
Tool News

 MAEC TOOL NEWS: MAECT-M3T-CC32R-030316D

Notes on Using Cross-Tool Kit
M3T-CC32R

Please take note of the following problems in using cross-tool kit M3T-CC32R for the M32R
family MCUs:

On displaying include files written in assembly language using the debugger
On optimizing a division expression where the divisor becomes zero

1. Problem on Displaying Include Files Written in Assembly Language Using
the Debugger

1.1 Versions Concerned
M3T-CC32R V.1.00 Release 1 through V.4.00 Release 1

1.2 Description
When two or more files included in an assembly-language source file are displayed
using a debugger (for instance, M3T-PD32R), the addresses of object codes of an
include file may appear in another one's lines.
Note, however, that the codes are correctly generated though they are wrongly
displayed in the debugger.

1.3 Conditions
This problem occurs if any source file that satisfies the following three conditions is
displayed by the debugger:
(1) A source file includes two or more files.
(2) Descriptions for generating execution codes are made in the include files.
(3) The source program is assembled using the -g option.

Note that the source file that is incorrectly displayed is only one for the object file
obtained by assembling the source files that satisfy the above conditions.

1.4 Examples
Source file 1:



[sample1.ms]
--------------------------------------------------------------
     .section P,code,align=4
     .export _proc1
   _proc1:
     .include "proc1.inc"      ; Condition (1)
     .include "proc2.inc"      ; Condition (1)
     .end
--------------------------------------------------------------

[proc1.inc]
--------------------------------------------------------------
   LDI   R0,#1               ; Condition (2)
   JMP   R14                 ; Condition (2)
   ; (Dummy Line - 1)
   ; (Dummy Line - 2)
--------------------------------------------------------------

[proc2.inc]
--------------------------------------------------------------
     .export _proc2
   _proc2:
     LDI   R0,#2               ; Condition (2)
     JMP   R14                 ; Condition (2)
--------------------------------------------------------------

Examples of Executing Commands in CC32R:
(Here % denotes a prompt.)
------------------------------------------------------------
 % as32R -g -o sample1.mo sample1.ms       ; Condition (3)
------------------------------------------------------------

When the proc1.inc file is displayed by the debugger in the above example of Source
file 1, the addresses of opcodes appear in the third and fourth lines as if they exist
there, but they should be displayed in the third and fourth lines of the proc2.inc file.

Source file 2:

[sample2.ms]
--------------------------------------------------------------
   .section P,code,align=4
   .include "proc3.inc"
   .end



--------------------------------------------------------------

[proc3.inc]
--------------------------------------------------------------
     .export _proc4
   _proc4:
     .include "proc4.inc"      ; Condition (1)
     .include "proc5.inc"      ; Condition (1)
--------------------------------------------------------------

[proc4.inc]
--------------------------------------------------------------
   LDI   R0,#4               ; Condition (2)
   JMP   R14                 ; Condition (2)
   ; (Dummy Line - 1)
   ; (Dummy Line - 2)
--------------------------------------------------------------

[proc5.inc]
--------------------------------------------------------------
     .export _proc5
   _proc5:
     LDI   R0,#5               ; Condition (2)
     JMP   R14                 ; Condition (2)
--------------------------------------------------------------

Examples of Executing Commands in CC32R:
(Here % denotes a prompt.)
------------------------------------------------------------
 % as32R -g -o sample2.mo sample2.ms       ; Condition (3)
------------------------------------------------------------

When the proc4.inc file is displayed by the debugger in the above example of Source
file 2, the addresses of opcodes appear in the third and fourth lines as if they exist
there, but they should be displayed in the third and fourth lines of the proc5.inc file.

1.5 Workaround
This problem can be circumvented in any of the following four ways:
(1) To display source files using the M3T-PD32R or M3T-PD32RSIM, don't use source

or MIX display, but use disassemble display.

(2) Don't use the -g option at assembling when displaying any source file that meets
the conditions described in 1.3 above.



