Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Date: Jun. 01, 2009

RENESAS TECHNICAL UPDATE

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Renesas Technology Corp.

Product Category	MPU/MCU	Document No.	TN-H8*-A416A/E	Rev.	1.00			
Title	Restrictions on usage of A/D converter for Haseries	on usage of A/D converter for H8S/2200			Technical Notification			
Applicable Product	H8S/2215 Group H8S/2227 Group H8S/2239 Group H8S/2264 Group H8S/2268 Group H8S/2236R H8S/2238R	Lot No.	Reference Document	H8S/2215 Group Hard (REJ09B0140-0800) H8S/2258, H8S/2239, H8S/2237, H8S/2227 Manual (REJ09B0054 H8S/2268 Group, H8S Hardware Manual (RE	H8S/223 Group Ha -0500) 6/2264 Gr	8, irdware oup		

We will set restrictions on usage of A/D converter for some products of H8S/2200 Series. Furthermore we would like to inform you of corrections due to the restrictions in the relevant Hardware Manuals. Refer to the followings for detail.

• H8S/2215 Group Hardware Manual

[Correction]

Table 16.1 Pin Configurations in 16.2 Input/Output Pins of section 16, A/D Converter has been revised as follows.

[Before Change]

•	.			
	Pin Name	Symbol	I/O	Function
	Analog power supply pin	AVCC	Input	Analog block power supply and reference voltage
	Analog ground pin	AVSS	Input	Analog block ground and reference voltage
	Analog reference voltage pin	Vref	Input	Analog input pins
	Analog input pin 0	AN0	Input	_
	Analog input pin 1	AN1	Input	_
	Analog input pin 2	AN2	Input	
	Analog input pin 3	AN3	Input	
	Analog input pin 14	AN14	Input	
	Analog input pin 15	AN15	Input	
	A/D external trigger input pin	ADTRG	Input	External trigger input pin for starting A/D conversion
[Aft	er Change]			
	Pin Name	Symbol	I/O	Function
	Analog power supply pin	AVCC	Input	Analog block power supply and reference voltage
	Analog ground pin	AVSS	Input	Analog block ground and reference voltage
	Analog reference voltage pin	Vref	Input	Analog input pins
	Analog input pin 0	ANO*	Input	
	Analog input pin 1	AN1*	Input	_
	Analog input pin 2	AN2	Input	_
	Analog input pin 3	AN3	Input	_
	Analog input pin 14	AN14	Input	_
	Analog input pin 15	AN15	Input	
	A/D external trigger input pin	ADTRG	Input	External trigger input pin for starting A/D conversion

Note: *AN0 and AN1 can be used only when VCC = AVCC.

Date: Jun. 01, 2009

16.8.3 Range of Analog Power Supply and Other Pin Settings in section 16, A/D Converter has been revised as follows.

[Before Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open.

[After Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open. In addition, analog inputs AN0 and AN1 can be used when Vcc = AVcc.

Table 24.2 DC Characteristics in 24.3 DC Characteristics of section 24, Electrical Characteristics (H8S/2215) has been revised as follows.

[Before Change]

	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
	Input high voltage	Ports 4 and 9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
	_ Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
	Input high voltage	Ports 4 and 9 ^{*6}	VIH	Vcc×0.8	-	AVcc+0.3*6	V	

Notes: 6. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

24.6 A/D Conversion Characteristics in section 24, Electrical Characteristics (H8S/2215) has been changed as follows.

[Before Change]

Conditions: Vcc = PLLVcc = DrVcc = 2.7 V to 3.6 V, AVcc = 2.7 V to 3.6 V, Vref = 2.7 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 13 MHz to 16 MHz, $T_a = -20$ °C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Conditions: Vcc = PLLVcc = DrVcc = 2.7 V to 3.6 V*, AVcc = 2.7 V to 3.6 V*, Vref = 2.7 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, φ= 13 MHz to 16 MHz, Ta = -20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Note: *ANO and AN1 can be used only when Vcc = AVcc.

Table 25.2 DC Characteristics in 25.3 DC Characteristics of section 25, Electrical Characteristics (H8S/2215R) has been revised as follows.

