Date: Jan. 19, 2023

RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A0105A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed	Information Category	Technical Notification			
		Lot No.		RL78/G13A User's Manual: Hardware Rev. 1.10 R01UH0856EJ0110 (Sep. 2020)		
Applicable Product	RL78/G13A Group	All lots	Reference Document			

This document describes misstatements found in the RL78/G13A User's Manual: Hardware Rev. 1.10 (R01UH0856EJ0110).

Corrections

Applicable Item	Applicable Page	Contents
7.3.4 Real-time clock control register 1 (RTCC1)	Page 312	Incorrect descriptions revised
Figure 7-21. Procedure for Reading Real-time Clock	Page 324	Incorrect descriptions revised
Figure 7-22. Procedure for Writing Real-time Clock	Page 325	Incorrect descriptions revised
29.3.2 Supply current characteristics	Page 866 to Page 869	Incorrect descriptions revised
30.3.2 Supply current characteristics	Page 927 to Page 930	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

No.		Corrections and Applicable Items					
		Document No.	English	R01UH0856EJ0110	document for corrections		
1	7.3.4 F	Real-time clock cont	Page 312	Page 3			
2	Figure	Figure 7-21. Procedure for Reading Real-time Clock Page 324					
3	Figure	7-22. Procedure for	Writing Real-time Clock	Page 325	Page 4		
4	29.3.2	Supply current char	racteristics	Page 866 to Page 869	Page 5 to Page 7		
5	30.3.2	Supply current char	racteristics	Page 927 to Page 930	Page 8 to Page 10		

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G13A Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0105A/E	Jan. 19, 2023	First edition issued
		Corrections No.1 to No.5 revised (this document)

Date: Jan. 19, 2023

1. 7.3.4 Real-time clock control register 1 (RTCC1) (Page 312)

Incorrect:

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag
0	Constant-period interrupt is not generated.
1	Constant-period interrupt is generated.

This flag indicates the status of generation of the constant-period interrupt. When the constant-period interrupt is generated, it is set to "1".

This flag is cleared when "0" is written to it. Writing "1" to it is invalid.

RWST	Wait status flag of real-time clock
0	Counter is operating.
1	Mode to read or write counter value

This status flag indicates whether the setting of the RWAIT bit is valid.

Before reading or writing the counter value, confirm that the value of this flag is 1.

RWAIT	Wait control of real-time clock				
0	Sets counter operation.				
1	Stops SEC to YEAR counters. Mode to read or write counter value				

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the internal counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0.

When RWAIT = 1, it takes up to one cycle of free until the counter value can be read or written (RWST = 1). Notes 1, 2

When the internal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event.

Date: Jan. 19, 2023

Correct:

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag					
0	Constant-period interrupt is not generated.					
1	Constant-period interrupt is generated.					

This flag indicates the status of generation of the constant-period interrupt. When the constant-period interrupt is generated, it is set to "1".

This flag is cleared when "0" is written to it. Writing "1" to it is invalid.

Before reading or writing the counter value, confirm that the value of this flag is 1.

RWST	Wait status flag of real-time clock			
0	Counter is operating.			
1 Mode to read or write counter value				
This status flag indicates whether the setting of the RWAIT bit is valid.				

RWAIT	Wait control of real-time clock
0	Sets counter operation.

Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the internal counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0. When reading or writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second).

Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.

When RWAIT = 1, it takes up to one cycle of frac until the counter value can be read or written (RWST = 1). Notes 1, 2

When the internal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts up.

However, when it wrote a value to second count register, it will not keep the overflow event.

2. Figure 7-21. Procedure for Reading Real-time Clock (Page 324)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

3. Figure 7-22. Procedure for Writing Real-time Clock (Page 325)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
 - 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written

Date: Jan. 19. 2023

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When reading to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second).

Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
 - 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written.

4. 29.3.2 Supply current characteristics (Page 866 to Page 869)

Incorrect:

29.3.2 Supply current characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}			f _{IH} = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
current Note 1			operation	V _{DD} = 3.0 V		1.5		mA		
			mode		Normal	V _{DD} = 5.0 V		3.4	6.8	mA
				op	operation	V _{DD} = 3.0 V		3.4	6.8	mA

Т								
			f _{SUB} = 32.768 kHz Note 4	Normal operation	Square wave input	6.6	25.8	μA
ı				орогиног	Resonator connection	7.1	26	μΑ
ı			T _A = +85°C					

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDD}, EV_{DD1} or V_{SS}, EV_{SSD}, EV_{SS1}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

Remarks

- finx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **4.** Except subsystem clock operation, temperature condition of the TYP, value is $T_A = 25^{\circ}C$

Date: Jan. 19, 2023

Correct:

29.3.2 Supply current characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating		f _{IH} = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA
			mode		Normal	V _{DD} = 5.0 V		3.4	6.8	mA
					operation	V _{DD} = 3.0 V		3.4	6.8	mA

		f _{SUB} = 32.768 kHz	Normal operation	Square wave input	6.6	25.8	μΑ
		NOTE 4	opolation	Resonator connection	7.1	26	uA
		$T_A = +85^{\circ}C$				-	

