
(c) 2019. Renesas Electronics Corporation. All rights reserved. Page 1 of 13

Date: Feb. 15, 2019

RENESAS TECHNICAL UPDATE
TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics Corporation

Product
Category

MPU/MCU
Document

No.
TN-H8*-A0443A/E Rev. 1.00

Title
Usage Notes on Access to the EtherC and
E-DMAC Registers

Information
Category

Technical Notification

Applicable
Products

H8S/2472, H8S/2463, and H8S/2462
Group Products

Lot No.

Reference
Document

H8S/2472, H8S/2463, H8S/2462
Group Hardware Manual Rev. 2.00
(REJ09B0403-0200) All lots

This update is to inform you of usage notes on the Ethernet Controller (EtherC) and the Ethernet Controller Direct Memory

Access Controller (E-DMAC) in the hardware manuals of the above applicable products.

1. List of Usage Notes

Table 1.1 lists the usage notes described in this technical update.

Table 1.1 List of Usage Notes

Classification Applicable Condition Phenomenon Countermeasure
Affected
Registers

Case 1 Writing to an EtherC
register while transfer is
being requested
(EDTRR.TR = 1 or
EDRRR.RR = 1)

Transfer of bus mastership
to the E-DMAC coincided
with attempted writing of a
value to an EtherC register,
so the value was not written
to the affected register.

Write the same value until it is correctly written
and confirm that it has actually been written by
reading the register.

Table 2.1

Case 2 Writing to an E-DMAC
register while transfer is
being requested
(EDTRR.TR = 1 or
EDRRR.RR = 1)

Transfer of bus mastership
to the E-DMAC coincided
with attempted writing of a
value to an E-DMAC
register, so an incorrect
value was temporarily
written to the lower-order 16
bits of the affected register
while bus mastership was
being transferred to the
E-DMAC.

1. Writing to any E-DMAC registers except
EDTRR, EDRRR, or EESR is prohibited
while transfer is being requested.

2. When writing a value to EDTRR.TR or
EDRRR.RR while transfer is being
requested, always read 0 before writing 1 to
it.

3. When writing a value to EESR while transfer
is being requested, write the value that you
want to write to EESR to RMFCR, and then
write the same value to EESR.

Table 2.2

Case 3 Using register-indirect
addressing to read a value
from an EtherC register
immediately after access
to an EtherC register

The value read from the
higher-order 16 bits of the
affected register was
incorrect.

Execute a NOP or any other CPU instruction
before a read instruction with register-indirect
addressing.

Table 2.3

Case 4 Using register-indirect
addressing to write a value
to ECBRR immediately
after a value was read
from an EtherC or
E-DMAC register (other
than ECBRR)

The value written to ECBRR
was undefined.

Execute a NOP or any other CPU instruction
before a write instruction with register-indirect
addressing.

Table 2.5

Case 5 Using register-indirect
addressing to write a value
to or read a value from a
SCIF, SSU, LPC, USB, or
PECI register immediately
after a value was read
from an EtherC or
E-DMAC register (other
than ECBRR)

The value written to the
affected register or the value
read from the affected
register was undefined.

Execute a NOP or any other CPU instruction
before a write or read instruction with
register-indirect addressing.

Table 2.6

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 2 of 13

2. Usage Notes in Detail

2.1 Case 1: Transfer of Bus Mastership to the E-DMAC Coinciding with a Value being Written to an EtherC Register

(1) Phenomenon

When bus mastership was transferred to the E-DMAC while a value was being written to an EtherC register, the value was

not written to the affected register.

(2) Affected Registers

Table 2.1 lists the registers affected by the phenomenon.

Table 2.1 Affected Registers in Case 1

No. Affected Module Affected Register

Affected:

 Remarks

1 Ethernet Controller
(EtherC)

EtherC mode register (ECMR)  The effect arises when the TE and RE
bits are being transferred.