[Before Change]

	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4 and 9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
	_ Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
	Input high voltage	Ports 4 and 9 ^{*5}	VIH	Vcc×0.8	-	AVcc+0.3*5	V	

Notes: 5. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

Toct

25.6 A/D Conversion Characteristics in Section 25, Electrical Characteristics (H8S/2215R) has been revised as follows.

[Before Change]

Condition A: Vcc = PLLVcc = DrVcc = 2.7 V to 3.6 V, AVcc = 2.7 V to 3.6 V, Vref = 2.7 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 13 MHz to 16 MHz, $T_a = -20$ °C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Condition B: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V, AVcc = 3.0 V to 3.6 V, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 13 MHz to 24 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Condition A: Vcc = PLLVcc = DrVcc = 2.7 V to 3.6 V*, AVcc = 2.7 V to 3.6 V*, Vref = 2.7 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 13 MHz to 16 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Condition B: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V*, AVcc = 3.0 V to 3.6 V*, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, φ= 13 MHz to 24 MHz, T_a = −20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Note:* AN0 and AN1 can be used only when Vcc = AVcc.

Table 26.2 DC Characteristics in 26.3 DC Characteristics of section 26, Electrical Characteristics (H8S/2215T) has been revised as follows.

[Before Change]

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	Ports 4 and 9	V _{IH}	Vcc×0.8	_	AVcc+0.3	V	
[After Change]							
_ Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	Ports 4 and 9 ^{*6}	VIH	Vcc×0.8	-	AVcc+0.3 ^{*6}	V	

Notes: 6. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

26.6 A/D Conversion Characteristics in section 26, Electrical Characteristics (H8S/2215T) has been revised as follows.

[Before Change]

Conditions: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V, AVcc = 3.0 V to 3.6 V, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 16 MHz to, 24 MHz, T_a = -20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Conditions: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V*, AVcc = 3.0 V to 3.6 V*, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 16 MHz to, 24 MHz, T_a = -20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Note: *ANO and AN1 can be used only when Vcc = AVcc.

Tact

Table 27.2 DC Characteristics in 27.3 DC Characteristics of section 27, Electrical Characteristics (H8S/2215C) has been revised as follows.

[Before Change]

	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4 and 9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Aft	er Change]							
	Item		Svmbol	Min.	Tun	Max.	Unit	Test Conditions
	пеш		Symbol	IVIII I.	Тур.	iviax.	Offic	Conditions
	Input high voltage	Ports 4 and 9 ^{*6}	VIH	Vcc×0.8	-	AVcc+0.3 ^{*6}	V	

Notes: 6. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

27.6 A/D Conversion Characteristics in Section 27 Electrical Characteristics (H8S/2215C) has been revised as follows.

[Before Change]

Condition: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V, AVcc = 3.0 V to 3.6 V, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 16 MHz to 24 MHz, T_a = -20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Condition: Vcc = PLLVcc = DrVcc = 3.0 V to 3.6 V*, AVcc = 3.0 V to 3.6 V*, Vref = 3.0 V to AVcc,

Vss = PLLVss = DrVss = AVss = 0 V, ϕ = 16 MHz to 24 MHz, T_a = -20°C to +75°C (regular specifications),

 $T_a = -40$ °C to +85°C (wide-range specifications)

Note:* AN0 and AN1 can be used only when Vcc = AVcc.

• H8S/2258, H8S/2239, H8S/2238, H8S/2237, H8S/2227 Group Hardware Manual

[Correction]

Table 17.1 Pin Configuration in 17.2 Input/Output Pins of section 17, A/D Converter has been revised as follows.

[Before Change]

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply voltage
Analog ground pin	AVss	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	Reference voltage for A/D conversion
Analog input pin 0	AN0	Input	Group 0 analog input pins
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	_
Analog input pin 3	AN3	Input	_

[After Change]

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply voltage
Analog ground pin	AVss	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	Reference voltage for A/D conversion
Analog input pin 0	AN0*	Input	Group 0 analog input pins
Analog input pin 1	AN1*	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	_

Note: ANO and AN1 for *H8S/2239 Group, H8S/2227 Group, H8S/2238R, and H8S/2236R can be used only when Vcc = AVcc.

Date: Jun. 01, 2009

17.8.4 Range of Analog Power Supply and Other Pin Settings in section 17, A/D Converter has been reviewed as follows. [Before Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open.

[After Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open. In addition, analog inputs AN0 and AN1 for H8S/2239 Group, H8S/2227 Group, H8S/2238R, and H8S/2236R can be used only when Vcc = AVcc.

