RENESAS TECHNICAL UPDATE

TOYOSU FORESIA,3-2-24,Toyosu,Koto-ku,Tokyo 135-0061,Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A024D/E	Rev.	4.00	
Title	Correction for Incorrect Description Notice RL78/I1A Descriptions in the Hardware User Rev. 2.10 Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/I1A Group : R5F107xxx	F107xxx Reterence Rev.2.10		RL78/I1A User's Manu Rev.2.10 R01UH0169EJ0210 (、		

This document describes misstatements found in the RL78/I1A User's Manual: Hardware Rev.2.10 (R01UH0169EJ0210).

Corrections

Applicable Item	Applicable Page	Contents
2.4 Block Diagrams of Pins		additional paragraph
5.6 Controlling Clock 5.6.1 Example of setting high-speed on-chip oscillator	p.166	Incorrect descriptions revised
6.2 Configuration of Timer Array Unit Figure 6-2 Internal Block Diagram of Channel of Timer Array Unit figure	p.191	Incorrect descriptions revised
6.4.1 Basic rules of simultaneous channel operation function	p.217	Incorrect descriptions revised
6.7.1 Operation as interval timer/square wave output Figure 6-38.Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (1/2)	p.239	Incorrect descriptions revised
6.7.20peration as external event counter Figure 6-42.Example of Set Contents of Registers in External Event Counter Mode (1/2)	p.245	Incorrect descriptions revised
6.7.5 Operation as delay counter Figure 6-54.Example of Set Contents of Registers to Delay Counter (1/2)	p.258	Incorrect descriptions revised
7.4.3 Stop/restart operation Figure 7-31.Figure of Timing of Stop Operation (TKBTOLnp = 0, TKBTODnp = 0)	p.312	Incorrect descriptions revised
7.4.5 Standalone mode (period controlled by TKBCRn0) Figure 7-38.Timing Sample for Standalone Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.317	Incorrect descriptions revised
7.4.5 Standalone mode (period controlled by TKBCRn0) Figure 7-40.Batch Overwrite Function: Figure of the Timing of Buffer Updating During Counting Operation ndalone mode (period controlled by TKBCRn0)	p.320	Incorrect descriptions revised
7.4.6 Standalone mode (period controlled by external trigger input) Figure 7-42.Batch Overwrite Function: Figure of Standalone for External Trigger Input Factor and the Timing of Buffer Updating During Counting Operation (TKBTSEn Bit Set to 1)	p.325	Incorrect descriptions revised
7.4.6 Standalone mode (period controlled by external trigger input) Figure 7-43.Batch Overwrite Function: Figure of standalone for External Trigger Input Factor and the Timing of Buffer Updating during Counting Operation (TKBTSEn bit clear to 0)	p.327	Incorrect descriptions revised
7.4.7 Simultaneous start/stop mode Figure 7-45.Timing Sample for Simultaneous Start/Stop Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.336	Incorrect descriptions revised
7.4.8 Synchronous start/clear mode Figure 7-47.Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.343	Incorrect descriptions revised

7.4.8 Synchronous start/clear mode Figure 7-48.Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Batch Overwrite)	p.345	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-49.Operation Outline of Basic Operation for Interleave PFC Mode (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.347	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-50.Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 1 and No. 2)	p.349	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-51.Figure of Timing of Interleave PFC Mode (Below T/2s No. 3 and No. 4) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.350	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-52.Figure of Timing of Interleave PFC Mode (Operation for Condition No. 5: INTP21 not yet Reached)	p.351	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-53.Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 6) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.352	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-54.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 7)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.353	Incorrect descriptions revised
 7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-55.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 8 to 9) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0)) 	p.354	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-56.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 10 and No. 11)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.355	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-57.Figure of Timing of Interleave PFC Output Mode (In Case When Trigger Was Again Generated During TKBOn1)	p.356	Incorrect descriptions revised
7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-58.Figure of Timing of Interleave PFC Output Mode (Output of TKBOn1 Is at the Width of the Previous Output Width and Exceeds Period of Status Maintenance)	p.357	Incorrect descriptions revised
7.5.1 A/D conversion start timing signal output function Figure 7-59.A/D Conversion Start Timing Signal Output Function for Standalone Mode(Period Controlled by TKB0CR0)	p.360	Incorrect descriptions revised
7.5.1 A/D conversion start timing signal output function Figure 7-60.A/D Conversion Start Timing Signal Output Function for Standalone Mode (Period Controlled by External Trigger Input)	p.361	Incorrect descriptions revised
7.5.2 PWM output dithering function Figure 7-62.Figure of Waveform at Dithering Operation	p.363	Incorrect descriptions revised
7.5.2 PWM output dithering function Figure 7-63.Figure of Waveform at Dithering Operation (When TKBCRn1 = TKBCRn0 (100% Nearest Neighbor), TKBCRn2 = TKBCRn3(0% Nearest Neighbor)	p.363	Incorrect descriptions revised
7.5.2 PWM output dithering function Figure 7-64.Figure of Waveform at Dithering Operation(When TKBCRn3 = TKBCRn0+1)	p.364	Incorrect descriptions revised
7.5.6 Maximum frequency limit function Figure 7-70.Maximum Frequency Limit Function	p.373	Incorrect descriptions revised
8.4.1 PWM output function Figure 8-17.Basic Timing Sample(at TKCTOL0m=0,TKCTOD0m=0)for PWM Output Function	p.412	Incorrect descriptions revised
10.2 Configuration of 12-bit Interval Timer	p.446	Incorrect descriptions revised
11.4.3 Setting window open period of watchdog timer	p.457	Incorrect descriptions revised
12.3.2 A/D converter mode register 0 (ADM0)	p.472	Incorrect descriptions revised
12.3.9 Conversion result comparison lower limit setting register (ADLL)	p.479	Incorrect descriptions revised
12.3.10 A/D test register	p.480	Incorrect descriptions revised

12.6.6 Hardware trigger no-wait mode (select mode, one-shot conversion mode)	p.493	Incorrect descriptions revised
12.6.7 Hardware trigger no-wait mode (scan mode, sequential conversion mode)	p.494	Incorrect descriptions revised
12.6.8 Hardware trigger no-wait mode (scan mode, one-shot conversion mode)	p.495	Incorrect descriptions revised
12.6.9 Hardware trigger wait mode (select mode, sequential conversion mode)	p.496	Incorrect descriptions revised
12.6.10 Hardware trigger wait mode (select mode, one-shot conversion mode)	p.497	Incorrect descriptions revised
15.3.14 Serial standby control register0(SSC0)	p.572	Incorrect descriptions revised
15.3.15 Input switch control register(ISC)	p.573	Incorrect descriptions revised
15.5.7 SNOOZE mode function (only CSI00) Figure15-71.Timing Chart of SNOOZE Mode Operation (Once Startup)(Type 1: DAPmn = 0, CKPmn = 0)	p.638	Incorrect descriptions revised
15.5.7 SNOOZE mode function (only CSI00) Figure 15-73.Timing Chart of SNOOZE Mode Operation(Continuous Startup) (Type 1: DAPmn = 0, CKPmn = 0)	p.640	Incorrect descriptions revised
15.6.3 SNOOZE mode function	p.664	Additional Note
15.6.3 SNOOZE mode function Figure 15-90.Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)	p.666	Incorrect descriptions revised
15.6.3 SNOOZE mode function Figure 15-91.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)	p.667	Incorrect descriptions revised
15.6.3 SNOOZE mode function Figure 15-93.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)	p.669	Incorrect descriptions revised
16.5.3 SNOOZE mode function	p.735	Additional Note
16.5.3 SNOOZE mode function Figure 16-41.Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)	p.737	Incorrect descriptions revised
16.5.3 SNOOZE mode function Figure 16-42.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)	p.738	Incorrect descriptions revised
16.5.3 SNOOZE mode function Figure 16-44.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)	p.740	Incorrect descriptions revised
18.2 Configuration of Multiplier and Divider/Multiply-Accumulator	p.860	Incorrect descriptions revised
18.4.4 Multiply-accumulation (signed) operation Figure 18-9.Timing Diagram of Multiply-Accumulation (signed) Operation $(2 * 3 + (-4) = 2 \rightarrow 32767 * (-1) + (-2147483647) = -2147450882$ (Overflow Occurs.))	p.872	Incorrect descriptions revised
19.6 Cautions on Using DMA Controller	p.895	Incorrect descriptions revised
23.1 Functions of Power-on-reset Circuit	p.957	Incorrect descriptions revised
24.1 Functions of Voltage Detector	p.964	Incorrect descriptions revised

Issued Technical Update Document

Applicable Item	Applicable Page	Contents
Figure 7-19. Format of Peripheral Function Switch Register 0 (PFSEL0)	p.303	Incorrect descriptions revised
Figure 7-73.Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p)	p.380, 381	Incorrect descriptions revised
Figure 7-74.Format of Forced Output Stop Function Control Register 1p (TKBPACTL1p)	p.382, 383	Incorrect descriptions revised
Figure 7-75.Format of Forced Output Stop Function Control Register 2p (TKBPACTL2p)	p.384,385	Incorrect descriptions revised
Figure 14-1.Block Diagram of Comparator	p.527	Incorrect descriptions revised

Figure 14-12. Format of Peripheral Function Switch Register 0 (PFSEL0)	p.538	Incorrect descriptions revised
14. 5 Caution for Using Timer KB Simultaneous Operation Function	-	Incorrect descriptions revised
Timing Chart of SNOOZE Mode Operation	p.666, 667, 669	Incorrect descriptions revised
Table 20-1. Interrupt Source List (2/3)	p.898	Incorrect descriptions revised
Figure 20-1. Basic Configuration of Interrupt Function	p.900	Incorrect descriptions revised
Table 21-1. Operating Statuses in HALT Mode (2/2)	p.931	Incorrect descriptions revised
Table 21-2. Operating Statuses in STOP Mode	p.936	Incorrect descriptions revised
Table 21-3. Operating Statuses in SNOOZE Mode	p.942	Incorrect descriptions revised
32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	p.1100	Incorrect descriptions revised
33.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	p.1142	Incorrect descriptions revised
CHAPTER 34 PACKAGE DRAWINGS 34.3 38-pin Products	p.1147	Incorrect descriptions revised
1.3 Pin Configuration 1.3.1 20-pin products	p.4	Incorrect descriptions revised
1.3 Pin Configuration 1.3.2 30-pin products	p.5	Incorrect descriptions revised
1.3 Pin Configuration 1.3.3 38-pin products	p.6	Incorrect descriptions revised
Figure 13-1. Block Diagram of Operational Amplifier	p.516	Incorrect descriptions revised
13.3.3 Programmable gain amplifier input channel select register (PGAINS)	p.519	Incorrect descriptions revised

Corrections in the User's Manual: Hardware

No.	Corrections and Applicable Items		Pages in this
	Document No. English	R01UH016 9EJ0210	document for corrections
1.	Figure 7-19.Format of Peripheral Function Switch Register 0 (PFSEL0)	p.303	p.8~p.9
	Figure 7-73. Format of Forced Output Stop Function Control Register Op	· ·	· · ·
2.	(TKBPACTL0p) Figure 7-74.Format of Forced Output Stop Function Control Register 1p	p.380, 381	p.10~p.13
3.	(TKBPACTL1p) Figure 7-75.Format of Forced Output Stop Function Control Register 2p	p.382, 383	p.14~p.17
4.	(TKBPACTL2p)	p.384,385	p.18~p.21
5.	Figure 14-1.Block Diagram of Comparator	p.527	p.22~p.23
6.	Figure 14-12.Format of Peripheral Function Switch Register 0(PFSEL0)	p.538	p.24~p.25
7.	14. 5 Caution for Using Timer KB Simultaneous Operation Function	-	p.26~p.28
8.	Timing Chart of SNOOZE Mode Operation	p.666, 667, 669	p.29
9.	Table 20-1. Interrupt Source List (2/3)	p.898	p.29
10.	Figure 20-1. Basic Configuration of Interrupt Function	p.900	p.30~p.31
11.	Table 21-1. Operating Statuses in HALT Mode (2/2)	p.931	p.32~p.33
12.	Table 21-2. Operating Statuses in STOP Mode	p.936	p.34~p.35
13.	Table 21-3. Operating Statuses in SNOOZE Mode	p.942	p.36~p.37
14.	32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	p.1100	p.38
15.	33.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	p.1142	p.39
16.	CHAPTER 34 PACKAGE DRAWINGS 34.3 38-pin Products	p.1147	p.40~p.41
17.	1.3 Pin Configuration 1.3.1 20-pin products	p.4	p.42
18.	1.3 Pin Configuration 1.3.2 30-pin products	p.5	p.43
19.	1.3 Pin Configuration 1.3.3 38-pin products	p.6	p.44
20.	Figure 13-1. Block Diagram of Operational Amplifier	p.516	p.45
21.	13.3.3 Programmable gain amplifier input channel select register (PGAINS)	p.519	p.46
22.	Precaution of using REAL-TIME CLOCK	p.427	p.47
23.	2.4 Block Diagrams of Pins	-	p.48~p.49
24.	5.6 Controlling Clock 5.6.1 Example of setting high-speed on-chip oscillator	p.166	p.60
25.	6.2 Configuration of Timer Array Unit Figure 6-2 Internal Block Diagram of Channel of Timer Array Unit figure	p.191	p.61~p.62
26.	6.4.1 Basic rules of simultaneous channel operation function	p.217	p.63
27.	6.7.1 Operation as interval timer/square wave output Figure 6-38.Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (1/2)	p.239	p.64
28.	6.7.2Operation as external event counter Figure 6-42.Example of Set Contents of Registers in External Event Counter Mode (1/2)	p.245	p.65
29.	6.7.5 Operation as delay counter Figure 6-54.Example of Set Contents of Registers to Delay Counter (1/2)	p.258	p.66
30.	7.4.3 Stop/restart operation Figure 7-31.Figure of Timing of Stop Operation (TKBTOLnp = 0, TKBTODnp = 0)	p.312	p.67
31.	7.4.5 Standalone mode (period controlled by TKBCRn0) Figure 7-38.Timing Sample for Standalone Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.317	p.68
32.	7.4.5 Standalone mode (period controlled by TKBCRn0) Figure 7-40.Batch Overwrite Function: Figure of the Timing of Buffer Updating During Counting Operation ndalone mode (period controlled by TKBCRn0)	p.320	p.69
33.	7.4.6 Standalone mode (period controlled by external trigger input) Figure 7-42.Batch Overwrite Function: Figure of Standalone for External Trigger Input Factor and the Timing of Buffer Updating During Counting Operation (TKBTSEn Bit Set to 1)	p.325	p.70
34.	7.4.6 Standalone mode (period controlled by external trigger input)	p.327	p.71