2 EtherC status register (ECSR)  Flags to which 1 is written are cleared.

3 EtherC interrupt permission register
(ECSIPR)



4 PHY interface register (PIR)  The MDI bit is read-only.

5 MAC address high register (MAHR) – Writing is disabled during transfer.

6 MAC address low register (MALR) –

7 Receive frame length register (RFLR) 

8 PHY status register (PSR) –

9 Transmit retry over counter register (TROCR)  Writing leads to all bits being cleared to
0. 10 Delayed collision detect counter register

(CDCR)


11 Lost carrier counter register (LCCR) 

12 Carrier not detect counter register (CNDCR) 

13 CRC error frame counter register (CEFCR) 

14 Frame receive error counter register (FRECR) 

15 Too-short frame receive counter register
(TSFRCR)



16 Too-long frame receive counter register
(TLFRCR)



17 Residual-bit frame counter register (RFCR) 

18 Multicast address frame counter register
(MAFCR)



19 IPG register (IPGR) – Writing is disabled during transfer.

20 Automatic PAUSE frame set register (APR) 

21 Manual PAUSE frame set register (MPR)  Values read are undefined.

22 Automatic PAUSE frame retransmission count
set register (TPAUSER)



(3) Countermeasure

When writing a value to any of the registers listed in Table 2.1 while the transfer of a frame is being requested (EDTRR.TR

= 1 or EDRRR.RR = 1), read the value in the register after writing it and check if the value has actually been written. If not,

write the same value until it is correctly written. Since values read from the manual PAUSE frame set register (MPR) are

undefined, use automatic PAUSE instead. When any of the bits in the EtherC status register (ECSR) is cleared, check that

only the target bit has been cleared. Specify the value as 32-bit immediate data if any of the bits in ECSR is to be cleared

with use of the C language.

 Example) ETHER.ECSR.LONG = 0x00000002;

This measure is not necessary if a value is not to be written to an EtherC register while the transfer of a frame is being

requested.

Page 3 of 13

Figure 2.1 shows the flow of writing to the register as a workaround for this effect.

Figure 2.1 Flow of Writing to the Register as a Workaround for Case 1

Start

EDTRR.TR = 1 or
EDRRR.RR = 1 ?

Write the value to
the affected register. *1

Read the value of
the affected register. *2

Is the value read correct?
*3

End

Yes

Yes

No

No

Note 1. For a list of the affected EtherC registers, see Table 2.1.

Note 2. Do not use register-indirect addressing to read values
successively from the registers.
(See 2.3, Case 3: Using Register-Indirect Addressing to
Read a Value from an EtherC Register Immediately after
Access to an EtherC Register.)

Note 3. Since values read from MPR are undefined, use
automatic PAUSE instead. When any of the bits in ECSR
is cleared, check that only the target bit has been cleared. Countermeasure

Write the value to
the register.

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 4 of 13

2.2 Case 2: Transfer of Bus Mastership to the E-DMAC Coinciding with a Value being Written to an E-DMAC Register

(1) Phenomenon

When bus mastership was transferred to the E-DMAC while a value was being written to an E-DMAC register, an incorrect

value was temporarily written to the lower-order 16 bits of the affected register. If the E-DMAC released bus mastership,

the correct value was written to the affected register.

When bus mastership was transferred to the E-DMAC while a value was being written to the EtherC/E-DMAC status

register (EESR), any of the bits might be cleared unintentionally. In this case, these bits remained cleared, even if the

E-DMAC released bus mastership.

(2) Affected Registers

Table 2.2 lists the registers affected by the phenomenon.

Table 2.2 Affected Registers in Case 2

No. Affected Module Affected Register

Affected:

 Remarks

1 Ethernet Controller Direct
Memory Access Controller
(E-DMAC)

E-DMAC mode register (EDMR) 

2 E-DMAC transmit request register (EDTRR) 

3 E-DMAC receive request register (EDRRR) 

4 Transmit descriptor list address register
(TDLAR)



5 Receive descriptor list address register
(RDLAR)



6 EtherC/E-DMAC status register (EESR) 

7 EtherC/E-DMAC status interrupt permission
register (EESIPR)



8 Transmit/receive status copy enable register
(TRSCER)



9 Receive missed-frame counter register
(RMFCR)

– This register is not affected because it is
a read-only register.

10 Transmit FIFO threshold register (TFTR) 

11 FIFO depth register (FDR) 

12 Receiving method control register (RMCR) 

13 Receiving-buffer write address register
(RBWAR)

– This register is not affected because it is
a read-only register.

14 Receive descriptor fetch address register
(RDFAR)

– This register is not affected because it is
a read-only register.

15 Transmit buffer read address register
(TBRAR)

– This register is not affected because it is
a read-only register.

