RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A0119A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed		Information Category	Technical Notification		
		Lot No.				
Applicable Product	RL78/I1C Group	All lots	Reference Document	RL78/I1C User's Manu Rev. 2.11 R01UH0587EJ0211 (N		

This document describes misstatements found in the RL78/I1C User's Manual: Hardware Rev. 2.11 (R01UH0587EJ0211).

Corrections

Applicable Item	Applicable Page	Contents
41.3.2 Supply current characteristics	Page 1134 to Page 1139	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		(Corrections and Applicable Ite	ms	Pages in this
No.		Document No.	English	R01UH0587EJ0211	document for corrections
1	41.3.2	Supply current char	acteristics	Page 1134 to Page 1139	Page 3 to Page 7

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/I1C Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0119A/E	Jan. 20, 2023	First edition issued
		Corrections No.1 revised (this document)

1. 41.3.2 Supply current characteristics (Page 1134 to Page 1139)

Incorrect:

41.3.2 Supply current characteristics

(TA = -40 to +85° C, 1.7 V ≤ EVDD0 = EVDD1 ≤ VDD^{Note8}≤ 5.5 V, Vss = EVss0 = EVss1 = 0V) (1/6)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX	Unit
Supply current ^{Note 1}	loo1	Operating mode	HS (high- speed main) mode ^{Note 5}	$f_{CLK} = 32 \text{ MHz}^{Note 3}$ PLL operation $f_{IH} = 24 \text{ MHz}^{Note 3}$	Normal operation Basic	V _{DD} = 5.0 V V _{DD} = 3.0 V V _{DD} = 5.0 V		5.2 5.2 1.7	8.5 8.5	mA mA mA
					operation					

							1
		fı∟ = 15 kHz,	Normal		4.1	11.0	μA
		T _A =+ 25°C ^{Note 7}	operation				

- Notes 1. Total current flowing into V_{DD}, EV_{DD}, and V_{RTC} including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include, the peripheral operation current. However, not including the current flowing into the LCD, controller/driver, A/D converter, AZA/D converter. LVD circuit, battery backup circuit, I/O port. and on-chip pull-up/pull-down resistors. When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT.
 - 2. When high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
 - When high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). <u>However, not including the current flowing into independent power supply RTC, 12-bit interval timer, and watchdog timer.</u>
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

LV (low-voltage main) mode: 1.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 4 MHz

Correct:

41.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ} \text{ C}, 1.7 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}}^{\text{Note8}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{V}) (1/6)$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX	Unit
					1	1				
Supply	IDD1	Operating	HS (high-	fclk = 32 MHz ^{Note 3}	Normal	$V_{DD} = 5.0 V$		5.2	8.5	mA
current ^{Note 1}		mode	speed main)	PLL operation	operation	$V_{DD} = 3.0 V$		5.2	8.5	mA
			mode ^{Note 5}	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.7		mA
					operation					
				f⊾ = 15 kHz,	Normal			4.1	11.0	μA
				T _A =+ 25°C Note 7	operation					-

Notes 1. Total current flowing into V_{DD}, EV_{DD}, and V_{RTC} including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT. The following points apply in the HS (high-speed main), LS (low-speed main), LV (low-voltage main), and LP (low-power main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the LCD controller/driver, A/D converter, ΔΣA/D converter, LVD circuit, battery backup circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
- In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the independent power supply RTC.
- 2. When high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- 3. When high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1).

