
 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 1 of 7
Dec. 1, 2017

[Notes]
C Compiler Package for RL78 Family

Outline

When using the CC-RL C compiler package for the RL78 family, note the following point.

1. When a function has multiple arguments and also has assignment or comparison between formal arguments

(CCRL#017)

Note: The number which follows the description of a precautionary note is an identifying number for the

precaution.

1. When a Function Has Multiple Arguments and Also Has Assignment or
Comparison between Formal Arguments (CCRL#017)

1.1 Applicable Products

CC-RL V1.02.00 to V1.05.00

1.2 Details

When a function has multiple arguments and also has assignment or comparison between formal arguments, a code

that references another formal argument may be invalid.

1.3 Conditions

A code that references another formal argument may be invalid when all of conditions (1) to (2), described below, are

met:

(1) The (a) or (b) processing is performed in the processing of the function after inline expansion for the function
(Note).

Note: When the function contains a function call, branch, or loop, at least one of the following processing must

be performed in the period from the beginning of the function to the first function call, branch, or loop.

Note that this condition does not apply to a branch that substantially has only one branch destination or a

loop to which loop expansion is performed by optimization.

Example of a Branch That Substantially Has Only One Branch Destination

R20TS0240EJ0100
Rev.1.00

Dec. 1, 2017

if (1) {

 ...

}

else {

 ...

}

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 2 of 7
Dec. 1, 2017

(a) This processing stores formal arguments passed by a register, and the storage destination address is one of

the following (a-1) to (a-4).

 (a-1) Address pointed by a formal argument (near pointer) passed by a register

Example

(a-2) Address pointed by a formal argument (near pointer) passed by a register ± a constant offset

Example

 (a-3) Address pointed by a constant (near pointer) ± a formal argument (offset) passed by a register

Example

 (a-4) Address pointed by a formal argument (near pointer) passed by a register ± a formal argument (offset)

passed by a register

Example

*r2 = r1;

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

Includes cases in which r1 and r2 are the same formal argument.

*(r2+1) = r1;

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

Includes cases in which r1 and r2 are the same formal argument.

*((int *)0xF8000+r2) = r1;

 r1: Formal argument passed by a register

 r2: Formal argument passed by a register

Includes cases in which r1 and r2 are the same formal argument.

*(r2+r3) = r1;

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

 r3: Formal argument passed by a register

Includes cases in which r1 and r2, or r1 and r3 are the same formal

argument.

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 3 of 7
Dec. 1, 2017

(b) This processing performs a comparison with a formal argument passed by a register, and the comparison

target is one of the following (b-1) to (b-4).

 (b-1) Formal argument passed by a register

Example

 (b-2) Address pointed by a formal argument (near pointer) passed by a register

Example

 (b-3) Address pointed by a formal argument (near pointer) passed by a register ± a constant offset (within 8

bits)

Example

 (b-4) Address pointed by a formal argument (near pointer) passed by a register ± a formal argument (offset)

passed by a register

Example

if (r1 == r2) {

 r1: Formal argument passed by a register

 r2: Formal argument passed by a register

if (r1 == *r2) {

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

if (r1 == *(r2+1)) {

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

if (r1 == *(r2+r3)) {

 r1: Formal argument passed by a register

 r2: Formal argument (near pointer) passed by a register

 r3: Formal argument passed by a register

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 4 of 7
Dec. 1, 2017

(2) Data is passed into a formal argument other than the formal argument corresponding to (1) by one of the registers

X, C, E, BC and DE, and the data is referenced in the function.

Example

1.4 Example

The following is an example of the problem.

[C source]

- Line 8: Formal argument s is assigned to register AX, formal argument r1 to register BC, and formal argument r2 to

register DE.

- Line 9: Condition (1) (a) is met since formal argument s passed by a register is stored in member s2 of formal

argument s passed by a register before the first function call in line 10.

- Line 11: Condition (2) is met since formal arguments r1 and r2 passed by a register that are not formal argument s

are referenced.

1

2

3

4

5

6

7

8

9

10

11

12

typedef struct st {

 int s1;

 struct st* s2;

} ST;

void temp(void);

int func(ST* s, int r1, int r2) {

 s->s2 = s; // Condition (1) (a-1)

 temp(); // First function call

 return r1 + r2; // Condition (2)

}

i = r0;

 i: Variable

 r0: Formal argument passed by a register (X, C, E, BC or DE)

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 5 of 7
Dec. 1, 2017

[Output assembler code]

- Formal argument s is stored in stack [sp+0x00], and formal argument r1 is stored in stack [sp+0x02]. Formal

argument r2 is not stored in any stack.

- Line 12: Although formal argument r2 is supposed to be referenced, formal argument s is erroneously referenced.

1.5 Workaround

To avoid this problem, take any of the following steps:

(1) Specify the optimization option as -Onothing.

(2) Add a dummy formal argument(Note) to the function for 6 bytes from the top of the function and assign it to the

register so that the original formal argument is not assigned to the register.

Note: For a structure or union member, arguments may be passed by a stack and a formal argument may not be

able to be assigned to a register. Additionally, for an array variable, the size of the pointer is indicated

rather than the size of the entire array variable.

 [Before modification]

[After modification]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

_func:

 .STACK _func = 8

 push bc

 push ax

 movw hl, ax

 movw ax, [sp+0x00] ;Formal argument s is referenced.

 xchw ax, hl

 movw [hl+0x02], ax

 call $!_temp

 movw ax, [sp+0x02] ;Formal argument r1 is referenced.

 movw bc, ax

 movw ax, [sp+0x00] ;Formal argument s is erroneously referenced.

 addw ax, bc

 addw sp, #0x04

 ret

void func(int *r1, int r2, int r0)

{

 *r1 = r2;

...

void func(long dummy1, int dummy2, int *r1, int r2, int r0)

{

 *r1 = r2;

...

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 6 of 7
Dec. 1, 2017

(3) Add a dummy call of the inline_asm specification function to the beginning of the function.

The contents of the inline_asm specification function may be empty.

 [Before modification]

[After modification]

1.6 Schedule for Fixing the Problem

The problem will be fixed in CC-RL V1.06.00.

#pragma inline_asm dummy_func

void dummy_func(void){}

void func(int *r1, int r2, int r0)

{

 dummy_func();

 *r1 = r2;

...

void func(int *r1, int r2, int r0)

{

 *r1 = r2;

...

 RENESAS TOOL NEWS

R20TS0240EJ0100 Rev.1.00 Page 7 of 7
Dec. 1, 2017

Revision History

Rev. Date

Description

Page Summary

1.00 Dec. 1, 2017 - First edition issued

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061 Japan

Renesas Electronics Corporation

■Inquiry
https://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

© 2017 Renesas Electronics Corporation. All rights reserved.

TS Colophon 2.0

Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

The past news contents have been based on information at the time of publication. Now changed or
invalid information may be included.

The URLs in the Tool News also may be subject to change or become invalid without prior notice.

	1. When a Function Has Multiple Arguments and Also Has Assignment or Comparison between Formal Arguments (CCRL#017)
	1.1 Applicable Products
	1.2 Details
	1.3 Conditions
	1.4 Example
	1.5 Workaround
	1.6 Schedule for Fixing the Problem

	Revision History

