Introduction

There is a need in many applications to sense currents on the high-side rail of a power bus and translate it into a voltage with respect to ground, which is proportional to this current (see Figure 1). Typically, this voltage is fed into a microcontroller or used as an analog input to a switching power controller. This application note compares several methods of high-side current sensing, including two simple techniques that can be used to sense current on a high voltage rail using low voltage amplifiers.

There are various ways to sense high-side current, but no single solution. The ISL28006 (see Figure 2), is a very compact solution for applications up to 28V. The fixed gain version requires almost no external components and the 450µV max offset over-temperature is excellent compared to similar products; however, some applications require lower offset for better precision or require sensing of a rail higher than 28V.

A high voltage op amp can be used in a standard differential amp configuration, but this circuit requires extremely tight resistor matching when amplifying low voltages on high voltage rails. For example, if sensing 10mV on a 5V rail using 1% resistors, amplifying by 50 and assuming a zero offset in the amp, the worst case error is ~37%. Figure 3 shows this numeric example of the worst case tolerance. The voltage at the non-inverting terminal of the amplifier is calculated to be 4.9137V based on the worst case values of 0.99kΩ and 50.5kΩ for the resistor divider and the voltage at the inverting terminal is the same by virtual null. The current in the 1.01kΩ resistor is (5V minus 4.9137V)/1.01kΩ = 85.4µA. The output is 4.9137V minus 85.4µA*49.5kΩ = 683mV. This is 37% higher than the nominal value of 50*10mV = 500mV that one would expect with 50kΩ and 1kΩ resistors.

![Figure 1. Simplified Block Diagram](image1)

![Figure 2. ISL28006 Highly Integrated and Accurate Current Sense Amplifier](image2)
Improved Current Sense Circuits

The remainder of this application note explores two circuit techniques (Figures 4 and 5), which allow use of conventional 5V op amps for sensing current on high voltage rails. A simple, low power consumption biasing scheme is used to power the amplifier. In addition, the gain-bandwidth of the overall circuit can be much higher than the gain bandwidth of the amp itself. This can be a significant advantage in applications where the objective is to sense the current in a switching supply running at hundreds of kHz and be able to retain the high frequency harmonics.

One circuit technique is shown in Figure 4. This example shows the shunt on a 12V rail being measured by the ISL28133 chopper stabilized amplifier. By virtual null principles, the voltage across the shunt also appears across resistor R9, determining the current through R9. This same current flows through the drain and source of buffer transistor Q3 and through R7, generating a voltage with respect to ground that is proportional to the high-side current. The total error in amplifying the shunt voltage is the error due to R7, R9 and the offset voltage. With 0.1% resistors and the 8µV offset of the ISL28133, the error in sensing 10mV is <0.3%. (0.1% from each resistor, 8µV/10mV = 0.08% error from the offset). This is >10x better accuracy than the differential amp in Figure 3.

Note that this circuit can be biased without much dissipation using resistor R8 and Zener diode D1. Resistor R8 needs to only provide supply current for the ISL28133 (25µA) and ~1mA to bias the Zener diode. Even with a 48V high-side rail, the total power to bias the amplifier is only ~48V*1.025µA = 50mW. There will be additional power in Q3 (this will depend on the level shift current in the drain of Q3) but this can be as low as 100µA, resulting in a power loss of 5mW.

The circuit in Figure 4 works extremely well, but it has two limitations explained as follows:

1. If the load shorts, the current sense circuit no longer functions. Current sensing with the load shorted is required in many applications where VIN is the output voltage of a switching supply. Many times, this current sense circuit is used as part of the short circuit protection for the switching supply, so it must be functional during a load short.

2. It is advantageous in some power applications to utilize "DCR sensing", a well known technique where a resistor-capacitor combination across an inductor, is used to sense the inductor current. The level shift current would run through this resistor, seriously degrading the accuracy.

