
Tool News

 RENESAS TOOL NEWS on August 1, 2005: RSO-SHC-050801D

The C/C++ Compiler Package
for the SuperH RISC Engine Family

Revised to V.9.00 Release 03

We have revised the C/C++ compiler package for the SuperH RISC engine family of MCUs from
V.9.00 Release 02 to V.9.00 Release 03.

1. Product Concerned
The SuperH RISC engine family C/C++ compiler packages V.9

2. Descriptions of Revision
2.1 Functions Introduced and Improved

2.1.1 In the High-performance Embedded
Workshop (an Integrated Development
Environment)
The High-performance Embedded Workshop
bundled with the package has been revised to
V.4.00.02.
For details, see RENESAS TOOL NEWS No.
RSO-HEW-050701D, "The High-performance
Embedded Workshop, an Integrated
Development Environment, Revised to
V.4.00.02" issued on July 1, 2005.

2.1.2 In the Simulator
(1) The timer simulation function has

been separated from the simulator
body to be executed as an I/O DLL.

(2) The ROM cache simulation function
has been introduced to the SH2A-FPU
Functional Simulator and the SH2A-

FPU Cycle Base Simulator.

(3) The Register Bank window for
displaying and changing register banks
has been introduced to the SH2A-FPU
Functional Simulator and the SH2A-
FPU Cycle Base Simulator.

2.1.3 In the Assembler
In arithmetic operations of floating-point
numbers in decimal notation, omission of the
second "F'" and later ones is allowed. Note,
however, that when they are omitted,
decimal fraction must not be omitted.

2.2 Problems Fixed
The problems described in Sections 2.2.1 through 2.2.4
below have been fixed.
2.2.1 In the Installer

On executing the batch file for setting
environmental variables
For details, see RENESAS TOOL NEWS No.
RSO-SHC_1-050316D, "A Note on Using the
C/C++ Compiler Packages for the SuperH
RISC Engine; and the H8, H8S and H8SX
Families (Windows Versions Only)" issued on
March 16, 2005.

2.2.2 In the Simulator
(1) On using the simulator debugger for

the SuperH RISC engine family and
the one for the H8, H8S and H8SX
families in the same host system
For details, see RENESAS TOOL NEWS
No. RSO-SHC_2-050316D, "A Note on
Using the Simulator Debuggers for the
SuperH RISC Engine; and the H8,
H8S, and H8SX Families" issued on
March 16, 2005.

(2) On setting access to memory

resources
For details, see RENESAS TOOL NEWS
No. RSO-SH-SIM-050416D, "A Note
on Using the Simulator Debugger for
the SuperH RISC Engine; and for the
H8S Families and the H8/300 Series of
MCUs --On Setting Access to Memory
Resources--" issued on April 16,
2005.

(3) On the number of execution cycles
For details, see RENESAS TOOL NEWS
No. RSO-SH-SIM-050516D, "A Note
on Using the SuperH RISC Engine
Simulator Debugger" issued on May
16, 2005.

2.2.3 In the Compiler
Eight problems encountered in using the
C/C++ compiler package V.9 for the SuperH
RISC engine family
For details, see RENESAS TOOL NEWS No.
RSO-SHC- 050616D, "Notes on Using the
C/C++ Compiler Package V.9 for the SuperH
RISC Engine Family of MCUs" issued on June
16, 2005.

2.2.4 In the Linker (Optimizing Linkage Editor
optlnk)
(1) On linkage list files generated by the

optimizing linkage editor
For details, see RENESAS TOOL NEWS
No. RSO-SHC-050416D, "A Note on
Using the Optimizing Linkage Editor
for the SuperH RISC Engine, H8, H8S,
and H8SX Families of MCUs" issued on
April 16, 2005.

(2) On displaying the error message
shown below accidentally ** L0103 (I)
Multiple stack sizes specified to the
symbol "Function Name"

Conditions:
This problem may occur if the
following conditions are all satisfied:

1. The version of the linker is
V.9.00.00 or later.*

2. An extern-qualified variable that
has the same name as a function
defined in a C/C++ source file
exists in another C/C++ source
file.
Or, an import label of
"_<Function Name>" exists in an
assembly source file.

3. The message option is used at
linking.

4. Also the stack option is used at
linking.

(3) On generating an incorrect stack
information file (.sni) Conditions:
This problem may occur if the
following conditions are all satisfied:

1. The version of the linker is
V.9.00.00 or later.*

2. An extern-qualified variable that
has the same name as a function
defined in a C/C++ source file
exists in another C/C++ source
file.
Or, an import label of
"_<Function Name>" exists in an
assembly source file.