16 Transmit descriptor fetch address register
(TDFAR)

– This register is not affected because it is
a read-only register.

17 Flow control FIFO threshold register (FCFTR) 

18 Bit rate setting register (ECBRR) –

19 Transmit interrupt register (TRIMD) 

(3) Countermeasure

The following measures should be taken.

1. Avoid writing to any E-DMAC registers other than the E-DMAC transmit request register (EDTRR), E-DMAC receive

request register (EDRRR), and EtherC/E-DMAC status register (EESR) while the transfer of a frame is being requested

(EDTRR.TR = 1 or EDRRR.RR = 1). Also avoid periodically overwriting an E-DMAC register with the same value while

the transfer of a frame is being requested.

2. When writing a value to EDTRR.TR or EDRRR.RR while the transfer of a frame is being requested, always read the bit

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 5 of 13

to check that its value is 0 before writing 1 to it. Overwriting either of these bits with the value 1 that is its current value is

prohibited. Writing 0 to these bits while the transfer of a frame is being requested is also prohibited.

3. When writing a value to EESR while the transfer of a frame is being requested, write the value that you want to write to

EESR to the receive missed-frame counter register (RMFCR) beforehand (this does not change its value because

RMFCR is read-only). After that, write the same value to EESR. If this processing proceeds within an interrupt

processing routine, do not permit other interrupts. If not, prohibit interrupt processing before writing to RMFCR, and

restore EESR to its previous state after having written the desired value to it. Figure 2.2 and Figure 2.3 show the

procedures in cases where a value is to be written to EESR while the transfer of a frame is being requested.

These measures are not necessary if a value is written to an E-DMAC register while transfer of a frame is not being

requested. In addition, in the case of writing a value to EESR while transfer is being requested, these measures are not

necessary if interrupts related to the lower-order 16 bits of EESR are not enabled by the EtherC/E-DMAC status interrupt

permission register (EESIPR).

Figure 2.2 Procedure for Writing a Value to EESR while Transfer of a Frame is being Requested

(When Done within Interrupt Processing)

Start of interrupt processing

Write the value that is to be
written to EESR
 to RMFCR. *1

Write the value to
EESR.

End

Note 1. The value is not actually written to RMFCR because it is read-only.

[Note] Do not permit other interrupts during the interrupt processing.

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 6 of 13

Figure 2.3 Procedure for Writing a Value to EESR while Transfer of a Frame is being Requested

(Other than When Done within Interrupt Processing)

Start

Write the value that is to be
written to EESR
 to RMFCR. *1

Write the value to
EESR.

End

Note 1. The value is not actually written to RMFCR because it is read-only.

Save the value of the CCR.I bit
in RAM.

Set the CCR.I bit to
mask interrupts.

Restore the value of CCR.I,
which was saved in RAM,

to CCR.

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 7 of 13

2.3 Case 3: Using Register-Indirect Addressing to Read a Value from an EtherC Register Immediately after Access to an

EtherC Register

(1) Phenomenon

1. When register-indirect addressing is used to read the affected register immediately after an EtherC register was written,

the higher-order 16 bits are read as H'0000.

Registers in which the higher-order 16 bits are reserved are not affected by the phenomenon.

2. When register-indirect addressing is used to read the affected register immediately after an EtherC register was read,

the higher-order 16 bits are read as the value from the EtherC register to have been read beforehand.

(2) Affected Registers

Table 2.3 lists the registers affected by the phenomenon. Table 2.4 lists the addressing modes and indicates which leads to

the effect.

Table 2.3 Affected Registers in Case 3

No. Affected Module Affected Register

1. Affected
Register in the
Case of
Reading
Immediately
after Writing:



2. Affected
Register in the
Case of
Reading
Immediately
after Reading:



1 Ethernet
Controller
(EtherC)

EtherC mode register (ECMR)  
2 EtherC status register (ECSR) – 
3 EtherC interrupt permission register (ECSIPR) – 
4 PHY interface register (PIR) – 
5 MAC address high register (MAHR)  
6 MAC address low register (MALR) – 
7 Receive frame length register (RFLR) – 
8 PHY status register (PSR) – 
9 Transmit retry over counter register (TROCR)  
10 Delayed collision detect counter register (CDCR)  
11 Lost carrier counter register (LCCR)  
12 Carrier not detect counter register (CNDCR)  
13 CRC error frame counter register (CEFCR)  
14 Frame receive error counter register (FRECR)  
15 Too-short frame receive counter register (TSFRCR)  
16 Too-long frame receive counter register (TLFRCR)  
17 Residual-bit frame counter register (RFCR)  
18 Multicast address frame counter register (MAFCR)  
19 IPG register (IPGR) – 
20 Automatic PAUSE frame set register (APR) – 
21 Manual PAUSE frame set register (MPR) – 
22 Automatic PAUSE frame retransmission count set

register (TPAUSER)
– 

Table 2.4 Target Addressing Mode

No. Addressing Mode Symbol

Target:



1 Register direct Rn –

2 Register indirect @ERn 

3 Register indirect with displacement @(d:16,ERn)/@(d:32,ERn) –
4 Register indirect with post-increment @Ern+ –
5 Register indirect with pre-decrement @–ERn –
6 Absolute address @aa:8/@aa:16/@aa:24/@aa:32 –
7 Immediate #xx:8/#xx:16/#xx:32 –
8 Program-counter relative @(d:8,PC)/@(d:16,PC) –
9 Memory indirect @@aa:8 –

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 8 of 13

(3) Countermeasure

When using register-indirect addressing to read a value from any of the registers listed in Table 2.3 by an instruction

immediately after access (write or read) to an EtherC register, execute a NOP or any other CPU instruction before the

register-indirect instruction. For example, instead of NOP, writing to or reading from registers or the RAM can be inserted.

For how to insert NOP in the C language, refer to [Appendix].

This measure is not necessary with any addressing mode other than register-indirect addressing.

2.4 Case 4: Using Register-Indirect Addressing to Write a Value to the ECBRR Register Immediately after a Value was Read

from an EtherC or E-DMAC Register (other than ECBRR)

(1) Phenomenon

When register-indirect addressing was used to write a value to the bit rate setting register (ECBRR) immediately after a

value was read from an EtherC or E-DMAC register (other than ECBRR), the value written to ECBRR was undefined.

However, reading from ECBRR in the same situation proceeds normally.

(2) Affected Registers

Table 2.5 lists the register affected by the phenomenon. The only affected register is ECBRR of E-DMAC.

Table 2.5 Affected Registers in Case 4

No. Affected Module Affected Register

Affected:



1 Ethernet Controller Direct Memory
Access Controller (E-DMAC)

E-DMAC mode register (EDMR) –
2 E-DMAC transmit request register (EDTRR) –
3 E-DMAC receive request register (EDRRR) –
4 Transmit descriptor list address register (TDLAR) –
5 Receive descriptor list address register (RDLAR) –
6 EtherC/E-DMAC status register (EESR) –
7 EtherC/E-DMAC status interrupt permission register

(EESIPR)
–

8 Transmit/receive status copy enable register
(TRSCER)

–

9 Receive missed-frame counter register (RMFCR) –
10 Transmit FIFO threshold register (TFTR) –
11 FIFO depth register (FDR) –
12 Receiving method control register (RMCR) –
13 Receiving-buffer write address register (RBWAR) –
14 Receive descriptor fetch address register (RDFAR) –
15 Transmit buffer read address register (TBRAR) –
16 Transmit descriptor fetch address register (TDFAR) –
17 Flow control FIFO threshold register (FCFTR) –
18 Bit rate setting register (ECBRR) 

19 Transmit interrupt register (TRIMD) –

(3) Countermeasure

When using register-indirect addressing to write a value to ECBRR by an instruction immediately after a value was read

from an EtherC or E-DMAC register (other than ECBRR), execute a NOP or any other CPU instruction before the

register-indirect instruction. For example, instead of NOP, writing to or reading from registers or the RAM can be inserted.

For how to insert NOP in the C language, refer to [Appendix].

This measure is not necessary with any addressing mode other than register-indirect addressing.

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 9 of 13

2.5 Case 5: Using Register-Indirect Addressing for Access to a Register Immediately after a Value was Read from an EtherC

or E-DMAC Register (other than ECBRR)

(1) Phenomenon

When register-indirect addressing was used to write a value to the affected register immediately after data was read from

an EtherC or E-DMAC register (other than ECBRR), the value written to the affected register was undefined.

When register-indirect addressing was used to read a value from the affected register immediately after a value was read

from an EtherC or E-DMAC register (other than ECBRR), the value read from the affected register was undefined.