Notes 1. Total current flowing into V_{DD}, EV_{DD0}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0}, EV_{DD1} or V_{SS}, EV_{SS0}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules
- The currents in the "MAX." column include the operating currents of the peripheral modules, except
 for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down
 resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

Remarks

- f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. f_H: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz Note 4	V _{DD} = 5.0 V		0.41	1.71	mA
current Note 1	Note 2	mode	speed main) mode Note Z		V _{DD} = 3.0 V		0.41	1.71	mA
Note 1				f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.34	1.35	mA
					V _{DD} = 3.0 V		0.34	1.35	mA
				fin = 16 MHz Note 4	V _{DD} = 5.0 V		0.33	1.04	mA
					V _{DD} = 3.0 V		0.33	1.04	mA
			LS (low-	f _{IH} = 8 MHz Note 4	V _{DD} = 3.0 V		290	650	μΑ
			speed main) mode Note Z		V _{DD} = 2.0 V		290	650	μΑ
			LV (low-	f _{IH} = 4 MHz Note 4	V _{DD} = 3.0 V		270	540	μΑ
			voltage main) mode Note Z		V _{DD} = 2.0 V		270	540	μA
	HS (hig	HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA	
			speed main) mode Nate Z	V _{DD} = 5.0 V	Resonator connection		0.37	1.26	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
				V _{DD} = 3.0 V	Resonator connection		0.37	1.26	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 5.0 V	Resonator connection		0.22	0.73	mA
	f _{MX} =	1		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 3.0 V	Resonator connection		0.22	0.73	mA
			LS (low-speed f	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	410	μΑ
			main) mode	V _{DD} = 3.0 V	Resonator connection		200	520	μΑ
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		100	410	μΑ
				V _{DD} = 2.0 V	Resonator connection		200	520	μΑ

٦								
	Note 6	STOP	T _A = -40°C	1		0.26	0.7	μA
	ПООЗ	mode-Note-8	T _A = +25°C			0.42	1.9	μΑ
			T _A = +50°C			0.85	4.5	μA
			T _A = +70°C			1.60	11	μΑ
			T _A = +85°C			2.60	21	μA

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0}, EV_{DD1} or V_{SS}, EV_{SS0}, EV_{SS1}. The values below the MAX column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.

Date: Jan. 19, 2023

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (2/2)$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high- speed main)	f _{IH} = 32 MHz Note 4	V _{DD} = 5.0 V		0.41	1.71	mA
current Note 1	Note 2	mode	mode Note 6		V _{DD} = 3.0 V		0.41	1.71	mA
Note 1				f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.34	1.35	mA
					V _{DD} = 3.0 V		0.34	1.35	mA
				f _{IH} = 16 MHz Note 4	V _{DD} = 5.0 V		0.33	1.04	mA
					V _{DD} = 3.0 V		0.33	1.04	mA
			LS (low-	f _{IH} = 8 MHz Note 4	V _{DD} = 3.0 V		290	650	μΑ
			speed main) mode Note 6		V _{DD} = 2.0 V		290	650	μΑ
			LV (low-	f _{IH} = 4 MHz Note 4	V _{DD} = 3.0 V		270	540	μΑ
			voltage main) mode Note 6		V _{DD} = 2.0 V		270	540	μΑ
	HS (high-	HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA	
			speed main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		0.37	1.26	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
				V _{DD} = 3.0 V	Resonator connection		0.37	1.26	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.12	0.62	mA
				V _{DD} = 5.0 V	Resonator connection		0.22	0.73	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.12	0.62	mA
				V _{DD} = 3.0 V	Resonator connection		0.22	0.73	mA
			LS (low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Square wave input		100	410	μΑ
			main) mode	V _{DD} = 3.0 V	Resonator connection		200	520	μΑ
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		100	410	μΑ
				V _{DD} = 2.0 V	Resonator connection		200	520	μA
								l	l

1							
ı	I _{DD3}	STOP	T _A = -40°C		0.26	0.7	μA
	1003	mode Note 7	T _A = +25°C		0.42	1.9	μΑ
ı			T _A = +50°C		0.85	4.5	μA
ı			T _A = +70°C		1.60	11	μA
ı			T _A = +85°C		2.60	21	μΑ

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD1} or V_{SS}, EV_{SS0}, EV_{SS1}. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_∞ ≤ 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remarks

- f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. f_H: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

Date: Jan. 19, 2023

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1
 and setting ultra-low current consumption (AMPHS1 = 1).
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as helow

HS (high-speed main) mode: 2.7 V ≤ V_∞ ≤ 5.5 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 8 \text{ MHz}$ LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} \textcircled{2}1 \text{ MHz to } 4 \text{ MHz}$

Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode

Romarks

- f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. fil: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A = 25°C

