
Tool News

RENESAS TOOL NEWS on July 1, 2013: 130701/tn6

Note on Using Renesas Peripheral Driver Libraries for
RX62T/RX62N/RX621/RX210 Groups of MCUs and

Peripheral Driver Generator
-- With Using Callback Function for I2C Bus Interface

(RIIC) to Send Slave Address --

When using Renesas Peripheral Driver Libraries for the RX62T/RX62N/RX621/ RX210 Groups of
MCUs and Peripheral Driver Generator, take note of the following problem:

With using a callback function for the I2C bus interface (RIIC) to send a slave address

1. Products and Versions Concerned
- RX62T Group Renesas Peripheral Driver Library V.1.01 (see NOTE)
- RX62N, RX621 Group Renesas Peripheral Driver Library V.1.02
- RX210 Group Renesas Peripheral Driver Library V.1.01
- Peripheral Driver Generator V.2.01 or later

 NOTE:
 This problem does not occur in RX62G, RX62T Group Renesas Peripheral
 Driver Library V.1.01, which supports both the RX62G and RX62T groups
 of MCUs.

2. Description
In each of the following two cases, if an attempt is made to use
a callback function for the RIIC to send a slave address, the slave
address is not sent.

2.1 In Renesas Peripheral Driver Library
 This problem occurs when both R_IIC_MasterSend and R_IIC_MasterReceive
 function, or either of them is recalled inside the callback function of
 the prior R_IIC_MasterSend or R_IIC_MasterReceive function.

2.2 In Peripheral Driver Generator



 This problem arises when the following conditions are all satisfied:
(1) In project creation, the RX62T, RX62N (include RX621), or

RX210 group of MCUs is specified for the Type of CPU box in
the Project new dialog box.

(2) In the RIIC tab, Device attribute for RIIC0 (channel 0) or
RIIC1 (channel 1) is set to Master or Master and slave.

(3) In the RIIC channel selected in (2) above, either or both of
the following settings are selected for Transmission and
reception method.
- For Master reception method, Notify the reception completion
of all data by function call is selected.

- For Master transmission method, Notify the transmission
completion of all data by function call is selected.

(4) The R_PG_I2C_MasterReceive_Cn function generated by the Peripheral
Driver Generator is used for master reception, or
the R_I2C_MasterSend_Cn function or
the R_PG_I2C_MasterSendWithoutStop_Cn function (n = 0 or 1) is used
for master transmission.

3. Workaround
3.1 In RX62T Group Renesas Peripheral Driver Library

 Use the updated version that has fixed the problem:
    RX62G, RX62T Group Renesas Peripheral Driver Library V.1.01.  
For details of the product, see RENESAS TOOL NEWS Document  
No.121201/tn2 at:
 https://www.renesas.com/search/keyword-search.html#genre=document&q=121201tn2

3.2 In RX210 Group Renesas Peripheral Driver Library
 Use the updated version that has fixed the problem:
    RX210 Group Renesas Peripheral Driver Library V.2.00.
 For details of the product, see RENESAS TOOL NEWS Document  
No.130701/tn7 at:
 https://www.renesas.com/search/keyword-search.html#genre=document&q=130701tn7

3.3 In RX62N, RX621 Group Renesas Peripheral Driver Library and
 Peripheral Driver Generator
 As shown in the following example, add the processing for clearing
 the IR bit for the TXI interrupt in the Interrupt_IIC_ICEEI function
 in the Interrupt_IIC.c file. 

 NOTE:
 Before generating a source file using the Peripheral Driver
 Generator, correct the Interrupt_IIC.c file in
 source\RX\<type name>\i_src in the directory where
 the Peripheral Driver Generator has been installed.



      <type name> depends on the installed Peripheral Driver Generator
      as shown below.

         When generating code for the RX62T group by the Peripheral
         Driver Generator
              source\RX\RX62T\i_src

         When generating code for the RX62N group by the Peripheral
         Driver Generator
              source\RX\RX62N\i_src

         When generating code for the RX210 group by the Peripheral
         Driver Generator
              source\RX\RX210\i_src

    Example of Interrupt_IIC.c file correction (example for channel 0):
    ----------------------------------------------------------------------
    /*** Start of Change 1 ***/
    /* Add IR bit definition for the TXI interrupt in the RIIC. */
    /* This definition uses a macro of C language. Input the channel
       number of RIIC in "a". */
    #define   ICTXI_ADDRESS(a) ( (volatile uint8_t __evenaccess *)&
    ICU.IR[IR_RIIC0_ICTXI0] + ((4 * a) / sizeof(uint8_t)) )
    /*** End of Change 1 ***/

    void Interrupt_IIC_ICEEI0(void)
    {
        uint8_t valid_flags;
        volatile uint8_t unwanted_byte;

        /* Read the status register */
        valid_flags = RIIC0.ICSR2.BYTE;

        . . . . . . . . . . . . . . . .
        /* Decide what to send */
        switch(rpdl_IIC_next_state[0])
        {
            case IIC_MASTER_SEND_SLAVE_ADDRESS_7:
            /* Send the slave address */
            /*** Start of Change 2 ***/
            *ICTXI_ADDRESS(0) = 0x0u;   // Add processing for clearing
                                        // IR bit for TXI.
            /*** End of Change 2 ***/

            RIIC0.ICDRT = rpdl_IIC_slave_address_lower[0];



            /* Transmit mode? */
            if ((rpdl_IIC_slave_address_lower[0] & BIT_0) == 0)
            {
                rpdl_IIC_current_state[0] = IIC_MASTER_SEND_DATA;
            }
            else
            {
                rpdl_IIC_current_state[0] = IIC_MASTER_START_READ;
            }
            break;
        case IIC_MASTER_SEND_SLAVE_ADDRESS_10a:
            /*** Start of Change 3 ***/
            *ICTXI_ADDRESS(0) = 0x0u;   // Add processing for clearing
                                        // IR bit for TXI.
            /*** End of Change 3 ***/

            rpdl_IIC_current_state[0] = IIC_MASTER_SEND_SLAVE_ADDRESS_10b;

            /* Send the first part of the slave address */
            RIIC0.ICDRT = rpdl_IIC_slave_address_upper[0];
            break;
        default:
            break;
    . . . . . . . . . . . . . . . .
    ----------------------------------------------------------------------

4. Schedule for Fixing Problem
   (1) Renesas Peripheral Driver Library
       - RX62T group
         Sorry we have no plan to fix this problem in RX62T Group Renesas
         Peripheral Driver Library V.1.01, which supports only the RX62T
         group of MCUs.
         So use the updated version that has fixed the problem:
            RX62G, RX62T Group Renesas Peripheral Driver Library V.1.01.

       - RX62N and RX621 groups
         For RX62N, RX621 Group Renesas Peripheral Driver Library,
         we plan to fix this problem in a future version.

       - RX210 group
         In RX210 Group Renesas Peripheral Driver Library,
         this problem has already been fixed in V.2.00.

   (2) Peripheral Driver Generator



        For Peripheral Driver Generator, we plan to fix this problem
        in a future version.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.




