
Tool News

RENESAS TOOL NEWS on November 01, 2015: 151101/tn2

Notes on Using the C Compiler Package 
for RL78 Family

We are repeating our announcement of the four problems listed below that we announced in an
earlier cautionary note (issue No. 151001/tn2 of Renesas Tool News), with changes to two of
the points.

The range of conditions applicable to point 1 (CCRL#002): 1.3 (2) has been narrowed
down.
The description of the target functions in point 3 (CCRL#004): 3.3 (1) has been changed.

No changes have been made to points 2 (CCRL#003) and 4 (CCRL#005).

1. The output of code which rewrites argument values which have been pushed onto the stack
(CCRL#002) 
2. Return values of the memcmp, _COM_memcmp_ff, strcmp and _COM_strcmp_ff functions
becoming incorrect (CCRL#003)
3. Return values of the strtoul and _COM_strtoul_ff functions becoming incorrect (CCRL#004) 
4. Non-default section names being used with the reserved words __sectop and __secend, and
with the startof and sizeof operators (CCRL#005)

Note: The number which follows the description of the precautionary note is an identifying
number for the precaution.

1. The Output of Code which Rewrites Argument Values which have been Pushed
   onto the Stack (CCRL#002)
1.1 Applicable product and version
   CC-RL V1.01.00 

1.2 Description 



   Code output for a function call may overwrite argument values which have
   been pushed onto the stack. 

1.3 Conditions 
   Such code might be produced when all of the conditions described in the 
   following (1) to (3) are met. 
   (1) The -Onothing option is not designated. 
   (2) A function has more than one argument to which any of the following 
       (2-1) to (2-3) applies (including cases where the same condition
       applies in more than one place). 
        (2-1) The size of an actual argument is 1 byte (char, structure, or
              union).  
        (2-2) The size of an actual argument is 3 bytes (char, structure, or
              union).  
        (2-3) A far pointer is used. 
   (3) Arguments in (2) are declared with non-volatile modifiers.

    Example of statements satisfying the condition when the -Onothing option
    is not designated 
   ----------------------------------------------------------------------- 
    void func0(void); 
    void func1(unsigned char c); 
    unsigned char data[2]; 
    void func(unsigned char p1, unsigned char p2) {    // Conditions (2-1) &
                                                       // (3) 
        func0(); 
        func1(data[p2]); 
        data[1] = data[p2]; 
        data[0] = p1; 
    } 
   ----------------------------------------------------------------------- 

    Example of assembly code output for the above example of code that
    satisfies the conditions:
   ----------------------------------------------------------------------- 
    _func: 
        .STACK _func = 6 
        push ax                      ; (a) Pushes p1 and p2 onto the stack 
        call !!_func0 
        mov a, [sp+0x00] 
        shrw ax, 8+0x00000 
        addw ax, #LOWW(_data) 
        movw [sp+0x00], ax           ; (b) Overwrites [SP+1] 
        movw de, ax 
        mov a, [de] 



        call !!_func1 
        pop de 
        push de 
        mov a, [de] 
        mov !LOWW(_data+0x00001), a 
        mov a, [sp+0x01]             ; (c) Refers to the value 
        mov !LOWW(_data), a 
        pop hl 
        ret 
   ----------------------------------------------------------------------- 
    (a) Pushes p1 and p2 onto the stack
        The register pair AX, for which the different arguments (p1 and p2)
        are assigned to the higher- and lower-order bytes, are pushed onto
        the stack in preparation for the function. 

    (b) Overwrites [SP+1]  
        Overwrites [SP+1] when the movw instruction or push instruction
        writes a value to the location of [SP+0]. 
    (c) Refers to the value 
        Refers to [SP+1], which has been overwritten. 

1.4 Workaround 
   To update your program, use either of the following methods: 
   (1) Designate the -Onothing option. 
   (2) Change the type or number of arguments so that they do not satisfy
       condition (2). 
   (3) Add the volatile modifier to the arguments. 

1.5 Schedule for fixing the problem 
   This problem will be fixed in the next version. 

2. Return Values of the memcmp, _COM_memcmp_ff, strcmp and _COM_strcmp_ff
   Functions Becoming Incorrect (CCRL#003)  
2.1 Applicable product and versions 
   CC-RL V1.00.00 to V1.01.00 

2.2 Description 
   The comparison of arguments by memcmp, _COM_memcmp_ff, strcmp,
   _COM_strcmp_ff functions may produce an incorrect return value. 

