Introduction

Certain plastic encapsulated Surface Mount Devices (SMDs) can be damaged if not handled properly during the solder reflow attachment process to Printed Circuit Boards (PCBs). The damage occurs as a result of internal package cracking (commonly referred to as popcorn cracking) and/or delamination between internal package interfaces (die surface and mold compound). This internal damage can lead to a number of possible failure modes, including broken bond wires and lifted ball bonds. If this damage reaches the exterior of the package, it may provide an entry pathway for external contaminants. Furthermore, separations in the die attach region can lead to increased electrical and thermal resistances, which may affect device performance in certain package styles where such a conduction path is required.

The root cause of this type of failure mechanism is the rapid heating of the moisture absorbed within the plastic encapsulant. All plastic packages absorb moisture. During typical solder reflow operations when SMDs are mounted onto a PCB, the entire PCB and device population are exposed to a rapid change in ambient temperature. Any absorbed moisture is quickly turned into superheated steam. This sudden change in vapor pressure can cause the package to swell. If the pressure exerted exceeds the flexural strength of the plastic mold compound, it is possible to crack the package (see Figure 1). Even if the package does not crack, interfacial delamination can occur.

The moisture sensitivity of a package can be influenced by the following factors:

- Internal dimensions and design of the lead frame
- External dimension of the package
- Physical properties of the die attach material and mold compound
- Die dimensions
- Type of passivation

The last two factors that can influence the moisture sensitivity of a SMD are the amount of absorbed moisture and the solder reflow temperature profile. When a moisture sensitive SMD is assembled, PCB manufacturers have control only over these last two factors.

The amount of moisture absorbed within a plastic package is dependent on four items:

- Physical properties of the mold compound
- Temperature
- Relative humidity of the ambient atmosphere
- Time duration at those conditions

The diffusion rate of moisture into the mold compound is temperature dependent. The higher the temperature, the faster the surrounding moisture will penetrate the mold compound. The absorption process will continue until the internal moisture concentration reaches an equilibrium with the ambient relative humidity. Thus, the higher the relative humidity, the greater the amount of absorbed moisture within the plastic package.

Moisture Sensitivity Classification

To establish common criteria for the classification of moisture sensitive SMD packages several industry specifications were drafted. The more widely accepted specifications include JEDEC STD22B, Test Method A112-A, and IPC-SM-786A. These have recently been combined into IPC/JEDEC J-STD-020 (Moisture/Reflow Sensitivity Classification for Plastic Integrated Circuit Surface Mount Devices). These specifications outline the test methods to classify the moisture sensitivity of a given SMD to one of eight different levels (see Table 1 on page 2).
Dry Pack

If a particular package style is determined to be moisture sensitive (Levels 2 through 6), then the product must be shipped in dry pack. The dry pack bag is a tough, moisture resistant bag. The moisture sensitive product is typically baked for 24 hours at +125°C. Following the bake the product is placed inside a dry pack bag along with predetermined amount of desiccant and a humidity sensitive indicator card. The bag is then sealed. A moisture sensitivity warning label is then affixed to the bag. The label will indicate the floor life after the bag is opened as well as the date the dry bag was sealed. The label will also contain information on product storage and rebaking.

PCB Assembly

When opening a dry pack bag with product, check two items:

- The seal date on the label
- The moisture indicator from within the bag.

If the bag seal date is beyond its expiration date or the humidity indicator card shows >20% RH, the product needs to be rebaked before reflow. If both the seal date and humidity indicator card are within the requirements, the product can be used. The solder reflow must be accomplished within the specified floor life shown on the warning label. Failure to do so may damage the product.

Rebaking of Moisture Sensitive Product

Moisture sensitive product that has been exposed to the factory ambient past its intended floor life, or when the dry pack bag has been opened and the humidity indicator card shows >20% RH needs to be baked dry again before reflowing. The baking process for dry packing is 24 hours at +125°C. Shipping trays can typically withstand this temperature (check with product supplier to be sure). However, shipping tubes and tape and reel cannot.