	Figure 7-43.Batch Overwrite Function: Figure of standalone for External Trigger Input Factor and the Timing of Buffer Updating during Counting Operation (TKBTSEn bit clear to 0)		
35.	7.4.7 Simultaneous start/stop mode Figure 7-45.Timing Sample for Simultaneous Start/Stop Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.336	p.72
36.	7.4.8 Synchronous start/clear mode Figure 7-47.Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.343	p.73
37.	7.4.8 Synchronous start/clear mode Figure 7-48.Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Batch Overwrite)	p.345	p.74
38.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-49.Operation Outline of Basic Operation for Interleave PFC Mode (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.347	p.75
39.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-50.Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 1 and No. 2)	p.349	p.76
40.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-51.Figure of Timing of Interleave PFC Mode (Below T/2s No. 3 and No. 4) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.350	p.77
41.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-52.Figure of Timing of Interleave PFC Mode (Operation for Condition No. 5: INTP21 not yet Reached)	p.351	p.78
42.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-53.Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 6) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.352	p.79
43.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-54.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 7)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.353	p.80
44.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-55.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 8 to 9) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.354	p.81
45.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-56.Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 10 and No. 11)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))	p.355	p.82
46.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-57.Figure of Timing of Interleave PFC Output Mode (In Case When Trigger Was Again Generated During TKBOn1)	p.356	p.83
47.	7.4.9 Interleave PFC (Power Factor Correction) output mode Figure 7-58.Figure of Timing of Interleave PFC Output Mode (Output of TKBOn1 Is at the Width of the Previous Output Width and Exceeds Period of Status Maintenance)	p.357	p.84
48.	7.5.1 A/D conversion start timing signal output function Figure 7-59.A/D Conversion Start Timing Signal Output Function for Standalone Mode(Period Controlled by TKB0CR0)	p.360	p.85
19.	7.5.1 A/D conversion start timing signal output function Figure 7-60.A/D Conversion Start Timing Signal Output Function for Standalone Mode (Period Controlled by External Trigger Input)	p.361	p.86
50.	7.5.2 PWM output dithering function Figure 7-62.Figure of Waveform at Dithering Operation	p.363	p.87
51.	7.5.2 PWM output dithering function Figure 7-63.Figure of Waveform at Dithering Operation (When TKBCRn1 = TKBCRn0 (100% Nearest Neighbor), TKBCRn2 =	p.363	p.88
51.	TKBCRn3(0% Nearest Neighbor)		
52.	TKBCRn3(0% Nearest Neighbor) 7.5.2 PWM output dithering function Figure 7-64.Figure of Waveform at Dithering Operation(When TKBCRn3 = TKBCRn0+1)	p.364	p.89

54.	8.4.1 PWM output function Figure 8-17.Basic Timing Sample(at TKCTOL0m=0,TKCTOD0m=0)for PWM Output Function	p.412	p.91
55.	10.2 Configuration of 12-bit Interval Timer	p.446	p.92
56.	11.4.3 Setting window open period of watchdog timer	p.457	p.93
57.	12.3.2 A/D converter mode register 0 (ADM0)	p.472	p.94
58.	12.3.9 Conversion result comparison lower limit setting register (ADLL)	p.479	p.95
59.	12.3.10 A/D test register	p.480	p.96
60.	12.6.6 Hardware trigger no-wait mode (select mode, one-shot conversion mode)	p.493	p.97
61.	12.6.7 Hardware trigger no-wait mode (scan mode, sequential conversion mode)	p.494	p.98
62.	12.6.8 Hardware trigger no-wait mode (scan mode, one-shot conversion mode)	p.495	p.99
63.	12.6.9 Hardware trigger wait mode (select mode, sequential conversion mode)	p.496	p.100
64.	12.6.10 Hardware trigger wait mode (select mode, one-shot conversion mode)	p.497	p.101
65.	15.3.14 Serial standby control register0(SSC0)	p.572	p.102
66.	15.5.7 SNOOZE mode function (only CSI00) Figure15-71.Timing Chart of SNOOZE Mode Operation (Once Startup)(Type 1: DAPmn = 0, CKPmn = 0)	p.638	p.103
67.	15.5.7 SNOOZE mode function (only CSI00) Figure 15-73. Timing Chart of SNOOZE Mode Operation(Continuous	p.640	p.104
68.	Startup) (Type 1: DAPmn = 0, CKPmn = 0) 15.6.3 SNOOZE mode function	p.664	p.105
	15.6.3 SNOOZE mode function	p.001	p.100
69.	Figure 15-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = $0/1$)(Recorrection of No.8)	p.666	p.106
70.	15.6.3 SNOOZE mode function Figure 15-91.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0) (Recorrection of No.8)	p.667	p.107
71.	15.6.3 SNOOZE mode function Figure 15-93.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1) (Recorrection of No.8)	p.669	p.108
72.	16.5.3 SNOOZE mode function	p.735	p.109
73.	16.5.3 SNOOZE mode function Figure 16-41.Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)	p.737	p.110
74.	16.5.3 SNOOZE mode function Figure 16-42.Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)	p.738	p.111
75.	16.5.3 SNOOZE mode function Figure 16-44. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)	p.740	p.112
76.	18.2 Configuration of Multiplier and Divider/Multiply-Accumulator	p.860	p.113
77.	18.4.4 Multiply-accumulation (signed) operation Figure 18-9.Timing Diagram of Multiply-Accumulation (signed) Operation $(2 * 3 + (-4) = 2 \rightarrow 32767 * (-1) + (-2147483647) = -2147450882$ (Overflow Occurs.))	p.872	p.114
78.	19.6 Cautions on Using DMA Controller	p.895	p.115
79.	23.1 Functions of Power-on-reset Circuit	p.957	p.116
80.	24.1 Functions of Voltage Detector	p.964	p.117

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/I1A User's Manual: Hardware Rev.2.10 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A024C/E	Apr.24,2015	Third edition issued
		No.1 to No.21 incorrect descriptions revised
TN-RL*-A046A/E	Jul.06,2015	First edition issued
		No.22 incorrect descriptions revised
TN-RL*-A024D/E	Sep.21,2016	First edition issued
		No.23 to No.80 in corrections(This notice)

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 1. Figure 7-19. Format of Peripheral Function Switch Register 0 (PFSEL0)(p.303)

Incorrect descriptions of the TMRSTEN1 and TMRSTEN0 bits of Peripheral Function Switch Register 0 (PFSEL0) are revised, and Note is added.

Old)

Figure 7-19. Format of Peripheral Function Switch Register 0 (PFSEL0)

Address: F	05C6H	After reset: 00)H R/W							
Symbol	7	<6>	<5>	<4>	3	2	<1>	<0>		
PFSEL0	0	CMP2STEN	CMP0STEN	PNFEN	ADTRG11	ADTRG10	TMRSTEN1	TMRSTEN0		
	CMP2STEN	CMP0STEN		C	comparator inte	errupt selectio				

See CHAPTER 14 COMPARATOR.

PNFEN	Use/Do not use external interrupt INTP20 noise filter		
0	Use noise filter		
1	Do not use noise filter		

ADTRG11	ADTRG10	Timer trigger selection for A/D conversion					
0	0	Timer KB0 trigger source					
0	1	Timer KB1 trigger source					
1	0	Timer KB2 trigger source					
1	1	Setting prohibited					

TMRSTEN1	Eunction selection for external interrupt INTP21
0	External interrupt function (external interrupt generation enabled, timer restart disabled)
1	Timer restart function (external interrupt generation disabled, standby release disabled)

TMRSTEN0	Eunction selection for external interrupt INTP20				
0	External interrupt function (external interrupt generation enabled, timer restart disabled)				
1	Timer restart function (external interrupt generation disabled, standby release disabled)				

Remark See Figure 14-1 Block Diagram of Comparator.

Figure 7-19. Format of Peripheral Function Switch Register 0 (PFSEL0)

Address: F05C6H After reset: 00H)h R/W						
Symbol	7	<6>	<5>	<4>	3	2	<1>	<0>
PFSEL0	0	CMP2STEN	CMP0STEN	PNFEN	ADTRG11	ADTRG10	TMRSTEN1	TMRSTEN0

CMP2STEN CMP0STEN	Comparator interrupt selection
See CHAPTER 14 CON	PARATOR.

PNFEN	Use/Do not use external interrupt INTP20 noise filter			
0	Jse noise filter			
1	Do not use noise filter			

ADTRG11	ADTRG10	Timer trigger selection for A/D conversion					
0	0	Timer KB0 trigger source					
0	1	Timer KB1 trigger source					
1	0	imer KB2 trigger source					
1	1	Setting prohibited					

TMRSTEN1	Switch of external interrupt INTP21 Note				
0	External interrupt function is selected (stop mode release enabled, timer restart disabled).				
1	Timer restart function is selected (stop mode release disabled, timer restart enabled).				

TMRSTEN0	Switch of external interrupt INTP20 Note				
0	External interrupt function is selected (stop mode release enabled, timer restart disabled).				
1	Timer restart function/forced output stop function 2 is selected (stop mode release disabled,				
	timer restart enabled).				

Note When INTP20 or INTP21 is used as a trigger of the timer KB forced output stop function 2 or timer restart function, see **14.5** Caution for Using Timer KB Simultaneous Operation Function.

Remark See Figure 14-1 Block Diagram of Comparator.

2. Figure7-73.Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p)(p.380~p.381)

Incorrect descriptions of forced output stop function control register 0p (TKBPACTL0p) are revised, and Note is added.

Old)

Figure 7-73. Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p) (1/2)

Address: F0630	ОН (ТКВРАСТ	L00), F0632H	(TKBPACTL	01) Afte	r reset: 0000H	R/W				
Symbol	15	14	13	12	11	10	9	8		
TKBPACTL0p	TKBPAFXS0p3	TKBPAFXS0p2	TKBPAFXS0p1	TKBPAFXS0p0	0	0	0	TKBPAFCM0p		
	7	6	5	4	3	2	1	0		
	0	TKBPAHZS0p2	TKBPAHZS0p1	TKBPAHZS0p0	TKBPAHCM0p1	TKBPAHCM0p0	TKBPAMD0p1	TKBPAMD0p0		
	-			•						
	TKBPAFXS0p3	E	External interruption trigger selection for forced output stop function 2							
0 INTP20 can not be used as a trigger.										
	1	INTP20 can	be used as a	a trigger.						
		1								
	TKBPAFXS0p2		Comparate	or trigger seled	ction for forced	d output stop f	unction 2			
	0	Comparator	2 can not be	used as a trig	ger.					
	1	Comparator 2 can be used as a trigger.								
	TKBPAEXS0n1		Comparate	or trigger selec	tion for force	1 output stop fi	unction 2			

TKBPAFXS0p1	Comparator trigger selection for forced output stop function 2				
0	Comparator 1 can not be used as a trigger.				
1	Comparator 1 can be used as a trigger.				

TKBPAFXS0p0	Comparator trigger selection for forced output stop function 2			
0	Comparator 0 can not be used as a trigger.			
1	Comparator 0 can be used as a trigger.			

TKBPAFCM0p	Operation mode selection for forced output stop function 2
0	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period.
1	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period following detection of the reverse edge of the trigger.

Figure 7-73. Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p) (2/2)

TKBPAHZS0p2	Comparator trigger selection for forced output stop function 1
0	Comparator 2 can not be used as a trigger.
1	Comparator 2 can be used as a trigger.

TKBPAHZS0p1	Comparator trigger selection for forced output stop function 1
0	Comparator 1 can not be used as a trigger.
1	Comparator 1 can be used as a trigger.

TKBPAHZS0p0	Comparator trigger selection for forced output stop function 1					
0	Comparator 0 can not be used as a trigger.					
1	Comparator 0 can be used as a trigger.					

TKBPAHCM0p1	TKBPAHCM0p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when Hi-Z stop trigger (TKBPAHTT0) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "Hi-Z stop trigger (TKBPAHTT0) = 1" is invalid. Forced output stop function 1 is cleared when Hi-Z stop trigger. (TKBPAHTT0) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger . (TKBPAHTT0) = 1 is written, regardless of the trigger signal level.
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing " Hi-Z stop trigger (TKBPAHTT0) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger (TKBPAHTT0) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD0p1	TKBPAMD0p0	Output status selection when executing forced output stop function				
		Forced output stop function 1 Forced output stop function 2				
0	0	Hi-Z output	Output fixed at low level			
0	1	Hi-Z output	Output fixed at high level			
1	0	Output fixed at low level	Output fixed at low level			
1	1	Output fixed at high level	Output fixed at high level			

Cautions 1. During timer operation, setting the other bits of the TKBPACTL0p register is prohibited. However, the TKBPACTL0p register can be refreshed (the same value is written).

2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

Figure 7-73. Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p) (1/2)

Symbol	15	14	13	12	11	10	9	8			
(BPACTL0p	TKBPAFXS0p3	TKBPAFXS0p2	TKBPAFXS0p1	TKBPAFXS0p0	0	0	0	TKBPAFCM0			
	7	6	5	4	3	2	1	0			
	0	TKBPAHZS0p2	TKBPAHZS0p1	TKBPAHZS0p0	TKBPAHCM0p1	TKBPAHCM0p0	TKBPAMD0p1	TKBPAMD0p			
	TKBPAFXS0p3	E	External interru	uption trigger s	selection for fo	prced output st	top function 2				
	0	INTP20 can	not be used a	as a trigger.							
	1	INTP20 can	NTP20 can be used as a trigger. Note 1								
	TKBPAFXS0p2		Comparate	or trigger seled	ction for forced	d output stop f	unction 2				
	0	Comparator	2 can not be	used as a trig	ger.						
	1	Comparator	2 can be use	d as a trigger.	Note 2						
	TKBPAFXS0p1		Comparator trigger selection for forced output stop function 2								
	0	Comparator	Comparator 1 can not be used as a trigger.								
	1	Comparator 1 can be used as a trigger. Note 3									
	TKBPAFXS0p0	Comparator trigger selection for forced output stop function 2									
	0	Comparator	Comparator 0 can not be used as a trigger.								
	1	Comparator 0 can be used as a trigger. Note 2									
	TKBPAFCM0p		Operatio	n mode select	ion for forced	output stop fu	nction 2				
	0	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period. Note 4									
	1		•		00 1	and forced ou of the reverse	• •				
	TKBPAHZS0p2		Comparate	or trigger seled	ction for forced	d output stop f	unction 1				
	0	Comparator	2 can not be	used as a trig	ger.						
	1	Comparator	2 can be use	d as a trigger.	Note 2						
	TKBPAHZS0p1		Comparate	or trigger seled	ction for forced	d output stop f	unction 1				
				00		4					

TKBPAHZSUPT	Comparator trigger selection for forced output stop function 1
0	Comparator 1 can not be used as a trigger.
1	Comparator 1 can be used as a trigger. Note 3

TKBPAHZS0p0	Comparator trigger selection for forced output stop function 1				
0	mparator 0 can not be used as a trigger.				
1	Comparator 0 can be used as a trigger. Note 2				

(c) 2016. Renesas Electronics Corporation. All rights reserved.

