
 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 1 of 9
Jan.16.22

[Notes]
C/C++ Compiler Package for RX Family (No. 60-64)

Outline
When using the C/C++ Compiler Package for RX Family, note the following points.

1. Use of struct/union type arguments (No.60)

2. Cast from pointer type to other type (No.61)

3. Use of an anonymous struct/union (No.62)

4. Use of an address read from memory after writing the address to the memory (No.63)

5. Reference to global/static variables (No.64)

Note: The number following the note is an identification number for the note.

1. Use of Struct/Union Type Arguments (No.60)

1.1 Applicable Products
CC-RX V2.00.00 to V3.03.00

1.2 Details
An incorrect code may be generated when a struct or union type argument with a pointer-type member is

used.

There are three conditions in which the problem may occur. Refer to the following for the conditions,
examples, and the workarounds.

1.3 Conditions (1)
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) There is a struct or union type variable with a pointer-type member.

(3) The size of the struct or union type of (2) is 8 bytes or less.

(4) There is Function A that does (4-1) to (4-3) below.

(4-1) It assigns an address to the pointer-type member of (2).

(4-2) It passes the variable of the struct or union type, to which (4-1) has been assigned, to the
argument and calls Function B.

(4-3) It references the destination of the address assigned in (4-1).

(5) Function B receives the struct or union type argument of (4-2) from a register.

(6) In Function B, the destination of the pointer-type member of the argument of (4-2) is referenced.

(7) Function B is expanded inline.

[Example] ccrx -isa=rxv2 -speed tp.c (1), (7)

/* tp.c */
#include <stdio.h>
typedef struct { // (2), (3)
 int* _pointer;
 int _value;
}myStruct;

R20TS0794EJ0100
Rev.1.00

Jan. 16, 2022

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 2 of 9
Jan.16.22

int flg = 0;
void func(myStruct arg) { // (5)
 if (*(arg._pointer) != 10) { // (6)
 flg = 1;
 }
}
void main(void) {
 int val = 10;
 volatile myStruct st;
 st._pointer = &val; // (4-1)
 func(st); // (4-2)
 val = 20; // (4-3)
 if (flg == 1) {
 printf("ng¥n");
 } else {
 printf("ok¥n");
 }
}
In this example, the variable flg should not become 1, and "ok" should be output by printf. However, the

code that assigns 10 to the variable val has been deleted due to failure and "ng" is output as the result.

1.4 Workaround (1)
Do either of the following.

(a) Specify the option -optimize=0.

(b) Change the size of the struct or union type to avoid condition (3) above.

(c) Adjust the struct or union type argument so that it is not passed by a register.

(d) Avoid the inline expansion.

1.5 Conditions (2)
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) The option -ip_optimize is specified.

(3) There is a struct or union type variable with a pointer-type member.

(4) The size of the struct or union type of (3) is 16 bytes or less.

(5) There is Function A that does (5-1) to (5-3) below.

(5-1) It assigns an address to the pointer-type member of (3).

(5-2) It passes the variable of the struct or union type, to which (5-1) has been assigned, to the
argument and calls Function B.

(5-3) It references the destination of the address assigned in (5-1).

(6) Function B receives the struct or union type argument of (5-2) from a register.

(7) In Function B, the destination of the pointer-type member of the argument of (5-2) is referenced.

(8) Function B is expanded inline.

[Example] ccrx -isa=rxv2 -speed -ip_optimize tp.c (1), (2), (8)

/* tp.c */
#include <stdio.h>
typedef struct { // (3)，(4)
 int* _pointer;
 int _value1;
 int _value2;
}myStruct;

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 3 of 9
Jan.16.22

int flg = 0;
void func(myStruct arg) { // (6)
 if (*(arg._pointer) != 10) { // (7)
 flg = 1;
 }
}
void main(void) {
 int val = 10;
 volatile myStruct st;
 st._pointer = &val; // (5-1)
 func(st); // (5-2)
 val = 20; // (5-3)
 if (flg == 1) {
 printf("ng¥n");
 } else {
 printf("ok¥n");
 }
}

In this example, the variable flg should not become 1, and "ok" should be output by printf. However, the
code that assigns 10 to the variable val has been deleted due to failure, and "ng" is output as the result.

