Date: Jan. 24, 2017

RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A072A/E	Rev.	1.00
Title	Adding contents in the hardware user's manual Invalid Memory Access Detection Function		Information Category	Technical Notification		
	ROM capacities 8/16/24/32/48KB products in RL78/F12 ROM capacities 16/32/48/96KB products in RL78/F13, F14	Lot No.		User's Manual: Hardware of applicable products		
Applicable Product		All Lots	Reference Document			plicable

There are corrections on the following User's Manual.

- · RL78/F12 User's Manual: Hardware Rev.1.11 (R01UH0231EJ0111)
- · RL78/F13, F14 User's Manual: Hardware Rev.2.10 (R01UH0368EJ0210)

Corrections in the User's Manual: Hardware

· RL78/F12 User's Manual: Hardware Rev.1.11 (R01UH0231EJ0111)

Application Item	Applicable Page (R01UH0231EJ0111)	Contents
24.3.6 Invalid Memory Access Detection Function Figure 24-10. Invalid Memory Access Detection Space	p.949	Contents added

· RL78/F13, F14 User's Manual: Hardware Rev.2.10 (R01UH0368EJ0210)

Application Item	Applicable Page (R01UH0368EJ0210)	Contents
27.3.8 Invalid memory access detection function Figure 27-21. Invalid access detection area	p.1602	Contents added

Adding contents are shown as gray hatching.

Date: Jan. 24, 2017

· RL78/F12 User's Manual: Hardware Rev.1.11 (R01UH0231EJ0111)

24.3.6 Invalid Memory Access Detection Function

Figure 24-10. Invalid Memory Access Detection Space

Access OK or NG Instruction Read Write fetch (execution) **FFFFFH** Special function registers (SFR) 256 bytes NG FFF00H **FFEFFH** General-purpose registers 32 bytes OK FFEE0H **FFEDFH** RAM Note 1 OK уууууН Mirror OK NG Note 1 NG Data flash memory F1000H F0FFFH Reserved OK F0800H F07FFH OK Special function registers (2nd SFR) NG 2 Kbytes F0000H **EFFFFH** ΟK EF000H NG Note 1 Reserved NG NG xxxxxH Code flash memory Note 1 OK OK 00000H

Notes 1. The addresses of the RAM and code flash memory are shown below according to the product type.

Product Type	Code Flash Memory	RAM
	(00000H-xxxxH)	(yyyyyH-FFEFFH)
R5F10968	8192×8 bits (00000H-01FFFH) Note 2	512×8 bits (FFD00H-FFEFFH)
R5F109xA (x = 6, A, B, G, L)	16384×8 bits (00000H-03FFFH) Note 2	1024×8 bits (FFB00H-FFEFFH)
R5F109xB (x = 6, A, B, G, L)	24576×8 bits (00000H-05FFFH) Note 2	1536×8 bits (FF900H-FFEFFH) Note 3
R5F109xC (x = 6, A, B, G, L)	32768×8 bits (00000H-07FFFH) Note 2	2048×8 bits (FF700H-FFEFFH)
R5F109xD (x = 6, A, B, G, L)	49152×8 bits (00000H-0BFFFH) Note 2	3072×8 bits (FF700H-FFEFFH)
R5F109xE (x = 6, A, B, G, L)	65536×8 bits (00000H-0FFFFH)	4096×8 bits (FF700H-FFEFFH)

- 2. Fetching of an instruction (for execution) by illegal to a location in the area from xxxxxH to 0FFFH leads to the generation of a reset due the execution of an illegal instruction rather than being handled as illegal memory access. In case of reading a reset does not generate and "FFH" is read.
- 3. Fetching of an instruction (for execution) by illegal to a location in the area from FF700H to FF8FFH, a reset does not generate by invalid memory access detection but it may generate by RAM parity error. In case of writing, it does not generate by invalid memory access detection.

