
Microcontroller Technical Information
Document No. ZBG-CD-07-0047 1/5
Date issued August 30, 2007

CC78K0S
78K0S C Compiler

Usage Restrictions

Issued by Development Tool Solution Group
Multipurpose Microcomputer Systems Division
Microcomputer Operations Unit
NEC Electronics Corporation

√ Usage restriction
 Upgrade
 Document modification

Related documents

CC78K0S Ver.1.50 or Later - Operation:
U16654EJ1V0UM00 (1st edition)
CC78K0S Ver.1.30 or Later - Language:
U14872EJ1V0UM00 (1st edition)
78K0S C Compiler CC78K0S V1.50 Operating
Precautions: SUD-DT-03-0388-E

Notification
classification

 Other notification

1. Affected products

CC78K0S V1.41/V1.50

2. New restrictions

The following restrictions (No. 37 to No. 71) have been added. See the attachment for details.

• No. 37 An invalid code is output if a function pointer with an asterisk (*) is referred to in a code

other than a function call.

• No. 38 When the -QR option is specified, an sreg variable may be redundantly allocated to the

saddr area that is used by the compiler.

• No. 39 An invalid code may be output if the number of bits shifted by a shift operator (<<, >>, <<=,

or >>=) is a constant that is 256 or larger.

• No. 40 An invalid code may be output if the constant 0xffff or 0xfffe is added to or subtracted from

a long or unsigned long type variable.

• No. 41 An error is output if a floating point number starting with 0e or 0E is described.

• No. 42 An invalid code may be output as the operation result for one side of a binary operation.

• No. 43 When both operands of a logical operation (&& or ||) are of the floating point type, and an

expression that causes a side effect such as an increment/decrement operation or a

function call is described as the second operand, the compare order becomes invalid.

• No. 44 An error is output if an expression starting with a unary plus or unary minus operator, or an

expression in which operators with the same priority are described in succession, is

described as a #if constant expression.

• No. 45 If one operand of a relational operation is a constant that cannot be expressed by the

signed long type, the compare result may be invalid.

• No. 46 The operation result is not output as the int type but as the operand’s type, depending on

the types of the operands in logical negation operations, relational operations, or equality

operations.

• No. 47 An error is output when an increment/decrement expression of the floating point type is

described and the operand is an indirect reference expression using a pointer.

ZBG-CD-07-0047 2/5

• No. 48 An invalid code is output if a char/unsigned char type expression is described as a return

statement for a function that returns a pointer.

• No. 49 An error may be output if the operation result of a long type run-time library is cast to a char

or unsigned char type and a relational or equality operation is performed with a constant

that can be expressed by the char or unsigned char type.

• No. 50 When initializing an array whose size is not defined when elements in the initializer braces

are enclosed inconsistently, the size of the secured area becomes invalid.

• No. 51 When a character string conversion function in the standard library is executed, the error

handling operation becomes invalid.

• No. 52 The operation becomes invalid when output conversion processing is performed for an I/O

function in the standard library.

• No. 53 The size of the minimum value −32768of the int/short type becomes 4.

• No. 54 An error is output, if a function name or a function pointer is described as the second and

third operands of a conditional operation, and then the function is called.

• No. 55 An error is output if an external pointer variable is initialized to a variable containing the

operator “->”.

• No. 56 An error is output because the parameter type and the type of the identifier in a function

definition do not match.

• No. 57 In an identifier list in a function definition, a parameter that is not declared is not handled as

the int type, and an error results.

• No. 58 The # operator cannot be expanded correctly.

• No. 59 The initial value becomes invalid if an unsigned long type static variable is initialized to a

floating point constant that is 0x80000000 or larger.

• No. 60 An invalid code may be output for an expression that includes a function call and a

structure/union.

• No. 61 An invalid code is output for the assignment expression “a = b binary operator c;”.

• No. 62 An error is output if an array member element of a constant address structure is referred to

using a dot operator (.).

• No. 63 An error is output for a function definition that has a certain pattern.

• No. 64 An integral constant expression that includes two or more binary operators, which use the

result of a binary operator causing an overflow, may be replaced with invalid values.

• No. 65 An invalid code may be output as a result of an operation an including increment or

decrement operation.

• No. 66 The result of a sizeof operation for a function parameter with an array type may be invalid.

• No. 67 An invalid code may be output when there is a bit field where the bit width assigned to a

saddr area is from 2 bits to 7 bits, and the maximum constant value of the bit field is

assigned to an expression, the assignment destination being re-evaluated with the same

expression.

• No. 68 An error F705 or invalid code may be output if a norec function which contains enum type

parameters is called.

• No. 69 No error occurs even if an identical function whose parameters include a different structure

or union type is declared multiple times.

ZBG-CD-07-0047 3/5

• No. 70 An invalid code may be output when a pointer that points to a structure of 256 bytes or

more is a register variable.

• No. 71 Work areas used by the compiler are corrupted when static model option -sm and

expansion specification option -zm2 are specified.

3. Workarounds

The following workarounds are available for this restriction. See the attachment for details.

• No. 37 Do not append an asterisk (*) to a function pointer.

• No. 38 Do not specify the -QR option.

• No. 39 Match the number of shifted bits and the data width.

• No. 40 Insert a temporary variable as follows.

• No. 41 Describe 0 or 0.0 at the beginning of a floating point number.

• No. 42 Insert a temporary variable for at least one operand of the binary operation.

• No. 43 Modify the source code.

• No. 44 Use parentheses.

• No. 45 Implement either of the following workarounds.

 (1) Describe an expression that can be handled as constants, using constants.

 (2) Cast a boolean, bit, or signed char type expression to the unsigned long type.

• No. 46 Implement either of the following workarounds.

(1) Cast the result of a logical negation operation, relational operation, or equality operation

with the int type.

(2) Do not use the floating point constant “±0.0” as the right operand of the logical operator

&&.

• No. 47 Insert a temporary variable.

• No. 48 Explicitly cast the return statement.

• No. 49 Insert a temporary variable.

• No. 50 Implement either of the following workarounds.

(1) Unify the brace enclosing method.

(2) Define the size of the array.

• No. 51 There is no workaround.

• No. 52 There is no workaround.

• No. 53 Describe as “−32767−1”.

• No. 54 Describe an if statement instead of the conditional operator.

• No. 55 Modify the source code as follows.
 int *ip1 = &b.i;

• No. 56 Match the parameter type and the type of the identifier in the function definition.

• No. 57 Declare all parameters in a function definition.

• No. 58 There is no workaround.

• No. 59 Implement either of the following workarounds.

(1) Initialize the unsigned long type static variable to an integer constant.

(2) Cast the floating point constant to an appropriate integer type.

ZBG-CD-07-0047 4/5

• No. 60 Implement either of the following workarounds.

(1) Do not describe a structure/union assignment in an expression that contains function

calls.

(2) When calling a function using a function pointer, use the structure/union pointer, instead

of the structure/union argument.

• No. 61 Cast the long or unsigned long type operand as the type of the assignment destination.

• No. 62 Use the arrow operator (->).

• No. 63 Change the order of declaration for the arguments so that 1-byte, 1-byte, 2-byte, and 2-

byte width arguments are not listed in that order from the first argument.

• No. 64 Write constant expressions that do not include two or more binary operators.

• No. 65 Describe the expressions of an increment/decrement operation and a binary operation

separately.

• No. 66 Modify the function parameter type to a function pointer.

• No. 67 Divide the assignment expression.

• No. 68 Modify an enum type to int type, and an enumeration constant to a macro.

• No. 69 Do not describe declaration of the same function multiple times.

• No. 70 Do not describe register declaration; in addition, disable the -qv option.

• No. 71 Use the -zm1 option, instead of the -zm2 option, or change the auto variable to an in-

function static variable.

4. Modification schedule

Restrictions No. 37 to No. 49, No. 55, and No. 59 to No. 71 will be corrected in CC78K0S V2.00,

which is planned for release in September 2007.

* For the detailed release schedule of modified products, contact an NEC Electronics sales

representative.

ZBG-CD-07-0047 5/5

5. List of restrictions

A list of restrictions in the CC78K0S, including the revision history and detailed information, is

described on the attachment.

6. Document revision history

CC78K0S 78K0S C Compiler Usage Restrictions

Document Number Date Issued Description

SBG-DT-04-0007 January 23, 2004 Newly created.

SBG-DT-04-0112 March 12, 2004 Addition of restrictions No. 27 and No. 28

ZBG-CD-04-0073 October 4, 2004 Addition of restrictions No. 29 to No. 35

ZBG-CD-05-0002 January 12, 2005 Addition of restriction No. 36

ZBG-CD-07-0047 August 30, 2007 Addition of a new condition for restriction No. 30

Addition of new restrictions No. 37 to No. 71

ZBG-CD-07-0047 Attachment 1/50

List of Restrictions in CC78K0S

1. Product History

Version No. Bugs and Changes/Addition to Specifications

V1.30 V1.41 V1.50

1 If a character string includes a NULL character, the character string following

the NULL character is invalid.