1.6 Workaround (2)
Do either of the following.

(a) Specify the option -optimize=0.

(b) Unspecify the option -ip_optimize.

(c) Change the size of the struct or union type to avoid condition (4) above.

(d) Adjust the struct or union type argument so that it is not passed by a register.

(e) Avoid the inline expansion.

1.7 Conditions (3)
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) The option -ip_optimize is specified.

(3) There is a struct or union type with a pointer-type member.

(4) There is a function with the struct or union type argument of (3).

(5) In the function of (4), the pointer-type member of the struct or union type argument is referenced for
either or both of the following.

(5-1) It has been read and written.

(5-2) It has been written multiple times.

[Example] ccrx -isa=rxv2 -speed -ip_optimize tp.c (1), (2)

/* tp.c */
typedef struct s_tag { // (3)
 int *ptr ;
 int dmy1 ;
 int dmu2 ;
} STRCT ;
STRCT gv;
void func(STRCT arg) { // (4)
 int i ;
 for(i = 0 ; i < 1 ; i++){
 (*(arg.ptr)) += 1 ; // (5)

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 4 of 9
Jan.16.22

 (*(arg.ptr)) += 2 ; // (5)
 }
}

In this example, 3 should be added to the destination of arg.ptr. However, the code that adds 2 to the
destination is generated due to failure.

1.8 Workaround (3)
Do either of the following.

(a) Specify the option -optimize=0.

(b) Unspecify the option -ip_optimize.

1.9 Schedule for Fixing the Problem
The problem will be fixed in CC-RX V3.04.00, which will be released in January 2022.

2. Cast from Pointer Type to Other Type (No.61)

2.1 Applicable Products
CC-RX V2.00.00 to V3.03.00

2.2 Details
An incorrect code may be generated when a casted pointer type is used.

2.3 Conditions
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) The option -ip_optimize is specified.

(3) A pointer-type value is casted to a non-pointer-type and then assigned to a variable.

(4) The address of the variable, to which (3) has been assigned, is assigned to a pointer-to-pointer-type
variable.*

(5) The destination of the pointer-to-pointer-type variable of (4) is referenced.

(6) The destination of the pointer-type variable assigned in (3) is referenced in the same function of (5).

*Instead of "a pointer-to-pointer-type", the condition also applies when there are multiple unary operators.

[Example] ccrx -isa=rxv2 -speed -ip_optimize tp.c (1), (2)

/* tp.c */
#include <stdio.h>
void test(int key){
 int gv = 0;
 volatile int variable = (int)&gv; // (3)
 int** pointer = (int**)&variable; // (4)
 **pointer = 1; // (5)

 if (gv == 1){ // (6)
 printf("ok");
 }
 else{
 printf("ng");
 }
}

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 5 of 9
Jan.16.22

In this example, "ok" should be output by printf as the result of assigning 1 to the variable gv. However, the
if-else statement that compares the variable gv and 0 (assuming that gv is 0) has been deleted due to
failure. As the result, "ng" is output.

2.4 Workaround
Do either of the following.

(a) Specify the option -optimize=0.

(b) Unspecify the option -ip_optimize.

(c) Avoid casting a pointer-type value to a non-pointer-type, assigning it to a non-pointer-type variable, and
referencing it via the variable of the pointer-to-pointer-type.

2.5 Schedule for Fixing the Problem
The problem will be fixed in CC-RX V3.04.00, which will be released in January 2022.

3. Use of an Anonymous Struct/Union (No.62)

3.1 Applicable Products
CC-RX V2.00.00 to V3.03.00

3.2 Details
A struct and union with an anonymous union type member may not be initialized correctly or cause internal

errors.