Table 27.14 DC Characteristics(1) in 27.3.2 DC Characteristics of section 27, Electrical Characteristics has been revised as follows.

[Before Change]

	Item		Symbol	Min	Тур	Max	Unit	Test Conditions
	Input high voltage	Ports 4 and 9	V _{IH}	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
	Item		Symbol	Min	Тур	Max	Unit	Test Conditions
	Input high voltage	Ports 4 and 9 ^{*5}	VIH	Vcc×0.8	-	AVcc+0.3 ^{*5}	V	

Notes: 5. Max of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

27.3.4 A/D Conversion Characteristics in section 27, Electrical Characteristics has been revised as follows.

[Before Change]

Condition A (F-ZTAT version and masked ROM version):

Vcc = 2.7 V to 3.6 V, AVcc = 2.7 V to 3.6 V, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 16.0 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications)

Condition B (Masked ROM version):

Vcc = 2.2 V to 3.6 V, AVcc = 2.2 V to 3.6 V, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, T_a = -20°C to +75°C (regular specifications), T_a =-40°C to +85°C (wide-range specifications)

Condition C (F-ZTAT version and masked ROM version):

Vcc = 3.0 V to 3.6 V, AVcc = 3.0 V to 3.6 V, Vref = 3.0 V to AVcc, Vss = AVss = 0 V, $\phi = 10.0 \text{ to } 20.0 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Test

[After Change]

Condition A (F-ZTAT version and masked ROM version):

 $Vcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, $AVcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 16.0 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications)

Condition B (Masked ROM version):

 $Vcc = 2.2 \text{ V to } 3.6 \text{ V}^*$, $AVcc = 2.2 \text{ V to } 3.6 \text{ V}^*$, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)

Condition C (F-ZTAT version and masked ROM version):

 $Vcc = 3.0 \text{ V to } 3.6 \text{ V}^*, \text{ AVcc} = 3.0 \text{ V to } 3.6 \text{ V}^*, \text{ Vref} = 3.0 \text{ V to AVcc}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \phi = 10.0 \text{ to } 20.0 \text{ MHz},$

 $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)

Note:* ANO and AN1 can be used only when Vcc = AVcc.

Table 27.39 DC Characteristics(1) in 27.5.2 DC Characteristics of section 27, Electrical Characteristics has been revised as follows.

[Before Change]

	Item		Symbol	Min	Тур	Max	Unit	Conditions
	Input high voltage	Ports 4 and 9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Af	er Change]							
	•				_			Test
	Item		Symbol	Min	Тур	Max	Unit	Conditions
	Input high voltage	Ports 4 and 9 ^{*5}	V_{IH}	Vcc×0.8	-	AVcc+0.3*5	V	

Notes: 5. Max of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

27.5.4 A/D Conversion Characteristics in section 27, Electrical Characteristics has been revised as follows.

[Before Change]

Condition A (F-ZTAT version and masked ROM version):

 $Vcc = 2.7 \text{ V to } 3.6 \text{ V}, AVcc = 2.7 \text{ V to } 3.6 \text{ V}, V_{ref} = 2.7 \text{ V to } AVcc, Vss = AVss = 0 \text{ V}, \phi = 2 \text{ to } 13.5 \text{ MHz},$

 $T_a = -20$ °C to + 75°C (regular specifications), $T_a = -40$ °C to + 85°C (wide-range specifications)

Condition B (F-ZTAT version): Vcc = 2.2 V to 3.6 V, AVcc = 2.2 V to 3.6 V, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, T_a =-20°C to +75°C (regular specifications)

Condition C (Masked ROM version): Vcc = 2.2 V to 3.6 V, AVcc = 2.2 V to 3.6 V, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, T_a = -20°C to + 75°C (regular specifications), T_a = -40°C to + 85°C (wide-range specifications)

[After Change]

Condition A (F-ZTAT version and masked ROM version):

 $Vcc = 2.7 \text{ V to } 3.6 \text{ V*}, \text{ AVcc} = 2.7 \text{ V to } 3.6 \text{ V*}, \text{ Vref} = 2.7 \text{ V to AVcc}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \phi = 2 \text{ to } 13.5 \text{ MHz}, \text{ Vsc} = 2.7 \text{ V to AVcc}, \text{ Vss} = 2.7 \text{ V to AVcc}, \text{$

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition B (F-ZTAT version): Vcc = 2.2 V to 3.6 V*, AVcc = 2.2 V to 3.6 V*, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, T_a =-20°C to +75°C (regular specifications)

Condition C (Masked ROM version): Vcc = 2.2 V to 3.6 V*, AVcc = 2.2 V to 3.6 V*, Vref = 2.2 V to AVcc, Vss = AVss = 0 V,

 ϕ = 2 to 6.25 MHz, T_a =-20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

Note: *AN0 and AN1 can be used only when Vcc = AVcc.

