Introduction

This article describes several important considerations for the use of CMOS analog multiplexers and switches. It includes selection criteria, parameter definitions, handling and design precautions and interfacing.

Which Switch To Switch To?

Intersil provides a complete line of CMOS analog switches including replacements for most of the available CMOS competition. All types feature rugged no-latch-up construction, uniform characteristics over the analog signal range, and excellent high frequency characteristics.

The HI-200 and HI-201 replace the popular, low cost DG200 and DG201 type dual and quad switches.

The HI-5042 through HI-5051 are low resistance types, offering one to four switches in virtually all combinations. These replace the IH504X series with significantly better performance, and with both 75Ω and 30Ω switches available in all configurations. These are also plug-in replacements for many of the DG180 and DG190 series of FET hybrid switches, offering the advantage of monolithic construction, but with slightly longer switching times.

The analog switches do not contain overvoltage protection on the analog inputs, although they will withstand inputs 2 or 4 volts greater than the supplies. External current limiting should be provided if higher overvoltages are anticipated, such as a resistor in series with the analog input of value:

\[ R(\text{ohms}) \geq (V_{IN} - V_{SUPPLY}) \times 50 \]

where \( V_{IN} \) is the maximum expected input voltage. All digital inputs do have overvoltage/static charge protection.

Data Sheet Definitions

A. Absolute Maximum Ratings

As with all integrated circuits, these are maximum conditions which may be applied to a device (one at a time) without resulting in permanent damage. The device may, or may not, operate satisfactorily under these conditions - conditions listed under “Electrical Specifications” are the only ones guaranteed for satisfactory operation.

B. \( V_S \), Analog Signal Range

The input analog signal range over which reasonable accurate switching will take place. For supply voltages lower than nominal, \( V_S \) will be equal to the voltage span between the supplies. Note that other parameters such as \( R_{ON} \) and leakage currents are guaranteed over a smaller input range, and would tend to degrade towards the \( V_S \) limits. All off switches can withstand \( +V_S \) applied at an input while \(-V_S\) is applied to the output (or vice-versa) without switch breakdown - this is not true for some other manufacturers’ devices.

C. \( R_{ON} \), On Resistance

The effective series on-switch resistance measured from input to output under specified conditions. Note that \( R_{ON} \) changes with temperature (highest at high temperature), supply voltage, and to a lesser degree, with signal voltage and current.

D. \( I_{S(OFF)}, I_{D(OFF)}, I_{D(ON)} \), Leakage Currents

Currents measured under conditions illustrated on the data sheet. A guarantee in only worst case high temperature leakages is preferred, because room temperature picoampere levels are virtually impossible to measure repeatably on available automated test equipment. Even under laboratory conditions, fixture and test equipment stray leakages may frequently exceed the device leakage. Leakages tend to double every 10°C temperature rise, so it is reasonable to assume that the +25°C figure is about 0.001 times the +125°C measurement; however, in some cases there may be ohmic leakages, such as on the package surface, which would make the +25°C reading higher than calculated.

Each of these leakage figures is the algebraic sum of all currents at the point being measured: to each power supply, to ground, and through the switches; so the current direction cannot be predicted. In making an error analysis it should be assumed that all leakages are in the worst-case direction.

In most systems, \( I_{D(ON)} \) has the most effect, creating a voltage offset across the closed switch equal to \( I_{D(ON)} \times R_{ON} \).

E. \( V_{AL}, V_{AH} \), Input Thresholds

The lower and upper limits for the digital address input voltage at which the switching action takes place. All other parameters will be valid if all “0” addressed inputs are less than \( V_{AL} \) and all “1” inputs are greater than \( V_{AH} \). Logic compatibility will be discussed in detail later in this paper.

F. \( I_A \), Input Leakage Current

Current at a digital input, which may be in either direction. Digital inputs are similar to CMOS logic inputs; connection to MOS gates is through resistor-diode protection networks. Unlike some other devices there is no DC negative resistance region which could create an oscillating condition.

G. \( T_A, T_{ON}, T_{OFF} \), Access Time

The logic delay time plus output rise time to the 90% point of a full scale analog output swing. After this time the output will continue to rise, approaching the 100% point on an exponential curve determined by \( R_{ON} \times C_{D(OFF)} \).
H. TOPEN: Break-Before-Make Delay
The time delay between one switch turning OFF and another switch turning ON, both switches being commanded simultaneously. This prevents a momentary condition of both switches being ON, generally a very minor problem.

I. CS(OFF), CD(OFF), CD(ON), Input/Output Capacitance
Capacitance with respect to ground measured at the analog input/output terminals. CD(ON) is generally the sum of CS(OFF) and CD(OFF). CD(OFF) is usually the most important term as rise time/settling characteristics are determined by ON x CD(OFF), as well as the high frequency transmission characteristics.

J. CDS(OFF), Drain to Source Capacitance
The equivalent capacitance shunting an open switch.

K. OFF Isolation
The proportion of a high frequency signal applied to an open switch input appearing at the output:

\[ \text{off isolation} = 20 \log \frac{V_{IN}}{V_{OUT}} \]

This feedthrough is transmitted through CDS(OFF) to a load composed of CD(OFF) in parallel with the external load. The isolation generally decreases by 6dB/octave with increasing frequency.

L. CA, Digital Input Capacitance
Capacitance to ground measured at digital input. This chiefly affects propagation delays when driven by CMOS logic.