Figure 7-73. Format of Forced Output Stop Function Control Register 0p (TKBPACTL0p) (2/2)

TKBPAHCM0p1	TKBPAHCM0p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT0p) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT0p) = 1" is invalid. Forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT0p) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT0p) = 1 is written, regardless of the trigger signal level. Note 4
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT0p) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT0p) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD0p1	TKBPAMD0p0	Output status selection when executing forced output stop function				
		Forced output stop function 1 Forced output stop function 2				
0	0	Hi-Z output	Output fixed at low level			
0	1	Hi-Z output Output fixed at high level				
1	0	Output fixed at low level Output fixed at low level				
1	1	Output fixed at high level Output fixed at high level				

- Notes 1. When INTP20 is used as the forced output stop function 2, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - 2. When CMP0 or CMP2 is used as the timer KB forced output stop function, set CMPnSTEN = 1. See 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - 3. When CMP1 is used as the timer KB forced output stop function, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - **4.** When timer KB is stopped (TKBCEn = 0) without waiting for the next counter period, the forced output stop function is kept on until timer KB is restarted (TKBCEn = 1).
- Cautions 1. During timer operation, setting the other bits of the TKBPACTL0p register is prohibited. However, the TKBPACTL0p register can be refreshed (the same value is written).
 - 2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 3. <u>Figure7-74.Format of Forced Output Stop Function Control Register 1p</u> (TKBPACTL1p)(p.382~p.383)

Incorrect descriptions of forced output stop function control register 1p (TKBPACTL1p) are revised, and Note is added.

Old)

Figure 7-74. Format of Forced Output Stop Function Control Register 1p (TKBPACTL1p) (1/2)

Address: F0670H (TI	KBPACT	L10), F0672H	(TKBPACTL	11) Afte	r reset: 0000H	R/W				
Symbol	15	14	13	12	11	10	9	8		
TKBPACTL1p TKBP	AFXS1p3	TKBPAFXS1p2	TKBPAFXS1p1	TKBPAFXS1p0	0	0	0	TKBPAFCM1p		
	7	6	5	4	3	2	1	0		
	0	TKBPAHZS1p2	TKBPAHZS1p1	TKBPAHZS1p0	TKBPAHCM1p1	TKBPAHCM1p0	TKBPAMD1p1	TKBPAMD1p0		
ТКВР	AFXS1p3	E	External interro	uption trigger s	selection for fo	rced output st	op function 2			
	0	INTP20 can	not be used a	as a trigger.						
	1	INTP20 can	be used as a	a trigger.						
ТКВР	AFXS1p2		Comparator trigger selection for forced output stop function 2							
	0	Comparator	3 can not be	used as a trig	ger.					
	1	Comparato	r 3 can be us	ed as a trigge	er.					
тирр	AFXS1p1		Comparat	or trigger solo	tion for forces	l output stop fr	unction 2	1		
TRDF		Comparator trigger selection for forced output stop function 2								
	0	Comparator 2 can not be used as a trigger.								
	1	Comparato	r 2 can be us	ed as a trigge	er.					
ТКВР	AFXS1p0		Comparate	or trigger seled	ction for forced	l output stop f	unction 2			
	0	Comparator	mparator 0 can not be used as a trigger.							
	1	Comparato	r 0 can be us	ed as a trigge	er.					
ТКВ	PAFCM1p		Operatio	n mode select	ion for forced	output stop fui	nction 2			

TKBPAFCM1p	Operation mode selection for forced output stop function 2
0	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period.
1	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period following detection of the reverse edge of the trigger.

Figure 7-74. Format of Forced Output Stop Function Control Register 1p (TKBPACTL1p) (2/2)

TKBPAHZS1p2	Comparator trigger selection for forced output stop function 1					
0	parator 3 can not be used as a trigger.					
1	Comparator 3 can be used as a trigger.					

TKBPAHZS1p1	Comparator trigger selection for forced output stop function 1						
0	Comparator 2 can not be used as a trigger.						
1	Comparator 2 can be used as a trigger.						

TKBPAHZS1p0	Comparator trigger selection for forced output stop function 1						
0	nparator 0 can not be used as a trigger.						
1	Comparator 0 can be used as a trigger.						

TKBPAHCM1p1	TKBPAHCM1p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when Hi-Z stop trigger (TKBPAHIT1) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "Hi-Z stop trigger (TKBPAHTT1) = 1" is invalid. Forced output stop function 1 is cleared when Hi-Z stop trigger. (TKBPAHTT1) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger . (TKBPAHTT1) = 1 is written, regardless of the trigger signal level.
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing " Hi-Z stop trigger (TKBPAHTT1) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger (TKBPAHTT1) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD1p1	TKBPAMD1p0	Output status selection when executing forced output stop function				
		Forced output stop function 1	Forced output stop function 2			
0	0	Hi-Z output	Output fixed at low level			
0	1	Hi-Z output	Output fixed at high level			
1	0	Output fixed at low level	Output fixed at low level			
1	1	Output fixed at high level	Output fixed at high level			

Cautions 1. During timer operation, setting the other bits of the TKBPACTL1p register is prohibited. However, the TKBPACTL1p register can be refreshed (the same value is written).

2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

Figure 7-74. Format of Forced Output Stop Function Control Register 1p (TKBPACTL1p) (1/2)

Symbol	15	14	13	12	11	10	9	8		
KBPACTL1p	TKBPAFXS1p3	TKBPAFXS1p2	TKBPAFXS1p1	TKBPAFXS1p0	0	0	0	TKBPAFCM		
	7	6	5	4	3	2	1	0		
	0	TKBPAHZS1p2	TKBPAHZS1p1	TKBPAHZS1p0	TKBPAHCM1p1	TKBPAHCM1p0	TKBPAMD1p1	TKBPAMD1		
	TKBPAFXS1p3	E	External interr	uption trigger s	selection for fo	orced output st	op function 2			
	0	INTP20 can	not be used a	as a trigger.						
	1	INTP20 can	be used as a	trigger. Note 1						
	TKBPAFXS1p2		Comparate	or trigger seled	ction for forced	d output stop fi	unction 2			
	0	Comparator	3 can not be	used as a trig	ger.					
	1	Comparator	3 can be use	d as a trigger.	Note 2					
	TKBPAFXS1p1		Comparate	or trigger seled	ction for forced	d output stop fi	unction 2			
	0	Comparator	Comparator 2 can not be used as a trigger.							
	1	Comparator	2 can be use	d as a trigger.	Note 3					
	TKBPAFXS1p0		Comparate	or trigger seled	ction for forced	d output stop fi	unction 2			
	0	Comparator	0 can not be	used as a trig	ger.					
	1	Comparator	0 can be use	d as a trigger.	Note 3					
	TKBPAFCM1p		Operatio	n mode select	ion for forced	output stop fur	nction 2			
	0			on 2 starts with er period. ^{Note}		and forced ou	itput stop fund	tion 2 is		
	1		•			and forced ou of the reverse				
	TKBPAHZS1p2		Comparat	or trigger sele	ction for forced	d output stop f	unction 1			
	0	Comparator	3 can not be	used as a trig	ger.					
	1	Comparator	3 can be use	d as a trigger.	Note 2					
	TKBPAHZS1p1		Comparat	or trigger sele	ction for forced	d output stop f	unction 1			
	0	Comparator	2 can not be	used as a trig	ger.					
			2 can be use							

TKBPAHZS1p0	Comparator trigger selection for forced output stop function 1						
0	parator 0 can not be used as a trigger.						
1	Comparator 0 can be used as a trigger. Note 3						

(c) 2016. Renesas Electronics Corporation. All rights reserved.

Figure 7-74. Format of Forced Output Stop Function Control Register 1p (TKBPACTL1p) (2/2)

TKBPAHCM1p1	TKBPAHCM1p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT1p) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT1p) = 1" is invalid. Forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT1p) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT1p) = 1 is written, regardless of the trigger signal level.
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT1p) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT1p) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD1p1	TKBPAMD1p0	Output status selection when executing forced output stop function				
		Forced output stop function 1	Forced output stop function 2			
0	0	Hi-Z output	Output fixed at low level			
0	1	Hi-Z output Output fixed at high level				
1	0	Output fixed at low level	Output fixed at low level			
1	1	Output fixed at high level	Output fixed at high level			

- Notes 1. When INTP20 is used as the forced output stop function 2, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - 2. When CMP3 is used as the timer KB forced output stop function, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - When CMP0 or CMP2 is used as the timer KB forced output stop function, set CMPnSTEN = 1. For details, see
 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - **4.** When timer KB is stopped (TKBCEn = 0) without waiting for the next counter period, the forced output stop function is kept on until timer KB is restarted (TKBCEn = 1).
- Cautions 1. During timer operation, setting the other bits of the TKBPACTL1p register is prohibited. However, the TKBPACTL1p register can be refreshed (the same value is written).
 - 2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 4. <u>Figure7-75.Format of Forced Output Stop Function Control Register 2p</u> (<u>TKBPACTL2p</u>)(p.384~p.385)

Incorrect descriptions of forced output stop function control register 2p (TKBPACTL2p) are revised, and Note is added.

Old)

Figure 7-75. Format of Forced Output Stop Function Control Register 2p (TKBPACTL2p) (1/2)

Address: F06B0H (TKBPACTL20) , F06B2H (TKBPACTL21)				_21) Afte	er reset: 0000	H R/W		
Symbol	15	14	13	12	11	10	9	8
TKBPACTL2p	TKBPAFXS2p3	TKBPAFXS2p2	TKBPAFXS2p1	TKBPAFXS2p0	0	0	0	TKBPAFCM2p
	7	6	5	4	3	2	1	0
	0	TKBPAHZS2p2	TKBPAHZS2p1	TKBPAHZS2p0	TKBPAHCM2p1	TKBPAHCM2p0	TKBPAMD2p1	TKBPAMD2p0

TKBPAFXS2p3	External interruption trigger selection for forced output stop function 2						
0	ITP20 can not be used as a trigger.						
1	INTP20 can be used as a trigger.						

TKBPAFXS2p2	Comparator trigger selection for forced output stop function 2
0	Comparator 5 can not be used as a trigger.
1	Comparator 5 can be used as a trigger.

TKBPAFXS2p1	Comparator trigger selection for forced output stop function 2
0	Comparator 3 can not be used as a trigger.
1	Comparator 3 can be used as a trigger.

TKBPAFXS2p0	Comparator trigger selection for forced output stop function 2
0	Comparator 0 can not be used as a trigger.
1	Comparator 0 can be used as a trigger.

TKBPAFCM2p	Operation mode selection for forced output stop function 2
0	Forced output stop function 2 starts with trigger input, and forced output stop function 2 is cleared at the next counter period.
1	Forced output stop function 2 starts with trigger input, and forced output stop. function 2 is cleared at the next counter period following detection of the reverse edge of the trigger.

Figure 7-75. Format of Forced Output Stop Function Control Register 2p (TKBPACTL2p) (2/2)

TKBPAHZS2p2	Comparator trigger selection for forced output stop function 1
0	Comparator 5 can not be used as a trigger.
1	Comparator 5 can be used as a trigger.

TKBPAHZS2p1	Comparator trigger selection for forced output stop function 1
0	Comparator 4 can not be used as a trigger.
1	Comparator 4 can be used as a trigger.

TKBPAHZS2p0	Comparator trigger selection for forced output stop function 1	
0	omparator 0 can not be used as a trigger.	
1	Comparator 0 can be used as a trigger.	

TKBPAHCM2p1	TKBPAHCM2p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when Hi-Z stop trigger (TKBPAHTT2) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "Hi-Z stop trigger (TKBPAHTT2) = 1" is invalid. Forced output stop function 1 is cleared when Hi-Z stop trigger. (TKBPAHTT2) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger . (TKBPAHTT2) = 1 is written, regardless of the trigger signal level.
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing " Hi-Z stop trigger (TKBPAHTT2) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after Hi-Z stop trigger (TKBPAHTT2) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD2p1	TKBPAMD2p0	Output status selection when executing forced output stop function		
		Forced output stop function 1	Forced output stop function 2	
0	0	Hi-Z output	Output fixed at low level	
0	1	Hi-Z output	Output fixed at high level	
1	0	Output fixed at low level	Output fixed at low level	
1	1	Output fixed at high level	Output fixed at high level	

Cautions 1. During timer operation, setting the other bits of the TKBPACTL2p register is prohibited. However, the TKBPACTL2p register can be refreshed (the same value is written).

