Exclusively for design purposes! No part of this may be disclosed to a third party without the consent of NEC Electronics

Concerned Products:	Customer Notification		Date: Jan. 28, 1998
IE-789026-NS-EM1			NEC-Electronics (Europe) GmbH EAD -Technical Product Support
	Bug Report		Source Doc: SBG-T-0442 SBG-T-0487 SBG-T-0524 SBG-T-0603
			Author: W. Noll M. Kratz
	Jan. 28th, 98	Doc.	TPS-LE-B-ST02
$1^{\text {st }}$ revision:	May 11th, 98	Doc.	TPS-LE-B-ST02
$2^{\text {nd }}$ revision:	June 4th, 98	Doc	TPS-LEB-ST02

Exclusively for design purposes! No part of this may be disclosed to a third party without the consent of NEC Electronics

(A) BUG LIST

Bug No.	Outline	IE-789026-NS-EM1	
		V1.A DS2.0	V1.A DS3.0
1	Bit and logical operation at ports 2 and 5		\checkmark
2	Serial / general purpose port switch over	m	\checkmark
3	Read data from UART	\cdots	\checkmark
4	16-bit timer / interval timer restriction	\bullet	\bullet
5	8-bit timer / interval timer restriction	\bullet	\bullet

\checkmark : No problem
em: Bug (will be corrected by next version upgrade)

- : Bug (restriction, not corrected by version upgrade)

(B) BUG DESCRIPTION

Bug No.	Outline	Description
1	Bit and logical operation at ports 2 and 5	Details Avoid to use bit operation instructions and logical operation instructions on Ports 2 and 5(dual function pins). Instead of this, be sure to use 8 or 16- bit data transfer instructions to control output ports 2 and 5.
Reason for operating precautions Executing bit operation instructions (SET1, CLR1) and logical operation instructions (OR, XOR, etc.) on the ports (2 and 5) which have the dual functions of timer output and serial interface may cause the contents of the dual function pins to be different from the expected values. This is because the bit operation instructions and logical operation instructions of the e ePD889025, 789026 and 78F9026 are not for performing operations on the contents of the output latch but for performing operations on the status of the relevant pins. We have no plans to change the device circuits.		

$\begin{aligned} & \hline \text { Bug } \\ & \text { No. } \end{aligned}$	Outline	Description
2	Serial / general purpose port switch over	Details Three wire serial I/O mode If the operation is suspended (CSIE=0 write) while the system is transmitting/receiving data in three-wire SIO, or if the operation enable flag is cleared (CSIE=0 write) when the system is not performing transmission/reception, SO0's dual-purpose output port cannot be used as a general-purpose output port. Provisional Remedy: Do not clear the CSIE flag until the transmission/reception has ended. When ending the three wire SIO mode, send "FFH" first, before clearing the CSIE flag. Or, send "FFH" in the UART mode before clearing the transmission operation enable flag (TXE). Example 1: Three-wire SIO transmission Upon writing data into TXS, the SO pin immediately turns high (after 4 clocks). However, the clocks are transmitted to the SCK clock pin. Example 2: UART transmission The SO pin turns Hi after 16 to 32 clocks after writing data into TXS. With this method, the SCK pin remains Low. UART mode If the operation is suspended (TXE=0 write) while the UART system is transmitting data, TXD's dual-purpose output port cannot be used as a general-purpose output port. Provisional Remedy: Do not write " 0 " into the transmission operation enable flag (TXE) while data is being transmitted in the transmission operation enable (TXE=1) state. When switching over to the general-purpose output port, clear the transmission operation enable flag at the point when the data transmission is completed. Example to switch over to the general-purpose output port after UART transmission is ended: MOV CSIMO, \#OOH MOV BRGC, \#40H ; Baud rate:9600 bps MOV ASIM, \#88H ; Data length: 8 bits; one stop bit; no parity WAIT: BF STIF, SWAIT CLR1 TXE

