

Renesas Synergy™ プラットフォーム

I²C フレームワークモジュールガイド

R11AN0098JU0102 Rev.1.02 2019.06.10

(注1)本資料は英語版を翻訳した参考資料です。内容に相違がある場合には英語版を優先します。資料によっては 英語版のバージョンが更新され、内容が変わっている場合があります。日本語版は、参考用としてご使用のうえ、最 新および正式な内容については英語版のドキュメントを参照ください。

(注 2)本資料の第 6 章まで(要旨除く)の日本語訳は、「<u>Synergy™ Software Package (SSP) v1.5.0 ユーザーズマ</u> <u>ニュアル モジュール概要編(参考資料)</u>」の第 4 章「モジュールの概要」に掲載されていますのでそちらを参照くださ い 。

要旨(Introduction)

本モジュールガイドは、I²C フレームワークモジュール(I²C Framework Module)を効果的に使用してシステムが開発できるようになることを目的としています。このモジュールガイドを習得することで、開発システムへのモジュールの 追加とターゲットアプリケーション向けの正確な設定(configuration)ができ、さらに付属のアプリケーションプロジェク トコードを参照して、効率的なコード記述が行えるようになります。

より詳細な API や、より高度なモジュール使用法を記述した他のアプリケーションプロジェクト例もルネサス WEB サ イト(本書末尾の「参考文献」の項を参照)から入手でき、より複雑な設計に役立ちます。

I²C フレームワークモジュールは、I²C フレームワークアプリケーションで使用できる ThreadX 対応のハイレベル (high-level) API で、sf_i2c に実装されています。I²C HAL モジュールは、フレームワークが使用するシリアル通信 (serial communication)を有効にする目的で I²C 周辺回路(peripheral)を設定します。I²C フレームワークモジュー ルは、Synergy MCU 上にある I²C と SCI の各周辺回路を使用します。

目次

1.	I ² C フレームワークモジュールの機能(I ² C Framework Module Features)
2.	I ² C フレームワークモジュール API の概要(I ² C Framework Module APIs Overview)
3.	I ² C フレームワークモジュールの動作の概要(I ² C Framework Module Operational Overview)3
4.	アプリケーションでの I²C フレームワークモジュールの使用(Including the I²C Framework Module in an Application)
5.	I ² C フレームワークモジュールの構成(Configuring the I ² C Framework Module)
6.	アプリケーションでの I²C フレームワークモジュールの使用 (Using the I²C Framework Module in an Application)
7.	I²C フレームワークモジュールのアプリケーションプロジェクト(The I²C Framework Module Application Project)
8.	ターゲットアプリケーションに対応する I ² C フレームワークモジュールのカスタマイズ (Customizing the I ² C Framework Module for a Target Application)6
9.	I ² C フレームワークモジュールのアプリケーションプロジェクトの実行(Running the I ² C Framework Module Application Project)

- 12. I²C フレームワークモジュールの参考情報(I²C Framework Module Reference Information)9

- 1. I²C フレームワークモジュールの機能(I²C Framework Module Features)
- 2. I²C フレームワークモジュール API の概要(I²C Framework Module APIs Overview)
- 3. I²C フレームワークモジュールの動作の概要(I²C Framework Module Operational) Overview)
- 4. アプリケーションでの I²C フレームワークモジュールの使用(Including the I²C Framework Module in an Application)
- 5. I²C フレームワークモジュールの構成(Configuring the I²C Framework Module)
- 6. アプリケーションでの I²C フレームワークモジュールの使用(Using the I²C Framework) Module in an Application)
- 7. I²C フレームワークモジュールのアプリケーションプロジェクト(The I²C Framework Module Application Project)

このモジュールガイドに関連するアプリケーションプロジェクトは、サンプルアプリケーションの手順を示します。ISDE でアプリケーションプロジェクトをインポート(import)して開き、I²Cフレームワークモジュールに対応する設定項目を 表示することができます。また、完成した設計における IPC フレームワークモジュール API を理解するために、コード (humidity_thread_entry.c 内と pressure_thread_entry.c)を確認することもできます。