2.3 Conditions 
   The problem arises when condition (1) and either of conditions (2) or 
   (3) listed below are met.



   (1) Arguments are compared by any of the following functions. 
        - memcmp(s1, s2, n) 
        - COM_memcmp_ff(s1, s2, n) 
        - strcmp(s1, s2) 
        - _COM_strcmp_ff(s1, s2) 
   (2) The character code for s1 is 0x80 or greater, and the difference
       between the character codes for s1 and s2 is 0x80 or greater. 
   (3) The character code for s2 is 0x80 or greater, and the difference
       between the character codes for s1 and s2 is greater than 0x80. 

    Example of statements satisfying the condition: 
   ----------------------------------------------------------------------- 
    #include  
    int x1, x2, x3; 
    void func(void) 
    { 
        x1 = strcmp("\xc0", "\x3e");  // Conditions (1) & (2) 
                                      // The value of x1 becomes negative
                                      // rather than positive.
        x2 = strcmp("\xc0", "\x40");  // Conditions (1) & (2) 
                                      // The value of x1 becomes negative
                                      // rather than positive. 
        x3 = strcmp("\x40", "\xc2");  // Conditions (1) & (3) 
                                      // The value of x3 becomes positive
                                      // rather than negative. 
    } 
   ----------------------------------------------------------------------- 
    
2.4 Workaround 
   There is no way to prevent this problem. 

2.5 Schedule for fixing the problem
   This problem will be fixed in the next version. 

3. Return Values of the strtoul and _COM_strtoul_ff Functions Becoming
   Incorrect (CCRL#004)
3.1 Applicable product and versions
   CC-RL V1.00.00 to V1.01.00 

3.2 Description 
   Conversion of character strings to integers by the strtoul and
   _COM_strtoul_ff functions may produce incorrect return values. 

3.3 Conditions 



   The problem arises when both conditions (1) and (2) listed below are met.
   (1) Either of the following functions is used to convert character 
       strings. 
        - strtoul(nptr, endptr, base) 
        - COM_strtoul_ff(nptr, endptr, base)        
   (2) nptr, the character string to be produced by conversion, has the
       - (minus) character as its leading character, and the value after
       conversion is out of the expressible range. 

    Example of statements satisfying the condition: 
   ----------------------------------------------------------------------- 
    #include  
    char *endptr; 
    unsigned long ans; 
    void func(void) 
    { 
        ans = strtoul("-4294967300", &endptr, 10);  // Conditions (1) & (2) 
    } 
   ----------------------------------------------------------------------- 
    The value of ans becomes 1 (-ULONG_MAX) rather than ULONG_MAX. 

3.4 Workaround 
   There is no way to prevent this problem. 

3.5. Schedule for fixing the problem 
   This problem will be fixed in the next version. 

4. Non-default Section Names being Used with the Reserved Words __sectop and
   __secend, and with the startof and sizeof Operators (CCRL#005) 
4.1 Applicable product and versions 
   CC-RL V1.00.00 to V1.01.00 

4.2 Description 
   When non-default section names are used for the reserved words __sectop
   and __secend, and for the startof and sizeof operators, the address of
   a label within the section becomes incorrect, and the addresses of
   labels and symbols allocated after that also become incorrect.   

4.3 Conditions 
   The problem arises when all of conditions (1) to (3) listed below are
   met. 
   (1) The below reserved words or operators are used with non-default
       section names. 
        - C language statements



            Reserved word __sectop or __secend 
        - Assembly language statements
            startof or sizeof operator        
   (2) The labels are defined in the section described in (1). 
   (3) In the case of assembly language, the sections of names in (1) are
       defined on the lines below a statement in (1).    

    Example of statements satisfying the condition: 
   ----------------------------------------------------------------------- 
    #pragma section bss BSEC1 
    unsigned char *ucp1;  // Condition (2) 
    int sym1;             // Condition (2) 
    void func(void) 
    { 
        ucp1 = (unsigned char *)__sectop("BSEC1_n");  // Condition (1) 
    } 
   ----------------------------------------------------------------------- 

    Example of a linkage-map file output for the above example: 
   ----------------------------------------------------------------------- 
    *** Mapping List *** 

    SECTION                          START      END         SIZE   ALIGN 

    BSEC1_n 
                                    000f9f0e  000f9f11         4   2 

    *** Symbol List *** 

    SECTION=BSEC1_n 
    FILE=DefaultBuild\r_main.obj 
                                    000f9f0e  000f9f11         4 
      _ucp1 
                                    000f9f12         2   data ,g         1 
      _sym1 
                                    000f9f14         2   data ,g         0 

   ----------------------------------------------------------------------- 
     From ucp1, the addresses of the labels and symbols are incorrect.

4.4 Workaround 
   Write the program and section definitions which use the reserved words
   __sectop and __secend, or the startof and sizeof operators, in different
   files. 



4.5 Schedule for fixing the problem 
   This problem will be fixed in the next version.
    

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.




