カタログ等資料中の旧社名の扱いについて

2010年4月1日を以ってNECエレクトロニクス株式会社及び株式会社ルネサステクノロジが合併し、両社の全ての事業が当社に承継されております。従いまして、本資料中には旧社名での表記が残っておりますが、当社の資料として有効ですので、ご理解の程宜しくお願い申し上げます。

ルネサスエレクトロニクス ホームページ (http://www.renesas.com)

2010 年 4 月 1 日 ルネサスエレクトロニクス株式会社

【発行】ルネサスエレクトロニクス株式会社(http://www.renesas.com)

【問い合わせ先】http://japan.renesas.com/inquiry

ご注意書き

- 1. 本資料に記載されている内容は本資料発行時点のものであり、予告なく変更することがあります。当社製品のご購入およびご使用にあたりましては、事前に当社営業窓口で最新の情報をご確認いただきますとともに、当社ホームページなどを通じて公開される情報に常にご注意ください。
- 2. 本資料に記載された当社製品および技術情報の使用に関連し発生した第三者の特許権、著作権その他の知的 財産権の侵害等に関し、当社は、一切その責任を負いません。当社は、本資料に基づき当社または第三者の 特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 3. 当社製品を改造、改変、複製等しないでください。
- 4. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。お客様の機器の設計において、回路、ソフトウェアおよびこれらに関連する情報を使用する場合には、お客様の責任において行ってください。これらの使用に起因しお客様または第三者に生じた損害に関し、当社は、一切その責任を負いません。
- 5. 輸出に際しては、「外国為替及び外国貿易法」その他輸出関連法令を遵守し、かかる法令の定めるところにより必要な手続を行ってください。本資料に記載されている当社製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的その他軍事用途の目的で使用しないでください。また、当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器に使用することができません。
- 6. 本資料に記載されている情報は、正確を期すため慎重に作成したものですが、誤りがないことを保証するものではありません。万一、本資料に記載されている情報の誤りに起因する損害がお客様に生じた場合においても、当社は、一切その責任を負いません。
- 7. 当社は、当社製品の品質水準を「標準水準」、「高品質水準」および「特定水準」に分類しております。また、各品質水準は、以下に示す用途に製品が使われることを意図しておりますので、当社製品の品質水準をご確認ください。お客様は、当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途に当社製品を使用することができません。また、お客様は、当社の文書による事前の承諾を得ることなく、意図されていない用途に当社製品を使用することができません。当社の文書による事前の承諾を得ることなく、「特定水準」に分類された用途または意図されていない用途に当社製品を使用したことによりお客様または第三者に生じた損害等に関し、当社は、一切その責任を負いません。なお、当社製品のデータ・シート、データ・ブック等の資料で特に品質水準の表示がない場合は、標準水準製品であることを表します。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット

高品質水準: 輸送機器(自動車、電車、船舶等)、交通用信号機器、防災・防犯装置、各種安全装置、生命 維持を目的として設計されていない医療機器(厚生労働省定義の管理医療機器に相当)

特定水準: 航空機器、航空宇宙機器、海底中継機器、原子力制御システム、生命維持のための医療機器(生命維持装置、人体に埋め込み使用するもの、治療行為(患部切り出し等)を行うもの、その他直接人命に影響を与えるもの)(厚生労働省定義の高度管理医療機器に相当)またはシステム

- 8. 本資料に記載された当社製品のご使用につき、特に、最大定格、動作電源電圧範囲、放熱特性、実装条件その他諸条件につきましては、当社保証範囲内でご使用ください。当社保証範囲を超えて当社製品をご使用された場合の故障および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めておりますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は耐放射線設計については行っておりません。当社製品の故障または誤動作が生じた場合も、人身事故、火災事故、社会的損害などを生じさせないようお客様の責任において冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 10. 当社製品の環境適合性等、詳細につきましては製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。お客様がかかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを固くお断りいたします。
- 12. 本資料に関する詳細についてのお問い合わせその他お気付きの点等がございましたら当社営業窓口までご 照会ください。
- 注1. 本資料において使用されている「当社」とは、ルネサスエレクトロニクス株式会社およびルネサスエレクトロニクス株式会社がその総株主の議決権の過半数を直接または間接に保有する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注 1 において定義された当社の開発、製造製品をいいます。

SH7280 グループ

SCIF クロック同期式シリアルデータ送信 (単向通信)