TABLE 1. MOISTURE SENSITIVITY LEVELS

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>CONDITIONS</th>
<th>FLOOR LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>≤30°C/85%RH</td>
<td>Unlimited</td>
</tr>
<tr>
<td>2</td>
<td>≤30°C/60%RH</td>
<td>1 Year</td>
</tr>
<tr>
<td>2A</td>
<td>≤30°C/60%RH</td>
<td>4 Weeks</td>
</tr>
<tr>
<td>3</td>
<td>≤30°C/60%RH</td>
<td>168 Hours</td>
</tr>
<tr>
<td>4</td>
<td>≤30°C/60%RH</td>
<td>72 Hours</td>
</tr>
<tr>
<td>5</td>
<td>≤30°C/60%RH</td>
<td>48 Hours</td>
</tr>
<tr>
<td>5A</td>
<td>≤30°C/60%RH</td>
<td>24 Hours</td>
</tr>
<tr>
<td>6</td>
<td>≤30°C/60%RH</td>
<td>Time on label</td>
</tr>
</tbody>
</table>

NOTES:

1. Time after removing from dry pack in a ≤30°C/60% RH ambient.
2. Dry pack not required. Maximum conditions 30°C/85% RH.

Unused product can be stored in a cabinet with a controlled ambient ≤20% RH when not in use. When the product is returned to production, any previous floor exposure shall be deducted from the floor life indicated on the warning label. When a variety of moisture sensitive SMDs are being used, it is extremely important to maintain the sensitivity level and total floor life exposure of each device. The floor life shown on the label is for a maximum factory ambient of +30°C/60% RH. Derating calculations have been published for use of moisture sensitive SMDs in other temperature/humidity factory conditions [1].

As mentioned before, the ramp rates and maximum temperatures have a direct effect on moisture sensitivity. Moisture sensitivity classification is performed at a maximum temperature of either +220°C to +235°C or +245°C to +260°C, depending on the package dimensions. Higher reflow temperatures may increase the moisture sensitivity of a particular device type because of the associated increase in the vapor pressure of the steam. Other precautions should be observed in instances where reflow is being performed with radiant heating, such as with IR reflow. Heating is not uniform across the PCB. The outer edges of the board tend to get hotter. Smaller packages with less thermal mass can achieve higher temperatures than larger packages in a mixed PCB design. Profiling of IR reflow systems should be performed to account for these differences.

Several manufacturers employ wave solder for soldering SMDs to PCBs. Typically, this soldering is performed at +260°C. This method and temperature range is not recognized by the IPC/JEDEC J-STD-020, so SMD packages have not been characterized for moisture sensitivity under these conditions. If a user is employing this method, check with Renesas before use.
Two alternatives exist:

1. Product in plastic tubes can be transferred to metal tubes or placed on metal trays for the normal +125°C bake out procedure. Observe ESD precautions.

2. Tubes and tape and reel can also be baked at +40°C +5°C/-0°C at <5% RH for 192 hours or longer.

Following the bake out procedure the product needs to be processed through reflow within its assigned floor life or it can be returned to a storage cabinet with <20% RH for use at a later time. In the case of extremely moisture sensitive components (Level 6) it is advisable to process through reflow immediately after the bake.

Distributors

Dry packed product should be turned on a First In/First Out (FIFO) basis to ensure the dry pack does not go beyond its expiration date. Preferably, factory dry pack should not be opened. However, if an order requires opening a dry pack bag for part of its content, the bag should be resealed immediately and the removed contents transferred to a new bag. The new dry pack bag shall meet Class I barrier requirements per Federal Test Method Standard 101, Method 3030. Reseal the new dry pack within 30 minutes maximum and follow the requirements of EIA-583 (Packaging Material Standards for Moisture Sensitive Items) and/or IPC/JEDEC J-STD-033 (Standard for Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices). A duplicate of the same moisture sensitive warning label on the original dry pack bag shall be affixed to the new bag. If the product is exposed for greater than 30 minutes, rebaking should be performed.

References
