
Tool News

RENESAS TOOL NEWS on June 1, 2014: 140601/tn1

Note on Using C/C++ Compiler and IDE
for RX Family V2 for CubeSuite+ and

RX Family C/C++ Compiler Package V2 (without IDE)

When using the C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
and the RX Family C/C++ Compiler Package V2 (without IDE), take note of the following
problems:

With using the -smap and -goptimize options when there is no reference to a symbol
(RXC#029)
With specifying the __evenaccess keyword for a variable which is used in a conditional
statement (RXC#031)
With using the -smap and -goptimize options when there is access to a const variable
(RXC#032)
With specifying #pragma address for structures, unions, and arrays (RXC#033)

Note:
The numbers at the end of the above items are from a consecutive index of
problems in the compiler packages for the RX family of MCUs.

1. Problem with Using the -smap and -goptimize Options When There Is No
 Reference to a Symbol (RXC#029)
1.1 Product and Versions Concerned
 - C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
 CC-RX Compiler V2.00.00 through V2.01.00
 - RX Family C/C++ Compiler Package V2 (without IDE)
 CC-RX Compiler V2.01.00

1.2 Description
 When the -smap option for optimizing external variable access and
 -goptimize option for optimization between modules are specified,
 in some cases the reference address used for access to external
 variables will not be correct.

1.3 Conditions
 This problem arises if the following conditions are all met:
 (1) -smap compiler option to optimize access to external variables is specified.
 (2) -goptimize option for optimization between modules is specified.
 (3) -optimize=symbol_delete option for optimizing linkage is specified
 (see Note below).
 (4) An external variable is defined but not referred to in a file.

 Note: When the -goptimize option is specified, -optimize=symbol_delete
 is effective by default unless -optimize=same_code,
 short_format, and branch are specified.

 Example:
 --
 int x, z;
 static int a, b, c;

 #pragma entry main
 void main(void){
 x = a;
 z = c;
 }

 void func2(void){ // Condition (4)
 b++ // There is no reference to func2 and the only
 // reference to b is from func2, so both are
 // deleted in optimization.
 }
 --

 Results of compilation:
 Example of compilation with -isa=rxv1, -output=abs, -goptimize,
 -optimize=2, and -smap
 --
 _main:
 MOV.L #_x,R14
 MOV.L 08H[R14],[R14]
 MOV.L 10H[R14],04H[R14] ; Incorrect address reference
 ; Correct address reference would
 ; be MOV.L 0CH[R14],04H[R14]
 MOV.L #0,R1
 RTS

 .SECTION B,DATA

 .ORG 00000010H
 _x:
 .BLKL 1
 _z:
 .BLKL 1
 __$a:
 .BLKL 1
 __$c:
 .BLKL 1
 .END _main
 --

1.4 Workarounds
 To avoid this problem, do any of the following:
 (1) Exclude the -smap compiler option which optimizes access to external
variables.
 Note that this problem can be avoided also by changing -smap to -map.
 (2) Exclude the -goptimize option which is used for optimization between modules.
 (3) Exclude the -optimize=symbol_delete option which is used for optimizing
linkage.
 (4) Correct the source file and delete external variables to which there is no
reference.

2. Problem with Specifying the __evenaccess Keyword for a Variable Which
 is Used in a Conditional Statement (RXC#031)
2.1 Product and Versions Concerned
 - C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
 CC-RX Compiler V2.00.00 through V2.01.00
 - RX Family C/C++ Compiler Package V2 (without IDE)
 CC-RX Compiler V2.01.00

2.2 Description
 When a conditional statement such as an if statement, conditional
 operator (? :), or switch statement is used, in some cases access to
 a variable for which __evenaccess is specified will not proceed with
 the declared size.

2.3 Conditions
 This problem may arise if the following conditions are all met:
 (1) -optimize=1, -optimize=2, or -optimize=max is specified at
 compilation.
 (2) The code includes a conditional statement such as an if statement,
 conditional operator (? :), or switch statement.
 (3) There are two or more references by variables with the same

 size (see Note 1) to the 2-byte, 4-byte, or 8-byte integer type
 (see Note 2).
 (4) Variables referred to in (3) change in accord with the conditions
 of the conditional statement described in (2) above.
 (5) The __evenaccess qualifier is specified for some among the variables
 in (3) above.
 (6) There is no reading or writing of other volatile variables after
 reference to any of the variables in (3) above until the end of
 the block.