要旨

本アプリケーションノートは, SCIF (FIFO 内蔵シリアルコミュニケーションインタフェース) を用いたクロック同期式シリアル送信機能について述べており,ユーザソフトウェア設計の際のご参考としてお役立てください。

動作確認デバイス

SH7285

目次

1.	はじめに	2
2.	応用例の説明	3
2	会老にキュッ ント	10

1. はじめに

1.1 仕様

本応用例では,FIFO内蔵シリアルコミュニケーションインタフェース (SCIF) のクロック同期式シリアル 転送機能を使用してデータの送信動作を行います。図1に,本タスク例の基本例を示します。

- SCIF のチャネル 3 を使用します。
- 通信フォーマットは8ビット長固定です。
- 送信トリガ数を 8 とし 送信 FIFO データエンプティ割り込み要因を用いて 文字列データを送信します。
- 32 バイトの送信が完了すると送信動作を停止します。

図1 SCIF クロック同期式シリアルデータ送信

1.2 使用機能

FIFO 内蔵シリアルコミュニケーションインタフェース (SCIF チャネル3)

1.3 適用条件

マイコン: SH7285

動作周波数: 内部クロック 100MHz

バスクロック 50MHz 周辺クロック 50MHz

C コンパイラ: ルネサス テクノロジ製

SuperH RISC engine ファミリ C/C++ コンパイラパッケージ Ver.9.11

2. 応用例の説明

本応用例では , SCIF の送信 FIFO データエンプティ割り込み (TXI) 要因を用いて , クロック同期式シリアルデータ送信を行います。SCIF のクロック同期式モードでは , クロックパルスに同期してデータの送信を行います。

2.1 使用機能の動作概要

クロック同期式モードでは,クロックパルスに同期してデータ送信/受信するモードで,高速シリアル通信に適しています。クロックソースとしては内部クロック,または SCK 端子より外部クロック入力の選択ができます。内部クロックを選択した場合は,同期クロックを SCK 端子から出力します。外部クロックを選択した場合は,同期クロックを SCK 端子から入力します。SCIF 内部では,送信部と受信部は独立していますので,クロックを共有することで全二重通信が可能です。また,送信部と受信部がともに 16 段の FIFO バッファ構造になっているので,送信/受信中にデータの読み出し/書き込みができ高速連続送信,連続受信が可能です。

クロック同期式シリアル通信では,通信回線のデータは同期クロックの立ち下がりから次の立ち下がりまで出力されます。また,同期クロックの立ち上がりでデータの確定が保障されます。

シリアル通信の 1 キャラクタは , データ LSB から始まり最後に MSB が出力されます。 MSB 出力後の通信 回線の状態は MSB の状態を保ちます。

SCIF についての詳細は,「SH7280 グループ ハードウェアマニュアル FIFO 内蔵シリアルコミュニケーションインタフェース」の章を参照ください。

表1にクロック同期式通信の概要を示します。図2にSCIFのブロック図を示します。

項目 概要

チャネル数 1 チャネル (SCIF3)

クロックソース 内部クロック: Pφ, Pφ/4, Pφ/16, Pφ/64 Pφ: 周辺クロック 外部クロック: SCK3 端子入力クロック
データフォーマット 転送データ長: 8 ビットデータ固定 転送順序: LSB ファースト/MSB ファースト選択可能
ボーレート 内部クロック選択時: 1kbps ~ 2Mbps (Pφ = 50MHz 動作時) 外部クロック選択時: 最大 8333333.3bps (Pφ = 50MHz 外部入力クロック 8.3333MHz 動作時)

表 1 クロック同期式シリアル通信の概要

エラーの検出	オーバランエラー
割り込み要求	送信 FIFO データエンプティ割り込み (TXI)
	受信 FIFO データフル割り込み (RXI)
	プレーク割り込み (BRI)
クロックソース	内部クロック/外部クロックから選択可能
	● 内部クロックを選択時:
	SCIF はボーレートジェネレータのクロックで動作し ,このクロックを同期ク
	ロックとして外部へ出力
	● 外部クロックを選択時:
	内部ボーレートジェネレータを使用せず,入力された同期クロックで動作

