop .. 44
2.6 Switches the order of bit assignment .. 46
2.7 Specifies the boundary alignment value for structures, unions, and classes 47

Website and Support <website and support,ws> .. 48

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 2 of 49

1. Optimization Options
The compiler optimization options include three basic options (Optimize for speed, Optimize for size, and, Optimize
for both speed and size) and advanced options, which are used to specify optimization settings in greater detail. Section
1.1 explains the basic options and the advanced options for each. Section 1.2 explains advanced options available for
improving performance.

Note that the expanded assembly code examples in this document were obtained by specifying code=asmcode and
cpu=sh2. This code might vary depending on the specification of the cpu option (H-1, SH-2, SH-2E, SH-3, or SH4).
The code is also subject to change if the compiler is improved in the future. Accordingly, you should use these code
examples for reference only.

1.1 Basic options (Optimize for speed, Optimize for size, Optimize for both speed and
size)

The compiler performs two types of optimization: reduction of the object size and reduction of the execution time. If
execution speed is the priority, specify the speed option. If size is the priority, specify the size option. If you want to
balance speed and size, specify the nospeed option, which is the default.

The following explains these options:

speed option:
Performs optimization that reduces execution time but increases object size, as well as performing optimization that
reduces both execution time and object size.

size option:
Performs optimization that reduces object size but increases execution time, as well as performing optimization that
reduces both execution time object size.

nospeed option:
Performs optimization that reduces both execution time and object size.

In an ideal situation, the functions for which speed is the priority and the functions for which size is the priority are stored
in separate files, so that the optimization type (speed first or size first) can be selected for each file.

Format:

SPeed
SIze
NOSPeed

APPLICATION NOTE

Option settings in High-Performance Embedded Workshop (Renesas IDE hereafter):

Figure 1-1

Optimize for speed (speed),
Optimize for size (size), or
Optimize for both speed and size
(nospeed) can be selected.

REJ06J0028-0100/Rev.1.00 September 2007 Page 3 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 4 of 49

Supplementary note:

The execution speed on production machines depends not only on the code generated by the compiler, but also on the
memory architecture, the cache hit rate, interrupts, and other factors. Consequently, specifying the speed option might
not always generate the fastest code. Make sure that you check the results of the options described in this document by
executing them on production machines.

The defaults of some advanced compiler optimization options depend on the selected basic option. Table 1-1 lists the
advanced options whose defaults depend on the selected basic option.

Table 1-1 Basic options ("nospeed", "size", and "speed") and default advanced options

No. Functionality nospeed
(default) size speed See section

1 Automatic inline expansion noinline noinline Inline 1.1.1
2 Loop unroll noloop noloop loop 1.1.2
3 Shift-operation expansion Instruction

expansion
Run-time routine call Instruction

expansion
1.1.3

4 Transfer-code expansion Instruction
expansion

Run-time routine call Instruction
expansion

1.1.4

5 Method of division (microcomputer
other than SH-1)

Instruction
expansion

Run-time routine call Instruction
expansion

1.1.5

6 Unaligned data transfer Instruction
expansion

Run-time routine call Instruction
expansion

1.1.6

7 Expansion of constant loading
instructions

Literal data
reference

Literal data reference Instruction
expansion

1.1.7

The following describes the advanced options listed above.

1.1.1 Automatic inline expansion
Specifies whether to automatically perform inline expansion of functions.

When the inline option is specified, the compiler automatically performs inline expansion. The user is able to use
inline=<numeric-value>, to specify the allowed increase in the program’s size due to the use of inline expansion. For
example, when inline=50 is specified, inline expansion will be applied until the program has grown to 150% of its
size (gain of 50%).

The compiler performs automatic inline expansion by starting with the smallest of the called functions. Note that for the
functions in which #pragma inline is specified, inline expansion is always performed regardless of the specification
of the automatic inline expansion option. Also note that the upper limit on the size that the compiler uses for automatic
inline expansion includes the increases in size resulting from inline expansion of #pragma inline.

When the noinline option is specified, automatic inline expansion is not performed.

Note that automatic inline expansion is not performed for the following functions:

• Functions that have variable parameters
• Functions that perform a call via the address of a function that will be expanded

For details about inline expansion, see 1.2 Performs inline expansion of functions in the manual SuperH RISC engine
C/C++ Compiler Package APPLICATION NOTE: [Compiler Use guide] Extended Specifications.

Format:

INLine [= numeric-value] : The default advanced option used when "speed" is selected. The default value
is 20.

NOINLine : The default advanced option used when "size" or "nospeed" is selected.

APPLICATION NOTE

Option settings in Renesas IDE:

Figure 1-2

REJ06J0028-0100/Rev.1.00 September 2007 Page 5 of 49

Automatic inline expansion: Custom
Specification of maximum increase in size
as a percentage allowed in automatic
inline expansion.

Figure 1-3

APPLICATION NOTE

Inline expansion requires that the definitions of functions to be expanded can be referenced at compile time. Therefore, in
normal inline expansion, only functions that are in the same file can be expanded. If it is necessary to expand functions
located in different files, inter-file inline expansion options (file_inline=file-name[,...]) must be specified.
Note that if extern functions that have the same name are defined in multiple files that are specified for inter-file inline
expansion, the compiler does not guarantee the result, since one of the function definitions is selected arbitrarily.

If the source file is specified for inline expansion, the compiler excludes the file from inline expansion and outputs the
following warning message:

C1315 (W) File_inline file-name ignored by same file as source file

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as follows.

Click this button to
specify an inline
expansion file.

Figure 1-4

Example:
Source code
<a.c>
void func(void)
{

g();
}
<b.c>
#pragma inline (g)
void g(void)
{

h();
}

file_inline=<source image after a.c is expanded when b.c is specified>
void func(void)
{
 h();
}

REJ06J0028-0100/Rev.1.00 September 2007 Page 6 of 49

APPLICATION NOTE

The file_inline_path option is useful when you specify files that are located in folders other than the current
folder for inter-file inline expansion. If you specify the names of these folders beforehand in the
file_inline_path=path-name[,...] format, you do not need to specify the path names of the target files.

The compiler searches the folders specified in the file_inline_path option for the target files, and then searches
the current folder.