×

2 An invalid code may be output if top or bottom one-byte data is shifted as a

result of addition/subtraction between constant 1 or 255 and 2-byte data.

×

3 The operation result is invalid when a member indicated by the pointer for a

structure or union is the pointer for the array, and a sizeof operation is

performed on the pointer for the array.

×

4 An invalid code may be output if a postfix increment/decrement operation

expression is described in a return statement when the -sm option is

specified

×

5 An invalid code may be output when a series of identifiers without type

names are described in an argument for a function prototype declaration

×

6 An invalid code may be output as a result of outputting an unnecessary push

instruction when a shift operation of a long/unsigned long type is executed

×

7 When only the bit field is described as a union member, the union size

becomes 0

×

8 An invalid code may be output when a macro including a comma is defined ×

9 When a pointer array is initialized by using one character string, the area size

of the array is invalid.

×

10 The constant expression of #if may not be executed correctly. ×

11 If values are read in order of floating-point type to integer type in

scanf/sscanf, the value of the integer type cannot be input correctly.

×

12 An invalid code is output if the -ql option is not specified and the sreg/__sreg

variable is incremented immediately after it is used in a conditional

expression.

×

13 An invalid code is output if a structure pointer is assigned to a register and

data is passed between members pointed to by the pointer.

×

14 An invalid code may be output if the shift count in a right-shift operation is

larger than the number of bits of the shifted variable or is a negative value

when using the normal model and the -ql4 option is specified.

×

15 An invalid code may be output if an external variable is multiplied by 2 when

the -ql option is not specified or the -qq option is specified.

×

16 An invalid code is output if an operation is performed between array

elements cast to the int type when using the normal model.

×

17 An invalid code is output if a negative floating-point constant is cast to an

unsigned integer type.

×

18 An invalid code is output if a logical OR or logical AND operation is

performed between floating-point constants.

×

19 If variables with the same name are declared in multiple files while using

#pragma section, the variables may not be allocated to the correct section.

×

×: Applicable, : Not applicable, −: Not relevant

ZBG-CD-07-0047 Attachment 2/50

Version No. Bugs and Changes/Addition to Specifications

V1.30 V1.41 V1.50

20 An invalid code is output if a logical OR or logical AND operation is

performed between a floating-point constant and integer-type constant.

×

21 The initialization of an external variable declared with extern within a block

does not result in an error. In addition, the debugging information in the

assembler source is incorrect.

× × ×

22 Binding a variable with the same name to a variable declared with extern in

the block is sometimes invalid.

× × ×

23 If a type defined by typedef (typedef name) is used in a function prototype

declaration or a declaration using a const or volatile type modifier, the

typedef expansion is invalid, and an error results.

× × ×

24 Sometimes a multidimensional array with an undefined size does not

operate properly.

× × ×

25 In a function returning the address of a function with arguments, those

arguments cannot be referred to. There is no error when referred to, but

invalid code is output.

× × ×

26 The signed type bit field is handled as an unsigned bit field. × × ×

27 An invalid code is output as a result of a simple assignment operation in

which the left-side and right-side operands are cast to the pointer for a

structure, union, or array.

× × ×*

28 An invalid code may be output as a result of the memcpy function when

#pragma inline is specified.

× × ×

29 An invalid code is output as a result of an operation that includes signed char

type operator and constant values.

× × ×*

30 An invalid code may be output as a result of an operation for a (signed) int

type and an unsigned short type.

× × ×*

31 Debug information is output to an invalid position when a conditional

expression is followed by a simple assignment expression.

× × ×

32 An invalid code is output after the STOP and HALT functions. × × ×

33 Characters are garbled in the Compiler Options dialog box. − − ×

34 Stack information of the cprep2 function is invalid. × × ×

35 W503 is output when the array name of an automatic variable is referred to. × × ×

36 The initial value becomes invalid if a static variable is initialized with the

floating constant.

× × ×*

37 An invalid code is output if a function pointer with an asterisk (*) is referred to

in a code other than a function call.

× × ×*

38 When the -QR option is specified, an sreg variable may be redundantly

allocated to the saddr area that is used by the compiler.

× × ×*

39 An invalid code may be output if the number of bits shifted by a shift operator

(<<, >>, <<=, or >>=) is a constant that is 256 or larger.

× × ×*

40 An invalid code may be output if the constant 0xffff or 0xfffe is added to or

subtracted from a long or unsigned long type variable.

× × ×*

41 An error is output if a floating point number starting with 0e or 0E is

described.

× × ×

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZBG-CD-07-0047 Attachment 3/50

Version No. Bugs and Changes/Addition to Specifications

V1.30 V1.41 V1.50

42 An invalid code may be output as the operation result for one side of a binary

operation.

× × ×*

43 When both operands of a logical operation (&& or ||) are of the floating point

type, and an expression that causes a side effect such as an

increment/decrement operation or a function call is described as the second

operand, the compare order becomes invalid.

× × ×*

44 An error is output if an expression starting with a unary plus or unary minus

operator, or an expression in which operators with the same priority are

described in succession, is described as a #if constant expression.

× × ×

45 If one operand of a relational operation is a constant that cannot be

expressed by the signed long type, the compare result may be invalid.

× × ×*

46 The operation result is not output as the int type but as the operand’s type,

depending on the types of the operands in logical negation operations,

relational operations, or equality operations.

× × ×*

47 An error is output when an increment/decrement expression of the floating

point type is described and the operand is an indirect reference expression

using a pointer.

× × ×

48 An invalid code is output if a char/unsigned char type expression is described

as a return statement for a function that returns a pointer.

× × ×*

49 An error may be output if the operation result of a long type run-time library is

cast to a char or unsigned char type and a relational or equality operation is

performed with a constant that can be expressed by the char or unsigned

char type.

× × ×

50 When initializing an array whose size is not defined when elements in the

initializer braces are enclosed inconsistently, the size of the secured area

becomes invalid.

× × ×

51 When a character string conversion function in the standard library is

executed, the error handling operation becomes invalid.

× × ×

52 The operation becomes invalid when output conversion processing is

performed for an I/O function in the standard library.

× × ×

53 The size of the minimum value −32768 of the int/short type becomes 4. × × ×

54 An error is output, if a function name or a function pointer is described as the

second and third operands of a conditional operation, and then the function is

called.

× × ×

55 An error is output if an external pointer variable is initialized to a variable

containing the operator “->”.

× × ×

56 An error is output because the parameter type and the type of the identifier in

a function definition do not match.

× × ×

57 In an identifier list in a function definition, a parameter that is not declared is

not handled as the int type, and an error results.

× × ×

58 The # operator cannot be expanded correctly. × × ×

59 The initial value becomes invalid if an unsigned long type static variable is

initialized to a floating point constant that is 0x80000000 or larger.

× × ×*

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZBG-CD-07-0047 Attachment 4/50

Version No. Bugs and Changes/Addition to Specifications

V1.30 V1.41 V1.50

60 An invalid code may be output for an expression that includes a function call

and a structure/union.

× × ×*

61 An invalid code is output for the assignment expression “a = b binary

operator c;”.

× × ×*

62 An error is output if an array member element of a constant address structure

is referred to using a dot operator (.).

× × ×

63 An error is output for a function definition that has a certain pattern. × × ×

64 An integral constant expression that includes two or more binary operators,

which use the result of a binary operator causing an overflow, may be

replaced with invalid values.

× × ×*

65 An invalid code may be output as a result of an operation an including

increment or decrement operation.

× × ×*

66 The result of a sizeof operation for a function parameter with an array type

may be invalid.

× × ×*

67 An invalid code may be output when there is a bit field where the bit width

assigned to a saddr area is from 2 bits to 7 bits, and the maximum constant

value of the bit field is assigned to an expression, the assignment destination

being re-evaluated with the same expression.

× × ×*

68 An error F705 or invalid code may be output if a norec function which

contains enum type parameters is called.

× × ×*

69 No error occurs even if an identical function whose parameters include a

different structure or union type is declared multiple times.

× × ×*

70 An invalid code may be output when a pointer that points to a structure of

256 bytes or more is a register variable.

× × ×*

71 Work areas used by the compiler are corrupted when static model option -sm

and expansion specification option -zm2 are specified.

× × ×

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZBG-CD-07-0047 Attachment 5/50

2. Details of Bugs and Additions to Specifications

No. 1 If a character string includes a NULL character, the character string following the NULL character

is invalid.

[Description]

If a character string includes a NULL character, the character string following the NULL character is

invalid.

Example:
const char str[] = "test\0TEST";

No area is secured for the character string following the NULL character.

[Workaround]
Describe const char str[] = {‘t’,’e’,’s’,’t’,’\0’,’T’,’E’,’S’,’T’};.

[Correction]

This issue has been corrected in V1.41.

No. 2 An invalid code may be output if top or bottom one-byte data is shifted as a result of

addition/subtraction between constant 255 or 1 and 2-byte data.