· RL78/F13, F14 User's Manual: Hardware Rev.2.10 (R01UH0368EJ0210)

27.3.8 Invalid memory access detection function

Figure 27-21. Invalid access detection area

Notes 1. Code flash memory and RAM address of each product are as follows.

• RL78/F13 (LIN incorporated)

ROM size	Code flash memory (00000H to xxxxxH)
16 Kbytes	16384 x 8 bits (00000H to 03FFFH) Note2
32 Kbytes	32768 x 8 bits (00000H to 07FFFH) Note2
48 Kbytes	49152 x 8 bits (00000H to 0BFFFH) Note2
64 Kbytes	65536 x 8 bits (00000H to 0FFFFH)
96 Kbytes	98304 x 8 bits (00000H to 17FFFH) Note3
128 Kbytes	131072 x 8 bits (00000H to 1FFFFH)

RAM size	RAM (yyyyyH to FFEFFH)
1 Kbytes	1024 x 8 bits (FFB00H to FFEFFH)
2 Kbytes	2048 x 8 bits (FF700H to FFEFFH)
3 Kbytes	3072 x 8 bits (FF300H to FFEFFH)
4 Kbytes	4096 x 8 bits (FEF00H to FFEFFH)
6 Kbytes	6144 x 8 bits (FE700H to FFEFFH)
8 Kbytes	8192 x 8 bits (FDF00H to FFEFFH)

Date: Jan. 24, 2017

RL78/F13 (CAN and LIN incorporated)

ROM size	Code flash memory (00000H to xxxxxH)
32 Kbytes	32768 x 8 bits (00000H to 07FFFH) Note2
48 Kbytes	49152 x 8 bits (00000H to 0BFFFH) Note2
64 Kbytes	65536 x 8 bits (00000H to 0FFFFH)
96 Kbytes	98304 x 8 bits (00000H to 17FFFH) Note3
128 Kbytes	131072 x 8 bits (00000H to 1FFFFH)

RAM size	RAM (yyyyyH to FFEFFH)
2 Kbytes	2048 x 8 bits (FF700H to FFEFFH)
3 Kbytes	3072 x 8 bits (FF300H to FFEFFH)
4 Kbytes	4096 x 8 bits (FEF00H to FFEFFH)
6 Kbytes	6144 x 8 bits (FE700H to FFEFFH)
8 Kbytes	8192 x 8 bits (FDF00H to FFEFFH)

• RL78/F14

ROM size	Code flash memory (00000H to xxxxxH)
48 Kbytes	49152 x 8 bits (00000H to 0BFFFH) Note2
64 Kbytes	65536 x 8 bits (00000H to 0FFFFH)
96 Kbytes	98304 x 8 bits (00000H to 17FFFH) Note3
128 Kbytes	131072 x 8 bits (00000H to 1FFFFH)
192 Kbytes	196608 x 8 bits (00000H to 2FFFFH)
256 Kbytes	262144 x 8 bits (00000H to 3FFFFH)

RAM size	RAM (yyyyyH to FFEFFH)
4 Kbytes	4096 x 8 bits (FEF00H to FFEFFH)
6 Kbytes	6144 x 8 bits (FE700H to FFEFFH)
8 Kbytes	8192 x 8 bits (FDF00H to FFEFFH)
10 Kbytes	10240 x 8 bits (FD700H to FFEFFH)
16 Kbytes	16384 x 8 bits (FBF00H to FFEFFH)
20 Kbytes	20480 x 8 bits (FAF00H to FFEFFH)

- 2. Fetching of an instruction (for execution) by illegal access to a location in the area from xxxxxH to 0FFFFH leads to the generation of a reset due to the execution of an illegal instruction rather than being handled as illegal memory access. In case of reading, a reset does not generate and "FFH" is read.
- 3. Fetching of an instruction (for execution) by illegal access to a location in the area from xxxxxH to 1FFFFH leads to the generation of a reset due to the execution of an illegal instruction rather than being handled as illegal memory access. In case of reading, a reset does not generate and "FFH" is read.