(2) Affected Registers

Table 2.6 lists the registers affected by the phenomenon. Since all the registers of the SCIF, SSU, LPC, USB, and PECI

modules are affected, they are all listed, with the exception of those of PECI. This phenomenon does not affect other

modules.

Table 2.6 Affected Registers in Case 5 (1)

No. Affected Module Affected Register

Affected:

 Remarks

1 Serial Communication
Interface with FIFO (SCIF)

Host interface control register 5 (HICR5) 
2 Sub-chip module stop control register BL

(SUBMSTPBL)


3 Receive buffer register (FRBR) 
4 Transmitter holding register (FTHR) 
5 Divisor latch L (FDLL) 
6 Interrupt enable register (FIER) 
7 Divisor latch H (FDLH) 
8 Interrupt identification register (FIIR) 
9 FIFO control register (FFCR) 
10 Line control register (FLCR) 
11 Modem control register (FMCR) 
12 Line status register (FLSR) 
13 Modem status register (FMSR) 
14 Scratch pad register (FSCR) 
15 SCIF control register (SCIFCR) 
16 SCIF address register H (SCIFADRH) 
17 SCIF address register L (SCIFADRL) 
18 SERIRQ control register 4 (SIRQCR4) 
19 Synchronous Serial

Communication Unit (SSU)
SS control register H (SSCRH) 

20 SS control register L (SSCRL) 
21 SS mode register (SSMR) 
22 SS enable register (SSER) 
23 SS status register (SSSR) 
24 SS control register 2 (SSCR2) 
25 SS transmit data register 0 (SSTDR0) 
26 SS transmit data register 1 (SSTDR1) 
27 SS transmit data register 2 (SSTDR2) 
28 SS transmit data register 3 (SSTDR3) 
29 SS receive data register 0 (SSRDR0) 
30 SS receive data register 1 (SSRDR1) 
31 SS receive data register 2 (SSRDR2) 
32 SS receive data register 3 (SSRDR3) 
33 SS shift register (SSTRSR) 

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 10 of 13

Table 2.6 Affected Registers in Case 5 (2)

No. Affected Module Affected Register

Affected:

 Remarks

1 LPC Interface (LPC) Host interface control register 0 (HICR0) 
2 Host interface control register 1 (HICR1) 
3 Host interface control register 2 (HICR2) 
4 Host interface control register 3 (HICR3) 
5 Host interface control register 4 (HICR4) 
6 Host interface control register 5 (HICR5) 
7 Pin function control register (PINFNCR) 
8 LPC channel 1, 2 address register H, L (LADR12H,

LADR12L)


9 LPC channel 3 address register H, L (LADR3H,
LADR3L)



10 Input data register 1 (IDR1) 
11 Input data register 2 (IDR2) 
12 Input data register 3 (IDR3) 
13 Output data register 1 (ODR1) 
14 Output data register 2 (ODR2) 
15 Output data register 3 (ODR3) 
16 Status register 1 (STR1) 
17 Status register 2 (STR2) 
18 Status register 3 (STR3) 
19 Bidirectional data registers 0 to 15 (TWR0 to TWR15) 
20 SERIRQ control register 0 (SIRQCR0) 
21 SERIRQ control register 1 (SIRQCR1) 
22 SERIRQ control register 2 (SIRQCR2) 
23 SERIRQ control register 3 (SIRQCR3) 
24 SERIRQ control register 4 (SIRQCR4) 
25 SERIRQ control register 5 (SIRQCR5) 
26 Host interface select register (HISEL) 
27 SCIF address register H(SCIFADRH) 
28 SCIF address register L (SCIFADRL) 
29 SMIC flag register (SMICFLG) 
30 SMIC control/status register (SMICCSR) 
31 SMIC data register (SMICDTR) 
32 SMIC interrupt register 0 (SMICIR0) 
33 SMIC interrupt register 1 (SMICIR1) 
34 BT status register 0 (BTSR0) 
35 BT status register 1 (BTSR1) 
36 BT control/status register 0 (BTCSR0) 
37 BT control/status register 1 (BTCSR1) 
38 BT control register (BTCR) 
39 BT data buffer (BTDTR) 
40 BT interrupt mask register (BTIMSR) 
41 FIFO valid size register 0 (BTFVSR0) 
42 FIFO valid size register 1 (BTFVSR1) 