3. The stack option is used at
linking.

NOTICE:
If an incorrect .sni file is read into the
stack analyzing tool, Call Walker,
incorrect stack usage is provided.

(4) On generating incorrect object code
by using the "optimize=symbol
_delete" option to optimize the
deletion of unreferenced symbols
Conditions:

This problem may occur if the
following conditions are all satisfied:

1. The version of the linker is
V.9.00.00 or later.*

2. The goptimize option is used at
compilation.

3. Also the pack=1 option is used at
compilation, or "#pragma pack
1" is put in a C/C++ source file.

4. Optimization of the deletion of
unreferenced symbols is valid in
the linker.
Optimization becomes valid in
any of the following cases:

The
optimize=symbol_delete
option is used.
The optimize=speed option
is used.
The optimize option is used.
The nooptimize option is not
used.

5. Constants (const- qualified
variables) and variables having
their initial values are deleted as
unreferenced variables by the
optimization in Condition 4.

(5) On generating incorrect debug
information by using the compress
option to compress debug information
Conditions:
This problem may occur if the
following conditions are all satisfied:

1. The version of the linker is V.7.0
or later.*

2. The debug option is used at
compilation.

3. Also the compress option is used
for generating relocatable files
(.rel) at linking.

4. The relocatable files in Condition
3 are read into the linker to
generate a load module using the

"compress" option.
NOTICE:
Loading the above load module in the
debugger results in errors.

(6) On displaying the error message
shown below accidentally depending
on the combination of the optimizing
options used. ** L3320 (F) Memory
overflow
Conditions:
This problem may occur if the
following conditions are all satisfied:

1. The version of the linker is
V.9.00.00 or later.*

2. The goptimize option is used at
compilation.

3. Any of the following optimizing
options is used at linking:

The three options
optimize=symbol_delete,
register, and string_unify
are used at the same time.
The optimize=speed option
is used.
Also the optimize option is
used.
The nooptimize option is not
used.

4. Several functions are deleted by
the optimization in Condition 3.

(7) On generating internal errors
Conditions:
This problem may occur if any of the
following conditions is satisfied:

The linker reads .rel files
containing .EQU symbols written
in the assembly language.
(Internal error L4000-8010
arises.)
The linker reads object files
containing function calls calling
.EQU symbols (Internal error

L4000-8874 arises.)
The linker reads .rel files.
(Internal error L4000-8027 or
L4001 arises.)

* How to check for the version number of your linker
(1) In the High-performance Embedded Workshop,

open the Tool menu and select the
Administration command. The Tool
Administration dialog box appears.

(2) Out of the Toolchains tree in the Registered
Components list, select the name of the
compiler package you are using; then click the
properties button.

(3) Click the Information tab in the Properties
dialog box, and you see the version number of
your linker.
Example of Display .. Optimizing Linkage Editor
(V.9.00.02)

2.3 A Problem Unfixed
2.3.1 Description

If both the definition of a pointer-type
variable whose initial value is a character
string and that of a static variable exist in a
file having no function definition, the address
pointed to by the pointer-type variable may
be incorrect.

2.3.2 Conditions
This problem occurs if the following
conditions are all satisfied:
(1) The code=machinecode option is used

or the code option is not used.

(2) In a file exists no function definition.

(3) In a file exists a static-qualified
variable.

(4) A pointer-type variable is defined
whose initial value is a character
string.

(5) The variables in (3) and (4) satisfy
any of the following conditions:
(a) The variable in (3) does not

have its initial value.

(b) Only the variable in (4) is
qualified to be const.

(c) The variables in (3) and (4)
are placed in the same section,
and the variable in (4) is
defined earlier.

2.3.3 Workaround
This problem can be circumvented in either of
the following ways:
(1) Use the code=asmcode option.

(2) Define a function.

(3) Don't qualify the variable in Condition
(3) to be static.

3. How to Update Your Package and Purchase the Revised One
3.1 Free-of-Charge Update

Free-of-charge update is available if you are using the product concerned.

(1) For Windows version
To update yours online, download the revised product from HERE.

(2) For Solaris or HP-UX version
Supply the following items of information to your local Renesas Technology
sales office or distributor. We will send you the latest version of the product
package by return:

Host OS Solaris or HP-UX

Version No. V.9.00

Release No. Release 03

3.2 Ordering Information
If you place an order for the product, please supply the following items of

information to your local Renesas Technology sales office or distributor:

Host OS Windows, Solaris, or HP-UX

Version No. V.9.00

Release No. Release 03

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