Option settings in Renesas IDE:

Figure 1-5

REJ06J0028-0100/Rev.1.00 September 2007 Page 7 of 49

APPLICATION NOTE

1.1.2 Loop unroll
Specifies whether to perform loop unrolling.

Specifying the loop option enables loop expansion optimization. For details about loop expansion optimization, see 4.1
Reducing the number of times a loop is repeated in the manual SuperH RISC engine C/C++ Compiler Package
APPLICATION NOTE: [Compiler use guide] Efficient programming techniquesCompiler.

You can use the max_unroll=numeric-value (numeric-value: 1-32) option to specify the maximum number of loop
expansions. If loop expansion optimization is enabled, the option default is 2. If loop expansion optimization is disabled,
the max_unroll specification is ignored.

Format:

LOop : The default advanced option used when the basic option is "speed" is selected. The default
value is 2.

NOLOop : The default advanced option used when the basic option is "size" or "nospeed" is specified.

Option settings in Renesas IDE:

Figure 1-6

REJ06J0028-0100/Rev.1.00 September 2007 Page 8 of 49

APPLICATION NOTE

To specify the maximum number of loop expansions, click the Compiler tab in the SuperH RISC engine Standard
Toolchain dialog box. Then select Optimize from the Category drop-down list, and click Details (Figure 1-2). In the
displayed dialog box, shown below, specify the settings as follows.

When Custom is selected,
the number of loop expansion
levels can be set.

Figure 1-7

REJ06J0028-0100/Rev.1.00 September 2007 Page 9 of 49

APPLICATION NOTE

1.1.3 Shift-operation expansion
You can select whether shift operations are to be expanded into instructions or treated as run-time routine calls.

If inline (instruction expansion) is specified, shift operations are always expanded into instructions. If runtime
(run-time routine call) is specified, the processing differs depending on the number of instructions into which the
operation will be expanded. If the number of instructions will exceed 5, the operation is treated as a run-time routine call.
If the number of instructions will not exceed 5, the operation is expanded into instructions.

Format:

SHIft = Inline : The default advanced option used when the basic option is "speed" or "nospeed".
 Runtime : The default advanced option used when the basic option is "size".

Option settings in Renesas IDE:

Figure 1-8

REJ06J0028-0100/Rev.1.00 September 2007 Page 10 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 11 of 49

Example:
Source code:
int var;

void f(void)
{
 var >>= 11;
}

Expanded assembly code (shift=inline specified)
_f:
 MOV.L L11+2,R5 ; _var
 MOV.L @R5,R2 ; var
 SHLR8 R2
 SWAP.W R2,R2
 EXTS.B R2,R6
 XTRCT R6,R2
 SHAR R2
 SHAR R2
 SHAR R2
 RTS
 MOV.L R2,@R5 ; var
L11:
 .RES.W 1
 .DATA.L _var

Expanded assembly code (shift=runtime specified)
_f:
 STS.L PR,@-R15
 MOV.L L11,R5 ; _var
 MOV.L L11+4,R2 ; __sta_sftra11
 JSR @R2
 MOV.L @R5,R0 ; var
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R5 ; var
L11:
 .DATA.L _var
 .DATA.L __sta_sftra11

APPLICATION NOTE

1.1.4 Transfer-code expansion
You can select whether the transfer code of a structure, array, or class is expanded into instructions or treated as a
run-time routine call.

If inline is specified, transfer code is always expanded into instructions. If runtime is specified, the processing
differs depending on the number of instructions into which the code will be expanded. If the code can be copied with two
pairs of load/stores (4 instructions), the code is expanded into instructions. If the code cannot be copied with two pairs of
load/stores (4 instructions), the code is treated as a run-time routine call.

Format:

BLOckcopy = Inline : The default advanced option used when the basic option is "speed" or
"nospeed".

 Runtime : The default advanced option used when the basic option is "size".

Option settings in Renesas IDE:

Figure 1-9

REJ06J0028-0100/Rev.1.00 September 2007 Page 12 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 13 of 49

Example:
Source code:
struct _ST_ {

char a[5];
} x;

extern void g(struct _ST_);

void f(void)
{
 g(x);
}

Expanded assembly code (blockcopy=inline
specified)
_f:
 STS.L PR,@-R15
 ADD #-8,R15
 MOV.L L11+2,R6 ; _x
 MOV.L L11+6,R4 ; _g
 MOV.B @(1,R6),R0 ; (part of)x
 MOV.B @R6,R1 ; (part of)x
 MOV.B R0,@(1,R15)
 MOV.B @(2,R6),R0 ; (part of)x
 MOV.B R1,@R15
 MOV.B R0,@(2,R15)
 MOV.B @(3,R6),R0 ; (part of)x
 MOV.B R0,@(3,R15)
 MOV.B @(4,R6),R0 ; (part of)x
 JSR @R4
 MOV.B R0,@(4,R15)
 ADD #8,R15
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .RES.W 1
 .DATA.L _x
 .DATA.L _g

Expanded assembly code (blockcopy=runtime
specified)
_f:
 STS.L PR,@-R15
 ADD #-8,R15
 MOV.L L11,R2 ; _x
 MOV.L L11+4,R5 ; __slow_mvn
 MOV R15,R1
 JSR @R5
 MOV #5,R0 ; H'00000005
 MOV.L L11+8,R1 ; _g
 JSR @R1
 NOP
 ADD #8,R15
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .DATA.L _x
 .DATA.L __slow_mvn
 .DATA.L _g

APPLICATION NOTE

1.1.5 Method of division (microcomputer other than SH-1)
You can select the method used for integer-type division and remainder calculation in the program. This option has no
effect when the microcomputer is SH-1.

If division=cpu=inline is specified, constant division is converted to multiplication by inline expansion. Variable
division is processed differently depending on the microcomputer type. If the microcomputer is SH-2A or SH2A-FPU,
variable division is expanded into instructions. If the microcomputer is not SH-2A or SH2A-FPU, variable division is
treated as a run-time routine call.

If division=cpu=runtime is specified, power-of-two constant division is expanded into instructions. Other types of
constant division are processed differently depending on the microcomputer type. If the microcomputer is SH-2A or
SH2A-FPU, the division operation is expanded into instructions. If the microcomputer is not SH-2A or SH2A-FPU, the
division operation is treated as a run-time routine call.

Format:

DIvision = Cpu = Inline : The default advanced option used when the basic option is "speed" or
"nospeed".