- When high-speed on-chip oscillator, low-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- 7. When high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- 8. Either V_{DD} or VBAT is selected by the battery backup function.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - **3.** f_{IM}: Middle-speed on-chip oscillator clock frequency
 - $\textbf{4.} \quad f_{\text{IL}}: \quad \text{Low-speed on-chip oscillator clock frequency}$
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.8 V \leq V_DD \leq 5.5 V@1 MHz to 32 MHz

 $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 24 \text{ MHz}$ $2.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 16 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 12 \text{ MHz}$

2.1 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 6 MHz

- LS (low-speed main) mode: $1.9 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
- LP (low-power main) mode: $1.9 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$
- LV (low-voltage main) mode: $1.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- When high-speed on-chip oscillator, low-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- 7. When high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- 8. Either VDD or VBAT is selected by the battery backup function.
- **Remarks** 1. f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. f $_{\text{H}}$: High-speed on-chip oscillator clock frequency
 - **3.** fim: Middle-speed on-chip oscillator clock frequency
 - $\textbf{4.} \quad f_{\text{IL}}: \quad \text{Low-speed on-chip oscillator clock frequency}$
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(T_A = -40 to +85° C, 1.7 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD}^{Note10}≤ 5.5 V, Vss = EV_{ss0} = EV_{ss1} = 0V) (3/6)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2 IDD2	HALT	HS (high-	fclk = 32 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.80	2.0	mA
current ^{Note 1}		mode	speed main)	PLL operation	V _{DD} = 3.0 V		0.80	2.0	mA
			mode ^{Note 7}	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.48	1.45	mA
					V _{DD} = 3.0 V		0.48	1.45	mA
				f⊪ = 12 MHz ^{Note 4}	V _{DD} = 5.0 V		0.37	0.91	mA
					V _{DD} = 3.0 V		0.37	0.91	mA
				f⊪ = 6 MHz ^{Note 4}	V _{DD} = 5.0 V		0.32	0.63	mA
					V _{DD} = 3.0 V		0.32	0.63	mA
				fiH = 3 MHz ^{Note 4} V _{DD} = 5.0 V			0.29	0.49	mA
					V _{DD} = 3.0 V		0.29	0.49	mA
			LS (low-	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		280	740	μA
			speed main)		V _{DD} = 2.0 V		280	740	μA
		mode ^{Note 7}	f⊪ = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		230	620	μA	
					V _{DD} = 2.0 V		230	620	μA
			f⊪ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		220	440	μA	
				V _{DD} = 2.0 V		220	440	μA	
				fim = 4 MHzNate 9	V _{DD} = 3.0 V		55	300	μA
					V _{DD} = 2.0 V		55	300	μA
				f⊪ = 3 MHz ^{Note 4}	V _{DD} = 3.0 V		200	534	μA
					V _{DD} = 2.0 V		200	534	μA
			LV (low-	f⊪ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		450	825	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		450	825	μA
			LP (low-	f⊪ = 1 MHz ^{Note 4}	V _{DD} = 3.0 V		195	400	μA
			power main)		V _{DD} = 2.0 V		195	400	μA
			mode ^{Note 7}	fim = 1 MHz ^{Nate.9}	V _{DD} = 3.0 V		33	100	μA
					V _{DD} = 2.0 V		33	100	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA

Date: Jan. 20, 2023

$(T_A = -40 \text{ to } +85^\circ \text{ C}, 1.7 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}}^{\text{Note10}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}) (3/6)$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2 IDD2	HALT	HS (high-	fclk = 32 MHz ^{Note 4} ,	V _{DD} = 5.0 V		0.80	2.0	mA
current ^{Note 1}		mode	speed main)	PLL operation	V _{DD} = 3.0 V		0.80	2.0	mA
			mode ^{Note 7}	fi⊩ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.48	1.45	mA
					V _{DD} = 3.0 V		0.48	1.45	mA
				fili = 12 MHz ^{Note 4}	V _{DD} = 5.0 V		0.37	0.91	mA
					V _{DD} = 3.0 V		0.37	0.91	mA
				fin = 6 MHz ^{Note 4}	V _{DD} = 5.0 V		0.32	0.63	mA
					V _{DD} = 3.0 V		0.32	0.63	mA
				fin = 3 MHz ^{Note 4}	V _{DD} = 5.0 V		0.29	0.49	mA
					V _{DD} = 3.0 V		0.29	0.49	mA
			LS (low-	fi⊩ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		280	740	μA
			speed main)		V _{DD} = 2.0 V		280	740	μA
			mode ^{Note 7}	fi⊢ = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		230	620	μA
				V _{DD} = 2.0 V		230	620	μA	
				fin = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		220	440	μA
					V _{DD} = 2.0 V		220	440	μA
				fim = 4 MHz ^{Note 5}	V _{DD} = 3.0 V		55	300	μA
					V _{DD} = 2.0 V		55	300	μA
				fi⊢ = 3 MHz ^{Note 4}	V _{DD} = 3.0 V		200	534	μA
					V _{DD} = 2.0 V		200	534	μA
			LV (low-	fin = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		450	825	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		450	825	μA
			LP (low-	fi⊢ = 1 MHz ^{Note 4}	V _{DD} = 3.0 V		195	400	μA
			power main)		V _{DD} = 2.0 V		195	400	μΑ
			mode ^{Note 7}	fim = 1 MHz ^{Note 5}	V _{DD} = 3.0 V		33	100	μA
1			V _{DD} = 2.0 V		33	100	μA		
	HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA		
		speed main)	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA	
			mode ^{Note 7}						