このアプリケーションプロジェクトは、I²C フレームワークモジュール API の一般的な使用方法を示します。このアプリ ケーションプロジェクトは二つのスレッドを作成します。一つはスレーブデバイス 0(slave device 0)から湿度値をサ ンプリングし、もう一つはスレーブデバイス 1(slave device 1)から気圧値をサンプリングします。この二つのデバイ スは、IPC フレームワーク共有バス(shared bus)とIPC マスタドライバーで構成される同じローレベルレイヤ(lowlevel layer)を使用します。これら二つのデバイスの違いは、I²C フレームワークデバイス内でセットされたスレーブア ドレスです。各デバイスのアクセスは、特定のスレーブアドレスへの読み出しもしくは書き込みで開始されます。

リソース	リビジョン	説明
e ² studio	v6.2.1	統合ソリューション開発環境 (ISDE)
SSP	v1.5.0	Synergy ソフトウェアプラットフォーム
IAR EW for Renesas Synergy	v8.23.1	IAR Embedded Workbench for Renesas Synergy
SSC	6.2.1	Synergy Standalone Configurator
SK-S7G2	v3.0, v3.1, v3.3	スタータキット
センサーシールドボード		
(ZR-9500-ASY)	REV B	PK-Cloud1 のアクセサリー

表 23 このアプリケーションプロジェクトが使用するソフトウェアとハードウェアのリソース

注記: この説明は、Synergy ソフトウェアパッケージ内のデバッグコンソールで printf() を使用する方法をユーザが 理解していることを想定しています。このような経験がない場合は、下記 WEB サイトの FAQ 2000008 「Synergy ソフトウェアパッケージのデバッグコンソールで Printf_使用方法」という記事を参照してください。 デバッグモードで変数ウォッチ機能を使用して結果を表示することもできます。 https://ja-support.renesas.com/knowledgeBase/17792531

下は実際のハードウェアの写真です。

図9 ハードウェア接続写真

注: チャンネル 8 I²C 信号もデュポンライン(ジャンパー線)を使用してセンサーボードと接続させることができます。

以下の図は、このアプリケーションプロジェクトのフローチャートです。

図 10 I²C フレームワークモジュールアプリケーションのフローチャート

このアプリケーションプロジェクト内の設定項目は、ターゲットキットと MCU に合わせてカスタマイズする必要があり ます。このアプリケーションプロジェクト内の I²C フレームワークモジュールは、I²C HAL モジュールを使用しており、 この I²C HAL モジュールは I²C 共有バス (shared bus) と I²C マスタドライバーをロウレベルサポートとして使用しま す。I²C HAL モジュールは、r_riic モジュールをベースとしており、チャネル 2 を使用して I²C 通信を実行します。I²C 通信用の出力ピンはスレーブデバイスからの信号接続に適合するように選択されます。これらの端子は、SCL に対 応する P104 と、SDA に対応する P105 です。これは、ISDE 内でアプリケーションプロジェクトを開き、[Pin configuration] (端子設定) タブでこれらの設定項目を参照する方法で確認できます。選択した端子が I²C 信号とし て適切であるか確認するために、SK-S7G2 の回路図でこの信号を見つけることもできます。Arduio Shield Uno イ ンタフェースは、取り付けられる追加センサーシールドボードとの接続に使われます。この追加センサーシールド ボードは PK-Cloud1 のアクセサリーです。湿度・温度センサーHIH6030 と気圧センサーMS5637 が搭載されてい れば、ユーザがカスタマイズしたボードでも代替させることができます。回路図の掲載場所は、このドキュメントの末 尾の「参考情報」の章にあります。

このアプリケーションプロジェクトの、二つのスレッドとスレッドスタックの設定は、「<u>Synergy™ Software Package (SSP)</u> <u>v1.5.0 ユーザーズマニュアル モジュール概要編(参考資料)</u>」の第4章「モジュールの概要」を参照してください。以 下の表は I²C インタフェースのポート設定です。

Pin Configuration Property	設定
Pin Group Selection	A only
Operation Mode	Simple I2C
SDA	P105
SLC	P104

表 24 SCI チャンネル 8 のピン設定 (Pin Configuration Setting)

