

Customer Notification

µPD78F9212 Subseries
8-Bit Single-Chip Microcontrollers

Operating Precautions

µPD78F9210
µPD78F9211
µPD78F9212

Document No. U18767EE1V0IF00
Date Published May 2007

© NEC Electronics (Europe) GmbH

2 Customer Notification U18767EE1V0IF00

DISCLAIMER

The related documents in this customer notification may include preliminary versions. However,
preliminary versions may not have been marked as such.

The information in this customer notification is current as of its date of publication. The information is
subject to change without notice. For actual design-in, refer to the latest publications of NEC’s data sheets
or data books, etc., for the most up-to-date specifications of NEC PRODUCT(S). Not all PRODUCT(S)
and/or types are available in every country. Please check with an NEC sales representative for availability
and additional information.

No part of this customer notification may be copied or reproduced in any form or by any means without
prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this
customer notification. NEC does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC PRODUCT(S) listed in this
customer notification or any other liability arising from the use of such PRODUCT(S).

No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
property rights of NEC or others. Descriptions of circuits, software and other related information in this
customer notification are provided for illustrative purposes of PRODUCT(S) operation and/or application
examples only. The incorporation of these circuits, software and information in the design of customer’s
equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any
losses incurred by customers or third parties arising from the use of these circuits, software and
information.

While wherever feasible, NEC endeavors to enhance the quality, reliability and safe operation of
PRODUCT(S) the customer agree and acknowledge that the possibility of defects and/or erroneous
thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death)
to persons arising from defects and/or errors in PRODUCT(S) the customer must incorporate sufficient
safety measures in their design, such as redundancy, fire-containment and anti-failure features.

The customer agrees to indemnify NEC against and hold NEC harmless from any and all consequences
of any and all claims, suits, actions or demands asserted against NEC made by a third party for damages
caused by one or more of the items listed in the enclosed table of content of this customer notification for
PRODUCT(S) supplied after the date of publication.

Applicable Law:

The law of the Federal Republic of Germany applies to all information provided by NEC to the Customer
under this Operating Precaution document without the possibility of recourse to the Conflicts Law or the law of
5th July 1989 relating to the UN Convention on Contracts for the International Sale of Goods (the Vienna
CISG agreement).

Düsseldorf is the court of jurisdiction for all legal disputes arising directly or indirectly from this information.
NEC is also entitled to make a claim against the Customer at his general court of jurisdiction.

If the supplied goods/information are subject to German, European and/or North American export controls,
the Customer shall comply with the relevant export control regulations in the event that the goods are
exported and/or re-exported. If deliveries are exported without payment of duty at the request of the
Customer, the Customer accepts liability for any subsequent customs administration claims with respect to
NEC.

Notes: (1) “NEC” as used in this statement means NEC Corporation and also includes its direct
or indirect owned or controlled subsidiaries.

 (2) “PRODUCT(S)” means ‘NEC semiconductor products’ (NEC semiconductor products
means any semiconductor product developed or manufactured by or for NEC) and/or
‘TOOLS’ (TOOLS means ‘hardware and/or software development tools’ for NEC
semiconductor products’ developed, manufactured and supplied by ‘NEC’ and/or
‘hardware and/or software development tools’ supplied by NEC but developed and/or
manufactured by independent 3rd Party vendors worldwide as their own product or on
contract from NEC)

 Customer Notification U18767EE1V0IF00

Table of Contents

(A) Table of Operating Precautions ...4

(B) Description of Operating Precautions... 5

(C) Valid Specification... 7

(D) Revision History .. 8

µPD78F9212 Subseries

Operating Precautions for µPD78F9212 Subseries

4 Customer Notification U18767EE1V0IF00

(A) Table of Operating Precautions

 µPD78F921x
Rev. Note V1.2 No. Outline
Rank KNote1 E Note2

1 Restriction for STOP mode
(Technical Limitation)

2 Restriction on using flash self-programming
(Direction of use)

3

: Not applicable
: applicable

Note: - The version is indicated by the in the lot number, marked on each product.
 Pls refer to the below marking on each package

- Older device versions are not part of this customer notification anymore because it is expected
that they are not used anymore.