Toct

Table 27.51 DC Characteristics(1) in 27.6.2 DC Characteristics of section 27, Electrical Characteristics has been revised as follows.

[Before Change]

	Item		Symbol	Min	Тур	Max	Unit	Conditions
	Input high voltage	Ports 4 and 9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
	Item		Symbol	Min	Тур	Max	Unit	Test Conditions
	Input high voltage	Ports 4 and 9 ^{*5}	VIH	Vcc×0.8	-	AVcc+0.3 ^{*5}	V	

Notes: 5. Max of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

27.6.4 A/D Conversion Characteristics in section 27, Electrical Characteristics has been revised as follows.

[Before Change]

Condition A (ZTAT version):

Vcc = 2.7 V to 3.6 V, AVcc = 2.7 V to 3.6 V, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 10 \text{ MHz}$,

 $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)

Condition B (F-ZTAT version, Masked ROM version):

Vcc = 2.7 V to 3.6 V, AVcc = 2.7 V to 3.6 V, Vref = 2.7 V to <math>AVcc, Vss = AVss = 0 V, $\phi = 2 to 13.5 MHz$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition C (Masked ROM version):

Vcc = 2.2 V to 3.6 V, AVcc = 2.2 V to 3.6 V, $V_{ref} = 2.2 \text{ V to } AVcc$, Vss = AVss = 0 V, $\phi = 2 \text{ to } 6.25 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Condition A (ZTAT version):

 $Vcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, $AVcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 10 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition B (F-ZTAT version, Masked ROM version):

 $Vcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, $AVcc = 2.7 \text{ V to } 3.6 \text{ V}^*$, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 13.5 \text{MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition C (Masked ROM version):

 $Vcc = 2.2 \text{ V to } 3.6 \text{ V}^*$, $AVcc = 2.2 \text{ V to } 3.6 \text{ V}^*$, Vref = 2.2 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 6.25 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Note: *AN0 and AN1 can be used only when Vcc = AVcc.

• H8S/2268 Group, H8S/2264 Group Hardware Manual

[Correction]

Table 15.1 Pin Configuration in 15.2 Input/Output Pins of section 15, A/D Converter has been revised as follows.

[Before Change]

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply voltage
Analog ground pin	AVss	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	Reference voltage for A/D conversion
Analog input pin 0	AN0	Input	Group 0 analog input pins
Analog input pin 1	AN1	Input	_
Analog input pin 2	AN2	Input	_
Analog input pin 3	AN3	Input	_
er Change]			
Dia Massa	0	1/0	

[Afte

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog power supply voltage
Analog ground pin	AVss	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	Reference voltage for A/D conversion
Analog input pin 0	AN0*	Input	Group 0 analog input pins
Analog input pin 1	AN1*	Input	
Analog input pin 2	AN2	Input	-
Analog input pin 3	AN3	Input	_

Note: *AN0 and AN1 can be used only when Vcc = AVcc.

15.8.4 Range of Analog Power Supply and Other Pin Settings in section 15, A/D Converter has been revised as follows.

[Before Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter is not used, the AVcc and AVss pins must not be left open.

[After Change]

• Relationship between AVcc, AVss and Vcc, Vss

Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D converter isnot used, the AVcc and AVss pins must not be left open. In addition, analog inputs AN0 and AN1 can be used only when Vcc = AVcc.

Table 25.2 DC Characteristics(1) in 25.2.2 DC Characteristics of section 25, Electrical Characteristics has been revised as follows.

[Before Change]

								Test
	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4,9,PH7	V _{IH}	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
			0		_			Test
	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4,9,PH7*4	VIH	Vcc×0.8	-	AVcc+0.3 ^{*4}	V	

Notes: 4. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

Table 25.2 DC Characteristics(2) in 25.2.2 DC Characteristics of section 25, Electrical Characteristics has been revised as follows.