[Description]

An invalid code may be output if top or bottom one-byte data is shifted as a result of

addition/subtraction between constant 255 or 1 and 2-byte data.

Example:
int r;

void func()

{

 int cnt;

 int +=255;

 r = cnt;

}

[Workaround]

Specify the -qc option and divide the additive assignment operation into an additive operation and

assignment operation.

Example:
cnt = cnt + 255;

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 6/50

No. 3 The operation result is invalid when a member indicated by the pointer for a structure or union is

the pointer for the array, and a sizeof operation is performed on the pointer for the array.

[Description]

The operation result is invalid when a member indicated by the pointer for a structure or union is the

pointer for the array, and a sizeof operation is performed on the pointer for the array.

Example:
struct t {

 char (*a)[5];

 struct t *b;

} st;

void func()

{

 int x;

 x = sizeof(*(st.b->a));

 }

[Workaround]

Describe the type name.

Example:
x = sizeof(char [5]);

[Correction]

This issue has been corrected in V1.41.

No. 4 An invalid code may be output if a postfix increment/decrement operation expression is described

in a return statement when the -sm option is specified.

[Description]

An invalid code may be output if a postfix increment/decrement operation expression is described in a

return statement when the -sm option is specified.

Example:
int func()

{

 int i = 10;

 return(i++);

}

[Workaround]

Describe the result of the increment/decrement operation minus 1 in the return statement.

Example:
i++;

return (i - 1);

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 7/50

No. 5 An invalid code may be output when a series of identifiers without type names are described in an

argument for a function prototype declaration.

[Description]

An invalid code may be output when a series of identifiers without type names are described in an

argument for a function prototype declaration.

Example:
long AA;
int func(AA);
void main()
{
 func(AA);
}

[Workaround]
Describe the type name.

[Correction]

This issue has been corrected in V1.41.

No. 6 An invalid code may be output as a result of outputting an unnecessary push instruction when a

shift operation of a long/unsigned long type is executed.

[Description]

An invalid code may be output as a result of outputting an unnecessary push instruction when a shift

operation of a long/unsigned long type is executed.

Example:
long y, z;

long a, b, c, d, e, f;

void func()

{

 long x;

 x = ((a << 1) & (b << 1)) + ((c << 1) | (d << 1)) ^ ((e << 1) | (f << 1));

 y += z;

}

[Workaround]

Insert a temporary variable, and execute the operation by assigning the operation result to the

temporary variable.

Example:
long tmp;

tmp = ((a << 1) & (b << 1)) + ((c << 1) | (d << 1));

x = tmp ^ ((e << 1) | (f << 1));

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 8/50

No. 7 When only the bit field is described as a union member, the union size becomes 0.

[Description]

When only the bit field is described as a union member, the union size becomes 0.

Example:
union uni {

 unsigned int a:1;

 unsigned int b:2;

 unsigned int c:1;

} x;

[Workaround]

Insert a type other than a bit field as a dummy.
union uni {

 unsigned int a:1;

 unsigned int b:2;

 unsigned int c:1;

 unsigned int dummy;

} x;

[Correction]

This issue has been corrected in V1.41.

No. 8 An invalid code may be output when a macro including a comma is defined.

[Description]

An invalid code may be output when a macro including a comma is defined.

Example:
#define MARK ',' /* correct value is 0x2C, but is recognized as 0xAC */

[Workaround]

Describe the definition as shown below.
#define MARK (',')

[Correction]

This issue has been corrected in V1.41.

No. 9 When a pointer array is initialized by using one character string, the area size of the array is invalid.

[Description]

When a pointer array is initialized by using one character string, the area size of the array is invalid.

Example:
char *string[] = {"123"};

[Workaround]

Describe the element of the array.
char *string[1] = {"123"};

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 9/50

No. 10 The constant expression of #if may not be executed correctly.

[Description]

The constant expression of #if may not be executed correctly.

Example:
#define a

#if a

int i;

#endif

void func()

{

 i++;

}

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in V1.41.

No. 11 If values are read in order of floating-point type to integer type in scanf/sscanf, the value of the

integer type cannot be input correctly.

[Description]

If values are read in order of floating-point type to integer type in scanf/sscanf, the value of the integer

type cannot be input correctly.

Example:
void func()

{

int i;

float f;

sscanf("1.2 10", "%f%d", &f, &i);

}

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 10/50

No. 12 An invalid code is output if the -ql option is not specified and the sreg/__sreg variable is

incremented immediately after it is used in a conditional expression.

[Description]

An invalid code is output if the -ql option is not specified and the sreg/__sreg variable is incremented

immediately after it is used in a conditional expression.

Example:
sreg char sc = 1;

void func()

{

 if (sc) sc++;

}

[Workaround]

Specify the -ql option.

[Correction]

This issue has been corrected in V1.41.

No. 13 An invalid code is output if a structure pointer is assigned to a register and data is passed

between members pointed to by the pointer.

[Description]

An invalid code is output if a structure pointer is assigned to a register and data is passed between

members pointed to by the pointer.

Example:
struct tag {

int a;

int b;

};

void func()

{

register struct tag *sp;

sp->b = sp->a;

}

[Workaround]

Do not assign a structure pointer to a register.

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 11/50

No. 14 An invalid code may be output if the shift count in a right-shift operation is larger than the

number of bits of the shifted variable or is a negative value when using the normal model and

the -ql4 option is specified.

[Description]

An invalid code may be output if the shift count in a right-shift operation is larger than the number of

bits of the shifted variable or is a negative value when using the normal model and the -ql4 option is

specified.

Example:
void func()

{

 int i, a;

 long lvals;

 i = -1 >> 16;

 lvals = -1;

 if (i == (lvals >> 16)) a = 1; else a = 0;

 i = -1 >> 17;

 lvals = -1;

 if (i == (lvals >> 17)) a = 1; else a = 0;

}

[Workaround]

Set the optimization level of the -ql option to -ql3 or lower, or avoid setting the right-shift count to the

number of bits of the shifted variable or larger. In addition, do not set the right-shift count to a negative

value because the shift count will be converted into an unsigned type.

[Correction]

This issue has been corrected in V1.41.

No. 15 An invalid code may be output if an external variable is multiplied by 2 when the -ql option is not

specified or the -qq option is specified.

[Description]

An invalid code may be output if an external variable is multiplied by 2 when the -ql option is not

specified or the -qq option is specified.

Example:
void func()

{

 int x, i;

 for (i = 1; i < 2; i ++) {

 x = i * 2 ;

 }

}

[Workaround]

Remove the -qq option and specify the -ql option.

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 12/50

No. 16 An invalid code is output if an operation is performed between array elements cast to the int type

when using the normal model.

[Description]

An invalid code is output if an operation is performed between array elements cast to the int type when

using the normal model.

Example:
void func()

{

 short sh1[2] = { 3, 58 };

 int j = 1;

 int d;

 d = ((int)sh1[j] + (int)sh1[j]);

}

[Workaround]

Do not perform an operation between array elements cast to the int type.

[Correction]

This issue has been corrected in V1.41.

No. 17 An invalid code is output if a negative floating-point constant is cast to an unsigned integer type.

[Description]

An invalid code is output if a negative floating-point constant is cast to an unsigned integer type.

Example:
unsigned long ans;

float f1 = -3.8f;

void func()

{

int a;

ans = f1;

a = ((unsigned long)(-3.8f) != ans);

}

[Workaround]

Cast a constant to a signed integer type before casting the constant to the unsigned integer type.

Example:
a = ((unsigned long)(long)(-3.8f) != ans);

[Correction]

This issue has been corrected in V1.41.

ZBG-CD-07-0047 Attachment 13/50

No. 18 An invalid code is output if a logical OR or logical AND operation is performed between floating-

point constants.

[Description]

An invalid code is output if a logical OR or logical AND operation is performed between floating-point

constants.

Example:
void func()

{

int r1, r2;

float f1 = 17, f2 = 16;

r1 = f1 || f2;

r2 = f1 && f2;

}

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in V1.41.

No. 19 If variables with the same name are declared in multiple files while using #pragma section, the

variable may not be allocated to the correct section.

[Description]

If variables with the same name are declared in multiple files while using #pragma section, the variable

may not be allocated to the correct section.

Example:
--- a.c ---

#include "a1.h"

#include "a2.h"

#include "a3.h"

--- a1.h ---

#pragma section @@DATA DAT1

int a;

#pragma section @@DATA DAT2

--- a2.h ---

#pragma section @@DATA DAT3

int b;

#pragma section @@DATA DAT4

--- a3.h ---

#pragma section @@DATA DAT5

extern int a; /* same when int a; */

#pragma section @@DATA DAT6

[Workaround]

Do not use variables with the same name in multiple files when using #pragma section.

ZBG-CD-07-0047 Attachment 14/50

[Correction]

This issue has been corrected in V1.41.

No. 20 An invalid code is output if a logical OR or logical AND operation is performed between a

floating-point constant and integer-type constant.