2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

Figure 7-75. Format of Forced Output Stop Function Control Register 2p (TKBPACTL2p) (1/2)

Symbol	15	14	13	12	11	10	9	8
BPACTL2p	TKBPAFXS2p3	TKBPAFXS2p2	TKBPAFXS2p1	TKBPAFXS2p0	0	0	0	TKBPAFCM
	7	6	5	4	3	2	1	0
	0	TKBPAHZS2p2	TKBPAHZS2p1	TKBPAHZS2p0	TKBPAHCM2p1	TKBPAHCM2p0	TKBPAMD2p1	TKBPAMD2
	TKBPAFXS2p3	E	External interre	uption trigger s	selection for fo	orced output st	op function 2	
	0	INTP20 can	not be used a	as a trigger.				
	1	INTP20 can	be used as a	trigger. Note 1				
	TKBPAFXS2p2		Comparate	or trigger seled	ction for forced	d output stop f	unction 2	
	0	Comparator	5 can not be	used as a trig	ger.			
	1	Comparator	5 can be use	d as a trigger.	Note 2			
	TKBPAFXS2p1		Comparate	or trigger seled	ction for forced	d output stop f	unction 2	
	0	Comparator	3 can not be	used as a trig	ger.			
	1	Comparator	3 can be use	d as a trigger.	Note 2			
	TKBPAFXS2p0		Comparate	or trigger seled	ction for forced	d output stop f	unction 2	
	0	Comparator	0 can not be	used as a trig	ger.			
	1	Comparator	0 can be use	d as a trigger.	Note 3			
	TKBPAFCM2p		Operatio	n mode select	ion for forced	output stop fu	nction 2	
	0			on 2 starts with er period. ^{Note}		and forced ou	tput stop func	tion 2 is
	1		•	on 2 starts with er period follow	00 1		• •	
	TKBPAHZS2p2		Comparat	or trigger sele	ction for forced	d output stop f	unction 1	
	0	Comparator		used as a trig		~		
	1			ed as a trigger.	-			
	TKBPAHZS2p1		Comparat	or trigger sele	ction for forced	d output stop f	unction 1	
	0	Comparator		used as a trig				
	-	-	4 can be use	-	-			

TKBPAHZS2p0	Comparator trigger selection for forced output stop function 1			
0	mparator 0 can not be used as a trigger.			
1	Comparator 0 can be used as a trigger. Note 3			

Figure 7-75. Format of Forced Output Stop Function Control Register 2p (TKBPACTL2p) (2/2)

TKBPAHCM2p1	TKBPAHCM2p0	Clear condition selection for forced output stop function 1
0	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT2p) = 1 is written, regardless of the trigger signal level.
0	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT2p) = 1" is invalid. Forced output stop function 1 is cleared when forced output stop function release trigger (TKBPAHTT2p) = 1 is written while the trigger signal is in its inactive period.
1	0	Forced output stop function 1 starts with trigger input, and forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT2p) = 1 is written, regardless of the trigger signal level.
1	1	Forced output stop function 1 starts with trigger input, and when the trigger signal is in its active period, writing "forced output stop function release trigger (TKBPAHTT2p) = 1" is invalid. Forced output stop function 1 is cleared at the next counter period after forced output stop function release trigger (TKBPAHTT2p) = 1 is written when the trigger signal is in its inactive period.

TKBPAMD2p1	TKBPAMD2p0	Output status selection when executing forced output stop function		
		Forced output stop function 1	Forced output stop function 2	
0	0	Hi-Z output	Output fixed at low level	
0	1	Hi-Z output	Output fixed at high level	
1	0	Output fixed at low level	Output fixed at low level	
1	1	Output fixed at high level	Output fixed at high level	

- Notes 1. When INTP20 is used as the forced output stop function 2, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - When CMP4 or CMP5 is used as the timer KB forced output stop function, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - 3. When CMP0 is used as the timer KB forced output stop function, set CMP0STEN = 1. For details, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - **4.** When timer KB is stopped (TKBCEn = 0) without waiting for the next counter period, the forced output stop function is kept on until timer KB is restarted (TKBCEn = 1).
- Cautions 1. During timer operation, setting the other bits of the TKBPACTL2p register is prohibited. However, the TKBPACTL2p register can be refreshed (the same value is written).
 - 2. Be sure to clear bits 11 to 9 and 7 to "0".

Remark n = 0 to 2, p = 0, 1

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 5. Figure 14-1. Block Diagram of Comparator(p.527)

Incorrect names of the noise filter and the edge detection circuit in the block diagram are revised, and Note is added.

Old)

Note 20-pin products only. ANI16/CMP3P/P26 is selected by default for 30- and 38-pin products. **Remark** m = 0 to 2

Note 20-pin products only. ANI16/CMP3P/P26 is selected by default for 30- and 38-pin products.

Caution When INTP20, INTP21, and comparator are used as the timer KB forced output stop function 2 or timer KB restart function, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.

Remark m = 0 to 2

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 6. Figure 14-12. Format of Peripheral Function Switch Register 0 (PFSEL0)(p.538)

Incorrect descriptions of the comparator and external interrupts are revised, and Notes are added.

Old)

Figure 14-12. Format of Peripheral Function Switch Register 0 (PFSEL0)

Address: F	05C6H	After reset: 00)H R/W					
Symbol	7	<6>	<5>	<4>	3	2	<1>	<0>
PFSEL0	0	CMP2STEN	CMP0STEN	PNFEN	ADTRG11	ADTRG10	TMRSTEN1	TMRSTEN0

CMP2STEN	Comparator 2 detection interrupt (INTCMP2) switching
0	STOP mode clear disabled
1	STOP mode clear enabled, but only when not using noise filter
	(Can be set when operating in low-power RTC mode (RTCLPC = 1 in the OSMC register)

CMP0STEN	Comparator 0 detection interrupt (INTCMP0) switching
0	STOP mode clear disabled
1	STOP mode clear enabled, but only when not using noise filter
	(Can be set when operating in low-power RTC mode (RTCLPC = 1 in the OSMC register)

PNFEN	Use/Do not use external interrupt INTP20 noise filter
0	Use noise filter
1	Do not use noise filter

TMRSTEN1	External interrupt INTP21 function select
0	External interrupt function (can be generated external interrupt, but cannot be used for
	timer restart function)
1	Timer restart function (cannot be generated external interrupt, and cannot release
	standby.mode)

TMRSTEN0	External interrupt INTP20 function select	
0	External interrupt function (can be generated external interrupt, but cannot be used for	
	timer restart function)	
1	Timer restart function (cannot be generated external interrupt, and cannot release	
	standby.mode)	

Caution Comparator detection interrupt other than CMP0 and CMP2 cannot be used to clear the STOP mode.

Figure 14-12. Format of Peripheral Function Switch Register 0 (PFSEL0)

Address:	F05C6H

After reset: 00H R/W

Symbol 7 <6> <5> <4> 3 2 <1> <0> PFSEL0 0 CMP2STEN CMP0STEN ADTRG11 ADTRG10 TMRSTEN1 TMRSTEN0 PNFEN

CMP2STEN	Comparator 2 detection interrupt (INTCMP2) switching Note 1		
0	Signal via digital edge detect circuit is selected. STOP mode release is disabled.		
1	Forced output stop request signal is selected.		
	STOP mode release is enabled, but only when not using noise filter.		
	(Can be set when operating in low-power RTC mode (RTCLPC = 1 in the OSMC register)		

CMP0STEN	Comparator 0 detection interrupt (INTCMP0) switching Note 1	
0	Signal via digital edge detect circuit is selected. STOP mode release is disabled.	
1	Forced output stop request signal is selected.	
	STOP mode release is enabled, but only when not using noise filter.	
	(Can be set when operating in low-power RTC mode (RTCLPC = 1 in the OSMC register)	

PNFEN	Use/Do not use external interrupt INTP20 noise filter
0	Use noise filter
1	Do not use noise filter

TMRSTEN1	External interrupt INTP21 function switching Note 2		
0	External interrupt function is selected. (STOP mode release is enabled, but cannot be used		
	for timer restart function)		
1	Timer restart function is selected. (STOP mode release is disabled, but can be used for timer		
	restart function)		

TMRSTEN0	External interrupt INTP20 function switching Note 2				
0	External interrupt function is selected. (STOP mode release is enabled, but cannot be used				
	for timer restart function)				
1	Timer restart function/forced output stop function 2 is selected. (STOP mode release is				
	disabled, but can be used for timer restart function)				

Notes 1. When the interrupt for CMP0 and CMP2 is used, adopt a function used with the interrupt input signal. When the CMP0 and CMP2 are used as a trigger of the timer KB forced output stop function, set CMPnSTEN = 1.

When the CMP2 is used as a trigger of the timer restart function for timer KB, set CMP2STEN = 0. For details, see **14.5** Caution for Using Timer KB Simultaneous Operation Function.

 When INTP20 and INTP21 are used as a trigger of the timer KB forced output stop function 2 or timer restart function, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.

Caution Comparator detection interrupt other than CMP0 and CMP2 cannot be used to clear the STOP mode.

Remark n = 0, 2

7. 14. 5 Caution for Using Timer KB Simultaneous Operation Function

Old)

No applicable item

New)

14. 5 Caution for Using Timer KB Simultaneous Operation Function

In addition to their use as an external interrupt input, the INTP2m pin output and the comparator output signal can be used as a trigger for functions that operate simultaneously with timer KB, such as the forced output stop function and timer restart function. The settings in peripheral function switch register 0 (PFSEL0) and the edge selection registers must be specified according to the function used. The width of the active signal required until each function starts operating differs.

When using INTP2m or the comparator output signal, refer to Tables 14-4 to 14-6 to specify the necessary register settings, and configure external circuits so that the required active signal width is assured.

Table 14-4. Relationship of INTP2m function, register settings, and active signal width

Function	Peripheral enable	Edge setting	Necessary active signal width to operate each function			
Function	register setting	registers	Interrupt	Forced output stop	Timer restart	
External interrupt	TMRSTENm = 0	EGPn, EGNn	To 1 μs	-	-	
(STOP release is						
enabled)						
Forced output stop	TMRSTENm = 1	CEGPp, CEGNp	55 to 215 ns ^{Note 3} +	55 to 215 ns	-	
Note 1		Note 2	2 to 3 clocks Note 4	Note 3, 5		
Timer restart	TMRSTENm = 1	CEGPp, CEGNp	55 to 215 ns ^{Note 3} +	-	55 to 215 ns ^{Note 3} +	
			2 to 3 clocks Note 4		2 to 3 clocks Note 4, 6	

Figure 14-18. Generation Timing of Forced Output Stop Signal and Timer Restart Request Signal by INTP2m

Notes 1. Only INTP20 can be used as a trigger for forced output stop function 2.

- 2. The active level of INTP20 (used for forced output stop function 2) is high. Edge selection is only applied to detection of an interrupt signal.
- **3.** 5 to 15 ns when noise filtering on INTP20 is disabled (PNFEN = 1)
- **4.** For f_{CLK} or f_{PLL} (when PLLON = 1)
- **5.** An additional output delay time (10 to 40 ns) is required from when forced output stop function 2 starts operating to when the level of the timer KB output changes.
- **Notes 6.** Until the timer restart function starts operating, an additional clock cycle is required after the timer restart request signal is received, and an additional output delay time (10 to 40 ns) is required until the level of the timer KB output changes.

Remark m = 0, 1 n = 20, 21 p = 7, 6

Table 14-5. Relationship of comparator 0 and 2 functions, register settings, and active signal width

Function	Peripheral enable Edge setting		Necessary active signal width to operate each function			
Function	register setting	registers	Interrupt	Forced output stop	Timer restart	
External interrupt	CMPnSTEN = 1	Rising edge only	To 150 ns Note 3	-	-	
(STOP release is		Note 2				
enabled Note 1)						
External interrupt	CMPnSTEN = 0	CEGPn, CEGNn	To 150 ns ^{Note 3} +	-	-	
(STOP release is			2 to 3 clocks Note 4, 5			
disabled)						
Forced output stop	CMPnSTEN = 1	Note 6	To 150 ns Note 3	To 150 ns ^{Note 3, 7}	-	
Timer restart	CMPnSTEN = 0	CEGPn, CEGNn	To 150 ns ^{Note 3} +	-	To 150 ns ^{Note 3} +	
			2 to 3 clocks Note 4, 5		2 to 3 clocks Note 4, 5	

Figure 14-19. Generation Timing of Forced Output Stop Request Signal by Comparator 0 and 2 (CMPnSTEN = 1)

Figure 14-20. Generation Timing of Timer Restart Request Signal by Comparator 0 and 2 (CMPnSTEN = 0)

- Notes 1. When noise filtering is set to "0, 0" by using the CnDFS1 and CnDFS0 bits in the comparator n control register (CnCTL)
 - 2. To change the level of the edge direction, invert the comparator output signal by using the CnINV bit in the comparator n control register (CnCTL).
 - **3.** This is the time required when noise filtering is set to "0, 0" by using the CnDFS1 and CnDFS0 bits in the comparator n control register (CnCTL).

If a setting other than "0, 0" is specified, the specified noise elimination width is added.

- **4.** For f_{CLK} or f_{PLL} (when PLLON = 1)
- **Notes 5.** Until the timer restart function starts operating, an additional clock cycle is required after the timer restart request signal is received, and an additional output delay time (10 to 40 ns) is required until the level of the timer KB output changes.
 - 6. The active level of INTP20 (used for forced output stop function 2) is high.
 - **7.** An additional output delay time (10 to 40 ns) is required from when forced output stop function 2 starts operating to when the level of the timer KB output changes.

Remark n = 0, 2

Table 14-6. Relationship of comparator 1, 3, 4, and 5 functions, register settings, and active s	ignal width
--	-------------

Function	Peripheral enable	Edge setting	Necessary active signal width to operate each function			
	register setting	registers	Interrupt	Forced output stop	Timer restart	
External interrupt	-	CEGPn, CEGNn	To 150 ns ^{Note 1} +	-	-	
(STOP release is			2 to 3 clocks Note 2, 3			
disabled)						
Forced output stop	-	Note 4	To 150 ns ^{Note 2} +	To 150 ns ^{Note 2, 5}	-	
			2 to 3 clocks Note 3, 4			
Timer restart Note 6	-	CEGPn, CEGNn	To 150 ns ^{Note 2} +	-	To 150 ns ^{Note 2} +	
			2 to 3 clocks Note 3, 4		2 to 3 clocks Note 3, 4	

Figure 14-21. Generation Timing of Forced Output Stop Request Signal and Timer Restart Request Signal by Comparator 1, 3, 4, and 5

- **Notes 1.** When noise filtering is set to "0, 0" by using the CnDFS1 and CnDFS0 bits in the comparator n control register (CnCTL). If a setting other than "0, 0" is specified, the specified noise elimination width is added.
 - **2.** For f_{CLK} or f_{PLL} (when PLLON = 1)
 - 3. Until the timer restart function starts operating, an additional clock cycle is required after the timer restart request signal is received, and an additional output delay time (10 to 40 ns) is required until the level of the timer KB output changes.
 - 4. The active level of INTP20 (used for forced output stop function 2) is high.
 - 5. An additional output delay time (10 to 40 ns) is required from when forced output stop function 2 starts operating to when the level of the timer KB output changes.
 - 6. The timer restart function can be used for comparator 1 and 3 only.