(3) Describe the contents of an include file instead of using the .include
preprocessing directive.
Modified example of source file 1:

[sample1.ms]
------------------------------------------------------------
 .section P,code,align=4
 .export _proc1
_proc1:
 LDI   R0,#1             ; The contents of the proc1.inc 
 JMP   R14               ; file are described in these four 
 ; (Dummy Line - 1)      ; lines.
 ; (Dummy Line - 2)      ; 
 .include "proc2.inc"
 .end
------------------------------------------------------------

(4) Make a source file include only one file.
When two .include preprocessing directives are written in succession, nest the
second directive so that the source file might include only one file.
NOTICE: The nesting levels of include files must be within its limit, 8.
Modified example of source file 2:

[proc3.inc]
------------------------------------------------------------
 .export _proc4
_proc4:
 .include "proc4.inc"    
                     ; .include "proc5.inc" previously 
                       written here moved to [proc4.inc].
------------------------------------------------------------

[proc4.inc]
------------------------------------------------------------
LDI   R0,#4
JMP   R14
; (Dummy Line - 1)
; (Dummy Line - 2)
.include "proc5.inc"    ; Here included proc5.inc.
------------------------------------------------------------

1.6 Schedule of Fixing the Problem
We plan to fix this problem in our next release of the product.



Notes on Using Cross-Tool Kit M3T-CC32R
MAECT-M3T-CC32R-030316D

2. Problem on Optimizing a Division Expression where the Divisor Becomes
Zero

2.1 Versions Concerned
M3T-CC32R V.4.00 Release 1

2.2 Description
When a divisor becomes a zero in a division or remainder operation in a C-language
program, compilation using a specific optimizing option is incorrectly performed,
forcing the OS to terminate the application program abnormally. That is, Windows will
say as, "This program has performed an illegal operation and will be closed by
Windows."

2.3 Conditions
This problem occurs if the following three conditions are satisfied:
(1) Any optimizing option covering the -O4 option's function (-04, -O5, -O6, -O7, -

Otime only or -Ospace only) is selected at compilation.

(2) An auto variable is defined in a function and initialized to a constant.

(3) An division or remainder operation that satisfies the following three conditions is
performed inside the function in (2):
(a) The expression of the divisor always gives zero.

(b) The divisor contains the auto variable in (2), directly or indirectly.

(c) The value of the dividend remains unchanged during the execution of the
program.

2.4 Examples

Source file 1: zdiv1.c
-------------------------------------------------------------
 int func1(void)
 {
     int var1;                /*Condition (2)*/
     int var2 = 1;            /*Condition (3c)*/
     var1 = 0;                /*Conditions (2),(3a),and(3b)*/

     return (var2 /= var1);   /*Conditions (3a),(3b),and(3c)*/



 }
-------------------------------------------------------------

Source file 2: zdiv2.c
-------------------------------------------------------------
 int var1;

 int func2(void)
 {
     int var2 = 0;           /*Condition (2)*/

     var1 = var2;            /*Condition (3b)*/

     return (2 % var1);      /*Conditions (3a),(3b),and(3c)*/
 }
-------------------------------------------------------------

Source file 3: zdiv3.c
-------------------------------------------------------------
 int func3(void)
 {
     int var1 = 2;           /*Condition (2)*/

     int var2 = 3;           /*Condition (2) and (3c)*/
     var2 -= var1;           /*Conditions (3a)and(3b)*/

     return (3 / --var2);    /*Conditions (3a),(3b),and(3c)*/
 }
-------------------------------------------------------------

Examples of Executing Commands in CC32R:
(Here % denotes a prompt.)
-------------------------------------------------------------
 % cc32R -c -O4 -o zdiv1.mo zdiv1.c        ; Condition (1)
 % cc32R -c -O4 -o zdiv2.mo zdiv2.c        ; Condition (1)
 % cc32R -c -O4 -o zdiv3.mo zdiv3.c        ; Condition (1)
-------------------------------------------------------------

2.5 Workaround
Modify your programs to contain no division or remainder operation in which the
divisor becomes zero. In ANSI-C, the results of the division and remainder operations



where the divisors give a zero are undefined, and these operations are not
recommended.

2.6 Schedule of Fixing the Problem
We plan to fix this problem in our next release of the product.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.