[Description]

An invalid code is output if a logical OR or logical AND operation is performed between a floating-point

constant and integer-type constant.

Example:
void func()
{
 int rval;
 int cZero = 0;

 rval = 0.0F || cZero; /* invalid code in Windows version */
 rval = cZero || 0.0F; /* invalid code in UNIX version */
}

[Workaround]

Do not describe a floating-point constant for the logical OR or logical AND operation.

[Correction]

This issue has been corrected in V1.41.

No. 21 The initialization of an external variable declared with extern within a block does not result in an

error. In addition, the debugging information in the assembler source is incorrect.

[Description]

Since it is not compliant with the ANSI C language specifications, the initialization of an external

variable declared with extern within a block should produce an error, but the description does not result

in an error. The object defined as an external variable with initial value is interpreted and the code is

output by the compiler.

The debugging information in the object output by the compiler is correct, but the debugging

information in the assembler source is incorrect.

Example:
int i;

void f(void) {

 extern int i = 2;

}

[Workaround]
There is no workaround.

[Correction]

This issue will be corrected in V2.00.

ZBG-CD-07-0047 Attachment 15/50

No. 22 Binding a variable with the same name to a variable declared with extern in the block is

sometimes invalid.

[Description]

Binding a variable with the same name to a variable declared with extern in the block is invalid in either

of the following cases.

(1) When a variable declared with extern in a block and a variable declared with static after outside

the block have the same name

Since no error occurs and there is no binding, an invalid code is output when this variable is

referred to.

Example:
void f(void) {

 extern int i;

 i = 1; /* Invalid code output */

}

 static int i;

(2) When a variable declared with extern in a block and a variable not declared with static outside the

block after a variable declared with extern have the same name

There is no binding, and an invalid code is output.

Example:
void f(void) {

 extern int i;

 i = 1; /* Invalid code output */

}

 int i;

(3) When a variable declared with extern in a block and a variable not declared with extern outside

the block before a variable declared with extern have the same name, and an automatic variable

declared in a block containing the block with the variable declared with extern has the same name

The variable outside the block and the variable declared with extern in the block are not bound,

and an invalid code is output.

Example:
int i = 1;

void f(void) {

 int i;

 {

 extern int i;

 i = 1; /* Invalid code output */

 }

 }

ZBG-CD-07-0047 Attachment 16/50

(4) A variable declared with extern in a block and a variable declared with extern in another block

have the same name

There is no binding, and an invalid code is output.

Example:
void f1(void) {

 extern int i;

 i = 2;

}

void f2(void){

 extern int i;

 i = 3;

}

[Workaround]
There is no workaround.

[Correction]

Regard this issue as a usage restriction.

No. 23 If a type defined by typedef (typedef name) is used in a function prototype declaration or a

declaration using a const or volatile type modifier, the typedef expansion is invalid, and an error

results.

[Description]

If a type defined by typedef (typedef name) is used in a function prototype declaration or a declaration

using a const or volatile type modifier, the typedef expansion is invalid, and an error results.

Example 1:
typedef int FTYPE();

FTYPE func;

int func(void); /* F713 Redefined 'func' */

Example 2:
typedef int VTYPE[2];

typedef int *VPTYPE[3];

const VTYPE *a;

const int (*a)[2]; /* F713 Redefined 'a' */

volatile VPTYPE b[2];

volatile int *volatile b[2][3]; /* F713 Redefined 'b' */

[Workaround]

There is no workaround.

[Correction]

This issue will be corrected in V2.00.

ZBG-CD-07-0047 Attachment 17/50

No. 24 Sometimes a multidimensional array with an undefined size does not operate properly.

[Description]

Sometimes a multidimensional array with an undefined size does not operate properly.

Example 1:
char c[][3]={{1},2,3,4,5}; /* Invalid code */

Example 2:
char c[][2][3]={"ab","cd","ef"}; /* Error (F756) */

[Workaround]

Define the size of the multidimensional array.

[Correction]

Regard this issue as a usage restriction.

No. 25 In a function returning the address of a function with arguments, those arguments cannot be

referred to. There is no error when referred to, but invalid code is output.

[Description]

In a function returning the address of a function with arguments, those arguments cannot be referred

to. There is no error when referred to, but invalid code is output.

Example:
char *c;

int *i;

void (*f1(int *))(char *);

void (*f2(void))(char *);

void (*f3(int *))(void);

void main() {

 (*f1(i))(c); /* Correct description (W510) */

 (*f1(i))(i); /* Incorrect description */

 (*f2())(c); /* Correct description (W509) */

 (*f2())(); /* Incorrect description (W509) */

 (*f3(i))(); /* Correct description (W509) */

 (*f3(i))(i); /* Incorrect description */

}

W509 or W510 is output for a correct description. Nothing is output for a description that should

produce a warning. However, the output code is normal.

void (*f4())(int p) {

 p++; /* Incorrect description */

}

An error is not output for a description that should cause an error. An invalid code is output.

[Workaround]

There is no workaround.

[Correction]

This issue will be corrected in V2.00.

ZBG-CD-07-0047 Attachment 18/50

No. 26 The signed type bit field is handled as an unsigned bit field.

[Description]

The signed type bit field is handled as an unsigned bit field.

[Workaround]

There is no workaround.

[Correction]

Regard this issue as a usage restriction.

No. 27 An invalid code is output as a result of a simple assignment operation in which the left-side and

right-side operands are cast to the pointer for a structure, union, or array.

[Description]

An invalid code is output when the following four conditions are satisfied.

(1) Simple assignment operation

(2) The left-side and right-side operands are both indirection reference data that uses a structure,

union, array, or pointer

(3) The left-side and right-side operands both reference the address of a symbol.

(4) 4-byte data (long, float, double, or long double type) is the target of the operation.

Example:
typedef union {

 unsigned long l;

} uni;

unsigned int a[10], b[10];

void func(void)

{

 ((uni*)(&b)) -> l = ((uni*)(&a)) -> l;

}

[Workaround]

Modify the program so that the operation is processed using a temporary variable.

Example 1:
 uni *tmp1, *tmp2;

 tmp1 = (uni*)&a;

 tmp2 = (uni*)&b;

 tmp2->l = tmp1->l;

Example 2:
 long tmp3;

 tmp3 = ((uni*)(&a))->l;

 ((uni*)(&b))->l = tmp3;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

ZBG-CD-07-0047 Attachment 19/50

No. 28 An invalid code may be output as a result of the memcpy function when #pragma inline is

specified.

[Description]

An invalid code may be output when the following three conditions are satisfied.

(1) #pragma inline is specified.

(2) A memcpy function is used.

(3) The third argument of the memcpy function in (2) is not a constant (when the third argument

uses the HL register)

Example:
#pragma inline

int s[100];

void func(void)

{

 int *t;

 int u;

 memcpy(s, t, u);

}

[Workaround]

Implement any of the following workarounds.

(1) Do not specify #pragma inline when the memcpy function is used.

(2) If #pragma inline is specified, describe a constant for the third argument of the memcpy function.

[Correction]

This issue will be corrected in V2.00.

No. 29 An invalid code is output as a result of an operation that includes signed char type operator and

constant values.

[Description]

An invalid code may be output if at least one of the conditions (1) to (5) is satisfied when the -QC1

option is specified, or if condition (6) is satisfied when the -QC1 or -QC2 option is specified.

<Conditions>

(1) If a right-shift operator “>>” is used, a left operand is a constant ranging from 128 to 255, and a

signed char type operand is used on the right side.

(2) If a right-shift operator “/”, “%”, “<”, “<=”, “>”, “>=”, “/=”, or “%=” is used, either left or right operand

is a constant ranging from 128 to 255, and a signed char type operand is used on the other side.

(3) If a binary operator operation is performed, in which either a left or right operand is a constant

ranging from 128 to 255 and a signed char type operand is used on the opposite side, and

obtained the result is converted into a type that is longer than 2 bytes.

(4) If a binary operator operation is performed, in which either a left or right operand is a constant

ranging from 128 to 255 and a signed char type operand is used on the opposite side, and the

obtained result is used as a left operand, for the right-shift operator “>>” with a signed char type

operand as the right operand.

ZBG-CD-07-0047 Attachment 20/50

(5) If a binary operator operation is performed, in which either a left or right operand is a constant

ranging from 128 to 255 and a signed char type operand is used on the opposite side, and the

obtained result is used as an operand on a side, for the operator “/”, “%”, “<”, “<=”, “>”, “>=”, “/=”,

or “%=” whose opposite-side operand is a signed char type operand.

(6) If a binary operator operation is performed, in which either a left or right operand is a constant that

uses at least one of the operators “<<”, “>>”, “&”, “^”, or “|”, and the constant ranges from −128 to

255, the obtained result ranges from −128 to −1, and the type of the opposite-side operand is

longer than 2 bytes.

Example 1:
 signed char a;

 if(a < 179/2){b++;}

Example 2:
 int i, j;

 i = j & (-127 | 4);

[Workaround]

Cast the relevant constant as a signed int type.