$\begin{array}{\|l} \hline \text { Bug } \\ \text { No. } \end{array}$	Outline	Description			
3	Read data from UART	Details Do not read the RXB register immediately after occurrence of a reception interrupt, because an overrun error may occur. Instead of this, wait several clock cycles as indicated in the "Clock Count Until RXB Read" table shown below, before reading RXB register!			
				Clock Count Until RXB Read	
		$\begin{aligned} & \hline \text { BRGC } \\ & \text { setting } \\ & \hline \end{aligned}$	Transfer rate @ 4.9152 MHz	High speed $\mathrm{PCCI}=0$	Mid speed $\mathrm{PCCI}=1$
		00H	153.6 Kbps	0	0
		10H	76.8 Kbps	0	0
		20 H	38.4 Kbps	0	0
		30 H	19.2 Kbps	7	2
		40 H	9.6 Kbps	23	6
		50 H	4.8 Kbps	55	14
		60 H	2.4 Kbps	119	30
		70H	1.2 Kbps	247	62
		80 H	In the case of an external clock, make sure that the waiting time is satisfying the following expression: $\mathrm{EXCL} 1(\mathrm{~Hz})>\mathrm{f}_{\mathrm{CPU}}(\mathrm{~Hz}) /(9 \text { clocks }+\mathrm{X} \text { clocks })$ The external clock frequency EXCL1 is "the transfer rate multiplied by 2 " , $\mathrm{f}_{\mathrm{CPU}}$ is the CPU's operating frequency. Nine clocks result because the interrupt processing is starting one clock after the occurrence of the interrupt and eight clocks are used for the interrupt processing. "X clocks" refers to the clock count until the reading is over. The timing of reading the RXB register in the interrupt routine varies from one application to another. Example, the CPU operates at 1 MHz by inputting 4.8 KHz clocks from EXCK1: $\begin{aligned} 4.8 \mathrm{KHz} & >1 \mathrm{MHz} /(9+\mathrm{X}) \\ \mathrm{X} & >(1 \mathrm{MHz} / 4.8 \mathrm{KHz})-9 \\ \mathrm{X} & >199.3 \end{aligned}$ Accordingly, reading the RXB register in the interrupt routine must be performed after 200 clocks.		

Bug No.	Outline	Description
4	16-bit timer / interval timer restriction	Detail: To use these timer as interval timer, be sure zo carry out the following procedures before rewriting the compare register value in the coincidence interrupt routine for the count value and the 16-bit compare register (CRxx). (1) Mask interrupts
(2) Inhibit the timer output data inversion control (TOCxx)		
Rewriting the value of the compare register in a state where interrupts are		
permitted may cause interrupt requests to occur immediately.		

Bug No.	Outline	Description
5	8-bit timer restriction	Detail: When using these timers, rewrite the value of the compare register (CRxx) in a state where the timer operation is inhibited. Rewriting the value of the compare register (CRxx) in a state where the timer operation is permitted may generate coincidence signals imediately. (In the case that interrupts are permitted, interrupt requests will occur.)

Attachement 1

b: Output latch (P50) value
c: P50/T10/TO0

Figure P50 Block Diagram

Example: P5x

(1) Uses P50 as the TO0 output to execute "SET1 PORT 5.2 " while TOO is outputting a high level.
(2) The CPU reads all the pin statuses of Port 5 in response to the SET1 operating instruction, sets the relevant bit (P52 in this example) and writes the result to the latch of the Port 5.
(3) When this SET1 instruction was executed, pin P50 was high level. This results in a high level being written to the output latch of P50, thus causing the pin's output to be fixed to high level. (When outputting TOO, it is necessary to set the output latch to low level first.)

Attachement 2

(1) Relevant ports

Port 2	P20/ASCK/SCK0, P21/TxD/SO0, P22/RxD/SIO
Port 5	P50/TI0/TO0, P51/TO2, P52, P53

(2) Relevant instructions

* Assembler code

Use of the following instructions may result in the operations shown in the restrictions above.

Relevant Instruction	Description Example
SET1	SET1 P52
CLR1	CLR1 P52
AND	AND P5, \#5
OR	OR P2, \#2
XOR	XOR P2, \#3

* Example in the C language

The example shown below may cause the problems explained above.

C Language	Assembler
P5 $\quad=0 \times 04 ;$	OR P5, \#4
P5. $2=1 ;$	SET1 P5.2
P5 $=$ P5 $\mid 0 \times 04 ;$	MOV A, P5
	OR A, \#4
	MOV P5, A

The example below shows an example where only the relevant bits are affected, taking the restrictions into consideration.

C Language	Assembler
$\mathrm{P} 5=(\mathrm{P} 5 \mid 0 \times 04) \& 0 \times 04:$	MOV A, P5
	OR A, \#4
	AND A, \#4
	MOV P5, A