3.3 Conditions
The problem may occur when all the following conditions are met.

(1) There is a variable or compound literal with either of the following types.

(1-1) Struct

(1-2) Union

(2) The type of (1) has either of the following members.

(2-1) Anonymous struct (Note 1)

(2-2) Anonymous union (Note 2)
(Note 1) A struct member with a member name omitted in the declaration
(Note 2) A union member with a member name omitted in the declaration

(3) The variable of (1) has been initialized with the declaration.

(4) Either of the following conditions is met.

(4-1) The unions of (1) and (2) have a member that is larger than the first member.

(4-2) A member smaller than the unions of (1) and (2) has been initialized in (3).

(4-3) The initialization of (3) has been done to only some members of the structs, unions, and classes
of (1) and (2).

[Example] ccrx -isa=rxv2 tp.c

/* tp.c */
long func() {
 struct { // (1-1)
 union { // (2-2)
 long a;
 };

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 6 of 9
Jan.16.22

 union {
 long b;
 } c;
 } v = {10}; // (3), (4-3)
 return v.c.b;
}

In this example, v.a (anonymous union member) should be initialized to 10, v.c.b to 0, and func should
return 0 as the result. However, v.c.b is incorrectly initialized to 10, and func returns 10 as the result.

3.4 Workaround
Do either of the following.

(a) Separately perform the declaration and the initialization of the variables that meet condition (1).

(b) If condition (4-3) is met, initialize all the members of the variables that meet condition (1) at once.

(c) Avoid using anonymous structs and unions. Name and use them as structs and unions.

3.5 Schedule for Fixing the Problem
The problem will be fixed in CC-RX V3.04.00, which will be released in January 2022.

4. Use of an Address Read from Memory After Writing the Address to the Memory
(No.63)

4.1 Applicable Products
CC-RX V2.00.00 to V3.03.00

4.2 Details
If a pointer has been written to memory and then read, an incorrect code may be generated under certain

circumstances.

4.3 Conditions
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) Regarding the memory, either of the following is met.

(2-1) An address has been written to the memory as a pointer-type value. The value is then read as a
non-pointer-type value, converted to a pointer-type, and its destination is referenced.

(2-2) An address has been written to the memory as a non-pointer-type value. The value is then read
as a pointer-type value, and its destination is referenced.

(3) The destination of the address of (2) is referenced without using the write and read operations in (2).

(4) The references of (2) and (3) are in the same functions (or the references are put in a single function
by inline expansion), and either of the references performs writing.

[Example] ccrx -isa=rxv2 tp.c // (1)

/* tp.c */
#include <stdio.h>
int flg = 0;
void main(void){
 volatile union{
 int* _pointer;
 int _value;
 }myUnion;
 int val = 10;
 myUnion._pointer = &val; // (2-1)

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 7 of 9
Jan.16.22

 if (*((int*)myUnion._value) != 10){ // (2-1)(4)
 flg = 1;
 }
 val = 20; //(3)(4)
 if (flg == 1){
 printf("ng¥n");
 } else {
 printf("ok¥n");
 }
}

In this example, the variable flg should not become 1, and "ok" should be output. However, the code that
assigns 10 to the variable val has been deleted due to failure, and "ng" is output as the result.

ccrx -isa=rxv2 -ip_optimize tp2.c // (1)

/* tp2.c */
#include<stdio.h>
typedef struct{
 int *_pointer;
} MyStruct2;
void test(void){
 int autoVar = 0;
 volatile struct{
 int _value;
 } myStruct;
 volatile MyStruct2* castedStruct = (volatile MyStruct2*)(&myStruct);
 myStruct._value = (int)&autoVar; // (2-2)
 *(castedStruct->_pointer) = 1; // (2-2)(4)
 if (autoVar == 1){ //(3)(4)
 printf("ok");
 }
 else{
 printf("ng");
 }
}

In this program, autoVar should become 1 and "ok" should be output. However, autoVar is judged to be 0
due to failure, the if-else statement is deleted, and "ng" is output as the result.