Example 1:
 if(a < (signed int)179/2){b++;}

Example 2:
 i = j & ((signed int)-127 | 4);;

[Correction]

This restriction will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 30 An invalid code may be output as a result of an operation for a (signed) int type and an unsigned

short type.

[Description]

When either of the following conditions is satisfied, a signed operation is performed for an unsigned

operation, which may cause an invalid operation result.

Condition 1: In a relational operation (<, >, <=, or >=), division operation (/), remainder operation (%),

or compound assignment operation (%= or /=), one side is the (signed) int type, and the

other side is the unsigned short type.

Example 1 for condition 1:
unsigned short us1, us2;

void func1()

{

 us1 /= 0x5555;

 us2 %= 0x5555;

}

ZBG-CD-07-0047 Attachment 21/50

Example 2 for condition 1:
unsigned short us1, us2;

signed int si1;

void func2()

{

 us2 = us1 / si1;

}

Example 3 for condition 1:
int si, x;

unsigned short us;

void func3()

{

 if (si > us) x++;

}

Condition 2: In a compound assignment operation (%= or /=) or binary operation, one side is the

(signed) int type, and the other side is the unsigned short type, and the type of the

operation result is converted into the type with a width of 2 bytes or longer.

Example for condition 2:
long l;

unsigned short us;

signed int si;

void func4()

{

 l = us + si;

}

[Workaround]

Modify an unsigned short type to an unsigned int type.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 31 Debug information is output to an invalid position when a conditional expression is followed by a

simple assignment expression.

[Description]

When a static 1-byte variable that cannot be assigned to the saddr area is referred to by a conditional

expression and a constant is assigned to the same 1-byte variable in the simple assignment

expression immediately after the conditional expression, debug information is output to an invalid

position. This does not affect the output code itself.

ZBG-CD-07-0047 Attachment 22/50

Example:

C Source Description Corresponding Output

Assembler

if(TEST >= 10)

{

 TEST = 0;

}

 movw de,#_TEST

 mov a,[de]

 cmp a,#0AH ; 10

 bc $?L0003 ;(1)

 callt [@@clra0]

 mov [de],a

 br $?L0003

A compare instruction is
output to the location for an
assignment statement.

A break occurs at (1) in the above program even if the breakpoint has been set to

the position of TEST = 0; using the debugger. That is, the break does not occur

when a conditional expression of an if statement results in True, but occurs at the

conditional expression.

[Workaround]

Set a breakpoint to a relevant location in the assembler code, in the mixed display in the Source

window of the debugger.

[Correction]

This issue will be corrected in V2.00.

No. 32 An invalid code is output after the STOP and HALT functions

[Description]

When an object (*.rel) is output from the CC78K0S while the STOP and HALT functions of the CPU

control instruction have been described, the following unnecessary code will be output next to the

above functions.

• In the case of a STOP function

 ROR A,1

• In the case of a HALT function

 ROL A,1

[Workaround]

Specify the -s or -sa option, output the assembler source file (*.asm), then assemble the files in the

RA78K0S to create an object.

[Correction]

This issue will be corrected in V2.00.

ZBG-CD-07-0047 Attachment 23/50

No. 33 Characters are garbled in the Compiler Options dialog box.

[Description]

The characters in the following message dialog box are garbled.

This dialog box is output if a compiler option that is applied to overall files is set while setting file-

specific options in the Compiler Options dialog box of PM plus.

[Workaround]

Set compiler options that are applied to overall files then set file-specific options.

[Correction]

This issue will be corrected in V2.00.

No. 34 Stack information of the cprep2 function is invalid.

[Description]

In function information output by the compiler, usually the amount of stacks consumed by a run-time

library is added to the stack information of a function that includes the run-time library.

If the program includes the cprep2 function, however, another 2 bytes are excessively added.

[Workaround]

There is no workaround.

If the program includes the cprep2 function, subtract 2 bytes from the amount of stacks consumed.

[Correction]

This issue will be corrected in V2.00.

No. 35 W503 is output when the array name of an automatic variable is referred to.

[Description]

W503 is output when the array name of an automatic variable without initialization is referred to.

 W503 Possible use of ‘variable-name’ before definition

Note:

“Initialization” means a declaration such as int a[2]={0,0};. It does not include assignment

expressions such as a[0] = 0; a[1] = 0;.

An “array name” is 'a' in int a[2]. It does not include a[0], a[1], nor &a[0].

ZBG-CD-07-0047 Attachment 24/50

Example:
void func(void)

{

 int a[2];

 int *b;

 a[0] = 0;

 a[1] = 0;

 b = a; /* W503 is output to this line */

}

[Workaround]

When W503 is output, check the relevant location. Ignore the message if initialization has been

performed in the statement.

[Correction]

Regard this issue as a usage restriction.

No. 36 The initial value becomes invalid if a static variable is initialized with the floating constant.

[Description]

The initial value becomes invalid if a variable other than the ones below is initialized with the floating

constant.

• long/unsigned long/floating type variable

• long/unsigned long/floating type member of structure/union

• long/unsigned long/floating type element of array

Example 1: signed char a1[3] = {1.0*100};

Example 2: #define VAR 1.0*100

 signed char frame02 = VAR;

[Workaround]

Implement either of the following workarounds.

(1) Initialize the static variable with the integer constant.

Describe as follows for the above example 1.
signed char a1[3] = {1};

(2) Cast the relevant floating constant as an integer constant type.

Describe as follows for the above example 1.
signed char a1[3] = {(signed char)(1.0)};

Describe as follows for the above example 2.
#define VAR 1.0

signed char frame02 = (signed char)(VAR);

ZBG-CD-07-0047 Attachment 25/50

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 37 An invalid code is output if a function pointer with an asterisk (*) is referred to in a code other

than a function call.

[Description]

An invalid code is output if a function pointer with an asterisk (*) is referred to in a code other than a

function call.

Example:
void (*fp)();

int x;

void func()

{

 if (*fp) x++;

}

[Workaround]

Do not append an asterisk (*) to a function pointer.

Example:
if (*fp) x++;

↓
if (fp) x++;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 38 When the -QR option is specified, an sreg variable may be redundantly allocated to the saddr

area that is used by the compiler.

[Description]

When the -QR option is specified, an sreg variable may be redundantly allocated to the saddr area that

is used by the compiler.

Example:
#pragma interrupt INTP0 inter

__boolean b1;

void func()

{

 b1 = 1;

}

void inter()

{ func();

}

ZBG-CD-07-0047 Attachment 26/50

--- Another file ---

__sreg char sc[152];

[Workaround]

Do not specify the -QR option.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 39 An invalid code may be output if the number of bits shifted by a shift operator (<<, >>, <<=, or

>>=) is a constant that is 256 or larger.

[Description]

An invalid code may be output if the number of bits shifted by a shift operator (<<, >>, <<=, or >>=) is a

constant that is 256 or larger.

Example:
int i1, i2;

char c1, c2;

void func()

{

 i1 = i2 << 257;

 i2 <<= 257;

 c1 = c2 << 257;

 c2 <<= 257;

}

[Workaround]

Match the number of shifted bits and the data width.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 40 An invalid code may be output if the constant 0xffff or 0xfffe is added to or subtracted from a

long or unsigned long type variable.

[Description]

An invalid code may be output if the constant 0xffff or 0xfffe is added to or subtracted from a long or

unsigned long type variable.

Example:
unsigned long l1, l2;

void func()

{

l1 = l2 + 0xffff;

}

ZBG-CD-07-0047 Attachment 27/50

[Workaround]

Insert a temporary variable as follows.
long ltmp = 0xffff;

l1 = l2 + ltmp;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 41 An error is output if a floating point number starting with 0e or 0E is described.

[Description]

An error F312 is output if a floating point number starting with 0e or 0E is described.

Example:
float f1;

void func()

{

f1 = 0e0;

}

[Workaround]

Describe 0 or 0.0 at the beginning of a floating point number.

[Correction]

This issue will be corrected in V2.00.

No. 42 An invalid code may be output as the operation result for one side of a binary operation.

[Description]

When any of the following three conditions is satisfied, the result of a logical or conditional operation

that has been saved may not be restored normally, which results in an invalid code being output.

Condition 1: When the following four conditions are satisfied.

(1) The code includes a binary operation.

(2) One operand of the binary operation that is described in (1) refers to the operation result of a

logical operation (&& or ||) or conditional operation (?:).

(3) The operation result of the other operand of the binary operation that is described in (1) remains

in a register.

(4) Only the leaf function is used in a normal model (for the conditional operations case).

Example for condition 1:
int func1(), func2();

int x, i;

void func()

{

if (func1() == (i && func2())) x++;

} /* (3) (1) (2) Corresponding to the above number */

ZBG-CD-07-0047 Attachment 28/50

Condition 2: When the following three conditions are satisfied.

(1) The code includes a binary operation.

(2) One operand of the binary operation that is described in (1) refers to the operation result of a

logical operation (&& or ||).