I²C フレームワークアプリケーションプロジェクトの追加と設定に成功すると、アプリケーションプログラムからこのプロ ジェクトを使用できるようになります。I²C フレームワークアプリケーションプロジェクトも、一般的な方法で実装を行い ます。スレーブデバイス(slave device)を送付するかしないかを決めるリスタートパラメータ(restart parameter)であ る読み取りと書き込みの関数がキーになります

humidity_thread_entry.cとpressure_thread_entry.c内のコードを参照すると、この図で概要を示したフローに 従って作業を進めることができます。humidity_thread_entry.cの最初のセクションはヘッダファイルであり、I²Cイン スタンス構造体の内部を参照し、printf()を使用して結果を表示できるようにセミホスト機能を支援します。それに続く セクションは open と reset API を呼び出して I²C フレームワークデバイスの初期化を行い、スレーブデバイスからの 素データを取り込むための無限ループに入ります。write と read API を使用する前に lock API を呼び出して、シェ アードバスが他の I²C フレームデバイスによって使われるのを防ぎます。正常な場合、割り込み無しで write と read API が使用できます。素データを取得し、実データを計算して出力し、printf()を使用して結果をデバッグコンソールに 出力します。二番目のスレッドも一番目のスレッドとほぼ同じプロセスですが、最初のスレッドが MCU の I²C 周辺回 路のリセットを行うため reset API の呼び出しに関して異なります。

注記: この説明は、Synergy ソフトウェアパッケージ内のデバッグコンソールで printf()を使用する方法をユーザが 理解していることを想定しています。このような経験がない場合は、下記 WEB サイトの FAQ 2000008 「Synergy ソフトウェアパッケージのデバッグコンソールで Printf_使用方法」という記事を参照してください。 デバッグモードで変数ウォッチ機能を使用して結果を表示することもできます。 https://ja-support.renesas.com/knowledgeBase/17792531

ターゲットボードや MCU の必須の操作と物理プロパティ(physical properties)をサポートするために、このアプリ ケーションプロジェクトではいくつかの重要なプロパティを設定しています。以下の表に、それらのプロパティと、この プロジェクトで設定した値を示します。このアプリケーションプロジェクトを開き、[Properties] (プロパティ) ウィンドウで これらの設定を表示することもできます。

8. ターゲットアプリケーションに対応する I²C フレームワークモジュールのカスタマイズ (Customizing the I²C Framework Module for a Target Application)

いくつかの設定項目は通常、アプリケーションプロジェクトで示している値に対してユーザが変更を加えます。たとえば、ユーザは [Clock] (クロック) タブで PCLKD を更新する方法により、SCI クロックに関する設定項目を簡単に変 更することができます。また、ユーザは I²C フレームデバイスのスレーブアドレスを を変更して、他のセンサーと接続 することもできます。ただし、DTC 転送は I²C マスターデバイスのオプションなため、ユーザアプリケーションに従って I²C マスターデバイスからデフォルトオプションを取り除く必要があります。

9. I²C フレームワークモジュールのアプリケーションプロジェクトの実行 (Running the I²C Framework Module Application Project)

I²C フレームワークのアプリケーションプロジェクトの動作を確認するために、ターゲットキットで ISDE にこのプロジェ クトをインポートし、コンパイル(compile)してデバッグ(debug)を実行することができます。

新しいプロジェクト内で I²C Framework アプリケーションを実装するには、ターゲットキットで定義、設定、ファイルの 自動生成、コードの追加、コンパイル、デバッグを行うため、以下の手順に従います。

- 1. パッケージ付属のサンプルプロジェクトをインポートして、ビルドしてください。実行する手順については、 『Synergy プロジェクトインポートガイド』(下記 WEB)を参照してください。
 - 英語版:

https://www.renesas.com/jp/ja/doc/products/renesas-synergy/apn/r11an0023eu0121-synergy-ssp-import-guide.pdf

日本語版(参考資料):

https://www.renesas.com/jp/ja/doc/products/renesas-synergy/apn/r11an0023ju0121-synergy-ssp-import-guide.pdf

- 2. センサーシールドボードを Arduio インタフェースに差し込みます。
- 3. micro USB ケーブルで、SK-S7G2 の J19 コネクタとホスト PC を接続します。
- 4. アプリケーションのデバッグを開始します。
- 5. Renesas Debug Virtual Console (ルネサスデバッグ仮想コンソール)に結果が出力されます。