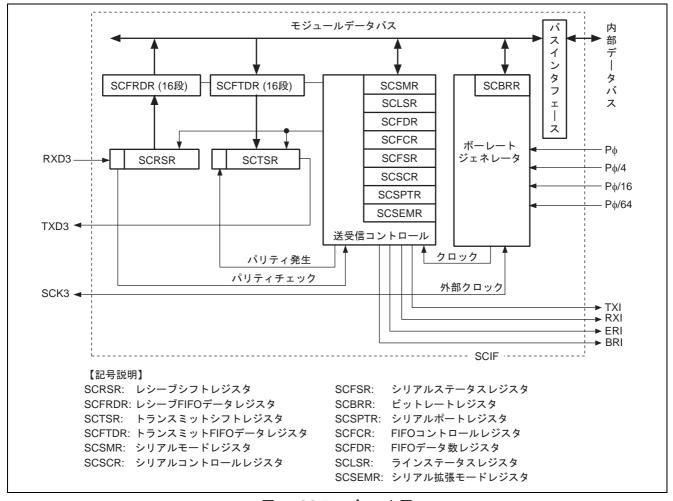


図2 SCIFのブロック図

2.2 参考プログラムの動作

表 2 に本応用例の通信機能設定を,図 3 に送信動作説明を示します。

表 2 本応用例の通信機能設定

モジュール	SCIF チャネル3
通信モード	クロック同期式モード
割り込み	送信 FIFO データエンプティ割り込み (TXI)
通信速度	100kbps
送信データ数	32 バイト
データ長	8 ビットデータ
ビット順序	LSB ファースト
同期クロック	内部クロック/SCK 端子は同期クロック出力
FIFO データ数トリガ	送信 FIFO データトリガ数: 8
ループバックテスト機能	禁止

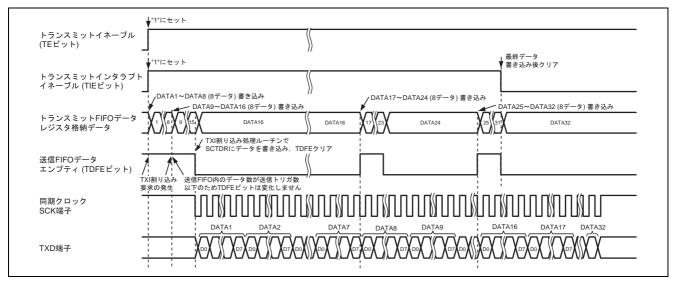


図3 送信動作説明

2.3 使用機能の設定手順

ここでは, SCIF を用いたクロック同期式モード動作の設定手順について説明します。

図 4 に参考プログラムの処理フローを ,図 5 にモジュールスタンバイ解除の設定フローを ,図 6 にピンファンクションコントローラの設定フローを ,図 7 にクロック同期式モード送信初期設定フローを ,図 8 にクロック同期式モード送信割り込み処理フロー示します。

なお,各レジスタ設定の詳細は,「SH7280 グループ ハードウェアマニュアル」を参照ください。

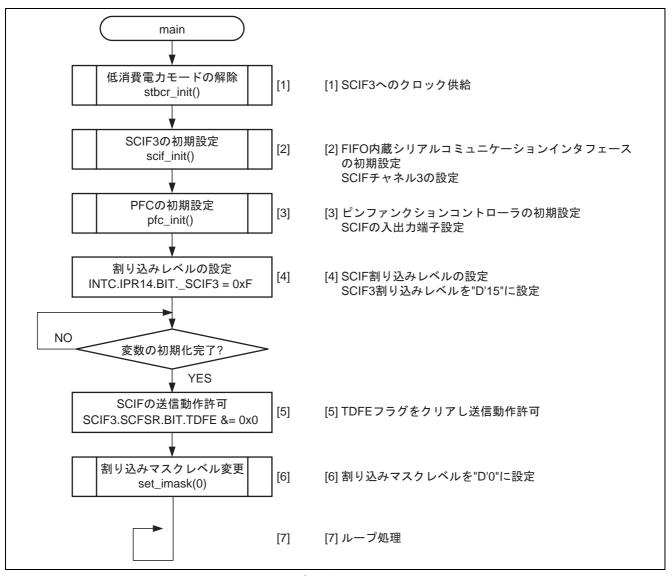


図 4 参考プログラムの処理フロー

SCIF クロック同期式シリアルデータ送信 (単向通信)