(3) The operation result of the other operand of the binary operation that is described in (1) remains

in _@RTARGx (argument in the run-time library).

Example for condition 2:
float f1, f2;

long l;

int x;

void func()

{

if (++f1 == (l && f2)) x++;

} /* (3) (1) (2) Corresponding to the above number */

Condition 3: When the following three conditions are satisfied.

(1) The code includes a binary operation.

(2) One operand of the binary operation that is described in (1) refers to the operation result of a

compound assignment operation.

(3) The operation result of the other operand of the binary operation that is described in (1) remains

in a register.

Example for condition 3:
int ifunc(), i;

void func()

{

int *ip1, *ip2;

i = *ip1 == (*ip2 += ifunc());

} /* (3) (1) (2) Corresponding to the above number */

[Workaround]

Implement the corresponding workaround out of the following.

Workaround for condition 1:

Insert a temporary variable for at least one operand of the binary operation.
int tmp;

tmp = func1(); /* Assign to a temporary variable */

if (tmp == (i && func2())) x++;

Workaround for condition 2:

Insert a temporary variable for at least one operand of the binary operation.
float tmp;

tmp = ++f1; /* Assign to a temporary variable */

if (tmp == (l && f2)) x++;

Workaround for condition 3:

Insert a temporary variable for at least one operand of the binary operation.
int tmp;

tmp = *ip1; /* Assign to a temporary variable */

ZBG-CD-07-0047 Attachment 29/50

i = tmp == (*ip2 += ifunc());

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 43 When both operands of a logical operation (&& or ||) are of the floating point type, and an

expression that causes a side effect such as an increment/decrement operation or a function

call is described as the second operand, the compare order becomes invalid.

[Description]

When both operands of a logical operation (&& or ||) are of the floating point type, and an expression

that causes a side effect such as an increment/decrement operation or a function call is described as

the second operand, the compare order becomes invalid.

Example:
int x;

float f1, f2;

void func()

{

 if (f1 || f2++) {

x = 1;

 }

 else {

 x = 2;

 }

}

Remark Illegal operation: f2++ is executed for “if(f1 || f2++)” regardless of whether f1 is true or false

Normal operation: f2++ is executed for “if(f1 || f2++)” only when f1 is false.

[Workaround]

Modify the source code as follows.
if (f1) {

x = 1;

}

else if (f2++) {

x = 1;

}

else {

x = 2;

}

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

ZBG-CD-07-0047 Attachment 30/50

No. 44 An error is output if an expression starting with a unary plus or unary minus operator, or an

expression in which operators with the same priority are described in succession, is described

as a #if constant expression.

[Description]

The F501 error is output if an expression starting with a unary plus or unary minus operator, or an

expression in which operators with the same priority are described in succession, is described as a #if

constant expression.

Example:
#if !~0

int i;

#endif

#if -1

int j;

#endif

[Workaround]

Use parentheses as follows.
#if !~0 #if -1

 ↓ ↓
#if !(~0) #if (-1)

[Correction]

This issue will be corrected in V2.00.

No. 45 If one operand of a relational operation is a constant that cannot be expressed by the signed

long type, the compare result may be invalid.

[Description]

An invalid code may be output if one operand of a relational operation is a constant that cannot be

expressed by the signed long type, and either of the following conditions is satisfied.

Condition 1: The other operand can be handled as a constant, and can be expressed by the signed

long type.

Example for condition 1:
int x1,x2,x3,x4,x5,x6, i;

void func1()

{

 x1 = (i << 31) < 0x80000001;

 x2 = (i * 0) > 0x90000020;

 x3 = (i % 1) <= 0xa0000300;

 x4 = (i & 0) >= 0xb0004000;

 x5 = (i | 0xffff) < 0xc0050000;

 x6 = (i++, 300) > 0xffffffff;

}

ZBG-CD-07-0047 Attachment 31/50

Condition 2: One operand is a constant that is 0xffffff80 or larger, and the other operand is of the

boolean, bit, or signed char type.

Example for condition 2:
int x1, x2, x3, i;

char cfunc(), c1, c2;

void func2()

{

 x1 = c1 < 0xffffff80;

 x2 = cfunc() > 0xffffff91;

 x3 = (c1 + c2) <= 0xffffffa2;

}

[Workaround]

Workaround for condition 1:

Describe an expression that can be handled as constants, using constants.
x1 = (i << 31) < 0x80000001; → x1 = 0 < 0x80000001;

x2 = (i * 0) > 0x90000020; → x2 = 0 > 0x90000020;

x3 = (i % 1) <= 0xa0000300; → x3 = 0 <= 0xa0000300;

x4 = (i & 0) >= 0xb0004000; → x4 = 0 >= 0xb0004000;

x5 = (i | 0xffff) < 0xc0050000; → x5 = 0xffff < 0xc0050000;

x6 = (i++, 300) > 0xffffffff; → i++;

 x6 = 300 > 0xd0600000;

Workaround for condition 2:

Cast a boolean, bit, or signed char type expression to the unsigned long type.
x1 = c1 < 0xffffff80; → x1 = (unsigned long)c1 < 0xffffff80;

x2 = cfunc() > 0xffffff91; x2 = (unsigned long)cfunc() >

0xffffff91;

x3 = (c1 + c2) <= 0xffffffa2; x3 = (unsigned long)(c1 + c2) <=

0xffffffa2;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 46 The operation result is not output as the int type but as the operand’s type, depending on the

types of the operands in logical negation operations, relational operations, or equality operations.

[Description]

Either of the following operations occurs.

(1) When the type of a logical negation operation, relational operation, or equality operation is any

of the following, the operation result is not output as the int type but as the operand’s type.

- unsigned int, unsigned short, pointer (2-byte pointer), array

- unsigned char with -QC specified

ZBG-CD-07-0047 Attachment 32/50

(2) When the right operand of the logical operator && is the floating point constant “±0.0”, the

operation result does not become the int type, but becomes the floating point type instead

(excluding cases where the static model is used).

Example:
unsigned int ui1, ui2;

int xi1, xi2, xi3, i1;

void func()

{

xi1 = !ui1 > i1;

xi2 = (ui1 == ui2) > i1;

xi3 = (ui1 && 0.0) > i1;

}

[Workaround]

(1) Cast the result of a logical negation operation, relational operation, or equality operation with the

int type.
xi1 = !ui1 > i1;

xi2 = (ui1 == ui2) > i1;

 ↓
xi1 = (int)!ui1 > i1;

xi2 = (int)(ui1 == ui2) > i1;

(2) Do not use the floating point constant “±0.0” as the right operand of the logical operator &&.
xi3 = (ui1 && 0.0) > i1;

 ↓
xi3 = (ui1 && 0) > i1;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 47 An error is output when an increment/decrement expression of the floating point type is

described and the operand is an indirect reference expression using a pointer.

[Description]

The F105 error may be output when an increment/decrement expression of the floating point type is

described, while the operation result of 4-byte data is held in _@RTARG0 and _@RTARG4, and the

operand is an indirect reference expression using a pointer.

Example:
float *pf1;

int x;

void func()

{

 long l1, l2, l3, l4;

 x = (l1 & l2) < ((l3 - l4) + (*pf1)++);

}

ZBG-CD-07-0047 Attachment 33/50

[Workaround]

Insert a temporary variable as follows.
float tmp;

tmp = (*pf1)++;

x = (l1 & l2) < ((l3 - l4) + tmp);

[Correction]

This issue will be corrected in V2.00.

No. 48 An invalid code is output if a char/unsigned char type expression is described as a return

statement for a function that returns a pointer.

[Description]

An invalid code is output if a char/unsigned char type expression is described as a return statement for

a function that returns a pointer.

Example:
struct t {

char c1;

char c2;

char c3;

} st = { 0x40, 0x01, 0x00 };

char *func()

{

return st.c1;

}

[Workaround]

Explicitly cast the return statement.
return st.c1;

 ↓
return (char *)st.c1;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 49 An error may be output if the operation result of a long type run-time library is cast to a char or

unsigned char type and a relational or equality operation is performed with a constant that can

be expressed by the char or unsigned char type.

[Description]

The F101 or F104 error may be output if the operation result of a long type run-time library is cast to a

char or unsigned char type and a relational or equality operation is performed with a constant that can

be expressed by the char or unsigned char type.

This bug occurs when an operand is an unsigned char type (for a relational operation) or a char or

unsigned char type and the constant is not 0 (for an equality operation).

ZBG-CD-07-0047 Attachment 34/50

Example:
long l1;

int x;

void func()

{

 if ((char)(l1 & 1) == 1) x++;

}

[Workaround]

Insert a temporary variable as follows.
char tmp;

tmp = (char)(l1 & 1);

if (tmp ==1) x++;

[Correction]

This issue will be corrected in V2.00.

No. 50 When initializing an array whose size is not defined when elements in the initializer braces are

enclosed inconsistently, the size of the secured area becomes invalid.

[Description]

When initializing an array whose size is not defined when elements in the initializer braces are

enclosed inconsistently, the size of the secured area becomes invalid.