 Runtime : The default advanced option used when the basic option is "size".

Option settings in Renesas IDE:

Figure 1-10

REJ06J0028-0100/Rev.1.00 September 2007 Page 14 of 49

APPLICATION NOTE

Figure 1-11

Example:
Source code:
int x;
void f(int y)
{
 x = y/3;
}

Expanded assembly code (division=cpu=inline
specified)
_f:
 STS.L MACL,@-R15
 STS.L MACH,@-R15
 MOV.L L11,R1 ; H'55555556
 MOV.L L11+4,R5 ; _x
 DMULS.L R4,R1
 STS MACH,R6
 MOV R6,R0
 ROTL R0
 AND #1,R0
 ADD R0,R6
 MOV.L R6,@R5 ; x
 LDS.L @R15+,MACH
 RTS
 LDS.L @R15+,MACL
L11:
 .DATA.L H'55555556
 .DATA.L _x

Expanded assembly code (division=cpu=runtime
specified)
_f:
 STS.L PR,@-R15
 MOV.L L11+2,R2 ; __divls
 MOV R4,R1
 JSR @R2
 MOV #3,R0 ; H'00000003
 MOV.L L11+6,R5 ; _x
 LDS.L @R15+,PR
 RTS
 MOV.L R0,@R5 ; x
L11:
 .RES.W 1
 .DATA.L __divls
 .DATA.L _x

REJ06J0028-0100/Rev.1.00 September 2007 Page 15 of 49

APPLICATION NOTE

1.1.6 Unaligned data transfer
You can select whether instruction expansion or a run-time routine call should be applied to the data transfer of a structure,
union, or class whose alignment value is 1. If inline (instruction expansion) is specified, the transfer is always
expanded into instructions. If runtime (run-time routine call) is specified, the transfer is expanded into instructions
unless the number of instructions after the expansion would be large. If the number of instructions would be large after the
expansion, the transfer is treated as a run-time routine call.

Format:

Unaligned = Inline : The default advan ced option used when the basic option is "speed" or
"nospeed".
 Runtime : The default advanced option used when the basic option is "size".

 Option settings in Renesas IDE:

Figure 1-12

REJ06J0028-0100/Rev.1.00 September 2007 Page 16 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 17 of 49

Example:
Source code:
#pragma pack 1
struct {
 char a;
 short b;
 int c;
} x,y;
#pragma unpack

void func(void)
{
 x.c = y.c;
}

Expanded assembly code (unaligned=inline
specified)
_func:
 MOV.L L11+2,R3 ; H'00000003+_y
 MOV.L L11+6,R7 ; H'00000003+_x
 MOV.B @R3,R4 ; y.c
 MOV.B @(1,R3),R0 ; y.c
 MOV.B R4,@R7 ; x.c
 MOV.B R0,@(1,R7) ; x.c
 MOV.B @(2,R3),R0 ; y.c
 MOV.B R0,@(2,R7) ; x.c
 MOV.B @(3,R3),R0 ; y.c
 RTS
 MOV.B R0,@(3,R7) ; x.c
L11:
 .RES.W 1
 .DATA.L H'00000003+_y
 .DATA.L H'00000003+_x

Expanded assembly code (unaligned=runtime
specified)
_func:
 STS.L PR,@-R15
 MOV.L L11+2,R2 ; H'00000003+_y
 MOV.L L11+6,R1 ; H'00000003+_x
 MOV.L L11+10,R7 ; __slow_mvn
 JSR @R7
 MOV #4,R0 ; H'00000004
 LDS.L @R15+,PR
 RTS
 NOP
L11:
 .RES.W 1
 .DATA.L H'00000003+_y
 .DATA.L H'00000003+_x
 .DATA.L __slow_mvn

APPLICATION NOTE

1.1.7 Expansion of constant loading instructions
You can select whether a constant load is expanded into instructions (inline) or treated as a literal load (literal).

In SH microcomputers, instructions can hold eight-bit constants (20-bit constants in SH-2A microcomputers). A 2-byte
or 4-byte constant is handled in either of the following ways:

Literal load: Constant data (a literal) prepared in memory is loaded into a register.
Instruction expansion: Eight-bit constants are computed to obtain the 2-byte or four-byte constant.

When a literal load is used, the program size is likely to be smaller. When instruction expansion is used, the number of
memory accesses is likely to be smaller. If literal is specified, a literal load is used only when the constant is two
bytes or larger. If inline is specified, all 1-byte and 2-byte constants and some 4-byte constants are obtained by
instruction expansion.

When the basic option is size or nospeed, instruction expansion is used if the constant satisfies the following
condition, and a literal load is used if the constant does not satisfy the condition:

2-byte constant: Obtained from two or fewer instructions
4-byte constant: Obtained from three or fewer instructions

Format:

CONST_Load = Inline : The default advanced option used when the basic option is "speed".
 Literal : The default advanced option used when the basic option is "size" or "nospeed".

(Note, however, that when "size" or "nospeed" is selected, instruction
expansion occurs depending on the condition.)

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as
follows.

Figure 1-13

REJ06J0028-0100/Rev.1.00 September 2007 Page 18 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 19 of 49

Example:
Source code:
int a;

void func(void)
{
 a = 0x4567;
}

Expanded assembly code (const_load=inline
specified)
_func:
 MOV #69,R2 ; H'00000045
 SHLL8 R2
 MOV.L L11,R6 ; _a
 ADD #103,R2
 RTS
 MOV.L R2,@R6 ; a
L11:
 .DATA.L _a

Expanded assembly code (const_load=literal
specified)
_func:
 MOV.L L11+4,R6 ; _a
 MOV.W L11,R2 ; H'4567
 RTS
 MOV.L R2,@R6 ; a
L11:
 .DATA.W H'4567
 .RES.W 1
 .DATA.L _a

Supplementary note:

The optimal setting of this option differs depending on the memory architecture of the target system. In a system in which
memory access is fast, literal access is likely to be executed faster than instruction expansion. In a system in which
memory access is slow, instruction expansion is likely to be executed faster than literal access.

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 20 of 49

1.2 Advanced options for improving performance
This section explains the advanced optimization options, use of which can improve performance.