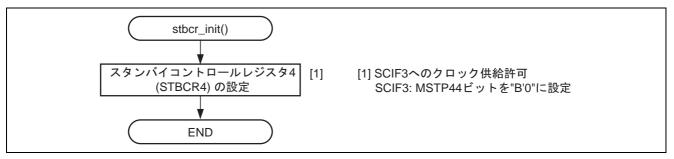


図5 モジュールスタンバイ解除の設定フロー

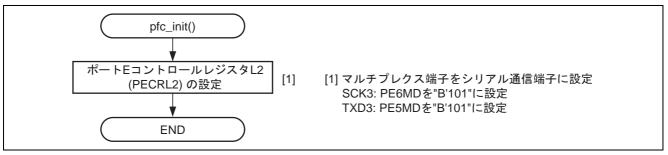


図6 ピンファンクションコントローラの設定フロー

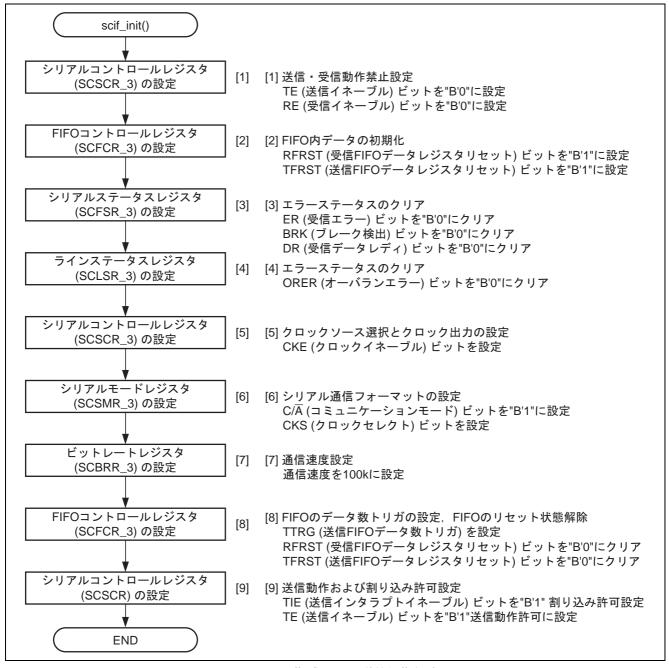


図7 クロック同期式モード送信初期設定フロー

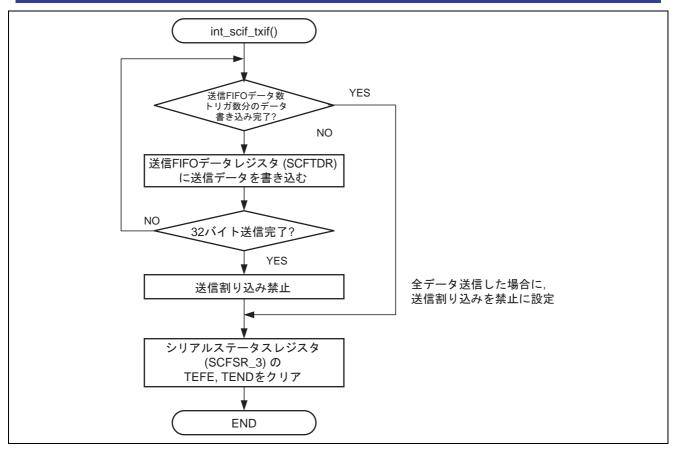


図8 クロック同期式モード送信割り込み処理フロー

2.4 参考プログラムの処理手順

参考プログラムでは, SCIF チャネル3をクロック同期式送信モードで初期化後,文字列データを送信します。

2.4.1 クロックパルス発振器 (CPG)

表3に参考プログラムで使用したクロックパルス発振器のレジスタ設定を示します。

表3 クロックパルス発振器レジスタ設定

レジスタ名	アドレス	設定値	機能
周波数制御レジスタ (FRQCR)	H'FFFE0010	H'0101	STC [2:0] = "B'001": ×1/2 倍 (B)
			IFC [2:0] = "B'000": ×1 倍 (Iφ)
			PFC [2:0] = "B'001": ×1/2 倍 (Pф)

2.4.2 スタンバイコントロールレジスタ

表4に参考プログラムで使用したスタンバイコントロールレジスタのレジスタ設定を示します。

表 4 スタンバイコントロールレジスタ設定

レジスタ名	アドレス	設定値	機能
スタンバイコントロールレジスタ 4	H'FFFE040C	H'E6	MSTP44 = "B'0": SCIF3 は動作
(STBCR4)			