Note1: Products with rank K are produced before week 20, 2005 (519 or earlier in the last line of the

marking).
Note2: Products with rank E are produced from week 20, 2005 onwards (520 or later in the last line of the

marking).

Marking for non A grade products

Marking for A grade products

 Y1M
 ###
 NWW

M: ROM Size (0:1K; 1:2K; 2:4k)
###: Code Number (if preprogrammed)
or Flash Grade
N: last digit of Year Code
WW: week Code

 µPD78F921x
Revision /

Rank
Marking

V 1.2 Rank
“K“

Y1M

 519

Rank “E“ Y1M

 520

 F921X A
 NWWyyy

X: ROM Size (0:1K; 1:2K; 2:4k)
N: last digit of Year Code
WW: week Code
yyy: in house code

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

(B) Description of Operating Precautions

No. 1 Restriction for STOP mode

(Technical Limitation)
Details
When CPU execute STOP instruction with IE flag = 0 (DI instruction executed) and IF flag = 1
that is not masked, STOP mode will not be released.
Then any other interrupts are occurred, STOP mode is not released, either.

Case 1 : When CPU execute STOP instruction with IE flag = 0 and IF flag = 1, MK flag = 0.
 DI ; Interrupt is disabled
 SET1 PIF0 ; Set interrupt request flag(INTP0)
 CLR1 PMK0 ; Clear interrupt mask flag(INTP0)
 SET1 P2.0 ; Set Port20 to “1”
 STOP ; Changing STOP mode
 CLR1 P2.0 ; Clear Port20(Will not be executed)

When interrupt enabled and standby release signal is occurred, and CPU execute interrupt
request pending instruction right before STOP instruction executing, then STOP mode will not be
released.

Case2 : When CPU execute STOP instruction with IE flag = 1 and IF flag = 1, MK flag = 0.
 EI ; Interrupt is enabled
 SET1 P2.0 ; Set Port20 to “1”
 SET1 PIF0 ; Set interrupt request flag(INTP0)
 CLR1 PMK0 ; Executing interrupt request pending instruction
 STOP ; Changing STOP mode
 CLR1 P2.0 ; Clear Port20(Never executed)

 Note : interrupt request pending instruction
 Write access instruction for interrupt request flag register 0 (IF0)
 Write access instruction for interrupt mask flag register 0 (MK0)

Workaround
Execute EI instruction before STOP instruction execution. Then do not execute Interrupt request
pending instruction right before STOP execution.

Case3 : Executing EI instruction right before STOP instruction.
 DI ; Interrupt disabled
 SET1 PIF0 ; Set interrupt request flag(INTP0)
 CLR1 PMK0 ; Clear interrupt mask flag(INTP0)
 SET1 P2.0 ; Set Port20 to “1”.
 EI ; Interrupt enabled
 STOP ; Changing STOP mode
 CLR1 P2.0 ; Clear Port20(will execute)

Note:
If interrupt is occurred before executing STOP instruction, it’s necessary to generate interrupt for
releasing from STOP mode because interrupt request flag is cleared before executing STOP
instruction.

Operating Precautions for µPD78F9212 Subseries

6 Customer Notification U18767EE1V0IF00

No. 2 Restriction on using flash self-programming

(Direction of use)
Details
If the standby function performed by the HALT instruction and flash self-programming are used
together using the procedure shown below, the subsequent operation becomes unexpected.

Workaround
When using flash self-programming, clear the FLCMD register to 0 immediately before shifting to
normal mode or self-programming mode. In addition, execute NOP and HALT instructions after
specific sequence processing to shift to self-programming mode.

Detailed explanation

The following two modes are available in these products.

- Normal mode:
The state in which normal operation is executed. Operation enters into a standby state
after execution of the HALT instruction.

- Self-programming mode:

The state in which self-programming commands are executable. After setting
commands,addresses and write data and executing the HALT instruction, self-
programming is executed. The specific sequence described in this document is referring
to the register manipulation to switch these two modes.

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

<1> An ordinary HALT instruction is executed and the internal HALT execution flag is set.
Self-programming is executed by setting the FLSPM bit while the HALT execution flag is
set.