Figure 5 shows a modified version of the circuit in Figure 4, which resolves these limitations. This example shows the use of DCR sensing in a switching supply. To use this technique, a 5V bias that rides on top of the output voltage is required. In most switching supplies, this bias is usually easy to obtain from either a higher voltage rail or by peak charging from one of the switching nodes. Other changes from Figure 4 are that the op amp output buffer transistor (Q1) has been changed to an NPN type and, in order to level shift to ground, a current mirror consisting of matched pair Q3a-Q3b and R1/R2 has been added. Matched transistor pairs are commercially available in a single package with Vbe matching of ±1mV. Proper sizing of R1/R2 can minimize the error due to Vbe mismatch. When compared to the circuit in Figure 4, this circuit will still have the additional inaccuracy due to resistors R1, R2 and the Vbe mismatch. The overall error is likely to be 2x higher than the circuit of Figure 4 with components of similar tolerance.

Note that this new circuit can also sense a shunt resistor, but is shown using DCR sensing. The RC circuit across the inductor is used to sense the current in the inductor and the voltage across C1 will equal the load current times the DCR in steady state. If R5*C1 = L1/DCR, the circuit will not only match VC1 to VDCR in steady state, but also match it during transients. Because of power dissipation in R5, its value cannot be arbitrarily lowered. Some sensing configurations can draw significant current through R5, resulting in significant error. In this configuration, only the bias current of the amp runs through R5. In this example, the bias current of the ISL28133 is 300pA. In most cases, this will result in negligible error.
FIGURE 4. SIMPLE LEVEL SHIFT CIRCUIT USING A LOW VOLTAGE AMPLIFIER

Source follower is stable. A PNP can be used for better headroom, but it has some beta-related error.

FIGURE 5. MODIFIED SENSE CONFIGURATION USING DCR SENSING IN A BUCK CONVERTER

Current sense still works if VOUT is shorted

Additional 2 resistors plus matched transistor pair.
Refer to the following notes regarding the circuits in Figure 4 and Figure 5.

1. The manner in which the buffer transistor is configured should not destabilize the amp if it is internally compensated to be unity gain stable. The emitter of the buffer transistor follows the output of the amp and this buffering is therefore the equivalent of tying the output back to the inverting input, as in a unity gain configuration.

2. The buffer transistor Q1 does relieve the gain-bandwidth restrictions of the op amp. The configuration in Figure 5 has a gain of $R_3/R_g = 100\Omega$ from V_{c1} to the output. Figure 6 shows the simulated frequency response of this circuit using the ISL28133. The gain-bandwidth of the amp is 400kHz, yet the overall circuit gain bandwidth is $100 \times 100kHz$ or 10MHz. The buffer transistor improves the bandwidth without destabilizing the op amp.

3. A higher bandwidth amplifier can be used to accurately replicate the current waveform in a switching power supply. The ISL28134 has a GBW (gain-bandwidth) of 3.5MHz and only 2.5µV offset. The ISL28191 has 61MHz GBW with a max offset of 630µV. Figure 7 shows the simulated response of the circuit in Figure 5, using the ISL28191 when a 10mV square wave is imposed across V_{c1}. The circuit amplifies the signal by 100x and replicates this 500kHz waveform with little loss of the higher frequency harmonics. This can be extremely useful for peak current detection in switching supplies.

Summary

This application note has presented two new circuit techniques for measuring high-side current in a power application. Compared with a standard difference amp configuration, the two configurations offer considerably better accuracy as well as significantly higher gain bandwidth product. The implementation only requires the addition of a few low cost components.

References

[1] Current-Sensing Techniques for DC/DC Converters, Hassan Pooya Forghani-zadeh, Gabriel A. Rincón-Mora, Georgia Tech Analog Consortium, School of Electrical and Computer Engineering, Georgia Institute of Technology
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality.” The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard”:
 - Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

 “High Quality”:
 - Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment, etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants, etc.), or may cause serious property damage (space systems; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment, etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses incurred as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics products” means any product developed or manufactured by or for Renesas Electronics.