Remark n = 1, 3 to 5

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 8. <u>Timing Chart of SNOOZE Mode Operation (p.666, 667, 669)</u>

The content of No.8 will be corrected at No.69, 70 and 71. Please see the renewed content.

9. Table 20-1. Interrupt Source List (2/3)(p.898)

Note for the interrupt source list is added.

Old):

- **Notes 1.** The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 40 indicates the lowest priority.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 20-1.
 - 3. INTCMP1. INTCMP3. INTCMP4. and INTCMP5 cannot be used to clear the STOP mode.

New):

- **Notes 1.** The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 40 indicates the lowest priority.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 20-1.
 - INTCMP1, INTCMP3, INTCMP4, and INTCMP5 cannot be used to clear the STOP mode.
 About interrupt generation timing, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.

10. Figure 20-1. Basic Configuration of Interrupt Function(p.900)

Incorrect the basic configuration of interrupt function is revised.

Old)

(B) External maskable interrupt (INTPn, INTCMPm)

- IF: Interrupt request flag
- IE: Interrupt enable flag
- ISP0: In-service priority flag 0
- ISP1: In-service priority flag 1
- MK: Interrupt mask flag
- PR0: Priority specification flag 0
- PR1: Priority specification flag 1

Remark	20-pin:	n = 0, 20, 21, 22, m = 0 to 3
	30-pin:	n = 0, 4, 11, 20 to 23, m = 0 to 5
	38-pin:	n = 0, 3, 4, 9 to 11, 20 to 23, m = 0 to 5

New)

(B) External maskable interrupt (INTPn^{Note}, INTCMPm^{Note})

- Note According to setting for using of the timer KB simultaneous function (the timer KB forced output stop function and timer restart function), the interrupt signal pass and the interrupt generation timing and the edge enable register for INTP20 and INTP21 and INTCMPm vary. For details, see 14. 5 Caution for Using Timer KB Simultaneous Operation Function.
 - IF: Interrupt request flag
 - IE: Interrupt enable flag
 - ISP0: In-service priority flag 0
 - ISP1: In-service priority flag 1
 - MK: Interrupt mask flag
 - PR0: Priority specification flag 0
 - PR1: Priority specification flag 1
 - **Remark** 20-pin: n = 0, 20, 21, 22, m = 0 to 3
 - 30-pin: n = 0, 4, 11, 20 to 23, m = 0 to 5
 - 38-pin: n = 0, 3, 4, 9 to 11, 20 to 23, m = 0 to 5

11. Table 21-1. Operating Statuses in HALT Mode (2/2)(p.931)

Incorrect description about the comparator operation in HALT mode is revised.

Old)

HALT Mode Setting		When HALT Instruction Is Executed Wh	ile CPU Is Operating on Subsystem Clock	
		When CPU Is Operating on XT1 Clock (fxr) When CPU Is Operating on External Subsystem Clock (fExs)		
System clock		Clock supply to the CPU is stopped		
Main system clock	fін	Operation disabled		
	fx			
	fex			
Subsystem clock	fхт	Operation continues (cannot be stopped)	Cannot operate	
	fexs	Cannot operate	Operation continues (cannot be stopped)	
fiL		 Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of operation speed mode control register (OSMC) WUTMMCK0 = 1: Oscillates WUTMMCK0 = 0 and WDTON = 0: Stops WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops 		
CPU		Operation stopped		
Code flash memory				
Data flash memory				
RAM				
Port (latch)		Status before HALT mode was set is retained		
Timer array unit		Operable when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).		
Timer KB0 to KB2				
Timer KC0				
Real-time clock (RTC)		Operable		
12-bit interval timer				
Watchdog timer		See CHAPTER 11 WATCHDOG TIMER		
A/D converter		Operation disabled		
Programmable gain amplifier		Operable (However, this is not used, since the operation has been disabled for the A/D converter that is the destination for input of the PGA output signal)		
Comparator			node (RTCLPC = 1 in the OSMC register), this is set (CMPnSTEN = 1 in the PESEL0 register), oise filter is not used (n.=0, 2))	

HALT Mode Setting Item		When HALT Instruction Is Executed Wh	ile CPU Is Operating on Subsystem Clock	
		When CPU Is Operating on XT1 Clock (fxr) When CPU Is Operating on Externa Subsystem Clock (fExs) Subsystem Clock (fExs)		
System clock		Clock supply to the CPU is stopped		
Main system clock	fін	Operation disabled		
	fx			
	fex			
Subsystem clock	fхт	Operation continues (cannot be stopped)	Cannot operate	
	fexs	Cannot operate	Operation continues (cannot be stopped)	
fiL		 Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of operation speed mode control register (OSMC) WUTMMCK0 = 1: Oscillates WUTMMCK0 = 0 and WDTON = 0: Stops WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops 		
CPU		Operation stopped		
Code flash memory				
Data flash memory				
RAM				
Port (latch)		Status before HALT mode was set is retained		
Timer array unit		Operable when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).		
Timer KB0 to KB2				
Timer KC0				
Real-time clock (RTC)		Operable		
12-bit interval timer				
Watchdog timer		See CHAPTER 11 WATCHDOG TIMER		
A/D converter		Operation disabled		
Programmable gain amplifier		Operable (However, this is not used, since the operation has been disabled for the A/D converter that is the destination for input of the PGA output signal)		
Comparator		Only CMP0 and CMP2 are operable. (When in in the OSMC register), CMPn can be used only (CMPnSTEN = 1 in the PFSEL0 register) by th filter is not used. ($n = 0, 2$))	when the STOP mode cancel is set	

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 12. <u>Table 21-2. Operating Statuses in STOP Mode(p.936)</u>

Incorrect description about the comparator operation in STOP mode is revised.

Old)

STOP Mode Setting		Setting	When STOP Instruction Is	Executed While CPU Is Operati	ng on Main System Clock
Item			When CPU Is Operating on High-speed On-chip Oscillator Clock (fi)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (f _{Ex})
Sy	stem clock		Clock supply to the CPU is stopped		
	Main system clock	fін	Stopped		
		fx			
		fex			
	Subsystem clock	fхт	Status before STOP mode was	set is retained	
		fexs			
fı∟			operation speed mode control re • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON	I = 0: Stops 1, and WDSTBYON = 1: Oscillate	
CP	U		Operation stopped		
Со	de flash memory				
Da	ta flash memory				
RA	М				
Po	rt (latch)		Status before STOP mode was set is retained		
	ner array unit		Operation disabled		
	ner KB0 to KB2				
	ner KC0				
	al-time clock (RTC)		Operable		
12-bit interval timer					
Watchdog timer			See CHAPTER 11 WATCHDO		
A/D converter			Wakeup operation is enabled (switching to the SNOOZE mode)		
	ogrammable gain am	plifier	Operable		
Comparator			Operable (Only for channels set not used)	to enable cancellation of STOP	mode and when digital filter is

STOP Mode Setting	When STOP Instruction Is Executed While CPU Is Operating on Main System Clock		
Item	When CPU Is Operating on High-speed On-chip Oscillator Clock (f⊩)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (f _{EX})
System clock	Clock supply to the CPU is stop	ped	
Main system clock fill	Stopped		
fx			
fex			
Subsystem clock fxT	Status before STOP mode was	set is retained	
fexs			
fiL	Set by bits 0 (WDSTBYON) and operation speed mode control re • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON • WUTMMCK0 = 0, WDTON = 7 • WUTMMCK0 = 0, WDTON = 7	egister (OSMC) I = 0: Stops I, and WDSTBYON = 1: Oscillat	
CPU	Operation stopped		
Code flash memory			
Data flash memory			
RAM			
Port (latch)	Status before STOP mode was set is retained		
Timer array unit	Operation disabled		
Timer KB0 to KB2			
Timer KC0			
Real-time clock (RTC)	Operable		
12-bit interval timer			
Watchdog timer	See CHAPTER 11 WATCHDOG TIMER		
A/D converter	Wakeup operation is enabled (switching to the SNOOZE mode)		
Programmable gain amplifier	Operable		
Comparator	Only CMP0 and CMP2 are oper PFSEL0 register) by the compared		

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 13. <u>Table 21-3. Operating Statuses in SNOOZE Mode(p.942)</u>

Incorrect description about the comparator operation in SNOOZE mode is revised.

Old)

STOP Mode Setting Item		When Inputting CSI00/UART0 Data Reception Signal or A/D Converter Timer Trigger Signal While in STOP Mode
		When CPU Is Operating on High-speed On-chip Oscillator Clock (fil)
System clock		Clock supply to the CPU is stopped
Main system clock	fін	Operation started
	fx	Stopped
	fEX	
Subsystem clock	fхт	Use of the status while in the STOP mode continues
	fexs	
fiL		Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of operation speed mode control register (OSMC) • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON = 0: Stops • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops
CPU		Operation stopped
Code flash memory		
Data flash memory		
RAM		
Port (latch)		Use of the status while in the STOP mode continues
Timer array unit		Operation disabled
Timer KB0 to KB2		
Timer KC0		
Real-time clock (RTC)		Operable
12-bit interval timer		
Watchdog timer		See CHAPTER 11 WATCHDOG TIMER
A/D converter		Operable
Programmable gain amplifier		Operable
Comparator		Operable (Only for channels set to enable cancellation of STOP mode and when digital filter is not used)

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

New)

STOP Mode Set Item System clock Main system clock fth fx fex Subsystem clock fth	While in STOP Mode When CPU Is Operating on High-speed On-chip Oscillator Clock (fill) Clock supply to the CPU is stopped Operation started Stopped			
Main system clock fill fx fx fex fx Subsystem clock fx fexs fx	Clock supply to the CPU is stopped Operation started Stopped			
Main system clock fill fx fx fex fx Subsystem clock fx fexs fx	Operation started Stopped			
fx fex Subsystem clock fxr fex	Stopped			
fex Subsystem clock fxr fexs				
Subsystem clock fxT fEXS				
fexs				
	Use of the status while in the STOP mode continues			
fiL				
	 Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of operation speed mode control register (OSMC) WUTMMCK0 = 1: Oscillates WUTMMCK0 = 0 and WDTON = 0: Stops WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops 			
CPU	Operation stopped			
Code flash memory				
Data flash memory				
RAM				
Port (latch)	Use of the status while in the STOP mode continues			
Timer array unit	Operation disabled			
Timer KB0 to KB2				
Timer KC0				
Real-time clock (RTC)	Operable			
12-bit interval timer				
Watchdog timer	See CHAPTER 11 WATCHDOG TIMER			
A/D converter	Operable			
Programmable gain amplifie	r Operable			
Comparator	Only CMP0 and CMP2 are operable when the STOP mode cancel is set (CMPnSTEN = 1 in the			

(Omitted)

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

14. 32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics(p.1100)

Descriptions of the data memory STOP mode low supply voltage data retention characteristics are added.

Old)

32.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

New)

32.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.

15. 33.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics(p.1142)

Descriptions of the data memory STOP mode low supply voltage data retention characteristics are added.

Old)

33.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

(T_A = -40 to +125°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.47 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

New)

33.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +125^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.47 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

Caution When CPU is operated at the voltage of out of the operation voltage range, RAM data is not retained. Therefore, set STOP mode before the supplied voltage is below the operation voltage range.

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 16. <u>34.3 38-pin Products(p.1147)</u>

Old)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-SSOP38-6.1x12.3-0.65	PRSP0038JA-B	P38MC-65-GAA-2	0.3	

NOT E

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition .

deta	ail of lea	d end
	Ρ-	• • _ L '
— к		(UNIT:mm)
	ITE M	DIMENSION S
	Α	12.30±0.10
	В	0.30
	C	0.65 (T.P.)
	D	0.30+0.10
	E	0.125±0.075
	F	2.00 MAX .
	G	1.70±0.10
	н	8.10±0.20
	<u> </u>	6.10±0.10
]	1.00±0.20
	К	0.15+0.10
	L	0.50
	м	0.10
	N	0.10
	Р	3° +5°
	т	0.25(T.P.)
	U	0.60±0.15
	v	0.25 MAX .

© 2012 Renesas Electronics Corporation.

w

All rights reserved .

0.15 MAX .

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E New)

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-SSOP38-0300-0.65	PRSP0038JA-A	P38MC-65-2A4-2	0.3

detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
Α	12.30±0.10
В	0.30
с	0.65 (T.P.)
D	0.32 +0.08 -0.07
E	0.125±0.075
F	2.00 MAX.
G	1.70±0.10
<u>н</u>	8.10±0.20
	6.10±0.10
J	1.00±0.20
К	0.17 +0.08 -0.07
L	0.50
м	0.10
N	0.10
Р	3° +7° -3°
Т	0.25(T.P.)
U	0.60±0.15
V	0.25 MAX.
w	0.15 MAX.

© 2012 Renesas Electronics Corporation.

All rights reserved .

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

Incorrect alternate-function pin is revised.

New)

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 18. <u>1.3.2 30-pin products(p.5)</u>

Incorrect alternate-function pin is revised.

19. <u>1.3.3 38-pin products(p.6)</u>

Incorrect alternate-function pin is revised.

Date: Sep. 21, 2016

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 20. Figure 13-1. Block Diagram of Operational Amplifier(p.516)

Incorrect block diagram is revised.

Incorrect description of programmable gain amplifier input channel select register (PGAINS) is revised.

Old)

Figure 13-4. Format of Programmable Gain Amplifier Input Channel Select Register (PGAINS)

Address: F	0551H	After reset: 00	H R/W					
Symbol	7	6	5	4	3	2	1	0
PGAINS	0	0	0	0	0	PGAINS2	PGAINS1	PGAINS0
	PGAINS2	PGAINS1	PGAINS0	Analog input channel for input to programmable gain amplifier				
	0	0	0	ANI2/CMP0F	þ			
	0	0	1	ANI4/CMP1F	>			

0	0	0	ANIZ/CMPUP
0	0	1	ANI4/CMP1P
0	1 0		ANI5/CMP2P
0	1	1	ANI6/CMP3P.or.ANI18/(CMP3P)Note
1	1 0 0		ANI7/CMP4P
1	0	1	ANI16/CMP5P
Other than above			Setting prohibited

Note Selected by the comparator input switch control register (CMPSEL) (20-pin products only)

Caution Set the PGAINS register during stop operation of the programmable gain amplifier (PGAEN = 0).