5. 30.3.2 Supply current characteristics (Page 927 to Page 930)

Incorrect:

30.3.2 Supply current characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)

fsus = 32 768 kHz

 $T_A = +105^{\circ}C$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	f _{IH} = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA
			mode		Normal operation	V _{DD} = 5.0 V		3.4	6.8	mA
						V _{DD} = 3.0 V		3.4	6.8	mA
				f _{SUB} = 32.768 kHz	Normal operation	Square wave input		6.6	25.8	μA
				T _A = +85°C		Resonator connection		7.1	26	μA

Normal

operation

Square wave input

Resonator connection

10.6

11.4

uΑ

55 uA

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DDD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDD}, EV_{DDD} or V_{SS}, EV_{SSD}, EV_{SSL}. The values below the MAX... column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 16 MHz

Remarks

- f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. fii: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Date: Jan. 19, 2023

Correct:

30.3.2 Supply current characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating		f _{IH} = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
current Note 1		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA
		mode note o		Normal	V _{DD} = 5.0 V		3.4	6.8	mA	
					operation	V _{DD} = 3.0 V		3.4	6.8	mA

l							
l		fsub = 32.768 kHz	Normal	Square wave input	6.6	25.8	μΑ
		Note 4	operation				
		T _A = +85°C		Resonator connection	7.1	26	μΑ
		f _{SUB} = 32.768 kHz	Normal operation	Square wave input	10.6	54.8	μΑ
ı		Note 4	operation	D	44.4		
		T _A = +105°C		Resonator connection	11.4	55	μΑ

- Notes 1. Total current flowing into V_{DD}, EV_{DD0}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0}, EV_{DD1} or V_{SS}, EV_{SS0}, EV_{SS1}. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 16 MHz

Remarks

- f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. fil: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)

Parameter	Symbol	Conditions					TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f _{IH} = 32 MHz Note 4	V _{DD} = 5.0 V		0.41	1.71	mA
Current Note 1	Note 2	mode	speed main) mode Note Z		V _{DD} = 3.0 V		0.41	1.71	mA
				f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.34	1.35	mA
					V _{DD} = 3.0 V		0.34	1.35	mA
				fin = 16 MHz Note 4	V _{DD} = 5.0 V		0.33	1.04	mA
					V _{DD} = 3.0 V		0.33	1.04	mA
			HS (high- speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
				V _{DD} = 5.0 V	Resonator connection		0.37	1.26	mA
			mode Note Z	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
				V _{DD} = 3.0 V	Resonator connection		0.37	1.26	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 5.0 V	Resonator connection		0.22	0.73	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 3.0 V	Resonator connection		0.22	0.73	mA

	Note.6	-	T _A = -40°C		0.26	0.7	μA
	1000	mode Note &	T _A = +25°C		0.42	1.9	μΑ
			T _A = +50°C		0.85	4.5	μA
			T _A = +70°C		1.6	11	μΑ
			T _A = +85°C		2.6	21	μΑ
			T _A = +105°C		5.2	50	μΑ

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DDD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDD}, EV_{DDD} or V_{SS}, EV_{SSD}, EV_{SSD}. The values below the MAX... column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 16 MHz

Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode. Date: Jan. 19, 2023

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (1/2)$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	I _{DD2}	HALT	HS (high-	f _{IH} = 32 MHz Note 4	V _{DD} = 5.0 V		0.41	1.71	mA
current Note 1	Note 2	mode	speed main) mode Note 6		V _{DD} = 3.0 V		0.41	1.71	mA
Note 1				f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.34	1.35	mA
					V _{DD} = 3.0 V		0.34	1.35	mA
			HS (high- speed main)	f _{IH} = 16 MHz Note 4	V _{DD} = 5.0 V		0.33	1.04	mA
					V _{DD} = 3.0 V		0.33	1.04	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
		, ,	V _{DD} = 5.0 V	Resonator connection		0.37	1.26	mA	
		mode Note		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.19	1.05	mA
				V _{DD} = 3.0 V	Resonator connection		0.37	1.26	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 5.0 V	Resonator connection		0.22	0.73	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.12	0.62	mA
				V _{DD} = 3.0 V	Resonator connection		0.22	0.73	mA

	IDD3	STOP	T _A = -40°C			0.26	0.7	μA
		mode ^{Note 7}	T _A = +25°C			0.42	1.9	μA
			T _A = +50°C			0.85	4.5	μA
			T _A = +70°C			1.6	11	μA
			T _A = +85°C			2.6	21	μA
			T _A = +105°C			5.2	50	μΑ

- Notes 1. Total current flowing into V_{DD}, EV_{DDD}, and EV_{DD1}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DDD}, EV_{DD1} or V_{SS}, EV_{SS0}, EV_{SS1}. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1
 and setting ultra-low current consumption (AMPHS1 = 1).

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $T_A =$

Date: Jan. 19, 2023

6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz to 16 MHz}$

7. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remarks

- 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is T_A =

