

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2002/4/15

1/1

HITACHI SEMICONDUCTOR TECHNICAL UPDATE

Classification
of Production Development Environment No TN-CSX-036A/E

THEME
SuperH RISC engine C/C++ Compiler
Ver.7.0.04 bug report

Classification of
Information

1. Spec change
2. Supplement of

Documents
3. Limitation of Use

4. Change of Mask
5. Change of Production Line

Lot No. Rev. Effective Date

PRODUCT
NAME

SH-1,SH-2,SH-2E,
SH2-DSP,SH-3,
SH3-DSP,SH-4 All

Reference
Documents

1 Eternity

Attached is the description of the known bugs in Ver. 7.0.04 of the SuperH RISC engine C/C++ compiler.
Inform the customers who have the package version in the table below of the bugs.

Package version Compiler version
7.0B 7.0B

P0700CAS7-MWR 7.0.01 7.0.03
7.0.02 7.0.04
7.0B 7.0B

P0700CAS7-SLR 7.0.02 7.0.03
7.0.03 7.0.04
7.0B 7.0B

P0700CAS7-H7R 7.0.02 7.0.03
7.0.03 7.0.04

The checker of the bugs is on the URL below for downloading.

http://www.hitachisemiconductor.com/sic/jsp/japan/eng/products/mpumcu/tool/download/caution7002.html

Attached: P0700CAS7-020405E
 SuperH RISC engine C/C++ Compiler Ver. 7.0.04
 Known bugs in this release

(Note)
URL described on the body was changed to the following.
http://tool-support.renesas.com/eng/toolnews/shc/shcv7/dr_shv7.html

P0700CAS7-020405E

SuperH RISC engine C/C++ compiler Ver.7.0.04

Known bugs in this release

The known bugs in this release of the compiler are described below. Those bugs in the program

can be found using the checker on the URL below.

http://www.hitachisemiconductor.com/sic/jsp/japan/eng/products/mpumcu/tool/download/caution70

02.html

1. Illegal destruction of the R0 register.

When a parameter is passed via the stack, the R0 register may be illegally overwritten

 [Example]

 short func1(short a0, int *a1, int a2, short a3, short a4, short a5, short a6, int a7, int a8, int a9);

 void func0(short a0, int *a1, int a2, short a3, short a4, short a5, short a6)

 {

 :

 r1=func1(0,a1,0,0,0,0,0,0,0,0);

 if((r1>0)&&(r1!=1)) {

 func1(a0,a1,0,a3,a4,a5,a6,0,0,0); /* R0 is destroyed illegally. */

 }

 :

}

:

 MOV.L R0,@(32,R15) ; Stores R0 at @ (32, R15).

 MOV R8,R5

 MOV #66,R0 ; Destroys R0.

 MOV.W @(R0,R15),R3

 MOV R9,R6

 MOV #70,R0 ; Destroys R0.

 MOV.W @(R0,R15),R1

 MOV R0,R4 ; @(32,R15) has been illegally replaced with R0.

 MOV.L R3,@(4,R15)

 MOV.L R1,@(8,R15)

(Note)
URL described on the body was changed to the following.
http://tool-support.renesas.com/eng/toolnews/shc/shcv7/dr_shv7.html

P0700CAS7-020405E

 MOV.L R9,@(12,R15)

 MOV.L R9,@(16,R15)

 BSR _func1

 MOV.L R9,@(20,R15)

[Condition]

 This problem may occur when both of the following conditions are satisfied

(1) The optimize=1 option is specified.

(2) A function receives a formal parameter passed via the stack.

[How to avoid the bug]

 The bug can be avoided with either method of the following.

(1) Specify the optimize=0 option.

(2) Modify the source program as shown in the example below.

[Example]

#include <machine.h> /* for nop() */

void func0(short a0,int *a1,int a2,short a3,short a4,short a5,short a6)

{

 int r0;

 short r1;

/* Copy each formal parameter passed via the stack to a local variable at the head of

 the function. */

 short tmp4=a4,tmp5=a5,tmp6=a6;

 /* Insert nop() right after the code above */

 nop();

/* Use those local variables instead of the formal parameters passed via the stack */

 if((a0<0)||(a0==1)) {

 return;

 }

 for(r0=0;r0<a2;r0++) {

 }

 for(;r0>0;) {

P0700CAS7-020405E

 r0--;

 a3=(short)a2;

 r1=func1(0,a1,0,0,0,0,0,0,0,0);

 if((r1>0)&&(r1!=1)) {

 func1(a0,a1,0,a3,tmp4,tmp5,tmp6,0,0,0); /* Change a4-a6 to tmp4-tmp6 */

 }

 if(r1==1) {

 func1(0,0,0,0,tmp4,0,0,0,0,0); /* Change a4 to tmp4 */

 break;

 }

 }

 return;

}

2. Illegal branch target of the BRA instruction.

In a program having an unconditional branch, the forward branch target of the BRA instruction may

be illegal if the distance from the instruction to the target is 4094 bytes.

 [Condition]

 This problem may occur when both of the following conditions are satisfied

(1) Either the code=machinecode option is specified, or the code option is not specified.

(2) The distance from the BRA instruction to the forward branch target is 4094 bytes.

[How to avoid the bug]

 The bug can be avoided with either method of the following.

(1) Check the source code using the checker and recompile the source program having this bug

with the code=asmcode option.

(2) Modify the function detected by the checker. Inserting nop() to change the branch distance

may be effective to avoid the bug.

[Example]

void func(int a) {

 if (a) {

 … /* if the condition is false, BRA with forward distance of 4094 is generated. */

 }

}

P0700CAS7-020405E

Change the program as follows.

#include <machine.h> /* for nop() */

void func(int a) {

 if (a) {

 …

 nop(); /* Insert nop() */

 }

}

