The following register definitions should be added.

1. **UIDRn: Unique ID Register n (n=0 to 3)**
 - Address: 0x0100_1C00 + n x 4
 - Bit position: 31
 - Bit field: UID [31:0]
 - Value after reset: Unique value for each chip

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>UID[31:0]</td>
<td>Unique ID</td>
<td>R</td>
</tr>
</tbody>
</table>

 The UIDRn is a read-only register that stores a 16-byte ID code (unique ID) for identifying the individual MCU. The UIDRn register should be read in 32-bit units.

2. **PNRn: Part Numbering Register n (n=0 to 3)**
 - Address: 0x0100_1C10 + n x 4
 - Bit position: 31
 - Bit field: PNR [31:0]
 - Value after reset: Value depends on the product

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:0</td>
<td>PNR[31:0]</td>
<td>Part Number</td>
<td>R</td>
</tr>
</tbody>
</table>

 The PNRn is a read-only register that stores a 16-byte part numbering. The PNRn register should be read in 32-bit units. Each byte corresponds to the ASCII code representation of the product part number as detailed in product list.

In case of the part number is “R7FA2L1AB2DFP” 16-byte part numbering is stored as follows.

- Address 0x0100_1C10: “P”.0x50 in ASCII code
- Address 0x0100_1C11: “F”.0x46 in ASCII code
- Address 0x0100_1C12: “D”.0x44 in ASCII code
- Address 0x0100_1C13: “2”.0x32 in ASCII code
Address 0x0100_1C14: “B”, 0x42 in ASCII code
Address 0x0100_1C15: “A”, 0x41 in ASCII code
Address 0x0100_1C16: “1”, 0x31 in ASCII code
Address 0x0100_1C17: “L”, 0x4C in ASCII code
Address 0x0100_1C18: “2”, 0x32 in ASCII code
Address 0x0100_1C19: “A”, 0x41 in ASCII code
Address 0x0100_1C1A: “F”, 0x46 in ASCII code
Address 0x0100_1C1B: “7”, 0x37 in ASCII code
Address 0x0100_1C1C: “R”, 0x52 in ASCII code
Address 0x0100_1C1D: “␣”, 0x20 in ASCII code
Address 0x0100_1C1E: “␣”, 0x20 in ASCII code
Address 0x0100_1C1F: “␣”, 0x20 in ASCII code

3. MCUVER: MCU Version Register

Address: 0x0100_1C20

<table>
<thead>
<tr>
<th>Bit position</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit field</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MCUVE [7:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Value after reset: Value depends on the chip

<table>
<thead>
<tr>
<th>Bit</th>
<th>Symbol</th>
<th>Function</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>MCUVE [7:0]</td>
<td>MCU Version</td>
<td>R</td>
</tr>
</tbody>
</table>

The MCUVER is a read-only register that stores a MCU version. The MCUVER register should be read in 8-bit units. The higher the value, the newer MCU version.