Example:
struct t {

int a;

int b;

} x[] = {1, 2, {3, 4}};

[Workaround]

Implement either of the following workarounds.

(1) Unify the brace enclosing method.
struct t {

int a;

int b;

} x[] = {{1, 2}, {3, 4}};

(2) Define the size of the array.
struct t {

int a;

int b;

} x[2] = {1, 2, {3, 4}};

[Correction]

Regard this issue as a usage restriction.

ZBG-CD-07-0047 Attachment 35/50

No. 51 When a character string conversion function in the standard library is executed, the error

handling operation becomes invalid.

[Description]

When a character string conversion function in the standard library is executed, the error handling

operation becomes invalid.

(1) When conversion cannot be performed using the strtod function

 If a character string that cannot be converted is specified, the position of p becomes invalid.

Example 1:
#include <stdlib.h>

double d;

char *p;

static char *string = " XXX";

int x;

void func()

{

 d = strtod(string, &p);

 if (string == p) x++;

}

Remark Illegal operation: The position of p is the top of "XXX"

 Normal operation: The position of p is the top of " XXX"

(2) When conversion cannot be performed using the strtol function, errno is not set.

 If conversion cannot be performed as shown below, errno is not set to the ERANGE macro.

Example 2:
#include <stdlib.h>

#include <errno.h>

long l;

static char *string1 = "99999999999";

static char *string2 = "-99999999999";

int x;

void func()

{

errno = 0;

l = strtol(string1, NULL, 0);

if (errno == ERANGE) x++;

errno = 0;

l = strtol(string2, NULL, 0);

if (errno == ERANGE) x++;

}

ZBG-CD-07-0047 Attachment 36/50

(3) When the strtoul function is used and the character string to be converted starts with "+", the

conversion is not performed normally.

 If a character string that cannot be converted is specified, errno is not set to the ERANGE macro.

Example 3:
#include <stdlib.h>

#include <errno.h>

unsigned long ul;

char *p;

static char *string = "99999999999";

int x;

void func()

{

ul = strtoul(" +12", &p, 10);

if (ul == 12L) x++;

errno = 0;

ul = strtoul(string, NULL, 0);

if (errno == ERANGE) x++;

}

(4) When the strncpy function is used and the length of the copy source character string is less than

the number specified by the third argument, null characters are not copied for the insufficient

length.

Example 4:
#include <string.h>

char string1[] = "aaaaaaaaaa";

char string2[] = "bbbb\0bbbb";

void func()

{

 strncpy(string1, string2, 8);

}

Remark Illegal operation: “bbbb\0aaaaa”

 Normal operation: If the length is less than the specified number of characters,

 null characters are used as filler and”bbbb\0\0\0\0aa” is returned.

[Workaround]

There is no workaround.

[Correction]

This issue will be corrected in V2.00.

No. 52 The operation becomes invalid when output conversion processing is performed for an I/O

function in the standard library.

[Description]

When output conversion processing is performed for printf, sprintf, vprintf, or vsprintf, the operation

becomes invalid under the following conditions.

ZBG-CD-07-0047 Attachment 37/50

(1) When a precision is specified as ".2" for the conversion specifier "d", "i", "o", "u", or "X", the 0

flag is not ignored.

Example:
#include <stdio.h>

void func()

{

 printf("%04.2d\n", 77);

}

Remark Illegal operation: “0077”

 Normal operation: “ 77”

(2) For the conversion specifier "g,G", the result is “specified precision + 1”.

 In the following case, "12" is not output as the conversion result.

Example:
#include <stdio.h>

void func()

{

 printf("%.2g", 12.3456789);

}

Remark Illegal operation: “12.3”

 Normal operation: “12”

[Workaround]

There is no workaround.

[Correction]

Regard this issue as a usage restriction.

No. 53 The size of the minimum value −32768 of the int/short type becomes 4.

[Description]

The size of the minimum value −32768 of the int/short type becomes 4.

Example:
int x;

void func()

{

 x = sizeof(-32768);

}

Remark Illegal operation: The value of x becomes 4.

 Normal operation: The value of x becomes 2.

[Workaround]

Describe as “−32767−1”.

[Correction]

Regard this issue as a usage restriction.

ZBG-CD-07-0047 Attachment 38/50

No. 54 An error is output, if a function name or a function pointer is described as the second and third

operands of a conditional operation, and then the function is called.

[Description]

The F307 error is output, if a function name or a function pointer is described as the second and third

operands of a conditional operation, and then the function is called.

Example:
void f1(), f2();

int x;

void func()

{

 (x ? f1 : f2)();

}

[Workaround]

Describe an if statement instead of the conditional operator.
(x ? f1 : f2)();

 ↓
if (x) {

 f1();

}

else {

 f2();

}

[Correction]

Regard this issue as a usage restriction.

No. 55 An error is output if an external pointer variable is initialized to a variable containing the operator

“->”.

[Description]

The F750 error is output if an external pointer variable is initialized to a variable containing the operator

“->”.

Example:
struct t {

 int i;

} b;

int *ip1 = &(&b)->i;

[Workaround]

Describe as follows.
int *ip1 = &(&b)->i;

 ↓
int *ip1 = &b.i;

[Correction]

This issue will be corrected in V2.00.

ZBG-CD-07-0047 Attachment 39/50

No. 56 An error is output because the parameter type and the type of the identifier in a function

definition do not match.

[Description]

Because argument promotion for the type of an identifier in a function definition is not performed, the

parameter type and the type of the identifier in the function definition do not match, thus causing the

F747 error.

Example:
int fn_char(int);

int fn_char(c)

char c;

{

 return 98;

}

[Workaround]

Match the parameter type and the type of the identifier in the function definition.

[Correction]

Regard this issue as a usage restriction.

No. 57 In an identifier list in a function definition, a parameter that is not declared is not handled as the

int type, and an error results.

[Description]

In an identifier list in a function definition, a parameter that is not declared is not handled as the int type,

thus causing the F706 error.

Example:
void func(x1, x2, f, x3, lp, fp)

int (*fp)();

long *lp;

float f;

{

 :
}

[Workaround]

Declare all parameters in a function definition.

[Correction]

Regard this issue as a usage restriction.

ZBG-CD-07-0047 Attachment 40/50

No. 58 The # operator cannot be expanded correctly.

[Description]

Expansion is not performed correctly under either of the following conditions.

Condition 1: ['"'] cannot be expanded correctly with a # operator, and an error results at compilation.

Example for condition 1:
#include <string.h>

#define str(a) (# a)

int x;

void func()

{

 if (strcmp(str('"'), "'\"'") == 0) x++;

}

Remark Illegal operation: An error is output at compilation.

 Normal operation: if (strcmp(("'\"'") , "'\"'") == 0) x++;

Condition 2: Macros that contain a # operator and a nested structure cannot be expanded correctly.

Example for condition 2:
#define str(a) #a

#define xstr(a) str(a)

#define EXP 1

char *p;

void func()

{

 p = xstr(12EEXP);

}

Remark Illegal operation: “p = ("12E1");”

 Normal operation: “p = ("12EEXP");”

[Workaround]

There is no workaround.

[Correction]

Regard this issue as a usage restriction.

No. 59 The initial value becomes invalid if an unsigned long type static variable is initialized to a floating

point constant that is 0x80000000 or larger.

[Description]

The initial value becomes invalid if an unsigned long type static variable is initialized to a floating point

constant that is 0x80000000 or larger.

Example:
unsigned long ul = 2200000000.0;

ZBG-CD-07-0047 Attachment 41/50

[Workaround]

Implement either of the following workarounds.

(1) Initialize the unsigned long type static variable to an integer constant.

unsigned long ul = 2200000000;

(2) Cast the floating point constant to an appropriate integer type.

unsigned long ul = (unsigned long) 2200000000.0;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 60 An invalid code may be output for an expression that includes a function call and a

structure/union.

[Description]

An invalid code may be output for an expression that includes a function call and a structure/union if

one of the following conditions is satisfied.

Condition 1: Either of the following two conditions is satisfied.

(1) An expression exists that contains a function call and a structure/union assignment

(2) A structure/union is used as an argument in function calling by a function pointer

Example for condition 1:
struct t {

char c[16];

} st1, st2;

int x, i, idx;

int ifunc();

void (*fp[3])();

void func()

{

x = ifunc() + (st1 = st2, i);

fp[idx](st1);

}

Condition 2: Either of the following two conditions is satisfied.

(1) Function calling by a function pointer occurs

(2) The first argument is a structure/union of three or four bytes and its value remains in a register

The F101 error is output when using an older function interface.

Example for condition 2:
void (*fp)();

struct {

char a;

char b;

char c;

char d;

} st1, st2;

void func()

ZBG-CD-07-0047 Attachment 42/50

{

fp(st1 = st2);

}

[Workaround]

Implement either of the following workarounds.