[Before Change]

	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4,9,PH7	VIH	Vcc×0.8	-	Vcc+0.3	V	
[Af	ter Change]							
	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
	Input high voltage	Ports 4,9,PH7 ^{*4}	VIH	Vcc×0.8	_	AVcc+0.3*4	V	

Notes: 4. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

25.2.4 A/D Conversion Characteristics in section 25, Electrical Characteristics has been revised as follows.

[Before Change]

Condition A (F-ZTAT version):

 $Vcc = 3.0 \text{ V to } 5.5 \text{ V}, AVcc = 2.7 \text{ V to } 5.5 \text{ V}, Vref = 2.7 \text{ V to } AVcc, Vss = AVss = 0 \text{ V}, \phi = 2 \text{ to } 13.5 \text{ MHz},$

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition C (F-ZTAT version):

 $Vcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ AVcc} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vref} = 4.0 \text{ V to AVcc}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \phi = 10 \text{ to } 20.5 \text{ MHz},$

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Condition A (F-ZTAT version):

 $Vcc = 3.0 \text{ V to } 5.5 \text{ V}^*$, $AVcc = 2.7 \text{ V to } 5.5 \text{ V}^*$, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 13.5 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition C (F-ZTAT version):

 $Vcc = 4.0 \text{ V to } 5.5 \text{ V}^*$, $AVcc = 4.0 \text{ V to } 5.5 \text{ V}^*$, Vref = 4.0 V to AVcc, Vss = AVss = 0 V, $\phi = 10 \text{ to } 20.5 \text{ MHz}$,

T_a =-20°C to +75°C (regular specifications), T_a =-40°C to +85°C (wide-range specifications)

Note:* ANO and AN1 can be used only when Vcc = AVcc.

Table 25.15 DC Characteristics(1) in 25.3.2 DC Characteristics of section 25, Electrical Characteristics has been revised as follows.

[Before Change]

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	Ports 4,9	ViH	Vcc×0.8	-	AVcc+0.3	V	
[After Change]							
Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input high voltage	Ports 4,9 ^{*4}	VIH	Vcc×0.8	-	AVcc+0.3*4	V	

Notes: 4. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

Table 25.15 DC Characteristics(2) in 25.3.2 DC Characteristics of section 25, Electrical Characteristics has been revised as follows.

[Before Change]

	Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
	Input high voltage	Ports 4,9	VIH	Vcc×0.8	-	AVcc+0.3	V	
[Af	ter Change]							
	Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
	Input high voltage	Ports 4,9 ^{*4}	V _{IH}	Vcc×0.8	-	AVcc+0.3 ^{*4}	V	

Notes: 4. Max. of P40 and P41 becomes Vcc+0.3V when Vcc < AVcc.

25.3.4 A/D Conversion Characteristics in section 25, Electrical Characteristics has been revised as follows.

[Before Change]

Condition B (Masked-ROM version):

Vcc = 2.7 V to 5.5 V, AVcc = 2.7 V to 5.5 V, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 13.5 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition D (Masked-ROM version):

 $Vcc = 4.0 \text{ V to } 5.5 \text{ V}, \text{ AVcc} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vref} = 4.0 \text{ V to AVcc}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \phi = 10 \text{ to } 20.5 \text{ MHz},$

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

[After Change]

Condition B (Masked-ROM version):

 $Vcc = 2.7 \text{ V to } 5.5 \text{ V}^*$, $AVcc = 2.7 \text{ V to } 5.5 \text{ V}^*$, Vref = 2.7 V to AVcc, Vss = AVss = 0 V, $\phi = 2 \text{ to } 13.5 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Condition D (Masked-ROM version):

 $Vcc = 4.0 \text{ V to } 5.5 \text{ V}^*$, $AVcc = 4.0 \text{ V to } 5.5 \text{ V}^*$, Vref = 4.0 V to AVcc, Vss = AVss = 0 V, $\phi = 10 \text{ to } 20.5 \text{ MHz}$,

 $T_a = -20$ °C to +75°C (regular specifications), $T_a = -40$ °C to +85°C (wide-range specifications)

Note: *AN0 and AN1 can be used only when Vcc = AVcc.