Table 1-2 Advanced options for improving performance

No. Functionality Option Effectiveness
on size

Effectiveness
on speed

See
section

1 Specifies address range abs16, abs20, abs28,
abs32

A+ A 1.2.1

2 Disposition of variables stuff, nostuff A+ -- 1.2.2
3 Optimized for access to external

variables
map, smap A+ A+ 1.2.3

4 GBR Relative Logic Operation
Generation

logic_gbr A A 1.2.4

5 Division of optimizing ranges scope, noscope B B 1.2.5
6 MAC register macsave A A 1.2.6
7 Extension of return value rtnext, nortnext B B 1.2.7
8 Enumeration data size auto_enum A C 1.2.8
9 Switch statement expansion

method
case B B 1.2.9

A+: Very effective.
A: Effective.
B: Sometimes effective, sometimes lowers performance.
C: Lowers performance.
--: No effect.

1.2.1 Specifies address range
The address area declarations abs16, abs20, abs28, and abs32 tell the compiler that the variable or function is in the
16-, 20-, 28-, or 32-bit address areas, respectively. The default is the 32-bit address area.

The #pragma abs16, abs20, abs28, or abs32 directive can also be used to declare an address area. If both the
#pragma directive and the abs16, abs20, abs28, or abs32 option are specified, the #pragma directive takes
precedence.

For details about address area declaration, see 1.1 Specifies address range in the manual SuperH RISC engine C/C++
Compiler Package APPLICATION NOTE: [Compiler Use guide] Extended Specifications.

Format:

ABs16 = { Program | Const | Data | Bss | Run | All }[,...]
ABS20 = { Program | Const | Data | Bss | Run | All }[,...]
ABS28 = { Program | Const | Data | Bss | Run | All }[,...]
ABS32 = { Program | Const | Data | Bss | Run | All }[,...]

APPLICATION NOTE

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Object from the Category
drop-down list, and click Details (Figure 1-10). In the displayed dialog box, shown below, specify the settings as
follows.

Figure 1-14

1.2.2 Disposition of variables
You can use the stuff option to align variables to any byte boundary alignment sections depending on the size of the
variables. This option can eliminate the empty (padded) areas that are used for boundary adjustment, thus conserving
memory.

4 bytes
2 bytes 1 byte

4 bytes
1 byte

4 bytes
Empty

Empty

2 bytes
4 bytes

Empty

4 bytes

2 bytes
1 byte

4 bytes

1 byte

4 bytes

Empty
2 bytes

4 bytes

1 byte 1 byte

Figure 1-15

In the stuff option, you can also specify a section type. If a section type is specified, the variables that belonging to the
section type are assigned to 4-byte, 2-byte, or 1-byte boundary alignment sections depending on the size of the variables.
If a section type is not specified, all types of sections are subject to the alignment.

The data within a section is output in the order in which it is defined. Note that the bss_order=declaration
specification is ignored.

If nostuff is specified, all variables are placed in the 4-byte-boundary section. The order of the data placed in each
section differs depending on the section type. For the sections of type const or data, data is placed in the order in
which it is defined. For the sections of type bss, the data is ordered according to the bss_order specification.
nostuff is the default.

REJ06J0028-0100/Rev.1.00 September 2007 Page 21 of 49

APPLICATION NOTE

Table 1-3 Variable sizes and section names

Variable size Section type Default section
name 4n 4n + 2 2n + 1

Constant area const C C$4 C$2 C$1
Initialized data area data D D$4 D$2 D$1
Uninitialized data area bss B B$4 B$2 B$1

If a default section name has been changed, the new default section name replacing C, D, or B is followed by $4, $2, or
$1.

Format:

STUff [= section-type[,...]]
NOSTuff
section-type: { Bss | Data | Const }

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Object from the Category
drop-down list, and click Details (Figure 1-10). In the displayed dialog box, shown below, specify the settings as
follows.

Figure 1-16

REJ06J0028-0100/Rev.1.00 September 2007 Page 22 of 49

APPLICATION NOTE

Example:
Source code:
int a;
short b;
char c;
int d;
char e;
int f;
char g;
short h;
int i;

Expanded assembly code (nostuff specified)
 .SECTION B,DATA,ALIGN=4
_a: ; static: a
 .RES.L 1
_b: ; static: b
 .RES.W 1
_c: ; static: c
 .RES.B 1
 .RES.B 1
_d: ; static: d
 .RES.L 1
_e: ; static: e
 .RES.B 1
 .RES.B 1
 .RES.W 1
_f: ; static: f
 .RES.L 1
_g: ; static: g
 .RES.B 1
 .RES.B 1
_h: ; static: h
 .RES.W 1
_i: ; static: i
 .RES.L 1

Expanded assembly code (stuff specified)
 .SECTION B$4,DATA,ALIGN=4
_a: ; static: a
 .RES.L 1
_d: ; static: d
 .RES.L 1
_f: ; static: f
 .RES.L 1
_i: ; static: i
 .RES.L 1
 .SECTION B$2,DATA,ALIGN=2
_b: ; static: b
 .RES.W 1
_h: ; static: h
 .RES.W 1
 .SECTION B$1,DATA,ALIGN=1
_c: ; static: c
 .RES.B 1
_e: ; static: e
 .RES.B 1
_g: ; static: g
 .RES.B 1

a
b c

d
e

f
Empty

Empty

h
i

Empty

d

b
e

a

c

f

Empty
h

i

g g

REJ06J0028-0100/Rev.1.00 September 2007 Page 23 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 24 of 49

1.2.3 Optimized for access to external variables
The map and smap options are provided so that accesses to external variables can be performed as relative accesses from
a base external variable. As a result, the loading of the addresses of external variables becomes unnecessary, improving
execution speed. Since the address value literals can be omitted, program size is also reduced. If gbr=auto has been
specified, an external variable might be accessed with a GBR relative instruction whose relative value is larger than the
normal MOV instruction. External variable access optimization is effective for optimizing both execution speed and
program size.

When the map option is used, optimization requires the external symbol allocation information generated by the
Optimizing Linkage Editor. For this reason, compilation must be performed twice.

When the smap option is used, external variable optimization is performed for only external variables defined in the file
to be compiled. Since the external symbol allocation information generated by the Optimizing Linkage Editor is not
required, compilation is required only once.