 Notes:
 1. Variables include the items below:
 - Member variables
 - Bit fields with the same type and the same bit width
 2. Reference to a variable includes reference to memory at a constant address.

 Example:
 --
 __evenaccess struct { unsigned short mem; } x0; // Condition (5)
 unsigned short mem1;
 unsigned char test(unsigned char x) {
 unsigned short temp;
 if (x) { // Condition (2)
 temp = x0.mem; // Conditions (3), (4), and (6)
 } else {
 temp = mem1; // Conditions (3), (4), and (6)
 }
 return (char)temp;
 }
 --

 Output code for the example:
 Example where -isa=rxv1, -optimize=2, and -size are specified.
 --
 _test:
 CMP #00H, R1
 MOV.L #_x0, R14
 MOV.L #_mem1, R15
 BEQ L12
 L11: ; entry
 MOV.L R14, R15
 L12: ; entry
 MOVU.B [R15], R1 ; Memory is erroneously read in a 1-byte unit
 ; instead of a 2-byte unit.
 RTS

 --

2.4 Workarounds
 To avoid this problem, do either of the following:
 (1) Specify -optimize=0
 (2) Insert reading of the variable qualified as volatile after any
 variable reference that satisfies condition (3) and before
 convergence following the branch under condition (2).

 Example of applying workaround (2) above to the example of the problem:
 --
 __evenaccess struct { unsigned short mem; } x0;
 unsigned short mem1;
 unsigned char test(unsigned char x) {
 unsigned short temp;
 volatile char dummy; // Workaround (2)
 if (x) {
 temp = x0.mem;
 dummy; // Workaround (2)
 } else {
 temp = mem1;
 }
 return (char)temp;
 }
 --

3. Problem with Using the -smap and -goptimize Options When There Is
 Access to a Const Variable (RXC#032)
3.1 Product and Versions Concerned
 - C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
 CC-RX Compiler V2.00.00 through V2.01.00
 - RX Family C/C++ Compiler Package V2 (without IDE)
 CC-RX Compiler V2.01.00

3.2 Description
 The address used for reference in access to a const variable is
 incorrect in some cases when the -smap option for optimizing access
 to external variables and the -goptimize option used for optimization
 between modules are specified.

3.3 Conditions
 This problem may arise if the following conditions are all met:
 (1) -smap option is specified.
 (2) Two or more variables defined as static (see Note 1) are also

 qualified as const in the same C/C++ compilation unit.
 Among these, at least one meets one of the conditions below and
 at least one does not.
 - Qualified as volatile
 - No initial value
 (3) Of the two types of variable defined in (2) above, at least one of
 each is either read or has its address acquired in a function
 in the same C/C++ compilation unit.
 (4) Both of the variables in (2) above are in the same section
 (see Note 2).
 (5) Any condition among (5-1), (5-2), and (5-3) below is met.
 (5-1) The const-qualified variable definitions in (2) above are
 in an order other than (a) then (b) below outside the function
 or within at least one function:
 (a) Definition of a const variable with an initial value but
 not as volatile
 (b) Definition of the const variable other than (a) above

 (5-2) The const-qualified variables in (2) are defined both outside
 and inside the function, and the definitions meet both
 conditions (a) and (b) below:
 (a) Variable definition in the function includes const and
 an initial value but not volatile.
 (b) Variable definition outside the function includes const
 other than (a) above.

 (5-3) The const-qualified variables in (2) are defined in two or
 more functions, and the definitions meet both conditions (a)
 and (b) below:
 (a) Variable defined in a function has const and
 an initial value but does not have volatile.
 (b) Functions that were defined before the function in (a)
 have both the const variable with an initial value but not
 with volatile and the const variable that has other
 combinations of the initial value and volatile.

 Notes:
 1. Variables defined as static include variable definitions
 both inside and outside functions.
 2. The two variables in (2) above are only considered to be
 allocated to the same section when both conditions (a) and (b)
 below are met:
 (a) Different output section names are not specified by #pragma section.
 (b) -nostuff or -nostuff=C option is effective, or
 the alignment number of the two variables is the same at compilation.