New)

Figure 13-4. Format of Programmable Gain Amplifier Input Channel Select Register (PGAINS)

Address: F0551H		After reset: 00H R/W						
Symbol	7	6	5	4	3	2	1	0
PGAINS	0	0	0	0	0	PGAINS2	PGAINS1	PGAINS0

PGAINS2	PGAINS1	PGAINS0	Analog input channel for input to programmable gain amplifier	
0	0	0	ANI2/CMP0P	
0	0	1	ANI4/CMP1P	
0	1	0	ANI5/CMP2P	
0	1	1	ANI6/CMP3P	
1	0	0	ANI7/CMP4P	
1	0	1	ANI16/CMP5P	
1	1	0	ANI18/CMPCOM/(CMP3P Note)	
Other than above		ve	Setting prohibited	

Note Selected by the comparator input switch control register (CMPSEL) (20-pin products only)

Caution Set the PGAINS register during stop operation of the programmable gain amplifier (PGAEN = 0).

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E 22. Precaution regarding the use of REAL-TIME CLOCK(p.427)

RWAIT bit is bit 0 of Real-time Clock Control Register 1 (RTCC1).

For the description of RWAIT bit, it'll add the following Note1 and Note2, because after setting to RWAIT = 1, the time required to until RWST = 1 might be longer than one clock time of the operation clock (f_{RTC}).

RWAIT	Wait control of real-time clock			
0	Sets counter operation.			
1	Stops SEC to YEAR counters. Mode to read or write counter value			
This bit co	ntrols the operation of the counter.			
Be sure to	write "1" to it to read or write the counter value.			
As the inte	ernal counter (16 bits) is continuing to run, complete reading or writing within one second and turn back			
to 0.				
When RWA Notes1,2	AIT = 1, it takes up to 1 operating clock (f_{RTC}) until the counter value can be read or written (RWST = 1).			
When the	internal counter (16 bits) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0,			
then coun	ts up.			
However,	when it wrote a value to second count register, it will not keep the overflow event.			
Note1	. When setting RWAIT=1 during 1 operating clock (f_{RTC}), after setting RTCE=1, it may take two clock ti			
	of the operation clock (f_{RTC}), until RWST bit is set to "1".			
Note2	. When setting RWAIT=1 during 1 operating clock (f_{RTC}), after returning from a stand-by (HALT mo			

Note2. When setting RWAIT=1 during 1 operating clock (f_{RTC}), after returning from a stand-by (HALT mode, STOP mode and SNOOZE mode), it may take two clock time of the operation clock (f_{RTC}), until RWST bit is set to "1".

23. 2.4 Block Diagrams of Pins

NEW)

2.4 Block Diagrams of Pins

Figures 2-1 to 2-12 show the block diagrams of the pins described in 2.1.1 20-pin products to 2.1.3 38-pin products.

Figure 2-1. Pin Block Diagram for Pin Type 2-1-1

Figure 2-2. Pin Block Diagram for Pin Type 2-1-2

Remark For alternate functions, see 2.1 Port Function.

Figure 2-3. Pin Block Diagram for Pin Type 2-2-1

Remark For alternate functions, see 2.1 Port Function.

Figure 2-4. Pin Block Diagram for Pin Type 4-3-1

Figure 2-5. Pin Block Diagram for Pin Type 4-18-1

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

Figure 2-6. Pin Block Diagram for Pin Type 7-1-1

Remarks 1. For alternate functions, see 2.1 Port Function.

2. SAU: Serial array unit

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

Figure 2-7. Pin Block Diagram for Pin Type 7-1-2

Remarks 1. For alternate functions, see 2.1 Port Function.

2. SAU: Serial array unit

Caution A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Figure 2-8. Pin Block Diagram for Pin Type 7-1-6

Note P206 does not provide the Hi-Z control function.

- **Remarks 1.** For alternate functions, see **2.1 Port Function**.
 - 2. SAU: Serial array unit
- **Caution** A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Figure 2-9. Pin Block Diagram for Pin Type 7-3-1

Remarks 1. For alternate functions, see **2.1 Port Function**.

SAU: Serial array unit

2.

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

Figure 2-10. Pin Block Diagram for Pin Type 7-3-2

- Remarks 1. For alternate functions, see 2.1 Port Function.
 - 2. SAU: Serial array unit
- **Caution** A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).

Figure 2-11. Pin Block Diagram for Pin Type 7-9-1

Remarks 1. For alternate functions, see 2.1 Port Function.

2. SAU: Serial array unit

Remarks

For alternate functions, see 2.1 Port Function.
 SAU: Serial array unit

- **Caution 1.** A through current may flow through if the pin is in the intermediate potential, because the input buffer is also turned on when the pin is in N-ch open-drain output mode by port output mode register (POMx).
 - **2.**Because of TTL input buffer structure, if the port input mode register (PIMx) is set in TTL input buffer, a through current may flow through in the case of high level input. It is recommended to input a low level to prevent a through current.

Figure 2-13. Pin Block Diagram for Pin Type 8-18-1

Remarks 1.

2.

- For alternate functions, see **2.1 Port Function**.
- SAU: Serial array unit

24. 5.6 Controlling Clock

5.6.1 Example of setting high-speed on-chip oscillator(p.166)

Old)

After a reset release, the CPU/peripheral hardware clock (f_{CLK}) always starts operating with the high-speed on-chip oscillator clock. The frequency of the high-speed on-chip oscillator can be selected from 32, 24, 16, 12, 8, 4, and 1 MHz by using FRQSEL0 to FRQSEL3 of the option byte (000C2H). The frequency can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV).

(omitted)

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
1	0	1	1	4 MHz
1	1	0	1	1 MHz
Other than above				Setting prohibited

New)

After a reset release, the CPU/peripheral hardware clock (f_{CLK}) always starts operating with the high-speed on-chip oscillator clock. The frequency of the high-speed on-chip oscillator can be selected from 32, 24, 16, 12, 8, 6, 4, 3, 2 and 1 MHz by using FRQSEL0 to FRQSEL3 of the option byte (000C2H). The frequency can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV).

(om	itted)
١.	OIII	nucu	1

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
	Other that	an above		Setting prohibited

25. <u>6.2 Configuration of Timer Array Unit</u> Internal Block Diagram of Channel of Timer Array Unit figure(p.191)

Old)

Remark n=3,6

New)

Note 1.Channels2,4,and 6 only 2.MASTER0n is channels 2,4,6 only 3.TI0n,TO0n is channel 6 only Remark n=0,2,4,6

RENESAS TECHNICAL UPDATE TN-RL*-A024D/E

Figure 6-5. Internal Block Diagram of Channel 7 of Timer Array Unit

26. 6.4.1 Basic rules of simultaneous channel operation function(p.217)

Old)

When simultaneously using multiple channels, namely, a combination of a master channel (a reference timer mainly counting the cycle) and slave channels (timers operating according to the master channel), the following rules apply.

- (1) Only an even channel (channel 2, 4) can be set as a master channel.
- (2) Channels 3, 5, and 6 can be set as a slave channel.
- (3) Only channels whose number is greater than the master channel can be set as a slave channel.
 - Example: If channel 2 is set as a master channel, channel 3 can be set as a slave channel. If channel 4 is set as a master channel, channels 5 and 6 can be set as a slave channel.
- (4) Two or more slave channels can be set for one master channel.
- (5) When two or more master channels are to be used, slave channels with a master

channel between them may not be set.

Example: If channels 2 and 4 are set as master channels, channel 3 can be set as the slave channels of master channel 2. Channels 5 and 6 cannot be set as the slave channels of master channel 2.

(omitted)

New)

When simultaneously using multiple channels, namely, a combination of a master channel (a reference timer mainly counting the cycle) and slave channels (timers operating according to the master channel), the following rules apply.

- (1) Only an even channel (channel 0, 2, 4,...) can be set as a master channel.
- (2) Except Channel 0 can be set as a slave channel.
- (3) Only channels whose number is greater than the master channel can be set as a slave channel.
 - Example: If channel 2 is set as a master channel, channel 3 can be set as a slave channel. If channel 4 is set as a master channel, channels 5 and 6 can be set as a slave channel.
- (4) Two or more slave channels can be set for one master channel.
- (5) When two or more master channels are to be used, slave channels with a master channel between them may not be set.

Example: If channels 2 and 4 are set as master channels, channel 3 can be set as the slave channels of master channel 2. Channels 5 and 6 cannot be set as the slave channels of master channel 2.

(omitted)

27. <u>6.7 Independent Channel Operation Function of Timer Array Unit</u> <u>6.7.1 Operation as interval timer/square wave output(p.239)</u>

Old)

Figure 6-38. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (1/2)

New)

Figure 6-38. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output

(omitted)

28. <u>6.7 Independent Channel Operation Function of Timer Array Unit</u> <u>6.7.2Operation as external event counter(p.245)</u>

Old)

Remark n:Channel number(n=3,5,6)

New)

Figure 6-42. Example of Set Contents of Registers in External Event Counter Mode

29. <u>6.7 Independent Channel Operation Function of Timer Array Unit</u> <u>6.7.5 Operation as delay counter(p.258)</u>

Old)

Figure 6-54. Example of Set Contents of Registers to Delay Counter (1/2)

New)

Figure 6-54. Example of Set Contents of Registers to Delay Counter

30. 7.4.3 Stop/restart operation

Figure of Timing of Stop Operation(TKBTOLnp=0, TKBTODnp= 0)(p.312)

Old)

Figure 7-31. Figure of Timing of Stop Operation (TKBTOLnp = 0, TKBTODnp = 0)

New)

31. <u>7.4.5 Standalone mode (period controlled by TKBCRn0)</u> <u>Timing Sample for Standalone Mode (Period Controlled by</u> <u>TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0)</u> <u>and Active Level Is High Level (TKBTOLnp = 0))(p.317)</u>

Old)

Figure 7-38. Timing Sample for Standalone Mode (Period Controlled by TKBCRn0) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

(omitted)

New)

Figure 7-38. Timing Sample for Standalone Mode (Period Controlled by TKBCRn0) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

(omitted)

32. <u>7.4.5 Standalone mode (period controlled by TKBCRn0)</u> <u>Batch Overwrite Function: Figure of the Timing of Buffer Updating</u> <u>During Counting Operation(p.320)</u>

Old)

Figure 7-40. Batch Overwrite Function: Figure of the Timing of Buffer Updating During Counting Operation

(omitted)

New)

Figure 7-40. Batch Overwrite Function: Figure of the Timing of Buffer Updating During Counting Operation

33. <u>7.4.6 Standalone mode (period controlled by external trigger input)</u> <u>Batch Overwrite Function: Figure of Standalone for External Trigger</u> <u>Input Factor and the Timing of Buffer Updating During Counting</u> <u>Operation (TKBTSEn Bit Set to 1)(p.325)</u>

Old)

Figure 7-42. Batch Overwrite Function: Figure of Standalone for External Trigger Input Factor and the Timing of Buffer Updating During Counting Operation (TKBTSEn Bit Set to 1)

(omitted)

New)

Figure 7-42. Batch Overwrite Function: Figure of Standalone for External Trigger Input Factor and the Timing of Buffer Updating During Counting Operation (TKBTSEn Bit Set to 1)

(omitted)

34. <u>7.4.6 Standalone mode (period controlled by external trigger input)</u> Batch Overwrite Function: Figure of standalone for External Trigger Input Factor and the Timing of Buffer Updating during Counting Operation (TKBTSEn bit clear to 0)(p.327)

Old)

Figure 7-43. Batch Overwrite Function: Figure of standalone for External Trigger Input Factor and the Timing of Buffer Updating during Counting Operation (TKBTSEn bit clear to 0)

(omitted)

New)

Figure 7-43. Batch Overwrite Function: Figure of standalone for External Trigger Input Factor and the Timing of Buffer Updating during Counting Operation (TKBTSEn bit clear to 0)

35. <u>7.4.7 Simultaneous start/stop mode</u>

Figure 7-45. Timing Sample for Simultaneous Start/Stop Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))(p.336)

Old)

Figure 7-45. Timing Sample for Simultaneous Start/Stop Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-45. Timing Sample for Simultaneous Start/Stop Mode (Period Controlled by TKBCRn0)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

36. <u>7.4.8 Synchronous start/clear mode</u>

Figure 7-47. Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))(p.343)

Old)

Figure 7-47. Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-47. Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

37. <u>7.4.8 Synchronous start/clear mode</u> <u>Figure7-48.Timing Sample for Synchronous Start/Clear Mode</u> (Period Controlled by Master)(at Batch Overwrite)(p.345)

Old)

Figure 7-48. Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Batch Overwrite)

New)

Figure 7-48. Timing Sample for Synchronous Start/Clear Mode (Period Controlled by Master)(at Batch Overwrite)

Master operation

38. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-49.Operation Outline of Basic Operation for Interleave PFC</u> <u>Mode (at Default Value of Output Is Low Level (TKBTODnp = 0) and</u> <u>Active Level Is High Level (TKBTOLnp = 0))(p.347)</u>

Old)

Figure 7-49. Operation Outline of Basic Operation for Interleave PFC Mode (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-49. Operation Outline of Basic Operation for Interleave PFC Mode (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

- 39. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-50. Figure of Timing of Interleave PFC Mode (Operation for</u> <u>Conditions No. 1 and No. 2)(p.349)</u>
- Old)

Figure 7-50. Figure of Timing of Interleave PEC Mode. (Operation for Conditions No. 1 and No. 2)

40. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-51. Figure of Timing of Interleave PFC Mode (Below T/2s</u> <u>No. 3 and No. 4) (at Default Value of Output Is Low Level (TKBTODnp</u> <u>= 0) and Active Level Is High Level (TKBTOLnp = 0))(p.350)</u>

Old)

Figure 7-51. Figure of Timing of Interleave PFC Mode (Below T/2s No. 3 and No. 4) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-51. Figure of Timing of Interleave PFC Mode (Below T/2s No. 3 and No. 4) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

- 41. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-52. Figure of Timing of Interleave PFC Mode (Operation for</u> <u>Condition No. 5: INTP21 not yet Reached)(p.351)</u>
- Old)

Figure 7-52. Figure of Timing of Interleave PFC Mode (Operation for Condition No. 5: INTP21 not yet Reached)