Although the optimization implemented by the map option is more effective than the optimization implemented by the
smap option, compilation is required twice for the smap option optimization. Furthermore, the optimization can be
performed only when an address-resolved execution module (such as abs or mot) is generated. When the smap option
optimization is used, compilation is required only once, and can be performed when a file whose addresses have not been
resolved (such as a library file). Note that in this case, however, only the external variables defined in the file can be
optimized.

Table 1-4 Advantages and disadvantages of "map" and "smap"

Option
Number of times

compilation
required

Build time
External symbol allocation

information file generated by
the Optimizing Linkage Editor

Effectiveness Address
resolution

map Twice Long Required High Required
smap Once Short Not required Low Not required

Format:

• Inter-module specification
MAP = file-name

Perform compilation once without specifying the map option, and then, during linkage, specify map=file-name to
generate an external symbol allocation information file. Next, perform a second compilation with the external
symbol allocation information file (map=file-name) specified.
Note that if the definition order of external variables or static variables is changed, you must regenerate the
external symbol allocation information file.
Also note that the result is not guaranteed if the second compilation satisfies either of the following conditions:
• Options other than the options specified for the first compilation and the map option are specified.
• The specified source file differs from the source file specified for the first compilation.

• Intra-module specification

SMap

APPLICATION NOTE

Option settings in Renesas IDE:

If you change the scope of external variable access optimization to Inner-module from another scope or from
Inter-module to another scope, a warning message appears. The reason this message appears is that changing of this
setting automatically enables or disables generation of the external symbol allocation information file from the
Optimizing Linkage Editor.

Figure 1-17

Inner-module:
 smap
Inter-module:
 map

REJ06J0028-0100/Rev.1.00 September 2007 Page 25 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 26 of 49

Example 1:

In this example, variables that are allocated in succession are accessed by relative access in the same register based on
the variable allocation order.

Source code:
int a,b;
void f(void)
{

a=0;
b=0;

}

Expanded assembly code (map/smap not specified)
_f:
 MOV.L L11,R1 ; _a
 MOV.L L11+4,R4 ; _b
 MOV #0,R2 ; H'00000000
 MOV.L R2,@R1 ; a
 RTS
 MOV.L R2,@R4 ; b
L11:
 .DATA.L _a
 .DATA.L _b

Expanded assembly code (map/smap specified)
_f:
 MOV.L L11+2,R6 ; _a
 MOV #0,R2 ; H'00000000
 MOV.L R2,@R6 ; a
 RTS
 MOV.L R2,@(4,R6) ; b
L11:
 .RES.W 1
 .DATA.L _a

Example 2:

In this example, GBR is used as the base for accessing external variables when the gbr=auto option (default) is
specified.

Source code:
int a[100];
void f(void)
{
 a[0]=0;
 a[50]=0;
 a[51]=0;
 a[52]=0;
}

Expanded assembly code (map/smap not specified)
_f:
 MOV.L L11+2,R5 ; _a
 MOV #-56,R0 ; H'FFFFFFC8
 MOV #0,R4 ; H'00000000
 EXTU.B R0,R0
 MOV.L R4,@R5 ; a[]
 MOV.L R4,@(R0,R5); a[]
 ADD #4,R0
 MOV.L R4,@(R0,R5); a[]
 ADD #4,R0
 RTS
 MOV.L R4,@(R0,R5); a[]
L11:
 .RES.W 1
 .DATA.L _a

Expanded assembly code (map/smap specified)
_f:
 STC GBR,@-R15
 MOV.L L11,R0 ; _a
 LDC R0,GBR
 MOV #0,R0 ; H'00000000
 MOV.L R0,@(0,GBR); a[]
 MOV.L R0,@(200,GBR); a[]
 MOV.L R0,@(204,GBR); a[]
 MOV.L R0,@(208,GBR); a[]
 RTS
 LDC @R15+,GBR
L11:
 .DATA.L _a

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 27 of 49

1.2.4 GBR Relative Logic Operation Generation
If a GBR-relative logical operation code can be generated for an external variable for which #pragma gbr_base or
gbr_base1 is not specified, the external variable can be accessed by GBR relative access code.

A GBR-relative logical operation code can be generated for the following operations:

• Bitwise operation (AND, OR, or XOR) for an external variable of type char or unsigned char
• Reference of a bit field of an external variable

Format:

LOGIc_gbr

This option takes effect only when gbr=user is specified. Before you use this option, you must allocate the $G0
section by the linkage editor and set the first address of the section in the GBR register. You can use the
set_gbr() intrinsic function to set the address.

Example 1:
Source code:

char a;

void func(void)
{

a &= 0x0f;
}

Expanded assembly code (logic_gbr not
specified)
_func:
 MOV.L L11+2,R6 ; _a
 MOV.B @R6,R0 ; a
 AND #15,R0
 RTS
 MOV.B R0,@R6 ; a
L11:
 .RES.W 1
 .DATA.L _a

Expanded assembly code (logic_gbr specified)
_func:
 MOV.L L11+2,R0 ; _a-(STARTOF $G0)
 RTS
 AND.B #15,@(R0,GBR); a
L11:
 .RES.W 1
 .DATA.L _a-(STARTOF $G0)

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 28 of 49

Example 2:
Source code:

struct {
 unsigned char a:1;
 unsigned char b:1;
} x;

void func(void)
{

if (x.a) {
 x.b = 1;
 }
}

Expanded assembly code (logic_gbr not specified)
_func:
 MOV.L L13,R5 ; _x
 MOV.B @R5,R0 ; (part of)x
 TST #128,R0
 BT L12
 OR #64,R0
 MOV.B R0,@R5 ; (part of)x
L12:
 RTS
 NOP
L13:
 .DATA.L _x

Expanded assembly code (logic_gbr specified)
_func:
 MOV.L L13,R0 ; _x-(STARTOF $G0)
 TST.B #128,@(R0,GBR); (part of)x
 BT L12
 OR.B #64,@(R0,GBR); (part of)x
L12:
 RTS
 NOP
L13:
 .DATA.L _x-(STARTOF $G0)

APPLICATION NOTE

1.2.5 Division of optimizing ranges
You can specify whether to divide the optimization range of a function at compile time.

If the scope option is specified, the optimization range of a large function might be divided during compilation.

If the noscope option is specified, the optimization range of a function is not divided. In this case, since the entire
function can be optimized, normally both the program size and execution time can be reduced. However, if there are not
enough registers, performance might be degraded.