 $(T_A = -40 \text{ to } +85^{\circ} \text{ C}, 1.7 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{DD}}^{\text{Note10}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (4/6)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2	HALT	LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
current ^{Note 1}		mode	speed main)	V _{DD} = 3.0 V	Resonator connection		160	420	μA
			mode ^{Note 7}						

	-						
		Subsystem	fsus = 32.768 kHz ^{Note 5} ,	Square wave input	0.6	0 1.60	μA
		clock	$T_A = -40^{\circ}C$	Resonator connection	1.0		
		operation	fsub = 32.768 kHz ^{Note 5} ,	Square wave input	0.9	3 1.70	
			$T_A = +25^{\circ}C$	Resonator connection	1.1		
					1.1		
			fsub = 32.768 kHz ^{Note 5} , T _A = +50°C	Resonator connection	1.3		
			fsuB = 32.768 kHz ^{Note 5}		1.5		
			T _A = +70°C	Resonator connection	1.7		
			fsub = 32.768 kHz ^{Note 5} ,	Square wave input	2.8	0 9.00	μΑ
			T _A = +85°C	Resonator connection	3.0	9.20	μA
			fi∟= 15 kHz ^{Note 9} ,		0.7	8 1.60	μΑ
			$T_A = -40^{\circ}C$				μΑ
			fi∟= 15 kHz ^{Note 9} ,		1.0	1 1.76	μΑ
			T _A = +25°C				μΑ
			fi∟= 15 kHz ^{Note 9} ,		2.2	5 8.45	μA
			T _A = +85°C				μΑ
IDD3 Note.	STOP	$T_A = -40^{\circ}C$	1		0.4	7 0.90	μA
	mode ^{Note 8}	T _A = +25°C			0.6	5 1.20	μA
		T _A = +50°C			0.8	4 2.80	μA
		T _A = +70°C			1.2	4.70	μA
		T _A = +85°C			1.8	9.00	μA

- Notes 1. Total current flowing into VDD, EVDD, and VRTC including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the LCD. controller/driver. A/D converter. AZA/D converter. LVD circuit. battery backup circuit. I/O port. and on-chip pull-up/pull-down resistors. When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT.
 - **2.** During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
 - When high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and Subsystem clock are stopped.

Date: Jan. 20, 2023

 $(T_A = -40 \text{ to } +85^\circ \text{ C}, 1.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}}^{\text{Note10}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (4/6)