New)

Figure 7-52. Figure of Timing of Interleave PFC Mode (Operation for Condition No. 5)(at Default Value of Output Is Low Level(TKBTODnp=0)and Active Level Is High Level(TKBTOLnp=0))

42. 7.4.9 Interleave PFC (Power Factor Correction) output mode <u>Figure 7-53.Figure of Timing of Interleave PFC Mode (Operation for</u> <u>Conditions No. 6) (at Default Value of Output Is Low Level (TKBTODnp</u> <u>= 0) and Active Level Is High Level (TKBTOLnp = 0))(p.352)</u>

Old)

Figure 7-53. Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 6) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-53. Figure of Timing of Interleave PFC Mode (Operation for Conditions No. 6) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

43. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure7-54.Figure of Timing of Interleave PFC Output Mode</u> (Operation for Conditions No. 7)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = <u>0))(p.353)</u>

Old)

Figure 7-54. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 7)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-54. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 7)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

44. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-55.Figure of Timing of Interleave PFC Output Mode</u> (Operation for Conditions No. 8 to 9)(at Default Value of Output Is <u>Low Level (TKBTODnp = 0) and Active Level Is High Level</u> (TKBTOLnp = 0))(p.354)

Old)

Figure 7-55. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 8 to 9) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

New)

Figure 7-55. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 8 to 9) (at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

45. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure7-56.Figure of Timing of Interleave PFC Output Mode</u> <u>(Operation for Conditions No. 10 and No. 11)(at Default Value of</u> <u>Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level</u> <u>(TKBTOLnp = 0))(p.355)</u>

Old)

Figure 7-56. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 10 and No. 11)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

Date: Sep. 21, 2016

New)

Figure 7-56. Figure of Timing of Interleave PFC Output Mode (Operation for Conditions No. 10 and No. 11)(at Default Value of Output Is Low Level (TKBTODnp = 0) and Active Level Is High Level (TKBTOLnp = 0))

46. <u>7.4.9 Interleave PFC (Power Factor Correction) output mode</u> <u>Figure 7-57. Figure of Timing of Interleave PFC Output Mode</u> (In Case When Trigger Was Again Generated During TKBOn1)(p.356)

Old)

Figure 7-57. Figure of Timing of Interleave PFC Output Mode (In Case When Trigger Was Again Generated During TKBOn1)

Trigger is ignored when the subsequent TKBOn1 output trigger is generated during the previous TKBOn1 period output. This is when TKBIEFn is set by "1".

New)

Figure 7-57. Figure of Timing of Interleave PFC Output Mode (In Case When INTP21 Input Was Detected During TKBOn1 Output)

When INTP21 input is detected during TKBOn1 output of the previous period, this trigger is ignored. This is when TKBIEFn is set by "1".

Old)

Figure 7-58. Figure of Timing of Interleave PFC Output Mode (Output of TKBOn1 Is at the Width of the Previous Output Width and Exceeds Period of Status Maintenance)

New)

Figure 7-58. Figure of Timing of Interleave PFC Output Mode (Output of TKBOn1 Is at the Width of the Previous Output Width and Exceeds Period of Status Maintenance)

48. <u>7.5.1 A/D conversion start timing signal output function</u> <u>Figure 7-59. A/D Conversion Start Timing Signal Output Function</u> <u>for Standalone Mode(Period Controlled by TKB0CR0)</u>

Old)

Figure 7-59. A/D Conversion Start Timing Signal Output Function for Standalone Mode (Period Controlled by TKB0CR0)

49. <u>7.5.1 A/D conversion start timing signal output function</u> <u>Figure 7-60. A/D Conversion Start Timing Signal Output Function</u> for Standalone Mode (Period Controlled by External Trigger Input)(p.361)

Old)

Figure 7-60. A/D Conversion Start Timing Signal Output Function for Standalone Mode (Period Controlled by External Trigger Input)

50. <u>7.5.2 PWM output dithering function</u> <u>Figure 7-62. Figure of Waveform at Dithering Operation(p.363)</u>

Old)

51. <u>7.5.2 PWM output dithering function</u> <u>Figure 7-63. Figure of Waveform at Dithering Operation</u> <u>(When TKBCRn1 = TKBCRn0 (100% Nearest Neighbor), TKBCRn2 =</u> <u>TKBCRn3(0% Nearest Neighbor)(p.363)</u>

Old)

Figure 7-63. Figure of Waveform at Dithering Operation

(When TKBCRn1 = TKBCRn0 (100% Nearest Neighbor), TKBCRn2 = TKBCRn3(0% Nearest Neighbor)

New)

Figure 7-63. Figure of Waveform at Dithering Operation (When TKBCRn1 = TKBCRn0 (100% Nearest Neighbor), TKBCRn2 = TKBCRn3(0% Nearest Neighbor)

Old)

Figure 7-64. Figure of Waveform at Dithering Operation (When TKBCRn3 = TKBCRn0+1)

Old)

Figure 7-70. Maximum Frequency Limit Function

New)

Figure 7-70. Maximum Frequency Limit Function

54. 8.4.1 PWM output function

Figure 8-17.Basic Timing Sample(at TKCTOL0m=0,TKCTOD0m = 0) for PWM Output Function(p.412)

Old)

Figure 8-17.Basic Timing Sample(at TKCTOL0m=0,TKCTOD0m = 0)for PWM Output Function

New)

Figure 8-17.Basic Timing Sample(at TKCTOL0m=0,TKCTOD0m = 0)for PWM Output Function

55. 10.2 Configuration of 12-bit Interval Timer(p.446)

Old)

The 12-bit interval timer includes the following hardware.

Table 10-1. Configuration of 12-bit Interval Timer

Item	Configuration									
Counter	12-bit counter									
Control registers	eripheral enable register 0 (PER0)									
	Operation_speed_mode_control_register_(OSMC)									
	Interval timer control register (ITMC)									

Caution The subsystem clock (fsub) can be selected as the operating clock only for 38-pin products.

New)

The 12-bit interval timer includes the following hardware.

Table 10-1. Configuration of 12-bit Interval Timer

Item	Configuration
Counter	12-bit counter
Control registers	Peripheral enable register 0 (PER0)
	Subsystem clock supply mode control register (OSMC)
	Interval timer control register (ITMC)

Caution The subsystem clock (fsub) can be selected as the count clock only for 38-pin products.

(omitted)

Remark If the overflow time is set to $2^9/f_{1L}$, the window close time and open time are as follows.

			Settir	ng of Window Open Period						
/		50%	6	75%		1/2fu	100%			
Window time	close	0 to 20.08	ms	0 to 10	.04	ms	None			
Window time	open	20.08 to ms	29.68	10.04 ms	to	29.68	0 to 29.68 ms			

(omitted)

New)

(omitted)

Remark If the overflow time is set to 2⁹/fi∟, the window close time and open time are as follows.

	Setti	Setting of Window Open Period										
	50%	75%	100%									
Window close time	0 to 20.08 ms	0 to 10.04 ms	None									
Window open time	20.08 to 29.68 ms	10.04 to 29.68 ms	0 to 29.68 ms									

(omitted)

57. 12.3.2 A/D converter mode register 0 (ADM0)(p.472)

Old)

Figure 12-5. A/D Converter Sampling and A/D Conversion Timing (Example for Software Trigger Mode)

58. <u>12.3.9 Conversion result comparison lower limit setting register</u> (ADLL)(p.479)

Old)

This register is used to specify the setting for checking the lower limit of the A/D conversion results.

The A/D conversion results and ADLL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 12-8**).

The ADLL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 12-13. Format of Conversion Result Comparison Lower Limit Setting Register (ADLL)

Address: F0012H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0		
ADLL	ADLL7	ADLL6	ADLL5	ADLL4	ADLL3	ADLL2	ADLL1	ADLL0		

Caution When 10-bit resolution A/D conversion is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the ADLL register.

New)

This register is used to specify the setting for checking the lower limit of the A/D conversion results.

The A/D conversion results and ADLL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 12-8**).

The ADLL register can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 12-13. Format of Conversion Result Comparison Lower Limit Setting Register (ADLL)

Address: F0012H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADLL	ADLL7	ADLL6	ADLL5	ADLL4	ADLL3	ADLL2	ADLL1	ADLL0

Caution 1. When 10-bit resolution A/D conversion is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the ADLL register.

2. Only write new values to the ADUL and ADLL registers while conversion is stopped (ADCS = 0, ADCE = 0).

3. The setting of the ADUL registers must be greater than that of the ADLL register.

59. 12.3.10 A/D test register (ADTES)(p.480)

Old)

This register is used to select the + side reference voltage (AVREFP) or - side reference voltage (AVREFM) of the A/D converter, the analog input channel (ANIXX), or the PGAOUT as the A/D conversion target for the A/D test function.

The ADTES register can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 12-14. Format of A/D Test Register (ADTES)

Address: F0013H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADTES	0	0	0	0	0	0	ADTES1	ADTES0

ADTES1	ADTES0	A/D conversion target
0	0	ANIxx. PGAOUT (This is specified using the analog input channel specification register (ADS).)
1	0	AVREEM
1	1	AVREER
Other that	an above	Setting prohibited

Caution For details of the A/D test function, see CHAPTER 25 SAFETY FUNCTIONS.

New)

This register is used to select the + side reference voltage or – side reference voltage for the converter, an analog input channel (ANIxx), the temperature sensor output voltage, the internal reference voltage (1.45 V), or PGAOUT as the target for A/D conversion.

When using this register to test the converter, set as follows.

- For zero-scale measurement, select the side reference voltage as the target for conversion.
- For full-scale measurement, select the + side reference voltage as the target for conversion.

The ADTES register can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 12-14. Format of A/D Test Register (ADTES)

Address: F0013H After reset: 00H R/W

Symbol	7	6	5	4	4 3		1	0
ADTES	0	0	0	0	0	0	ADTES1	ADTES0

ADTES1	ADTES0	A/D conversion target							
0	0	ANIxx/temperature sensor output voltage ^{Note} /internal reference voltage $(1.45 \text{ V})^{\text{Note}}$ / PGAOUT							
		(This is specified using the analog input channel specification register (ADS).)							
1	0	The – side reference voltage (selected by the ADREFM bit of the ADM2 register)							
1	1	The + side reference voltage (selected by the ADREFP1 or ADREFP0 bit of the ADM2 register)							
Other the	an above	Setting prohibited							

Note The temperature sensor output voltage and internal reference voltage (1.45 V) can be selected only in the HS (high-speed main) mode.

60. <u>12.6.6 Hardware trigger no-wait mode (select mode. one-shot</u> <u>conversion mode)(p.493)</u>

(omitted)

Figure 12-25. Example of Hardware Trigger No-wait Mode (Select Mode, One-shot Conversion Mode) Operation Timing

	<	1> ADCI	E is set to	o 1.											ADO	CE is	s cleared	d to 0. <1	0>
ADCE		<2	2> ADCS	is set to 1.														Trigger	
Hardware trigger			<	3>A hardw is genera	are f			6> A hardware trig generated durir conversion ope	ng A/D	∲ 		<				<		standby	
uiggei .	The trigg acknow	er is not edged.	Trigger standby status	ADCS reta the value	ains e 1.	:5>			<5>	A	DCS is overwritte <5	A/D conv	luring < ersion ration.	8>	<5>	•	<		is cleared ring A/D
ADCS					1			/	1	<7	ADS is rewritten during A/D conversion operatio				1			operat	
ADS		Da (Al	ata 0 NIO)								Data 1 (ANI1)								
A/D					<4	> A/D co ends.	nversion	Conversion is interrupted and restarts.	<4>		Conversion is interrupted and restarts.	>		Conversion interrupted and restart		>		Convers interru	
conversion status	Stop status		version andby	Data 0 (ANI0)		Conversion standby	Data 0 (ANI0)	Data 0 (ANI0)	Conversion standby	Data 0 (ANI0)	Data 1 (ANI1)	Conversion standby	Data 1 (ANI1)	Data 1 (ANI1)		nesian landay	Data 1 (ANI1)	Conversion standby	Stop status
ADCR, ADCRH							D. (A	ata 0 NIO)		Da (A	ta 0 NIO)		Data 1 (ANI1)				Data (AN	1 1)	
INTAD						h			<u>h_</u>							1_			

Date: Sep. 21, 2016

New)

(omitted)

Figure 12-25. Example of Hardware Trigger No-wait Mode (Select Mode, One-shot Conversion Mode) Operation Timing

	<	1> ADC	E is set to	o 1.									AD	DCE	is cleare	d to 0. <1	0>
ADCE	- 1	<	> ADCS	is set to 1.													
Hardware trigger		,		3>A hardwa is generat	ed.		<6> A hardware trigg generated during conversion oper	eris g A/D < ation.	3> 		<				3> 	The trigg acknowle	edged.
	The trigg acknow	er is not edged.	Trigger standby status	ADCS retain the value	ns <5> 1.1		<	5>	A	DCS is overwritte <5	A/D conve	uring < ersion ation.	8> <	5> 	<	to 0 du	is cleared iring A/D
ADCS					7		/		<7:	ADS is rewritten during		auon.		1		conver operat	
			•				/		1	(from ANI0 to ANI1).							
ADS		Da (A	ita 0 NI0)							Data 1 (ANI1)							
A/D				(<4> A/E	conversion s.	Conversion is interrupted and restarts.	4>		Conversion is interrupted and restarts.	>		Conversion is interrupted and restarts.	I		Convers interru	
conversion	Stop status		version andby	Data 0 (ANI0)	Conve		Data 0 (ANI0)	Conversion standby	Data 0 (ANI0)	Data 1 (ANI1)	Conversion standby	Data 1 (ANI1)	Data 1 (ANI1)	Conversion standay	Data 1 (ANI1)	Conversion standby	Stop status
status		0.0															
ADCR, ADCRH							Data 0 ANI0)		Da (Al	ta 0 NIO)		Data 1 (ANI1)			Data (AN	a 1 1)	
INTAD														П			

Old)

61. <u>12.6.7 Hardware trigger no-wait mode (scan mode, sequential</u> conversion mode)(p.494)

Old)

(omitted)

Figure 12-26. Example of Hardware Trigger No-wait Mode (Scan Mode, Sequential Conversion Mode) Operation Timing

Date: Sep. 21, 2016

New)

(omitted)