Since the more effective option depends on the program, try both options while tuning the performance.

Note that compilation takes more time when the optimization scope is not divided.

Format:

SCOpe
NOSCope

An information-level message indicates whether the optimization range of a function has been divided. Information-level
messages are output when the message option is specified.

The following is an information-level message that indicates that the optimization scope has been divided:

C0101 (I) Optimizing range divided in function "function-name"

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as follows.

Figure 1-18

REJ06J0028-0100/Rev.1.00 September 2007 Page 29 of 49

APPLICATION NOTE

1.2.6 MAC register
You can specify whether the contents of the MACH and MACL registers are to be guaranteed at function entry and exit
points.

If macsave=1 is specified, the contents of these registers are guaranteed. That is, the contents of the registers are saved
and restored at function entry and exit points. If macsave=0 is specified, the contents of these registers are not
guaranteed. In this case, the contents of the registers are saved and restored on the function caller side.

In optimization by the current version of the compiler, the macsave=0 specification is likely to reduce both the program
size and the execution time. However, for compatibility with previous versions, the default is macsave=1.

Since performance might improve, you should try specifying macsave=0.

Format:

Macsave = { 0 | 1 }

Caution:

A function compiled with macsave=0 specified (MAC registers not guaranteed) cannot be called from a function
compiled with macsave=1 specified (MAC registers guaranteed). However, the reverse situation is possible.

Option settings in Renesas IDE:

Figure 1-19

REJ06J0028-0100/Rev.1.00 September 2007 Page 30 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 31 of 49

Example:
Source code:

int sum;
int func(short a, short b)
{
 sum += a * b;

 return sum;
}

Expanded assembly code (macsave=1 specified)
_func:
 STS.L MACL,@-R15
 MULS.W R4,R5
 MOV.L L11+2,R1 ; _sum
 MOV.L @R1,R0 ; sum
 STS MACL,R2
 ADD R2,R0
 MOV.L R0,@R1 ; sum
 RTS
 LDS.L @R15+,MACL
L11:
 .RES.W 1
 .DATA.L _sum

Expanded assembly code (macsave=0 specified)
_func:
 MULS.W R4,R5
 MOV.L L11+2,R1 ; _sum
 MOV.L @R1,R0 ; sum
 STS MACL,R2
 ADD R2,R0
 RTS
 MOV.L R0,@R1 ; sum
L11:
 .RES.W 1
 .DATA.L _sum

APPLICATION NOTE

1.2.7 Extension of return value
If the return value of a function is of type char, unsigned char, short, or unsigned short, you can specify
whether sign extension/zero extension is to be performed by the called function (rtnext) or by the caller (nortnext).

By default, the caller performs sign extension/zero extension.

If the function is called more than once, code is likely to be more efficient when extension is performed by the called
function, because the extension needs to be coded only once. When extension is performed by the caller, optimization is
likely to delete unnecessary extensions. Since the more efficient option depends on the program structure, try both
options.

The option specification must be consistent throughout the project.

Format:

RTnext
NORTnext

Option settings in Renesas IDE:

Figure 1-20

REJ06J0028-0100/Rev.1.00 September 2007 Page 32 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 33 of 49

Example:
Source code:

short x,y;
int i,j,k;

short f(short a, short b)
{
 return a * b;
}

void g(void)
{
 i = f(x,y);
 j = f(x,y);
 k = f(x,y);
}

Expanded assembly code (nortnext specified)
_f:
 STS.L MACL,@-R15
 MULS.W R4,R5
 STS MACL,R0
 RTS
 LDS.L @R15+,MACL
_g:
 MOV.L R13,@-R15
 MOV.L R14,@-R15
 STS.L PR,@-R15
 MOV.L L12,R13 ; _y
 MOV.L L12+4,R14 ; _x
 MOV.W @R13,R5 ; y
 BSR _f
 MOV.W @R14,R4 ; x
 MOV.L L12+8,R2 ; _i
 EXTS.W R0,R1
 MOV.W @R13,R5 ; y
 MOV.W @R14,R4 ; x
 BSR _f
 MOV.L R1,@R2 ; i
 MOV.L L12+12,R1 ; _j
 EXTS.W R0,R7
 MOV.W @R13,R5 ; y
 MOV.W @R14,R4 ; x
 BSR _f
 MOV.L R7,@R1 ; j
 MOV.L L12+16,R6 ; _k
 EXTS.W R0,R2
 MOV.L R2,@R6 ; k
 LDS.L @R15+,PR
 MOV.L @R15+,R14
 RTS
 MOV.L @R15+,R13
L12:
 .DATA.L _y
 .DATA.L _x
 .DATA.L _i
 .DATA.L _j
 .DATA.L _k

Expanded assembly code (rtnext specified)
_f:
 STS.L MACL,@-R15
 MULS.W R4,R5
 STS MACL,R2
 EXTS.W R2,R0
 RTS
 LDS.L @R15+,MACL
_g:
 MOV.L R13,@-R15
 MOV.L R14,@-R15
 STS.L PR,@-R15
 MOV.L L12,R13 ; _y
 MOV.L L12+4,R14 ; _x
 MOV.W @R13,R5 ; y
 BSR _f
 MOV.W @R14,R4 ; x
 MOV.L L12+8,R1 ; _i
 MOV.W @R13,R5 ; y
 MOV.W @R14,R4 ; x
 BSR _f
 MOV.L R0,@R1 ; i
 MOV.L L12+12,R2 ; _j
 MOV.W @R13,R5 ; y
 MOV.W @R14,R4 ; x
 BSR _f
 MOV.L R0,@R2 ; j
 MOV.L L12+16,R7 ; _k
 MOV.L R0,@R7 ; k
 LDS.L @R15+,PR
 MOV.L @R15+,R14
 RTS
 MOV.L @R15+,R13
L12:
 .DATA.L _y
 .DATA.L _x
 .DATA.L _i
 .DATA.L _j
 .DATA.L _k

APPLICATION NOTE

1.2.8 Enumeration data size
You can use the auto_enum option to handle enumeration data declared by an enum declaration as the smallest data
type that can contain enumerated values.

If the auto_enum option is not specified, enumeration data is handled as type int. If the auto_enum option is
specified, the data type changes depending on the range of possible enumerator values. Table 1-5 shows the relationship
between the possible enumerator values and data types.