Workaround for condition 1:

(1) Do not describe a structure/union assignment in an expression that contains function calls.
x = ifunc() + (st1 = st2, i);

 ↓
st1 = st2;

x = ifunc() + i;

(2) When calling a function using a function pointer, use the structure/union pointer, instead of the

structure/union argument.
fp[idx](st1);

 ↓
struct t *sp1;

sp1 = &st1;

fp[idx](sp1);

Workaround for condition 2: Do not describe a structure/union assignment as the first argument of a

function call.
fp(st1 = st2);

 ↓
st1 = st2;

fp(st1);

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 61 An invalid code is output for the assignment expression “a = b binary operator c;”.

[Description]

An invalid code is output for the assignment expression “a = b binary operator c;” when the following

four conditions are satisfied.

(1) The binary operator in question is any of +, -, *, &, ^, |, or <<.

(2) a is the identifier, and b and c are identifiers or constants.

(3) Operand a is of the int, unsigned int, short, or unsigned short type.

(4) One of operands b and c is of the char or unsigned char type, and the other is of the long or

unsigned long type.

Example:
char c1=0x12, c2=0x56;

int i1=0x34, i2=0x78;

void func()

{

 /* (2) (1) Corresponding to the above numbers */

 i2 = c2 ^ 0x1ffff;

ZBG-CD-07-0047 Attachment 43/50

} /* (3) (4) */

[Workaround]

Cast the long or unsigned long type operand as the type of the assignment destination.
i2 = c2 ^ 0x1ffff;

 ↓
i2 = c2 ^ (int)0x1ffff;

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 62 An error is output if an array member element of a constant address structure is referred to by

using a dot operator (.).

[Description]

A F101 error is output if an array member element of a constant address structure is referred to by

using a dot operator (.).

Example:
struct st {

 char b[4];

} str;

char c;

void test(void)

{

 c = (*(struct st *)0x3E00).b[2];

}

[Workaround]

Use the arrow operator (->).
c = (*(struct st *)0x3E00).b[2];

 ↓
c = ((struct st *)0x3E00)->b[2];

[Correction]

This issue will be corrected in V2.00.

No. 63 An error is output for a function definition that has a certain pattern.

[Description]

An F705 error is output when the -QR option is specified in a normal model and a function that has

four arguments of 1-byte, 1-byte, 2-byte, and 2-byte width, listed in that order from the first argument,

satisfies either of the following conditions.

(1) The relevant function is the noauto function.

(2) Register declaration is applied to all arguments

(3) The -QV option is specified

ZBG-CD-07-0047 Attachment 44/50

Example: When -QRV option is specified
void f(char p1, char p2, int p3, int p4)

{

 :
}

[Workaround]

Change the order of declaration for the arguments so that 1-byte, 1-byte, 2-byte, and 2-byte width

arguments are not listed in that order from the first argument.

[Correction]

This issue will be corrected in V2.00.

No. 64 An integral constant expression that includes two or more binary operators, which use the result

of a binary operator causing an overflow, may be replaced with invalid values.

[Description]

An integral constant expression that includes two or more binary operators, which use the result of a

binary operator causing an overflow, may be replaced with invalid values.

Example:
long l1 = (10000 * 10000) / 10000;

long l2 = (30464 << 4) / 2;

long l3 = (30464 << 5) / 2;

long l4 = (65535U * 41200U) / 256L;

short s1 = (65535U * 41200U) / 100000;

void func()

{

l1 = (10000 * 10000) / 10000;

l2 = (30464 << 4) / 2;

l3 = (30464 << 5) / 2;

l4 = (65535U * 41200U) / 256L;

s1 = (65535U * 41200U) / 100000;

}

[Workaround]

Write constant expressions that do not include two or more binary operators.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

ZBG-CD-07-0047 Attachment 45/50

No. 65 An invalid code may be output as a result of an operation an including increment or decrement

operation.

[Description]

(1) An invalid code may be output if an operand of a binary operation includes an increment or

decrement operation for a bit field.

Example 1:
struct {

 int i : 9;

} *p;

int i;

int g(void);

void f(void)

{

 i = g() + p->i++;

}

(2) An invalid code may be output if a postfix increment/decrement operand is written as the left

operand in a comma operation while the operation result remains in a register.

Example 2:
unsigned char c0, c1, c2, c3, c4;

void func()

{

 c0 = (c1 + c2) + (c3++, c4);

}

[Workaround]

(1) Describe the expressions of an increment/decrement operation and a binary operation

separately.

(2) Describe the expressions of a post-increment/decrement operation and a comma operation

separately.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 66 The result of a sizeof operation for a function parameter with an array type may be invalid.

[Description]

The result of a seizeof operation for a function parameter with an array type may be invalid, or an error

F529 may be output.

Example:
int x;

void func1(short a[])

{

 x = sizeof(a); /* F529: Sizeof returns zero */

}

ZBG-CD-07-0047 Attachment 46/50

void func2(short b[10])

{

 x = sizeof(b);

}

[Workaround]

Modify the function parameter type to a function pointer.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 67 An invalid code may be output when there is a bit field where the bit width assigned to a saddr

area is from 2 bits to 7 bits, and the maximum constant value of the bit field is assigned to an

expression, the assignment destination being re-evaluated with the same expression.

[Description]

An invalid code may be output when there is a bit field where the bit width assigned to a saddr area is

from 2 bits to 7 bits, and the maximum constant value of the bit field is assigned to an expression, the

assignment destination being re-evaluated with the same expression.

Example:
__sreg struct {

 unsigned int b1 : 4;

 unsigned int b2 : 4;

} s;

void main(void)

{

 s.b2 = s.b1 = 0xf;

}

[Workaround]

Divide the assignment expression.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 68 An error F705 or invalid code may be output if a norec function which contains enum type

parameters is called.

[Description]

An error F705 is output when the -qr option is not been specified and if a norec function which contains

two enum type parameters is called. In addition, an invalid code may be output when the -qr option is

specified and if a norec function which contains two enum type parameters is called.

ZBG-CD-07-0047 Attachment 47/50

Example:
enum E {

 A = 256

};

__leaf int func(enum E e1, enum E e2)

{

 return e1 == e2;

}

int main(void)

{

 func(A, A);

 return 0;

}

[Workaround]

Modify an enum type to int type, and an enumeration constant to a macro, as shown below.

Example:
#define A 256

__leaf int func(int e1, int e2)

{

 return e1 == e2;

}

int main(void)

{

 func(A, A);

 return 0;

}

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

ZBG-CD-07-0047 Attachment 48/50

No. 69 No error occurs even if an identical function whose parameters include a different structure or

union type is declared multiple times.

[Description]

Error F747 is not output even if an identical function whose parameters include a different structure or

union type is declared multiple times.

Example:
struct st {

 int a;

} x;

struct st2 {

 char a;

} x2;

void func11(struct st a);

void func11(struct st2 a);

[Workaround]

Do not describe declaration of the same function multiple times.

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 70 An invalid code may be output when a pointer that points to a structure of 256 bytes or more is a

register variable.

[Description]

If a pointer that points to a structure of 256 bytes or more is assigned to a register, the register variable

value may be corrupted as a result of indirect reference to its member.

Example:
struct st1 {

 char buf[250];

 struct st2 {

 char buf[6];

 int i1;

 int i2;

} st2;

} st1;

int i1;

void func()

{

 register struct st1 *pst1 = &st1;

 i1 = pst1->st2.i1;

}

[Workaround]

Do not describe register declaration; in addition, disable the -qv option.

Alternatively, keep the structure size to 255 bytes or less.

ZBG-CD-07-0047 Attachment 49/50

[Correction]

This issue will be corrected in V2.00.

A tool used to check whether this restriction applies or not is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 71 Work areas used by the compiler are corrupted when static model option -sm and expansion

specification option -zm2 are specified.

[Description]

Work areas used by the compiler are corrupted if condition (a) or (b) is satisfied when static model

option -sm and expansion specification option -zm2 are specified.

This issue does not apply when the normal memory model is used.

(a) The function parameter includes any of the following.

• Address is referred to with an “&” operator

• Structure

• Union

(b) Any of the following is the auto variable.

• Address is referred to with an “&” operator

• Structure

• Union

• Array

Example for (b):
void func2(unsigned short *);

struct tag {

unsigned char a[2];

};

void func1()

{

unsigned char buf[4]; /* Array */

struct tag st; /* Structure */

unsigned short ss; /* Address referred to */

func2(&ss);

/* ... */

}

[Workaround]

(1) In case of (a), use the -zm1 option, instead of the -zm2 option.

 Modifying C source description does not resolve this issue.

(2) In case of (b), change the auto variable to an in-function static variable.

 Alternatively, use the -zm2 option, instead of the -zm1 option.
void func2(unsigned short *);

struct tag {

unsigned char a[2];

};

void func1()

ZBG-CD-07-0047 Attachment 50/50

{

static unsigned char buf[4]; /* Array */

static struct tag st; /* Structure */

static unsigned short ss; /* Address referred to */

func2(&ss);

/* ... */

}

[Correction]

This issue will be corrected in V2.00.

3. Cautions

None.