Figure 12-26. Example of Hardware Trigger No-wait Mode (Scan Mode, Sequential Conversion Mode) Operation Timing

62. <u>12.6.8 Hardware trigger no-wait mode (scan mode, one-shot</u> <u>conversion mode)(p.495)</u>

Old)

Figure 12-27. Example of Hardware Trigger No-wait Mode (Scan Mode, One-shot Conversion Mode) Operation Timing

Figure 12-27. Example of Hardware Trigger No-wait Mode (Scan Mode, One-shot Conversion Mode) Operation Timing

63. <u>12.6.9 Hardware trigger wait mode (select mode, sequential</u> conversion mode)(p.496)

Old)

Figure 12-28. Example of Hardware Trigger Wait Mode (Select Mode, Sequential Conversion Mode) Operation Timing

	<1	> ADCE is set	to 1.										
ADCE		<	> A hardwar		<4	A hardware trig generated durin conversion ope	ng A/D					standby	The trigger is not
Hardware trigger						Conversion ope	rauon.					status	acknowledged.
ad	The trigger is not knowledged.	Trigger standby status						ADCS is over with 1 durin conversion ope	ng A/D		ring A/D	7>	
ADCS	╧	< >iaius					<5	> ADS is rewritten A/D conversion	operation				
			Data 0					(from ANIO to AN					
ADS			Data 0 (ANI0)						Data 1 (ANI1)				
A/D			<	A/D conversion and the nex conversion starts.	t	Conversion is interrupted and restarts.<	3>	Conversion is interrupted <3 and restarts.	>	Conversio interrupted restarts <3	and	Conversion is interrupted.	
conversion status	Sto	p status	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Sto	p status
ADCR, ADCRH				Data 0 (ANI0)		Data 0 (ANI0)		Data 0 (ANI0)		ata 1 ANI1)		Data 1 (ANI1	
INTAD					Π								

Figure 12-28. Example of Hardware Trigger Wait Mode (Select Mode, Sequential Conversion Mode) Operation Timing

	<1	1> ADCE is set ↓	to 1.										
ADCE Hardware		<2	> A hardware		<4	4> A hardware trig generated duri conversion ope	ng A/D					Trigger standby	The trigger is not
trigger .	The trigger is not					Π		ADCS is over with 1 durin conversion ope	ng A/D	> ADCS is to 0 du conversion o	cleared < ring A/D	status 7>	acknowledged.
ADCS	owledged.	acknowledged.	Data 0				<5	> ADS is rewritten A/D conversion (from ANI0 to AN	during operation	conversion o	perution		
ADS A/D			(ANI0)	A/D converse and the nex conversion starts.	t	Conversion is interrupted		Conversion is interrupted <3 and restarts.	(ANI1)	Conversio interrupted restarts.<3	d and	Conve interru	
conversion status	Sto	op status	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 0 (ANI0)	Data 1 (ANI0)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Data 1 (ANI1)	Sto	p status
ADCR, ADCRH				Data 0 (ANI0)		Data 0 (ANI0)		Data 1 (ANI0)		ata 1 NI1)		Data (ANI1	
INTAD							Π		Π				

64. <u>12.6.10 Hardware trigger wait mode (select mode, one-shot</u> <u>conversion mode)(p.497)</u>

Old)

Figure 12-29. Example of Hardware Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

New)

Figure 12-29. Example of Hardware Trigger Wait Mode (Select Mode, One-Shot Conversion Mode) Operation Timing

65. 15.3.14 Serial standby control register0(SSC0)(p.572)

Old)

The SSC0 register is used to control the startup of reception (the SNOOZE mode) while in the STOP mode when receiving CSI00 or UART0 serial data.

The SSC0 register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SSC0 register can be set with an 8-bit memory manipulation instruction with SSC0L.

Reset signal generation clears the SSC0 register to 0000H.

Caution The maximum transfer rate in the SNOOZE mode is as follows.

When using CSI00: 1 Mbps
 When using UART0: 9600 bps

New)

The SSC0 register is used to control the startup of reception (the SNOOZE mode) while in the STOP mode when receiving CSI00 or UART0 serial data.

The SSC0 register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SSC0 register can be set with an 8-bit memory manipulation instruction with SSC0L.

Reset signal generation clears the SSC0 register to 0000H.

Caution The maximum transfer rate in the SNOOZE mode is as follows.

 When using CSI00: 	Up to 1 Mbps
 When using UART0: 	4800 bps only

66. 15.5.7 SNOOZE mode function (only CSI00)(p.638)

Old)

Figure 15-71. Timing Chart of SNOOZE Mode Operation (Once Startup) (Type 1: DAPmn = 0, CKPmn = 0)

Date: Sep. 21, 2016

New)

Figure 15-71. Timing Chart of SNOOZE Mode Operation (Once Startup) (Type 1: DAPmn = 0, CKPmn = 0)

67. 15.5.7 SNOOZE mode function (only CSI00)(p.640)

Old)

Figure 15-73. Timing Chart of SNOOZE Mode Operation (Continuous Startup) (Type 1: DAPmn = 0, CKPmn = 0)

CPU operation status	Normal peration	STOP mode		SNOOZ mode	Nor	mal pera	ation	STOP mode		SNOOZ mode
SS00	<3>	<4>	Γ			<3>	Π	4>		
STOD	<1>		Π		<>>					
SE00			Π							
SWC0			Π		<1	⊳				
SSEC0	L		Ц							
Clock request signal			Н							
(internal signal)			Ц							Receive data 2
SDR00			Н	K		Linte 7	Rec	eive data 1		(`
				<>>	Read					
SCK00 pin			Н							
SI00 pin Shift			Й	Receive data 1					X	Receive data 2
register 00			П	Reception & shift operation						Reception & shift operation
INTCSI00			Ц	N	lote 2					ī
				Data reception (8-bit length)					1	Data reception (8-bit length)
TSF00			П							_
	<>>	<5	><	.6> <7>		<	2>	<	><	:6>

- **Notes 1.** Only read received data while SWCm = 1 and before the next edge of the \overline{SCKp} pin input is detected.
 - 2. The transfer end interrupt (INTCSIp) is cleared either when SWCm is cleared to 0 or when the next edge of the SCKp pin input is detected.

Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation). And after completion the receive operation, also clearing SWCm bit to 0

(SNOOZE release).

New)

Figure 15-73. Timing Chart of SNOOZE Mode Operation (Continuous Startup) (Type 1: DAPmn = 0, CKPmn = 0)

- **Notes** Only read received data while SWCm = 1 and before the next edge of the SCKp pin input is detected.
- Caution 1.Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE release).

2.When SWCm=1, the BFFm1 and OVFm1 flags will not change

68. 15.6.3 SNOOZE mode function(p.664)

Old)

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

Only UART0 can be set to the SNOOZE mode.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fill) is selected for fcLK.

(omitted)

4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Remark m = 0; n = 0; q = 0

New)

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

Only UART0 can be set to the SNOOZE mode.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fcLK.

(omitted)

- 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.
- 5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDq signal. Note,however,that transfer through the UART channel may not start and the CPU may remain in the SNOOZE node if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may note be received correctly, and this may lead to a framing error or parity error in the next UART transfer.

Remark m = 0; n = 0; q = 0

69. <u>15.6.3 SNOOZE mode function(p.666)(Recorrection of No.8)</u>

Old)

Figure 15-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

Figure 15-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

70. <u>15.6.3 SNOOZE mode function(p.667)(Recorrection of No.8)</u>

Old)

Figure 15-91. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

Figure 15-91. Timing Chart of SNOOZE Mode Operation

(EOCm1 = 1, SSECm = 0)

71. <u>15.6.3 SNOOZE mode function(p.669)(Recorrection of No.8)</u>

Old)

Figure 15-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

					Normal operation	٦
CPU operation status	Normal operation	STOP mode	SNOOZE mode	STOP mode	SNOOZE mode	1
SS01	<3>	<4>				
ST01	<1>				<10:	>
SE01						1
SWC0					-	1
EOC01						+
SSEC0						+1
Clock request signal (internal signal)				ΓΓ		-44
SDR01				·	Receive data 2 Receive data 1	\mathcal{A}
SDRUT				<u>^</u>	Receive data 1 Read ^{Note 1}	▲<9>
					T/ Deschus data 0 / D/s	
RxD0 pin		\s	T/ Receive data 1 X P/S	SP (S	T/ Receive data 2 XP/S	P
Shift register 01			X Shift operation X		X Shift operation X	
INTSR0					h	
INTSRE0	L	*	Data reception	-	Data reception	
TSF01						
10101						
	<2>	<5> <	6>	<7> <5>		7>, <11>
					<8	>

New)

Figure 15-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

72. 16.5.3 SNOOZE mode function(p.735)

Old)

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

Only UART0 can be set to the SNOOZE mode.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fclk.

(omitted)

4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Remark m = 0; n = 0; q = 0

New)

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

Only UART0 can be set to the SNOOZE mode.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fcLK.

(omitted)

- 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.
- 5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDq signal. Note,however,that transfer through the UART channel may not start and the CPU may remain in the SNOOZE node if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may note be received correctly, and this may lead to a framing error or parity error in the next UART transfer.

Remark m = 0; n = 0; q = 0

73. 16.5.3 SNOOZE mode function(p.737)

Old)

Figure 16-41. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

74. 16.5.3 SNOOZE mode function(p.738)

Old)

Figure 16-42. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

CPU operation status	Normal opera	ation STOP mo	de	SNOOZE mode		Normal operation
SS01	<3>	<4>				<12>
ST01	<1>				<10>	1
SE01						<u></u>
SWC0						<11>
EOC01						
SSEC0	L					
Clock request signal (intemal signal) SDR01					<3>	Receive data 2
RxD0 pin			18	T/ Receive data 1 X P/S	P	ST/ Receive data 2 XP/SP
Shift register 01 INTSR0			F	Shift operation X		X Shift operation X X
INTS RE0	L		-	Data reception <7>		Data reception
TSF01						
	<2:	> <5	> <	6> <	8>	

Figure 16-42. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

75. 16.5.3 SNOOZE mode function(p.740)

Old)

Figure 16-44. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

New)

Figure 16-44. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

76. <u>18.2 Configuration of Multiplier and Divider/Multiply-Accumulator</u> (p.860)

Old)

Figure18-1.Block Diagram of Multiplier and Divider/Multiply-Accumulator

New)

Figure 18-1. Block Diagram of Multiplier and Divider/Multiply-Accumulator

Remark fCLK:CPU/peripheral hardware clock frequency

77. 18.4.4 Multiply-accumulation (signed) operation(p.872)

Old)

Figure 18-9. Timing Diagram of Multiply-Accumulation (signed) Operation $(2 \times 3 + (-4) = 2 \rightarrow 32767 \times (-1) + (-2147483647) = -2147450882$ (Overflow Occurs.))

New)

Figure 18-9. Timing Diagram of Multiply-Accumulation (signed) Operation $(2 \times 3 + (-4) = 2 \rightarrow 32767 \times (-1) + (-2147483647) = -2147450882$ (Overflow Occurs.))

78. 19.6 Cautions on Using DMA Controller(p.895)

Old)

(4) DMA pending instruction

Even if a DMA request is generated, DMA transfer is held pending immediately after the following instructions.

- CALL !addr16
- CALL \$!addr20
- CALL !!addr20
- CALL rp
- CALLT [addr5]
- BRK
- •Bit manipulation instructions for registers IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, and PSW each.
- •An instruction that accesses a register placed in the 2nd SFR address range from F0500H to F06FFH

Instruction for accessing the data flash memory

New)

(4) DMA pending instruction

Even if a DMA request is generated, DMA transfer is held pending immediately after the following instructions.

- CALL !addr16
- CALL \$!addr20
- CALL !!addr20
- CALL rp
- CALLT [addr5]
- BRK

.

- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit

DI

- POP PSW
- BTCLR PSW. bit, \$addr20
- EI
- •Write instructions for registers IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H each.
- •An instruction that accesses a register placed in the 2nd SFR address range from F0500H to F06FFH

•Instruction for accessing the data flash memory

79. 23.1 Functions of Power-on-reset Circuit(p.957)

Old)

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on. The reset signal is released when the supply voltage (V_DD) exceeds 1.51 V ± 0.03 V.
- Compares supply voltage (V_{DD}) and detection voltage (V_{PDR} = 1.50 V ±0.03 V), generates internal reset signal when V_{DD} < V_{PDR}.
 - Caution If an internal reset signal is generated in the POR circuit, TRAP, WDTRF, RPERF, IAWRF, and LVIRF flags of the reset control flag register (RESF) is cleared.
 - **Remark** This product incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. The RESF register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. For details of the RESF register, see **CHAPTER 22 RESET FUNCTION**.

New)

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on. The reset signal is released when the supply voltage (VDD) exceeds the detection voltage (VPOR). Note that the reset state must be retained until the operating voltage becomes in the range defined in **32.4** or **33.4** AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal.
- Compares supply voltage (VDD) and detection voltage (VPDR), generates internal reset signal when VDD < VPDR. Note that, after power is supplied, this LSI should be placed in the STOP mode, or in the reset state by utilizing the voltage detection circuit or externally input reset signal, before the operation voltage falls below the range defined in 32.4 or 33.4 AC Characteristics. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

Caution If an internal reset signal is generated in the power-on-reset circuit, the reset control flag register (RESF) is cleared to 00H.

Remark 1. The RL78 microcontroller incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. The RESF register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. For details of the RESF register, see CHAPTER 22 RESET FUNCTION.

2.VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage For details, see 32.6.5 or 33.6.5 POR circuit characteristics.

80. 24.1 Functions of Voltage Detector(p.964)

Old)

The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (V_{DD}) with the detection voltage (V_{LVDH}, V_{LVDL}), and generates an internal reset or internal interrupt signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL) can be selected by using the option byte as one of 6 levels (For details, see CHAPTER 27 OPTION BYTE).
- Operable in STOP mode.
- The following three operation modes can be selected by using the option byte.

New)

The operation mode and detection voltages (V_{LVDH}, V_{LVDL}, V_{LVD}) for the voltage detector is set by using the option byte (000C1H). The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (V_{DD}) with the detection voltage (V_{LVDH}, V_{LVDL}, V_{LVD}), and generates an internal reset or internal interrupt signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 6 levels (for details, see CHAPTER 27 OPTION BYTE).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 32.4 or 33.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal before the voltage falls below the operating range.

The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