Table 1-5 Possible enumerator values and data types

Enumerator
Minimum Value Maximum Value

Data Type

-128 127 signed char
0 255 unsigned char

-32768 32767 signed short
0 65535 unsigned short

Other than the above int

Use of this option can reduce the size of handled data. The option is especially effective for reducing size when there are
many variables and structure members of type enum. However, since the number of extensions might increase when this
option is specified, specifying this option might reduce the execution speed.

Format:

AUto_enum

Option settings in Renesas IDE:

Figure 1-21

REJ06J0028-0100/Rev.1.00 September 2007 Page 34 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 35 of 49

Example:
Source code:

enum En {A_000 =0,A_001,A_002,A_003,A_END=255};
enum En x[3] = {A_000, A_001, A_END};

Expanded assembly code (auto_enum not specified)
_x: ; static: x
 .DATA.L
H'00000000,H'00000001,H'000000FF

Expanded assembly code (auto_enum specified)
_x: ; static: x
 .DATA.B H'00,H'01,H'FF

APPLICATION NOTE

1.2.9 Switch statement expansion method
You can use the case option to select whether to use the if-then method or the table method for evaluation of a switch
statement. If the if-then method is selected, the target value is compared with each case value. If the table method is
selected, the data table created with the relative value of each case value is referenced for comparison. If there are only
a few case clauses or the difference between the maximum and minimum case values is large, the if-then method
might be used regardless of the specification of the case option.

When the case option is not specified, the compiler automatically selects one or the other of the methods as follows:

(1) If there are only a few case labels or the difference between the maximum and minimum case values is large, the
compiler selects the if-then method.

(2) When (1) does not apply, if the case option is specified, the compiler follows the option specification.
(3) When neither (1) nor (2) applies, if the basic option is speed and the number of case labels is about 10 or more, the

compiler selects the table method.

When a specific case value matches frequently during program execution, program execution likely to be faster if the
relevant case value is written first and the if-then method is specified.

For details, see 5. Branching in the manual SuperH RISC engine C/C++ Compiler Package APPLICATION NOTE:
[Compiler use guide] Efficient programming techniques.

Format:

CAse = { Ifthen | Table }

 Option settings in Renesas IDE:

Figure 1-22

REJ06J0028-0100/Rev.1.00 September 2007 Page 36 of 49

APPLICATION NOTE

2. Useful Options
This chapter explains options that provide benefits that are not related to the improvement of performance.

Table 2-1 List of useful options

No. Functionality Option See section
1 Debugging Information Output Mode optimize 2.1
2 Pre-processor expansion preprocessor/noline 2.2
3 External variables handled as volatile global_volatile 2.3
4 Vacant loop elimination del_vacant_loop 2.4
5 Elimination of expression preceding infinite loop infinite_loop 2.5
6 Switches the order of bit assignment bit_order 2.6
7 pack 2.7Specifies the boundary alignment value for

structures, unions, and classes

2.1 Debugging Information Output Mode
When the optimize=debug_only option is specified, you can always view local variable information during
debugging. In addition, optimization related to statement-based deletion is suppressed completely. This allows you to set
a break point for each statement in the C source code. Note that performance of an object generated with this option
specified might be less than the performance of the object generated with optimize=0 (no optimization) specified.
Before you use this option, you should first test it during debugging.

REJ06J0028-0100/Rev.1.00 September 2007 Page 37 of 49

[optimize=0] [optimize=debug_only]

Figure 2-1

Format:

OPtimize = { 0 | 1 | Debug_only }

APPLICATION NOTE

Option settings in Renesas IDE:

Figure 2-2

REJ06J0028-0100/Rev.1.00 September 2007 Page 38 of 49

APPLICATION NOTE

2.2 Pre-processor expansion
Outputs a source program processed by the preprocessor. The resultant code in the file replaces the #include and
#define directives in the original code with the corresponding code. Because information such as header files has
already been expanded, this file can be compiled without the use of any other files.

If no <file name> is specified, an output file with the same file name as the source file and with a standard extension is
created. The standard extension after C compilation is p (if the input source program is written in C), and that after C++
compilation is pp (if the input source program is written in C++).

When preprocessor is specified, no object file is output from the compiler.

When noline is specified, disables #line output at preprocessor expansion.

Format:

PREProcessor [= file-name]
NOLINe

Option settings in Renesas IDE:

Figure 2-3

REJ06J0028-0100/Rev.1.00 September 2007 Page 39 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 40 of 49

Example:
Source code:
#define NUM 1
#define MESSAGE(num, name) {num, __DATE__, #name}

struct {
 int num ;
 char* date ;
 char* string;
} data[] = {
 MESSAGE(NUM, aaaa),
};
Preprocessor expansion:
#line 1 "test.c"

struct {
 int num ;
 char* date ;
 char* string;
} data[] = {
 {1, "Jun 13 2007", "aaaa"},
};

APPLICATION NOTE

2.3 External variables handled as volatile
The compiler statically parses C source code and might optimize the access order of a variable and the number of times a
variable is accessed if, by doing so, the meaning of the source code does not change. However, if this type of optimization
is performed for variables that are used for I/O register access or interrupt processing, the program might not operate as
intended. To avoid program misoperation, you must therefore declare these variables as volatile. If a variable has been
declared as volatile, optimization will not change the access width of the variable, or access order of the variable, or the
number of times the variable is accessed.

Although you need to carefully determine whether a variable should be declared as volatile, checking all variables might
be difficult if, for example, a legacy system is reused. For cases such as these, try global_volatile=1, which directs
the compiler to treat all external variables as volatile.

Format:

GLOBAL_Volatile = { 0 | 1 }

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as follows.