<2> The specific sequence is executed and the operation then enters into self-programming
mode. At this time, the FLSPM bit changes to indicate that self-programming is now
executable. However, self-programming commands are not executed at this time,
because the FLCMD register has been initialized to 00H.

<3> Once a command value is set to the FLCMD register and the HALT instruction is
executed, the self-programming command is executed. The HALT execution flag is
cleared just as the self-programming command is executed.

<4> Execution of the self-programming command is completed, the specific sequence is
executed again, and operation enters into normal mode.

<5> The HALT instruction is executed again, operation enters into standby, and the HALT
execution flag is set.

<6> After the standby state is released, the specific sequence is executed to shift to self-
programming mode. If the command value set to the FLCMD register has not been
initialized at this time, the command still set to the FLCMD register is reexecuted when
the FLSPM bit is set. Self-programming is subsequently executed during CPU operation
and the CPU fetches an incorrect instruction from the flash memory, resulting in an
unexpected operation.

Remark The same situation occurs when flash self-programming is executed before <1>.

Workaround:
When using flash self-programming, clear the FLCMD register to 0 immediately before shifting to
normal mode or self-programming mode; this prevents execution of illegal commands
immediately after the mode is shifted. In addition, execute NOP and HALT instructions after
specific sequence processing to shift to self-programming mode; this controls the execution
timing between the CPU and the flash memory control block.
The flowcharts and source code examples for the operation restriction and its workaround
implementation are described on the following pages.

Operating Precautions for µPD78F9212 Subseries

8 Customer Notification U18767EE1V0IF00

<1> An ordinary HALT instruction is executed to shift to standby. After that, the standby state
is released by a standby release signal, such as an interrupt.

<2> The specific sequence is executed to shift to self-programming mode.
<3> A self-programming command (block erase in the source code example) is set to the

FLCMD register.
<4> The self-programming command is executed by executing the HALT instruction.
<5> After self-programming processing specified in <3> is completed, the specific sequence

is executed to shift to normal mode. This example presumes that processes from <1> to
<5> are performed repeatedly.

<6> An ordinary HALT instruction is executed to generate a standby release signal, and the
standby state is released.

<7> A self-programming command (block erase in the source code example) is executed
immediately after the specific sequence is executed to shift to self-programming mode
for the second time. Consequently, microcontroller operation becomes unexpected.

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

Example source code causing unexpected operation (assembly language):

MAINLOOP:
 ; Executes HALT to shift to standby state - <1> and <6> in flowchart
 HALT

 ; Saves the interrupt mask setting before executing self-programming.
 DI ; Disables interrupts
 MOV A,MK0 ; Saves interrupt mask setting
 XCH A,X
 MOV A,MK1 ; Saves only MK0 in KU1+ and KY1+
 PUSH AX
 MOV MK0,#0FFH
 MOV MK1,#0FFH

 ; Executes the specific sequence to shift to self-programming mode - <2> and <7> in flowchart
ModeOnLoop:
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#01H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FEH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#01H ; Sets self-programming mode
 ;When using a clock generated by an external resonator or external input clock,insert a 16 υs wait.

 ; Operation becomes unexpected when entered into self-programming mode for the second time.
 BT PFS.0,$ModeOnLoop ; Confirms completion of mode shift

 ; Performs command settings - <3> in flowchart
 MOV A, #0FH
 MOV FLAPH,A ; Sets number of block to be erased
 MOV FLAPHC,A ; Sets compare number for block to be erased (value set to FLAPH)
 MOV FLCMD,#03H ; Sets flash control command (block erase)
 MOV PFS,#00H ; Clears flash status register
 MOV WDTE,#0ACH ; Clears and starts WDT

 ; Executes erase command - <4> in flowchart
 HALT ; Executes self-programming

 ; Executes the specific sequence to shift to normal mode - <5> in flowchart
ModeOffLoop:
 MOV PFS,#00H
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#00H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FFH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#00H ; Sets normal mode
 BT PFS.0,$ModeOffLoop ; Confirms completion of mode shift
 POP AX ; Restores interrupt mask setting
 MOV MK1,X
 XCH A,X
 MOV MK0,A
 BR MAINLOOP