🖳 Console 🖾 🖉 Tasks 🔋 Memory Usa... 🎊 Measuring C... 😤 Renesas Co... Renesas Debug Virtual Console Failed to lock I2C framework of device1, error: 8 Humidity captured from device0 is: 31.85 % Temperature captured from device0 is: 27.49 Degrees Centigrade Pressure captured from device1 is: 1002.07 mbar Humidity captured from device0 is: 31.83 % Temperature captured from device0 is: 27.49 Degrees Centigrade Pressure captured from device1 is: 1002.02 mbar Humidity captured from device0 is: 31.83 % Temperature captured from device0 is: 27.48 Degrees Centigrade Pressure captured from device1 is: 1002.03 mbar Humidity captured from device0 is: 31.83 % Temperature captured from device0 is: 27.48 Degrees Centigrade Pressure captured from device1 is: 1001.99 mbar

図 11 PC フレームワークのアプリケーションプロジェクトのサンプル出力

- 注記: 1. 出力される値は環境によって異なることがあります。
 - 2. デバイス 0 の共有バス(shared bus)のアンロック前では、ファーストロックフェイラー(first lock failure)が 起こります。

 e2 studio でデバッグコンソールにフロー値を出力させるには、プロジェクトを見つけてから下の図のよう に、properties → C/C++ Build → Setting → Tool Setting → Cross ARM C Linker → Miscellaneous と移動して、"Use float with nano prinf(-u_printf_float)"をクリックしてください。
 IAR のターミナル I/O で出力を摂氏表示にするには、デバッグ状態で、下記の図で示すシステムの代わり に Tools → Options → Terminal I/O → Encoding → Select UTF-8 としてください。

pe filter text	Settings		\$• ⇒ •
Resource Builders C/C++ Build	Configuration: Debug [Active]	• M	anage Configurations
Build Variables Environment Logging Settings Tool Chain Editor C/C++ General MCU Project References Refactoring History Renesas QE Run/Debug Settings Task Repository	 Tool Settings Toolchain Build Step Target Processor Optimization Warnings Debugging Cross ARM GNU Assembler Preprocessor Includes Warnings Miscellaneous Cross ARM C Compiler Preprocessor 	ps Build Artifact Binary Linker flags (-Xlinker [option] Other objects	Parsers 😣 Errc 1
	 Includes Optimization Warnings Miscellaneous Cross ARM C Linker Cross ARM GNU Create Flash Image Cross ARM GNU Create Flash Image Cross ARM GNU Print Size General Cross ARM GNU Print Size General 	Generate map "\$(BuildArti Cross reference (-Xlinkerori Print link map (-Xlinkerori Use newlib-nano (specs=n Use float with nano printf (Use float with nano scanf (Verbose (-v) Other linker flagsspecs=rd	factFileBaseName).ma tref) nt-map) ano.specs) a_printf_float) i_scanf_float) imon.specs
		Restore [Defaults Apply

図 12 e2 studio で printf()を使用してフロー値を出力させる方法

Common Fonts	Input mode	
Key Bindings	Keyboard	
Language	<u>Buffered</u>	
⊞- Editor	Direct	
Messages	○ <u>F</u> ile	
- Project	@ <u>T</u> ext	
External Analyzer	Binary	
Source Code Contro	<pre>\$PR0J_DIR\$\TermI0Input.txt</pre>	
Debugger	Track solution	
Stack	Log file	
- Terminal I/O	Terminal I/O window	
	Freeding	
	Sveton	
	O UTF-8	
	- Minimud	
	Show target reset in Terminal I/O window	
< III +		
	18-	TT 28

図 13 IAR ターミナル I/O で摂氏温度表示にする方法

10. I²C フレームワークモジュールのまとめ(I²C Framework Module Conclusion)

このモジュールガイドは、サンプルプロジェクトでモジュールの選択、追加、設定、使用を行うために必要な背景となる情報全般を説明しました。従来の組み込みシステムでは、これらの手順を理解することに多くに時間を必要とし、また間違いが起こりやすい操作でした。Renesas Synergy プラットフォームにより、これら手順の所要時間が短くなり、設定項目の競合や、ローレベルドライバの誤った選択など、誤りが防止できるようになりました。アプリケーションプロジェクトで示したように、ハイレベル API を使用することで高いレベルの開発からスタートし、ローレベルドライバを作成するような従来の開発環境で必要とされる時間が不要になり、開発時間を短縮できます。