Figure 2-4

REJ06J0028-0100/Rev.1.00 September 2007 Page 41 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 42 of 49

Example:
Source code:
int var;
void func(void)
{
 var = 1;
 var = 0;
}

Source after optimization (global_volatile=0
specified)

int var;
void func(void)
{

var = 0;
}

Source after optimization (global_volatile=1
specified)

int var;
void func(void)
{
 var = 1;
 var = 0;
}

Expanded assembly code (global_volatile=0
specified)
_func:
 MOV.L L11,R6 ; _var
 MOV #0,R2 ; H'00000000
 RTS
 MOV.L R2,@R6 ; var
L11:
 .DATA.L _var

Expanded assembly code (global_volatile=1
specified)
_func:
 MOV.L L11,R6 ; _var
 MOV #1,R1 ; H'00000001
 MOV #0,R4 ; H'00000000
 MOV.L R1,@R6 ; var
 RTS
 MOV.L R4,@R6 ; var
L11:
 .DATA.L _var

APPLICATION NOTE

2.4 Vacant loop elimination
You can select whether to delete empty loops (loops which contain no processing).

If del_vacant_loop=0 is specified, the compiler does not delete empty loops. If del_vacant_loop=1 is
specified, the compiler deletes empty loops. The default is del_vacant_loop=0.

Note that if you specify del_vacant_loop=1, the compiler also deletes necessary empty loops that have been
intentionally coded this way. For example, an empty loop might have been coded for timing purposes.

Format:

DEL_vacant_loop = { 0 | 1 }

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as follows.

Figure 2-5

REJ06J0028-0100/Rev.1.00 September 2007 Page 43 of 49

APPLICATION NOTE

2.5 Elimination of expression preceding infinite loop
When an expression that assigns a value to a non-volatile external variable precedes an infinite loop in which the external
variable is not referenced, you can delete the expression.

When infinite_loop=0 is specified, an assignment expression for external variables, which is located immediately
before an infinite loop is not eliminated.

When infinite_loop=1 is specified, an assignment expression that is located immediately before an infinite loop
and is for external variables that are not referenced from the infinite loop is eliminated.

The default for this option is infinite_loop=0.

Format:

INFinite_loop = { 0 | 1 }

Option settings in Renesas IDE:

In the SuperH RISC engine Standard Toolchain dialog box, on the C/C++ tab, select Optimize from the Category
drop-down list, and click Details (Figure 1-2). In the displayed dialog box, shown below, specify the settings as follows.

Figure 2-6

REJ06J0028-0100/Rev.1.00 September 2007 Page 44 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 45 of 49

Example:
Source code:
int a;
void f(void)
{
 a = 1;
 while(1) {
 }
}

Source after optimization (infinite_loop=0
specified)

int a;
void f(void)
{
 a = 1;
 while(1) {
 }
}

Source after optimization (infinite_loop=1
specified)

int a;
void f(void)
{
 while(1) {
 }
}

Expanded assembly code (infinite_loop=0
specified)
_f:
 MOV.L L13+2,R6 ; _a
 MOV #1,R2 ; H'00000001
 MOV.L R2,@R6 ; a
L11:
 BRA L11
 NOP
L13:
 .RES.W 1
 .DATA.L _a

Expanded assembly code (infinite_loop=1
specified)
_f:
L10:
 BRA L10
 NOP

APPLICATION NOTE

2.6 Switches the order of bit assignment
Specifies the order of bit field members. Since the bit field member allocation rule might differ depending on the
microcomputer, you can use this functionality to improve portability of programs between different microcomputers.

When bit_order=left is specified, members are allocated from the upper bit.

When bit_order=right is specified, members are allocated from the lower bit.

You can also use the #pragma bit_order directive to specify the bit field order. If you specify both the bit_order
option and the #pragm a bit_order directive, the #pragma bit_order directive takes precedence.

For details about the functionality of this option, see 2.2 Switches the order of bit fields in the manual SuperH RISC
engine C/C++ Compiler Package APPLICATION NOTE: [Compiler Use guide] Extended Specifications.

Format:

BIt_order = { Left | Right }

Option settings in Renesas IDE:

Figure 2-7

REJ06J0028-0100/Rev.1.00 September 2007 Page 46 of 49

APPLICATION NOTE

2.7 Specifies the boundary alignment value for structures, unions, and classes
In some types of programs, such as communication programs, you might not want structures to have padding bits. This is
also true for unions and classes. In these cases, you can specify the pack=1 option to align structure members on a 1-bit
boundary. Structures aligned on a 1-bit boundary do not include a padding area.

You can also use the #pragma pack directive to specify the alignment for structures. If you specify both the pack
option and the #pragma pack directive, the #pragma pack directive takes precedence.

For details about the functionality of this option, see 2.3 Specifies the boundary alignment value for structures, unions,
and classes in the manual SuperH RISC engine C/C++ Compiler Package APPLICATION NOTE: [Compiler Use guide]
Extended Specifications.

Format:

PACK = { 1 | 4 }

Option settings in Renesas IDE:

Figure 2-8

REJ06J0028-0100/Rev.1.00 September 2007 Page 47 of 49

APPLICATION NOTE

REJ06J0028-0100/Rev.1.00 September 2007 Page 48 of 49

Website and Support <website and support,ws>
Renesas Technology Website

http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry
csc@renesas.com

Revision Record <revision history,rh>
Description

Rev.

Date Page Summary
1.00 Sep.01.07 -- First edition

http://japan.renesas.com/
http://japan.renesas.com/inquiry
mailto:csc@renesas.com

APPLICATION NOTE

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2007. Renesas Technology Corp., All rights reserved.

REJ06J0028-0100/Rev.1.00 September 2007 Page 49 of 49

	1. Optimization Options
	1.1 Basic options (Optimize for speed, Optimize for size, Optimize for both speed and size)
	1.1.1 Automatic inline expansion
	1.1.2 Loop unroll
	1.1.3 Shift-operation expansion
	1.1.4 Transfer-code expansion
	1.1.5 Method of division (microcomputer other than SH-1)
	1.1.6 Unaligned data transfer
	1.1.7 Expansion of constant loading instructions

	1.2 Advanced options for improving performance
	1.2.1 Specifies address range
	1.2.2 Disposition of variables
	1.2.3 Optimized for access to external variables
	1.2.4 GBR Relative Logic Operation Generation
	1.2.5 Division of optimizing ranges
	1.2.6 MAC register
	1.2.7 Extension of return value
	1.2.8 Enumeration data size
	1.2.9 Switch statement expansion method

	2. Useful Options
	2.1 Debugging Information Output Mode
	2.2 Pre-processor expansion
	2.3 External variables handled as volatile
	2.4 Vacant loop elimination
	2.5 Elimination of expression preceding infinite loop
	2.6 Switches the order of bit assignment
	2.7 Specifies the boundary alignment value for structures, unions, and classes

	 Website and Support <website and support,ws>

