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A Note on Using the C Compiler Package 
for the R32C/100 MCU Series

Please take note of the following problem in using the C compiler package for the R32C/100 MCU
series:

With accessing arrays successively

1. Product and Versions Concerned
   The C compiler package for the R32C/100 series
     V.1.01 Release 00 and V.1.02 Release 00

2. Description
   If three or more expressions that make assignments to arrays exist 
   successively in the program, incorrect code may be generated.

2.1 Conditions
    This problem may arise if the following conditions are all satisfied:
    (1) Any of the following compile options is selected:
          -O1 through -O5, -OS, -OR, -OS_MAX (-OSM), and -OR_MAX (-ORM)
    (2) In the program exist three or more successive expressions and they 
        assign variables or constants to arrays of integers or pointers. 
        Here, the bit widths of integers are not 64 bits.
    (3) In all the assignment expressions in (2), the subscript of each 
        array is any of the following:
        (3-1) An 8-bit or 16-bit external variable of type integer
        (3-2) An 8-bit or 16-bit external or local variable of type 
              unsigned integer if the type of an array is of 16 bits wide 
        (3-3) A 32-bit external or local variable of type integer
    (4) In two or more successive assignment expressions of those in (2), 
        the arrays are the same in the bit widths of their data types and 
        in their subscripts.
    (5) In the assignment expression that immediately follows those in 



        (4), the array is different from the arrays in (4) either in the 
        bit widths of data types or in the variables of subscripts.

2.2 Example
    Command line:   nc100 -O sample.c
    Source code:
    --------------------------------------------------------------
    char  c, cary1[4], cary2[4];
    short s, sary1[4], sary2[4], sary3[4];
    short index1;
    unsigned short index2;

    void func()
    {
        unsigned short index3;

        sary1[index1] = s;    //  Conditions (2), (3-1), and (4)
        sary2[index1] = s;    //  Conditions (2), (3-1), and (4)
        cary1[index2] = c;    //  Conditions (2), (3-1), (4), and (5)
        cary2[index2] = c;    //  Conditions (2), (3-1), and (4)
        sary3[index3] = s;    //  Conditions (2), (3-2), and (5)
    }
    --------------------------------------------------------------

3. Workaround
   To avoid this problem, insert an asm() between the last of 
   a group of assignment expressions that satisfy Condition (4) and 
   an expression that satisfies Condition (5) in every case where the 
   latter immediately follows the former.
   Example:
   --------------------------------------------------------------
   char  c, cary1[4], cary2[4];
   short s, sary1[4], sary2[4], sary3[4];
   short index1;
   unsigned short index2;

   void func()
   {
       unsigned short index3;

       sary1[index1] = s;
       sary2[index1] = s; 
       asm();                //  Here asm() inserted.



       cary1[index2] = c; 
       cary2[index2] = c; 
       asm();                //  Here asm() inserted.
       sary3[index3] = s; 
   }
   --------------------------------------------------------------

4. Schedule of Fixing the Problem
   We plan to fix this problem in the C compiler package for the R32C/100 
   series V.1.02 Release 01.
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