

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

(c) 2004. Renesas Technology Corp., All rights reserved. Page 1 of 1

Date: Jun.07.2004

RENESAS TECHNICAL UPDATE
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
RenesasTechnology Corp.

Product
Category

User Development Environment
Document

No. TN-CSX-074A/EA Rev. 1.0

Title H8S, H8/300 Series C/C++ Compiler Ver.6.0.01
bug information (2)

Information
Category

Usage Limitation

Lot No.

Applicable
Product

PS008CAS6-MWR(R0C40008XSW06R)
PS008CAS6-SLR(R0C40008XSS06R)
PS008CAS6-H7R(R0C40008XSH06R) Ver.6.0.00

Ver.6.0.01

Reference
Document

H8S, H8/300 Series C/C++ Compiler
Assembler Optimizing Linkage Editor
User’s Manual
REJ10B0058-0100H
Rev.1.00

Attached is the description of the detected bug information in Ver.6.0.01 of the H8S, H8/300 Series C/C++ Compiler.

The bug will affect this package version.

Attached: R0C40008XSW06R-040514E
 H8S, H8/300 Series C/C++ Compiler Ver. 6.0.01 The details of the detected bug information (2)

1/7

R0C40008XSW06R-0400514E

H8S, H8/300 Series C/C++ Compiler Ver.6.0.01
The details of the detected bug information (2)

Problems with the H8S, H8/300 series C/C++ compiler ver.6.0.01 are listed below.

1) Incorrect accessing to a member of array type in a structure
 If an array type variable declared as not a first member in a structure and an expression has a reference of the address of array type member,
the address value might not be correctly.

 [Example]
 struct S {
 int b;
 int a[8];
 } s;
 int *p;

 void test() {
 p = &s.a[7];
 }

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled..

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) An array type variable was declared as not a first member in a structure.
c) An expression is described as accessing of an array type member address except first element.

 [Solution]
 This problem can be prevented by the following method:
 i. Add a volatile qualifier to pointer type variable definition.

First of array type member to get an address is assigned to the pointer type variable.
And then your program should access to an array element,

struct S {
 int b;
 int a[8];
} s;
int *volatile p;

void test() {
 p = &s.a; /* get and address top of array type member */
 p += 7; /* move to the element */
}

 [Applied Product Version]
Ver.6.0.00 or later

< Incorrect >
_test:
 mov.l #_s+h'e:32,@_p:32 ; it points &s.a[6]
 rts

< Correct >
_test:
 mov.l #_s+h'10:32,@_p: 32 ; it points &s.a[7]
 rts

2/7

2) Incorrect optimization for a pre/post increment/decrement instruction
If your code has either pre-increment, pre-decrement, post-increment, or post-decrement expression with speed option,
The value might not be correct as a result.

 [Example]
 void func(char *par1, char *par2) {
 *--par1 = *--par2;

*--par1 = *--par2;
*--par1 = *--par2;
*--par1 = *--par2;

}

<Correct Code> <Incorrect Code>
ADD.L #10:16,ER0 ADD.L #10:16, ER0
MOV.B @-ER0,R1L ; (Deleted illegally) … (a)
MOV.L ER0,ER4 MOV.L ER0, ER4 … (a)was deleted then incorrect value is

substituted.
MOV.L SP,ER2 MOV.L SP, ER2
ADD.L #16:16,ER2 ADD.L #16:16, ER2
MOV.B R1L,@-ER2 MOV.B @-ER0,@-ER2 … (a)is merged incorrectly.

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled..

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) Speed option was specified.
c) One of the following expression was in your source file

i. Pre-increment
ii. Pre-decrement
iii. Post-increment
iv. Post-decrement

 [Solution]

This problem can be prevented by the following method:
 -. Add a volatile qualifier to the variable definition.

[Example]
void func(volatile char *par1, volatile char *par2){
 *--par1 = *--par2;

*--par1 = *--par2;
*--par1 = *--par2;
*--par1 = *--par2;

}

 [Applied Product Version]

Ver.6.0.00 or later

3/7

3) Illegal register allocation of table expansion optimization for switch-case statement
 If switch-case statement is expanded to the table optimization, register push/pop instruction might not be correct.

 [Example]
void main(void) {
 val=c_1;
 ans2=ga1;
 ans2 += val; /* ans2 is pushed to stack */
 switch(val){
 case 2: ans=0; break;

:
 default: ans=0; break;
 } /* ans2 might not be popped from stack */
 ...
}

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled.

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) The case = table or case = auto option was specified and switch-case statement was expanded as table expansion optimization.