Operating Precautions for µPD78F9212 Subseries

10 Customer Notification U18767EE1V0IF00

Example source code causing unexpected operation (C language):

while(1){
 /* Executes HALT to shift to standby state - <1> and <6> in flowchart */
 HALT();

 /* Saves interrupt mask settings */
 DI(); // Disables interrupts
 ch_mask_bak0 = MK0; // Saves only MK0 in KU1+ and KY1+
 ch_mask_bak1 = MK1; // ch_mask_bak0/1 are variables for saving

 /* Shifts to self-programming mode - <2> and <7> in flowchart */
 do{
 PFS = 0; // Clears flash status register
 PFCMD = 0xA5; // Controls PFCMD register
 FLPMC = 0x01; // Controls FLPMC register (set value)
 FLPMC = 0xFE; // Controls FLPMC register (inverted set value)
 FLPMC = 0x01; // Sets self-programming mode

 /* When using a clock generated by an external resonator or external input clock,
 insert a 16 ⎧s wait.*/

 /* Operation becomes unexpected when entered into self-programming mode
 for the second time. */

 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Performs command settings - <3> in flowchart */
 FLAPH = FLAPHC = 0x0F; // Specifies block to be erased
 FLCMD = 0x03; // Specifies erase command
 PFS = 0x00; // Clears flash status register
 WDTE = 0xAC; // Clears WDT counter

 /* Executes erase command - <4> in flowchart */
 HALT(); // Executes erase command

 /* Shifts to normal mode - <5> in flowchart */
 do{
 PFS = 0; // Clears flash status register
 PFCMD = 0xA5; // Controls PFCMD register
 FLPMC = 0x00; // Controls FLPMC register (set value)
 FLPMC = 0xFF; // Controls FLPMC register (inverted set value)
 FLPMC = 0x00; // Sets normal mode
 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Restores interrupt mask settings */
 MK0 = ch_mask_bak0;
 MK1 = ch_mask_bak1;

}

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

<1> An ordinary HALT instruction is executed to shift to standby. After that, the standby state

is released by a standby release signal, such as an interrupt.
<2> The FLCMD register is cleared to 0 before executing the specific sequence to shift to

self-programming mode. The CPU clock is set to 1 MHz or higher.
<3> The specific sequence is executed to shift to self-programming mode.
<4> After the specific sequence (1 assigned to FLPMC for the second time), NOP and HALT

instructions are executed. It takes at most 10 ⎧s until the HALT instruction is released.
<5> A self-programming command (such as write or erase) is set to the FLCMD register.
<6> The self-programming command is executed by executing the HALT instruction.
<7> The FLCMD register is cleared to 0 before the specific sequence is executed to shift to

normal mode.
<8> Execute the specific sequence to shift to normal mode. If the CPU clock has been

changed, the clock setting before self-programming is restored at this time.
<9> This restriction is avoided by adding the above processes <2>, <4>, <7> and <8>.

Operating Precautions for µPD78F9212 Subseries

12 Customer Notification U18767EE1V0IF00

Example of source code to which workaround is implemented (assembly language):

MAINLOOP:
 ; Executes HALT to shift to standby state - <1> and <9> in flowchart
 HALT

 ; Saves the interrupt mask setting before executing self-programming.
 DI ; Disables interrupts
 MOV A,MK0 ; Saves interrupt mask setting
 XCH A,X
 MOV A,MK1 ; Saves only MK0 in KU1+ and KY1+
 PUSH AX
 MOV MK0, #0FFH
 MOV MK1, #0FFH

 ; Initializes FLCMD register - <2> in flowchart
 MOV FLCMD, #00H
 ; If CPU clock δ 1 MHz, sets CPU clock to 1 MHz or higher.

 ; Executes the specific sequence to shift to self-programming mode - <3> in flowchart
ModeOnLoop:
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#01H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FEH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#01H ; Sets self-programming mode
 BT PFS.0,$ModeOnLoop ; Confirms completion of mode shift

 ; Executes NOP and HALT instructions - <4> in flowchart
 NOP
 HALT
 ;When using a clock generated by an external resonator or external input clock, insert an 8us wait.