2.4.3 割り込みコントローラ (INTC)

表 5 に参考プログラムで使用した割り込みコントローラのレジスタ設定を示します。

表 5 割り込みコントローラレジスタ設定

レジスタ名	アドレス	設定値	機能
割り込み優先レベル設定レジスタ 14	H'FFFE0C10	H'000F	IPR14 [3:0] = "H'F": SCIF3 はレベル 15
(IPR14)			

2.4.4 ピンファンクションコントローラ (PFC)

表6に参考プログラムのSCIFで使用したピンファンクションコントロールレジスタのレジスタ設定を示します。

表 6 ピンファンクションコントロールレジスタ設定

レジスタ名	アドレス	設定値	機能
ポート E コントロールレジスタ L2	H'FFFE3A14	H'0550	PE6MD [2:0] = "B'101": SCK3 入出力
(PECRL2)			PE5MD [2:0] = "B'101": TXD3 出力

2.4.5 FIFO 内蔵シリアルコミュニケーションインタフェース 表 7 に参考プログラムで使用した SCIF のレジスタ設定を示します。

表 7 SCIF レジスタ設定

レジスタ名	アドレス	設定値	機能
シリアルモードレジスタ	H'FFFE8800	H'0080	C/Ā = "B'1": クロック同期式モード
(SCSMR)			CHR = "B'0": 8 ビットデータ
			PE = "B'0": パリティビットの付加 , およびチェッ
			ク禁止
			STOP = "B'0": 1 ストップビット
			CKS [1:0] = "B'00": Pφクロック
ビットレートレジスタ	H'FFFE8804	D'124	クロック同期式モード
(SCBRR)			ビットレート: 100k (bit/s)* ¹
シリアルコントロール	H'FFFE8808	H'0000	初期設定
レジスタ (SCSCR)			TIE = "B'0": 送信 FIFO データエンプティ割り込み
			(TXI) 要求を禁止
			RIE = "B'0": 受信 FIFO データフル割り込み (RXI) 要求 ,
			受信エラー割り込み (ERI) 要求 ,
			ブレーク割り込み (BRI) 要求を禁止
			TE = "B'0": 送信動作を禁止
			RE = "B'0": 受信動作を禁止
			設定時
			クロック同期式モード
			CKE [1:0] = "B'00": 内部クロック/SCK 端子は同期
			クロック出力
		H'00C0	送信許可時
			TIE = "B'1": 送信 FIFO データエンプティ割り込み
			(TXI) 要求を許可
			TE = "B'1": 送信動作を許可
シリアルステータス	H'FFFE8810	H'0060	初期値
レジスタ (SCFSR)			TEND = "B'1": トランスミットエンドフラグ
			TDFE = "B'1": 送信 FIFO データエンプティフラグ
		H'0000	設定時
			すべてのフラグをクリア
FIFO コントロール	H'FFFE8818	H'0060	初期設定
レジスタ (SCFCR)			TFRST = "B'1": トランスミット FIFO データレジス
			タの送信データをリセット動作許可
			RFRST = "B'1": レシーブ FIFO データレジスタの
			受信データをリセット動作許可
		H'0000	設定時
			TTRG [1:0] = "B'00": 8 (8) 送信データ数
			TFRST = "B'0": トランスミット FIFO データレジス
			タの送信データをリセット動作禁止
			RFRST = "B'0": レシーブ FIFO データレジスタの
			受信データをリセット動作禁止
			LOOP = "B'0": ループバックテストを禁止

【注】 1. ビットレートの設定は ,「SH7280 グループ ハードウェアマニュアル FIFO 内蔵シリアルコミュニケーションインタフェース」章の「SCBRR の設定例」を参照ください。

3. 参考ドキュメント

- ソフトウェアマニュアル SH-2A, SH2A-FPU ソフトウェアマニュアル (最新版をルネサス テクノロジホームページから入手してください)
- ハードウェアマニュアル SH7280 グループ ハードウェアマニュアル (最新版をルネサス テクノロジホームページから入手してください)