4.4 Workaround
Do either of the following.

(a) Specify the option -optimize=0.

(b) When saving a pointer-type value, write it as a pointer type and read it as a pointer type.

4.5 Schedule for Fixing the Problem
The problem will be fixed in CC-RX V3.04.00, which will be released in January 2022.

5. Reference to Global/Static Variables (No.64)

5.1 Applicable Products
CC-RX V2.00.00 to V3.03.00

5.2 Details
When a static variable* is referenced, an incorrect code may be generated under certain circumstances.

*Static variables include global variables.

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 8 of 9
Jan.16.22

5.3 Conditions
The problem may occur when all the following conditions are met.

(1) The option -optimize=0 is not specified.

(2) A static variable is referenced by either of the following.

(2-1) A static variable (e.g., gv)

(2-2) If the static variable is a struct or union, its member (e.g., gv.member)

(2-3) If the static variable is an array, its element (e.g., gv[i])

(3) The static variable of (2) is referenced by other than (2-1) to (2-3).

(4) The references of (2) and (3) include the writings to the static variables.

[Example] ccrx -isa=rxv2 tp.c // (1)

/* tp.c */
#include <stdio.h>
int gv;
void test(void){
 int myVal = (int)&gv >> 1;
 gv = 0; // (2)、(4)
 (int)((myVal) << 1) = 1; //(3)、(4)
 if (gv == 1){
 printf("ok");
 }
 else{
 printf("ng");
 }
}

In this example, 1 should be assigned to gv via myVal, and "ok" should be output. However, gv is judged
to be 0, the if-else statement is deleted, and "ng" is output as the result.

5.4 Workaround
Do either of the following.

(a) Specify the option -optimize=0.

(b) Regarding condition (3), select (2-1), (2-2), or (2-3).

5.5 Schedule for Fixing the Problem
The problem will be fixed in CC-RX V3.04.00, which will be released in January 2022.

 RENESAS TOOL NEWS

R20TS0794EJ0100 Rev.1.00 Page 9 of 9
Jan.16.22

Revision History

Rev. Date
Description

Page Summary
1.00 Jan.16.22 - First edition issued

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

© 2022 Renesas Electronics Corporation. All rights reserved.

TS Colophon 4.3

Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

The past news contents have been based on information at the time of publication. Now changed or
invalid information may be included.

The URLs in the Tool News also may be subject to change or become invalid without prior notice.

https://www.renesas.com/
http://www.renesas.com/contact/

	1. Use of Struct/Union Type Arguments (No.60)
	1.1 Applicable Products
	1.2 Details
	1.3 Conditions (1)
	1.4 Workaround (1)
	1.5 Conditions (2)
	1.6 Workaround (2)
	1.7 Conditions (3)
	1.8 Workaround (3)
	1.9 Schedule for Fixing the Problem

	2. Cast from Pointer Type to Other Type (No.61)
	2.1 Applicable Products
	2.2 Details
	2.3 Conditions
	2.4 Workaround
	2.5 Schedule for Fixing the Problem

	3. Use of an Anonymous Struct/Union (No.62)
	3.1 Applicable Products
	3.2 Details
	3.3 Conditions
	3.4 Workaround
	3.5 Schedule for Fixing the Problem

	4. Use of an Address Read from Memory After Writing the Address to the Memory (No.63)
	4.1 Applicable Products
	4.2 Details
	4.3 Conditions
	4.4 Workaround
	4.5 Schedule for Fixing the Problem

	5. Reference to Global/Static Variables (No.64)
	5.1 Applicable Products
	5.2 Details
	5.3 Conditions
	5.4 Workaround
	5.5 Schedule for Fixing the Problem