 Example 1:
 When compilation includes options as shown below:
 ccrx -output=src -smap -cpu=rx600 file1.c
 <file1.c>
 --
 const volatile unsigned long var1 = 1; // Conditions (2), (4), and (5-1)
 const long var2 = 2; // Conditions (2), (4), and (5-1)
 void call_func1(unsigned long, const long *);
 void func1(void) {
 const long *tmp = &var2; // Condition (3)
 call_func1(var1, tmp); // Condition (3)
 }
 --

 Example of output code for Example 1 above
 --
 .SECTION P,CODE
 _func1:
 MOV.L #_var1, R14
 MOV.L [R14], R1
 ADD #04H, R14, R2 ; This instruction is incorrect since
 ; the point four bytes after the address
 ; of _var1 is not the address of _var2.
 BRA _call_func1
 .SECTION C,ROMDATA,ALIGN=4
 _var2:
 .lword 00000002H
 _var1:
 .lword 00000001H
 --

 Example 2:
 When compilation includes options as shown below:
 ccrx -output=src -smap -cpu=rx600 -nostuff=C file2.c
 <file2.c>
 --
 const char var3 = 3; // Conditions (2), and (4)
 const unsigned short var4; // Conditions (2), (4), and (5-1)
 const char var5 = 5; // Conditions (2), (4), and (5-1)
 void call_func2(const char *, const char *);
 void func2(void) {
 const char *tmp1 = &var5; // Condition (3)
 const char *tmp2 = &var3; // Condition (3)
 call_func2(tmp1, tmp2);

 }
 --

 Example of output code for Example 2 above
 --
 .SECTION P,CODE
 _func2:
 MOV.L #_var3, R2
 ADD #04H, R2, R1 ; This instruction is incorrect since
 ; the point four bytes after the address
 ; of _var3 is not the address of _var5.
 BRA _call_func2
 .SECTION C,ROMDATA,ALIGN=4
 _var3:
 .byte 03H
 _var5:
 .byte 05H
 _var4:
 .word 0000H
 --

 Example 3:
 When compilation includes options as shown below:
 ccrx -output=src -smap -cpu=rx600 file3.c
 <file3.c>
 --
 const long var6 = 6; // Conditions (2), and (4)
 const volatile long var7 = 7; // Conditions(2), (4),
 // and (5-2)(b)
 void call_func3(const volatile long *, const long *);
 void func3(void) {
 static const long var8 = 8; // Conditions(2), (4),
 // and (5-2)(a)
 const volatile long *tmp1 = &var7; // Condition (3)
 const long *tmp2 = &var8; // Condition (3)
 call_func3(tmp1, tmp2);
 }
 --

 Example of output code for Example 3 above
 --
 .SECTION P,CODE
 _func3:
 MOV.L #_var7, R1
 ADD #04H, R1, R2 ; This instruction is incorrect since

 ; the point four bytes after the address
 ; of _var7 is not the address of _var8.
 BRA _call_func3
 .SECTION C,ROMDATA,ALIGN=4
 _var6:
 .lword 00000006H
 __$var8$1:
 .lword 00000008H
 _var7:
 .lword 00000007H
 --

 Example 4:
 When compilation includes options as shown below:
 ccrx -output=src -smap -cpu=rx600 file4.c
 <file4.c>
 --
 void call_func4(const volatile long *, const long *);
 void func4(void) {
 static const long var9 = 9; // Conditions(2), (4),
 // and (5-3)(b)
 static const volatile long var10 = 10; // Conditions(2), (4),
 // and (5-3)(b)
 call_func4(&var10, &var9); // Condition(3)
 }
 void func4a(void) {
 static const long var11 = 11; // Condition(2), (4),
 // and (5-3)(a)
 .
 }
 --

 Example of output code for Example 4 above
 --
 .SECTION P,CODE
 _func4:
 MOV.L #__$var9$1, R2
 ADD #04H, R2, R1 ; This instruction is incorrect since
 ; the point four bytes after the address
 ; of _var9 is not the address of _var10.
 BRA _call_func4
 .SECTION C,ROMDATA,ALIGN=4
 __$var9$1:
 .lword 00000009H
 __$var11$3:

 .lword 0000000BH
 __$var10$2:
 .lword 0000000AH
 --

3.4 Workarounds
 To avoid this problem, do any of the following:
 (1) Disable the -smap option for compilation of the corresponding
 C/C++ compilation unit.
 Note that changing -smap to -map will also suffice.
 (2) For all const-qualified static variable definitions that meet
 condition (2), make consistent settings in terms of the presence or
 absence of the volatile qualifier and initial values within
 a single body of C/C++ source code.
 (3) When condition (5-2) is not met, reorder const-qualified static
 variable definitions that meet condition (2) to be in the order
 of (a) then (b) below both outside and inside functions.
 (a) Definition of a const variable with an initial value but not with volatile.
 (b) Definition of the const variable that differs from (a) above.
 (4) When either of conditions (5-2) and (5-3) is met,
 either move or delete the corresponding part of the variable
 definition so that it no longer meets either (a) or (b).

 Example of applying workaround (2) above to Example 1 of the problem:
 Add volatile to all const-qualified variable definitions
 in the corresponding C/C++ source.
 --
 const volatile unsigned long var1 = 1;
 const volatile long var2 = 2; // Add volatile
 void call_func1(unsigned long, const long *);
 void func1(void) {
 const volatile long *tmp = &var2; // Due to change in the type
 // of var2.
 call_func1(var1, tmp);
 }
 --

 Example of applying workaround (3) above to Example 2 of the problem:
 Reorder the definitions of the const-qualified variables.
 --
 const char var3 = 3;
 const char var5 = 5;
 const unsigned short var4; // Change the order of
 // the definitions without
 // initial values.

 void call_func2(const char *, const char *);
 void func2(void) {
 const char *tmp1 = &var5;
 const char * tmp2 = &var3;
 call_func2(tmp1, tmp2);
 }
 --

 Example of applying workaround (4) above to Example 3 of the problem:
 Move the definition from outside the function to inside the function
 (see Note).
 --
 const long var6 = 6;
 // Move the definition outside
 // the function.
 void call_func3(const volatile long *, const long *);
 void func3(void) {
 static const long var8 = 8;
 static const volatile long var7 = 7; // Move the definition
 // outside the function to
 // static inside the function.
 const volatile long *tmp1 = &var7;
 const long *tmp2 = &var8;
 call_func3(tmp1, tmp2);
 }
 --

 Note: This example of a workaround will not be applicable in some
 cases due to changing the meaning of the source code.

4. Problem with Specifying #pragma Address for Structures, Unions,
 and Arrays (RXC#033)
4.1 Product and Versions Concerned
 - C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
 CC-RX Compiler V2.01.00
 - RX Family C/C++ Compiler Package V2 (without IDE)
 CC-RX Compiler V2.01.00

4.2 Description
 In some cases, the address used in writing to or reading from
 a structure, union, or array for which #pragma address is specified is incorrect.

4.3 Conditions
 This problem may arise if the following conditions are all met:

 (1) #pragma address is used.
 (2) The #pragma address directive in (1) applies to a structure, union, or array.
 (3) The structure, union, or array in (2) has a structure or array that
 starts at a different point than its own starting point.
 (4) The structure starting at a different point in case (3) above has
 multiple members and reference is made to a member whose offset
 is other than 0.
 The array starting at a different point in case (3) above has
 multiple elements and reference is made to an element whose offset
 is other than 0.

 Example:
 --
 struct st1 {
 short a;
 short b;
 };

 struct st2 {
 int c;
 struct st1 tbl2; // Condition (3)
 };

 #pragma address A=0xFFFF0000 // Condition (1)
 struct st2 A; // Condition (2)

 void func(void)
 {
 A.a++;
 A.tbl2.b = 0; // Condition (4) The assignment is
 // erroneously to A.tbl1.b.
 }
 --

4.4 Workarounds
 To avoid this problem, do either of the following:
 (1) Instead of using #pragma address, write the address directly as a constant.
 (2) Instead of using #pragma address, arrange the corresponding
 variable in another section and specify the address of the section with the -start
option of the linker.

5. Schedule for Fixing the Problems
 All the above problems will be fixed in the next version of
 the C/C++ Compiler and IDE for RX Family V2 for CubeSuite+
 (scheduled for release in July of 2014) and

 the next version of the RX Family C/C++ Compiler Package V2 (without IDE)
 (scheduled for release in July of 2014).

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