ホームページとサポート窓口

ルネサス テクノロジホームページ

http://japan.renesas.com/

お問合せ先

http://japan.renesas.com/inquiry

csc@renesas.com

改訂記録

		改訂内容			
Rev.	発行日	ページ	ポイント		
1.00	2008.08.27	_	初版発行		

すべての商標および登録商標は,それぞれの所有者に帰属します。

本資料ご利用に際しての留意事項 =

- 1. 本資料は、お客様に用途に応じた適切な弊社製品をご購入いただくための参考資料であり、本資料中に記載の技術情報について弊社または第三者の知的財産権その他の権利の実施、使用を許諾または保証するものではありません。
- 2. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例など全ての情報の使用に起因する損害、第三者の知的財産権その他の権利に対する侵害に関し、弊社は責任を負いません。
- 3. 本資料に記載の製品および技術を大量破壊兵器の開発等の目的、軍事利用の目的、あるいはその他軍事用途の目 的で使用しないでください。また、輸出に際しては、「外国為替および外国貿易法」その他輸出関連法令を遵守 し、それらの定めるところにより必要な手続を行ってください。
- 4. 本資料に記載の製品データ、図、表、プログラム、アルゴリズムその他応用回路例などの全ての情報は本資料発行時点のものであり、弊社は本資料に記載した製品または仕様等を予告なしに変更することがあります。弊社の半導体製品のご購入およびご使用に当たりましては、事前に弊社営業窓口で最新の情報をご確認いただきますとともに、弊社ホームページ(http://www.renesas.com)などを通じて公開される情報に常にご注意ください。
- 5. 本資料に記載した情報は、正確を期すため慎重に制作したものですが、万一本資料の記述の誤りに起因する損害がお客様に生じた場合においても、弊社はその責任を負いません。
- 6. 本資料に記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例など の情報を流用する場合は、流用する情報を単独で評価するだけでなく、システム全体で十分に評価し、お客様の 責任において適用可否を判断してください。弊社は、適用可否に対する責任は負いません。
- 7. 本資料に記載された製品は、各種安全装置や運輸・交通用、医療用、燃焼制御用、航空宇宙用、原子力、海底中継用の機器・システムなど、その故障や誤動作が直接人命を脅かしあるいは人体に危害を及ぼすおそれのあるような機器・システムや特に高度な品質・信頼性が要求される機器・システムでの使用を意図して設計、製造されたものではありません(弊社が自動車用と指定する製品を自動車に使用する場合を除きます)。これらの用途に利用されることをご検討の際には、必ず事前に弊社営業窓口へご照会ください。なお、上記用途に使用されたことにより発生した損害等について弊社はその責任を負いかねますのでご了承願います。
- 8. 第7項にかかわらず、本資料に記載された製品は、下記の用途には使用しないでください。これらの用途に使用 されたことにより発生した損害等につきましては、弊社は一切の責任を負いません。
 - 1) 生命維持装置。
 - 2) 人体に埋め込み使用するもの。
 - 3) 治療行為(患部切り出し、薬剤投与等)を行うもの。
 - 4) その他、直接人命に影響を与えるもの。
- 9. 本資料に記載された製品のご使用につき、特に最大定格、動作電源電圧範囲、放熱特性、実装条件およびその他 諸条件につきましては、弊社保証範囲内でご使用ください。弊社保証値を越えて製品をご使用された場合の故障 および事故につきましては、弊社はその責任を負いません。
- および事故につきましては、弊社はその責任を負いません。
 10. 弊社は製品の品質および信頼性の向上に努めておりますが、特に半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。弊社製品の故障または誤動作が生じた場合も人身事故、火災事故、社会的損害などを生じさせないよう、お客様の責任において冗長設計、延焼対策設計、誤動作防止設計などの安全設計(含むハードウェアおよびソフトウェア)およびエージング処理等、機器またはシステムとしての出荷保証をお願いいたします。特にマイコンソフトウェアは、単独での検証は困難なため、お客様が製造された最終の機器・システムとしての安全検証をお願いいたします。
- 11. 本資料に記載の製品は、これを搭載した製品から剥がれた場合、幼児が口に入れて誤飲する等の事故の危険性があります。お客様の製品への実装後に容易に本製品が剥がれることがなきよう、お客様の責任において十分な安全設計をお願いします。お客様の製品から剥がれた場合の事故につきましては、弊社はその責任を負いません。
- 12. 本資料の全部または一部を弊社の文書による事前の承諾なしに転載または複製することを固くお断りいたします。
- 13. 本資料に関する詳細についてのお問い合わせ、その他お気付きの点等がございましたら弊社営業窓口までご照会ください。

D039444

© 2008. Renesas Technology Corp., All rights reserved.