11. I²C フレームワークモジュールの次の手順(I²C Framework Module Next Steps)

シンプルな I²C フレームワークのアプリケーションプロジェクトをマスターした後、より複雑なサンプルを確認することができます。SK-S7G2 向けの GUIX サンプルアプリケーションは、I²C フレームワークを使用してタッチコントローラ を実装する方法を示しています。このプロジェクトは、このドキュメントの末尾にある「参考情報」の章に掲載されてい るリンクから入手できます。

12. I²C フレームワークモジュールの参考情報(I²C Framework Module Reference Information)

『SSP ユーザーズマニュアル』: SSP ディストリビューションパッケージの一部として HTML 形式が入手できるほか、 Renesas Synergy™ WEBサイトのSSPページ

<u>https://www.renesas.com/jp/ja/products/synergy/software/ssp.html</u>から pdf を入手することもできます。

最新版の sf_i2c モジュールの参考資料やリソースへのリンクは、以下の Synergy WEBサイトから入手できます。

https://www.renesas.com/jp/ja/products/synergy.html

ホームページとサポート窓口

サポート: <u>https://synergygallery.renesas.com/support</u>

テクニカルサポート:

- アメリカ: <u>https://renesas.zendesk.com/anonymous_requests/new</u>
- ヨーロッパ: <u>https://www.renesas.com/en-eu/support/contact.html</u>
- 日本: <u>https://www.renesas.com/ja-jp/support/contact.html</u>

すべての商標および登録商標はそれぞれの所有者に帰属します。

改訂記録

		改訂内容		改訂内容	
Rev.	発行日	ページ	ポイント		
1.00	2019.06.10		・初版		
			・英文版(R11AN0098EU0102、Rev.1.02、2019.Jan.07)の 巻頭と第7章以降を翻訳		

	ご注意書き		
1.	本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器・システムの設計におい て、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因して生じた損害(お客様		
2.	または第三省いりれに主した損害も言みまり。以下向しでり。)に関し、当れは、一切での負任を負いません。 当社製品、本資料に記載された製品データ、図、表、ブログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許権、著作権その他の 知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うものではありません。		
3.	当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。		
4.	当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リ		
バースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。			
5.	当社は、当社教師の明貞小牛を「保牛小牛」のよび「周明貞小牛」に力強してのり、谷明貞小牛は、以下に小り用述に教師が使用されることを怠凶してのりより。 標準水準 コンピュータ OA機器 通信機器 計測機器 AV機器		
	家電、工作機械、パーソナル機器、産業用ロボット等		
	高品質水準: 輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、		
	金融端末基幹システム、各種安全制御装置等		
	当社製品は、データシート等により高信頼性、Harsh environment向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のある機器・システ		
	ム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機器と、海底中継器、原子力制		
	御システム、航空機制御システム、ブラント基幹システム、軍事機器等)に使用されることを意図しておらず、これらの用途に使用することは想定していませ		
6	ん。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その責任を負いません。 ************************************		
0.	当社委品をご使用の時は、販制の委品情報(アータン)で、ユーダースマーエアル、アクダゲーションアード、信頼にハンドクダゲに記載の「牛等体」パイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指		
	定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。		
7.	当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合がありま		
	す。また、当社製品は、データシート等において高信頼性、Harsh environment向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社		
	製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設		
	計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独		
	での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。		
8.	当社製品の環境適合性等の詳細につきましては、製品値別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制するRoHS		
	指令寺、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようこ使用ください。かかる法令を遅ずしないことにより生した損害に関して、当社 は、一切をの吉仁た色いません		
9	は、 97000000000000000000000000000000000000		
0.	出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い		
	必要な手続きを行ってください。		
10	. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします。		
11	. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。		
12	. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。		
注	1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的に支配する会		
	社をいいます。 		
注2	2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。		

(Rev.4.0-1 2017.11)

RENESAS

ルネサスエレクトロニクス株式会社

http://www.renesas.com

※営業お問合せ窓口の住所は変更になることがあります。最新情報につきましては、弊社ホームページをご覧ください。

ルネサス エレクトロニクス株式会社 〒135-0061 東京都江東区豊洲3-2-24 (豊洲フォレシア)

■技術的なお問合せおよび資料のご請求は下記へどうぞ。 総合お問合せ窓口:https://www.renesas.com/contact/

■営業お問合せ窓口

© 2018 Renesas Electronics Corporation. All rights reserved. Colophon 6.0