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 11 of 13

Table 2.6 Affected Registers in Case 5 (3)

No. Affected Module Affected Register

Affected:

 Remarks

1 USB Function Module
(USB)

Interrupt flag register 0 (IFR0) 
2 Interrupt flag register 1 (IFR1) 
3 Interrupt flag register 2 (IFR2) 
4 Interrupt select register 0 (ISR0) 
5 Interrupt select register 1 (ISR1) 
6 Interrupt select register 2 (ISR2) 
7 Interrupt enable register 0 (IER0) 
8 Interrupt enable register 1 (IER1) 
9 Interrupt enable register 2 (IER2) 
10 EP0i data register (EPDR0i) 
11 EP0o data register (EPDR0o) 
12 EP0s data register (EPDR0s) 
13 EP1 data register (EPDR1) 
14 EP2 data register (EPDR2) 
15 EP3 data register (EPDR3) 
16 EP0o receive data size register (EPSZ0o) 
17 EP1 receive data size register (EPSZ1) 
18 Trigger register (TRG) 
19 Data status register (DASTS) 
20 FIFO clear register (FCLR) 
21 DTC transfer setting register (DMA) 
22 Endpoint stall register (EPSTL) 
23 Configuration value register (CVR) 
24 Control register (CTLR) 
25 Endpoint information register (EPIR) 
26 Transceiver test register 0 (TRNTREG0) 
27 Transceiver test register 1 (TRNTREG1) 
28 Platform Environment

Control Interface (PECI)
All registers in this module  We will disclose

registers on condition of
entry to an agreement
of confidentiality.

(3) Countermeasure

When using register-indirect addressing for access (write/read) to any of the registers listed in Table 2.6 by an instruction

immediately after a value was read from an EtherC or E-DMAC register (other than ECBRR), execute a NOP or any other

CPU instruction before the register-indirect instruction. For example, instead of NOP, writing to or reading from registers or

the RAM can be inserted. For how to insert NOP in the C language, refer to [Appendix].

This measure is not necessary with any addressing mode other than register-indirect addressing.

Fin

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 12 of 13

[Appendix] Example of Programming in the C Language

Figure a shows how to insert a NOP when the C language is used. Figure b shows an example of a program statement in

which NOP cannot be inserted and a countermeasure for it.

Figure a Inserting NOP in the C Language

#include “machine.h”

snip

while (ETHER.ECSIPR.LONG != 0x00000017)

{

ETHER.ECSIPR.LONG = 0x00000017;

nop();

}

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

Page 13 of 13

Figure b Example of Program Statement in which NOP cannot be Inserted and Example Countermeasure

if (ETHER.LCCR > ETHER.CNDCR)

{

 snip

}

a = ETHER.LCCR;

nop(); /* NOP is inserted considering the

 possibility of consecutive access being

 deployed by using register-indirect

 addressing.*/

b = ETHER.CNDCR

if (a > b)

{

 snip

}

When reading of EtherC registers in the if statement is

deployed by using register-indirect addressing, a NOP cannot

be inserted into code in the C language.

Consecutive access to EtherC registers in the if

statement is inhibited by saving their values in

variables.

1) Example of Program Statement in which NOP cannot be Inserted

2) Example Countermeasure

C Language Statement

MOV.L #H'00FFF928,ER0

MOV.L #H'00FFF92C,ER1

MOV.L @ER0,ER0

MOV.L @ER1,ER1

CMP.L ER1,ER0

BLS @H'xxxx

Example of Compiling Result (Disassemble）

C Language Statement Example of Compiling Result (Disassemble）

MOV.L #H'00FFF928,ER0

MOV.L #H'00FFF92C,ER1

MOV.L @ER0,ER2

MOV.L ER2,@H'00FF0C20:32

NOP ;NOP inserted in C language

MOV.L @ER1,ER2

MOV.L ER2,@H'00FF0C24:32

MOV.L @H'00FF0C20:32,ER1

MOV.L @H'00FF0C24:32,ER2

CMP.L ER2,ER1

BLS @H'xxxx

Note: The result of compiling changes through optimizing the code.

Since the above result of compiling is not necessarily obtained, you need to check the code generated in your

environment.

RENESAS TECHNICAL UPDATE TN-H8*-A0443A/E Date: Feb. 15, 2019