 ; Performs command settings - <5> in flowchart
 MOV A, #0FH
 MOV FLAPH,A ; Sets number of block to be erased
 MOV FLAPHC,A ; Sets compare number for block to be erased (value set to FLAPH)
 MOV FLCMD,#03H ; Sets flash control command (block erase)
 MOV PFS,#00H ; Clears flash status register
 MOV WDTE,#0ACH ; Clears and starts WDT
 ; Executes erase command - <6> in flowchart
 HALT ; Executes self-programming

 ; Initializes FLCMD register - <7> in flowchart
 MOV FLCMD, #00H
 ; If the CPU clock has been changed, the setting before self-programming is restored.

 ; Executes the specific sequence to shift to normal mode - <8> in flowchart
ModeOffLoop:
 MOV PFS,#00H
 MOV PFCMD,#0A5H ; Controls PFCMD register
 MOV FLPMC,#00H ; Controls FLPMC register (set value)
 MOV FLPMC,#0FFH ; Controls FLPMC register (inverted set value)
 MOV FLPMC,#00H ; Sets normal mode
 BT PFS.0,$ModeOffLoop ; Confirms completion of mode shift
 POP AX ; Restores interrupt mask setting
 MOV MK1,X
 XCH A,X
 MOV MK0,A
 BR MAINLOOP

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

Example of source code to which workaround is implemented (C language):

while(1){
 /* Executes HALT to shift to standby state - <1> and <9> in flowchart */
 HALT();

 /* Saves interrupt mask settings */
 DI(); // Disables interrupts
 ch_mask_bak0 = MK0; // Saves only MK0 in KU1+ and KY1+
 ch_mask_bak1 = MK1; // ch_mask_bak0/1 are variables for saving

 /* Initializes FLCMD register - <2> in flowchart */
 FLCMD = 0;
 /* If CPU clock δ 1 MHz, sets CPU clock to 1 MHz or higher */

 /* Enters into self-programming mode - <3> in flowchart */
 do{
 PFS = 0; // Clears flash status register
 PFCMD = 0xA5; // Controls PFCMD register
 FLPMC = 0x01; // Controls FLPMC register (set value)
 FLPMC = 0xFE; // Controls FLPMC register (inverted set value)
 FLPMC = 0x01; // Sets self-programming mode
 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Executes NOP and HALT instructions - <4> in flowchart */
 NOP();
 HALT();
 /* When using a clock generated by an ext. resonator or external input clock, insert an 8us wait.*/

 /* Performs command settings - <5> in flowchart */
 FLAPH = FLAPHC = 0x0F; // Specifies block to be erased
 FLCMD = 0x03; // Specifies erase command
 PFS = 0x00; // Clears flash status register
 WDTE = 0xAC; // Clears WDT counter

 /* Executes erase command - <6> in flowchart */
 HALT(); // Executes erase command

 /* Initializes FLCMD register - <7> in flowchart */
 FLCMD = 0;

 /* If the CPU clock has been changed, the setting before self-programming is restored. */

 /* Shifts to normal mode - <8> in flowchart */
 do{
 PFS = 0; // Clears flash status register
 PFCMD = 0xA5; // Controls PFCMD register
 FLPMC = 0x00; // Controls FLPMC register (set value)
 FLPMC = 0xFF; // Controls FLPMC register (inverted set value)
 FLPMC = 0x00; // Sets normal mode
 }while(PFS.0 == 1); // Confirms completion of mode shift

 /* Restores interrupt mask settings */
 MK0 = ch_mask_bak0;
 MK1 = ch_mask_bak1;

 }

Operating Precautions for µPD78F9212 Subseries

14 Customer Notification U18767EE1V0IF00

(C) Valid Specification

Item Date published Document No. Document Title

1 Dez 2006 or later U16994… User’s Manual

Operating Precautions for µPD78F9212 Subseries

 Customer Notification U18767EE1V0IF00

(D) Revision History

Item Date published Document No. Comment

1 January 17, 2005 TPS-LE-OP-F9212-1 1st Release

2 March 23, 2005 TPS-LE-OP-F9212-2 2nd Release, addition of item 5

3 March 24, 2006 TPS-LE-OP-F9212-3 3rd Release, addition of Rank “E”

4 May, 2007 U18767EE1V0IF00 4th Release, addition of restriction 2, removal of
old versions, new doc no