 [Solution]
 This problem can be prevented by the following method:

i. The case=Ifthen option should be specified.

 [Applied Product Version]
 Ver.6.0.00 or later

4/7

4) The instruction, which assigned 0, is deleted illegally.
 If an instruction of assigned 0 was in each branch, it might be deleted illegally.

 [Example]
 sub.b R0H, R0H ;R0H was set as 0
 :
 :
 L55:
 :
 bls L36
 sub.b R0H, R0H ; R0H was still 0 then this instruction can be deleted by optimization
 add.w R0, R0 ; R0H is possible to be updated to other value.
 :
 L48:
 sub.b R0H, R0H ; deleted Illegally
 add.w R0, R0 ; If R0H isn’t 0, it might be incorrect value

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled.

a) H8/300 or H8/300L was specified as a CPU type.
b) The optimize=1 option was specified(default).
c) An Instruction of assigned 0 was in each branch.

 [Solution]
 Take the following method to prevent this problem.

The optimize=0 option should be specified.

 [Applied Product Version]
 Ver.4.0.04 or later

5/7

5) A substitute expression was deleted 4 or less bytes of structure variable illegally
 If 4 or less bytes structure variable was in a substitute expression, it might be deleted.

 [Example]
typedef struct {
 char c;
 int i;
} ST;

 :
void func()
{
 ST lst1,lst2,lst3;
 ST lst4,lst5,lst6;
 ST lst7,lst8,lst9;

 :
 lst9.c = 1;

 switch(x){
 case 1:
 y+=x;
 switch(y){
 case 3:

 :
 lst9.c = 3; /* illegal deletion of substitute expression */
 break;

:
}

}

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled.

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) The optimize=1 option was specified(default).
c) Declared structure with either of following two conditions was fulfilled.

i. The member is accessed one byte to top of two bytes from top of structure or two bytes to first byte from top of structure.
ii. The STRUCTURE was 2, 3 or 4-byte size, and that have 2 or more members. And at least one of them was bit-field type

d) c) member accessing was in your program

 [Solution]
 Take either of the following methods to prevent this problem.

a) The optimize=0 option should be specified.
b) Add a volatile qualifier to the variable declaration.

 [Applied Product Version]
 Ver.6.0.00 or later

6/7

6) An incorrect accessing structure member in different accessing
 When a structure member set/reference expressions(Indirect reference and Direct reference) were in your program, setting value expression
might be deleted.
 set/reference method is following.

i, Indirect (struct->member)
ii. Direct (struct.member)

 [Example]
struct tag {
 long e;
}str = {10};

int func() {
 struct tag *p;
 long i,k = 0;

 p = &str;
 for(i=0; i<2; i++){
 str.e = i; /* illegal deletion of this expression */

 k += p->e; /* str.e and p->e were pointed to same memory area.
*/

 }
 return k;
}

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled.

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) The optimize=1 option was specified(default).
c) Set/reference expression of the same address of memory was sequential
d) The expressions of c) consisted of a pointer expression and not a pointer expression.

 [Solution]
 Take either of the following methods to prevent this problem.

a) The optimize=0 option should be specified.
b) Use same access expression to set/reference of value.
 [Example]
 str.e = i;
 k += str.e;
 or
 p->e = i;
 k += p->e;

 [Applied Product Version]
 Ver.6.0.00 or later

7/7

7) A polynomial in-loop variable results was incorrect.
When a loop has m*(i*i+b*i) polynomial (m and b is constant variable), optimization for loop was incorrect code.

 [Example]
 long a[100];
f() {
 long i;
 for (i=0;i<100;i++){
 a[i] = 3 * (i * i + 555 * i); /* It was treated as 3*i*i+555*i incorrectly. */
 }
}

 [Conditions]
 This problem might occur when all of the following conditions were fulfilled.

a) H8SXN, H8SXM, H8SXA, or H8SXX was specified as a CPU type.
b) The optimize=1 option was specified(default)
c) Loop expressions that fulfilled all of the following conditions

i. A loop variable was a long or an unsigned long type.
ii. It is in a part of quadratic expression.
iii. m*(i*i+b*i) quadratic expression

 [Solution]
 Take either of the following methods to prevent this problem.

a) The optimize=0 should be specified
b) A loop variable should be defined with volatile qualifier.
c) A loop variable should be defined except long/unsigned long type.
d) A polynominal expression should be expanded to ((m*i*i) + m*b*i) in your program.

 [Applied Product Version]
 Ver.6.0.00 or later