00		-,			- 0.0 T, TOO L			•••,	()
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2 IDD2	HALT	LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μΑ
current ^{Note 1}		mode	speed main)	V _{DD} = 3.0 V	Resonator connection		160	420	μA
			mode ^{Note 7}						
			Subsystem	fsub = 32.768 kHz ^{Note 6} ,	Square wave input		0.80	1.60	μA
			clock	T _A = -40°C	Resonator connection		1.00	1.80	μA
			operation	fsue = 32.768 kHz ^{Note 6} ,	Square wave input		0.93	1.70	μA
				T _A = +25°C	Resonator connection		1.13	1.90	μA
				fsue = 32.768 kHz ^{Note 6} ,	Square wave input		1.10	3.00	μA
				T _A = +50°C	Resonator connection		1.30	3.20	μA
				fsue = 32.768 kHz ^{Note 6} ,	Square wave input		1.50	5.00	μA
				T _A = +70°C	Resonator connection		1.70	5.20	μA
				fsue = 32.768 kHz ^{Note 6} ,	Square wave input		2.80	9.00	μA
				T _A = +85°C	Resonator connection		3.00	9.20	μA
				fı∟= 15 kHz ^{Note 9} ,			0.78	1.60	μA
				T _A = -40°C					μA
				fı∟= 15 kHz ^{Note 9} ,			1.01	1.76	μA
				T _A = +25°C					μΑ
				fı∟= 15 kHz ^{Note 9} ,			2.25	8.45	μA
				T _A = +85°C					μA
	Порз	STOP	$T_A = -40^{\circ}C$				0.47	0.90	μA
		mode ^{Note 8}	T _A = +25°C				0.65	1.20	μA
			T _A = +50°C				0.84	2.80	μA
			T _A = +70°C				1.21	4.70	μA
			T _A = +85°C				1.82	9.00	μA

- **Notes 1.** Total current flowing into V_{DD}, EV_{DD}, and V_{RTC} including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. When the VBAT pin (pin for battery backup) is selected, current flowing into VBAT. The following points apply in the HS (high-speed main), LS (low-speed main), LV (low-voltage main), and LP (low-power main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into LCD controller/driver, the A/D converter, ΔΣA/D converter, LVD circuit, battery backup circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the independent power supply RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 5. When operating independent power supply RTC and setting ultra-low current consumption (AMPHS1 = 1). When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped. However, not including the current flowing into the 12-bit interval timer and, watchdog timer. When high-speed on-chip oscillator and high-speed system clock are stopped.
- 6....When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are. stopped. However, not including the current flowing into independent power supply RTC, 12bit interval timer, and watchdog timer.
- 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 2.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}@1 \ \text{MHz to } 32 \ \text{MHz} \\ & 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}@1 \ \text{MHz to } 24 \ \text{MHz} \\ & 2.5 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}@1 \ \text{MHz to } 16 \ \text{MHz} \\ & 2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}@1 \ \text{MHz to } 12 \ \text{MHz} \\ & 2.1 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}@1 \ \text{MHz to } 6 \ \text{MHz} \\ \end{array}$

- LS (low-speed main) mode: $1.9 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz
- LP (low-power main) mode: $1.9 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$
- LV (low-voltage main) mode: $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- 8. If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
- When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.
- **10.** Either VDD or VBAT is selected by the battery backup function.
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - **3.** f_{IM}: Middle-speed on-chip oscillator clock frequency
 - 4. fil: Low-speed on-chip oscillator clock frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

Date: Jan. 20, 2023

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and clock are stopped.
- When high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- When high-speed on-chip oscillator, low-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
- When operating independent power supply RTC and setting ultra-low current consumption (AMPHS1 = 1). When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.8 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 32 MHz

 $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 24 MHz

 $2.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 16 \text{ MHz}$

2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 12 MHz

 $2.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 6 \text{ MHz}$

LS (low-speed main) mode: $1.9 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz

- LP (low-power main) mode: $1.9 V \le V_{DD} \le 5.5 V@1 MHz$
- LV (low-voltage main) mode: $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
- 9. When high-speed on-chip oscillator, middle-speed on-chip oscillator, and high-speed system clock are stopped.
- **10.** Either VDD or VBAT is selected by the battery backup function.
- Remarks 1. f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - **2.** f_H: High-speed on-chip oscillator clock frequency
 - 3. fim: Middle-speed on-chip oscillator clock frequency
 - 4. fil: Low-speed on-chip oscillator clock frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