M. PD, Power Dissipation: I+, I-
Quiescent power dissipation, PD = (V+ x I+) + (V- x I-). This may be specified both operating and standby (“Enable” pin ON/OFF). Note that, as with all CMOS devices, dissipation increases with switching frequency, but that Intersil devices exhibit much less of this effect.

Care And Feeding of Multiplexers And Switches
Dielectrically isolated CMOS ICs require no more care in handling and use than any other semiconductor - bipolar or otherwise. However, they are not indestructible, and reasonable common sense care should be taken.

In a laboratory breadboard, power should be shut off before inserting or removing any IC. It is especially important that supply lines have decoupling capacitors to ground permanently installed at the IC socket pins, as intermittent supply connections can create high voltage spikes through the inductance of a few feet of wire.

Because each of the major manufacturers of CMOS multiplexers and switches uses a radically different process, it is urged that units from all prospective suppliers be equally tested in breadboards and prototypes. It will be interesting to note which types best survive the hazards of a few weeks of breadboard testing.

Particular care of semiconductors during incoming inspection and installation is quite important, because the cost of reworking finished assemblies with even a small percentage of preventable failures can seriously erode profits. All equipment should be periodically inspected for proper grounding. With these devices, it is not usually necessary to shackles personnel to the nearest water pipe, if reasonable attention is paid to clothing and floor coverings; but be alert for periods of unusually high static electricity. If special lines are already set up for handling MOS devices, it wouldn’t hurt to use them.

There are a few good rules for P.C. card layout:

1. Each card or removable subassembly should contain decoupling capacitors for each supply line to ground. This not only helps keep noise away from the analog lines, but gives good protection from static electricity damage when loose cards are handled.

2. When digital inputs come through a card connector, the pull-up resistor should be at the CMOS input. This forces current through the connector and prevents possible dry circuit conditions (see following discussion on digital interface).

3. All unused digital inputs must be tied to logic “0” (ground) or logic “1” (logic supply or device + supply) depending on truth table and action desired. Open inputs tend to oscillate between “0” and “1”. Good design practices also dictate using a series resistor (≥ 1kΩ) when connecting an unused input to a supply other than GND. It would also be best to ground any unused analog inputs/outputs and any uncommitted device pins.

Digital Interface

A. Reference Connection
HI-5042 through HI-5051 and HI-1818A/1828A require connecting the VL pin to the digital logic supply (+5V to +15V).

The HI-200/201/506A/507A have VREF terminals, but normally left open when driving from +5 volt logic (DTL or TTL), but may be connected to higher logic supplies (to +15V) to raise the threshold levels when driving from CMOS or HNIL.

The HI-200/201 will have significantly lower power dissipation when VREF is connected to a high level supply.

The HI-506/507/508A/509A do not have VREF terminals, but will operate reliably with any logic supplied from +5 to +15 volts.

B. DTL/TTL Interface
One major difference found in comparisons of similar devices from different manufacturers is the worst-case digital input high threshold (VAH or VIH). These range anywhere from +2V to +5V; and anything greater than +2.4V is obviously not compatible with worst-case TTL output levels. The fact is that no CMOS input is truly TTL compatible unless an external pull-
up resistor is added. TTL output stages were not designed with CMOS loads in mind.

The experienced designer will always add a pull-up resistor from CMOS input to the +5 volt supply when driving from TTL/DTL, for the following reasons:

1. Interchangeability: allows substitution of similar devices from several manufacturers.
2. Noise immunity: a TTL output in the “high” condition can be quite high impedance. Even when voltage noise immunity seems satisfactory, the line is quite susceptible to induced noise. The pull-up resistor will reduce the impedance while increasing voltage noise immunity.
3. Compatibility: one manufacturer does guarantee +2.0 volt minimum $V_{AH}$. However, this is accomplished with circuitry that is anything but TTL compatible: input current vs. voltage shows an abrupt positive then negative resistance region which is not the kind of load recommended for an emitter follower stage. A pull-up resistor will swamp out the negative resistance. Other CMOS inputs capacitively couple internal switching spikes to the input which could cause double-triggering without the pull-up resistor.
4. Reliability: it shouldn’t happen with carefully processed ICs, but any possible long term degradation of CMOS devices usually involves threshold voltage shifts. The pull-up resistor will help maintain operation if input thresholds drift out of spec. On units without adequate input protection, the resistor also helps protect the device when a loose P.C. card is handled. Where the interface goes through a P.C. connector, the resistor will force current through the connector to break down any insulating film which otherwise might build up and cause erratic dry circuit operation.

A 2kΩ resistor connected from the CMOS input to the +5 volt supply is adequate for any TTL type output. If power consumption is critical, open collector TTL/DTL should be used, allowing a higher value resistor - the voltage drop across the resistor is computed from the sum of specified “1” level leakage currents at the TTL output and CMOS input.

**C. CMOS Interface**

The digital input circuitry on all devices is identical to series 4000 and 54C/74C logic inputs, and is compatible with CMOS logic with supplies between +5V and +15V without external pull-up resistors.

**D. Electromechanical Interface**

When driving inputs from mechanical switches or relays, either a pull-up or pull-down resistor must be connected at the CMOS input to clear the dry circuit film and to damp out any spikes, as illustrated in Figure 1, (b) and (c).

![Figure 1. Pull-Up/Pull-Down Resistor Connected at CMOS Input](image-url)
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0  Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.