
 

R20UT2645EJ0110  Rev.1.10  Page 1 of 35 
Mar 15, 2024  

RL78 Family 
EEPROM Emulation Library Pack02 Package Ver.3.00 
Release Note 

Thank you for using the RL78 Family EEPROM Emulation Library Pack02 Package Ver.3.00. 
This document contains precautionary and other notes regarding use of the EEPROM Emulation Library 
Pack02 Package Ver.3.00. Please read this document before using the library. 

Contents 

Chapter 1 Target Product ..................................................................................................... 2 

Chapter 2 User's Manual ...................................................................................................... 2 

Chapter 3 Revisions ............................................................................................................. 2 

Chapter 4 Supported Tools .................................................................................................. 3 

Chapter 5 Installation ........................................................................................................... 3 
5.1 Installation ................................................................................................................................... 3 
5.2 Uninstallation .............................................................................................................................. 3 
5.3 File Organization ......................................................................................................................... 4 

Chapter 6 How to Build a Program ...................................................................................... 5 
6.1 Software to be Used .................................................................................................................... 5 
6.2 Building Using CS+ (Formerly CubeSuite+) ............................................................................. 5 

6.2.1 Building a C Program ........................................................................................................... 5 
6.2.2 Building an Assembly-Language Program ........................................................................ 8 

6.3 Building Using e2 studio ........................................................................................................... 11 
6.3.1 Creating a Project ............................................................................................................... 11 
6.3.2 Building a C Program ......................................................................................................... 13 
6.3.3 Building an Assembly-Language Program (only when the CC-RL Compiler is used) 18 

6.4 Notes at Build ............................................................................................................................ 20 
6.4.1 When the CA78K0R Compiler is Used .............................................................................. 20 
6.4.2 When the CC-RL Compiler is Used ................................................................................... 21 

Chapter 7 How to Debug a Program ................................................................................. 22 
7.1 Notes at Debug .......................................................................................................................... 22 

Chapter 8 Sample Program ................................................................................................ 23 
8.1 Initial Settings of the Sample Program ................................................................................... 23 
8.2 Settings of Option Byte and On-Chip Debugging.................................................................. 24 
8.3 Defining the On-Chip RAM Area .............................................................................................. 26 

8.3.1 When the CA78K0R Compiler is Used .............................................................................. 26 
8.3.2 When the CC-RL Compiler is Used ................................................................................... 28 
8.3.3 When the LLVM Compiler is Used .................................................................................... 34  

R20UT2645EJ0110 
Rev.1.10 

Mar 15, 2024 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 2 of 35 
Mar 15, 2024  

 

Chapter 1 Target Product 

EEPROM Emulation Library Pack02 package Ver.3.00 contains EEPROM Emulation Library Pack02 for CA78K0R 

compiler, CC-RL compiler and LLVM compiler (LLVM for Renesas RL78).  

The following shows the target product for this release note. 

Product Name Ver. Installer Name Ver. 

RL78 Family EEPROM Emulation Library Pack02 

for the CA78K0R Compiler V1.01 

RENESAS_RL78_EEL-FDL_T02_PACK02_3V00.exe V3.00 
RL78 Family EEPROM Emulation Library Pack02 

for the CC-RL Compiler V1.01 

RL78 Family EEPROM Emulation Library Pack02 

for the LLVM Compiler V1.01 

 

Chapter 2 User's Manual 

The following user's manual covers this version of the library. 

Target Compiler Title of User’s Manual Document Number 

CA78K0R, CC-RL 

and LLVM Compilers 

RL78 Family EEPROM Emulation Library Pack02  

Japanese Release User's Manual Note  
R01US0068EJ0110 

Note: Download this document from the Renesas Electronics website. 

 

Chapter 3 Revisions 

The following shows the items upgraded in the new version. 

No. Package 
Ver. 

Target Contents 

1 V3.00 

RL78 Family EEPROM 
Emulation Library Pack02 
for CA78K0R 

There is no change in the library body from Package Ver.2.00. 

RL78 Family EEPROM 
Emulation Library Pack02 
for CC-RL 

There is no change in the library body from Package Ver.2.00. 

RL78 Family EEPROM 
Emulation Library Pack02 
for LLVM 

Newly added. 

User's Manual 
Rev.1.01 to Rev.1.10 Revision 
For revision contents, please refer to the revision history of the  user's 
manual (R01US0068EJ0110). 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 3 of 35 
Mar 15, 2024  

 

Chapter 4 Supported Tools 

Use the following tool version when using tools in combination with this library. 

 

Target Library Tool Used Version 

Library for CA78K0R Compiler 
Integrated development environment CubeSuite+ V1.00.00 or later 

Integrated development environment CS+ V3.00.00 or later 

Library for CC-RL Compiler 
Integrated development environment CS+ V3.01.00 or later 

Integrated development environment e2 studio Listed from 
Version: 2024-01 Note 

Library for LLVM Compiler Integrated development environment e2 studio Version: 2024-01 or later 

Note: The CC-RL Compiler V1.00 or later can be used with the installed version. 

 

Chapter 5 Installation 

This chapter describes how to install and uninstall the EEPROM Emulation Library Pack02 package Ver.3.00. 
 

5.1 Installation 

Install the EEPROM Emulation Library Pack02 by using the following procedure: 

(1) Start Windows.  

(2) Decompress the file that contains the EEPROM Emulation Library Pack02 package and run the installer. 

(3) Select "Asia/Oceania - English" from the drop-down list. 

(4) Click on the "OK" button to proceed installation according to the instructions of the installer. 
 
 

 

 

 

 

 

 
Figure 5-1. Select "Asia/Oceania - English" 

5.2 Uninstallation 

Uninstall the EEPROM Emulation Library Pack02 by using the following procedure: 

(1) Start Windows.  

(2) Delete the folder that contains the EEPROM Emulation Library Pack02 files.   



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 4 of 35 
Mar 15, 2024  

Installation folder 

    r20ut2645ejxxxx_rl78.pdf Note1   : Release Note (this document) 

support.txt     : Support information file for EEL 

CA78K0R_110, CCRL_100 or LLVM_202312  : The target CA78K0R compiler version is V1.10 or later,  
                                                                                                    the target CC-RL compiler version is V1.00 or later 
         or the target LLVM for Renesas RL78 10.0.0.202312 or later 

                     lib 

          eel.lib or libeel.a   : EEPROM emulation library (EEL) 

              fdl.lib  or libfdl.a                         : Data flash library (FDL) 

       eel.h    : EEL header file for C program 

              eel.inc    : EEL header file for assembler Note5 

              eel_types.h   : EEL header file that specifies definitions for C program 

              eel_types.inc   : EEL header file that specifies definitions for assembler Note5 

              fdl.h    : FDL header file for C program 

               fdl.inc    : FDL header file for assembler Note5 

                 fdl_types.h   : FDL header file that specifies definitions for C program 

Sample 

            asm Note5 

            eel_descriptor.inc  : EEL descriptor header file 

       eel_descriptor.asm  : EEL descriptor source file 

      eel_sample_linker_file.dr  : EEL sample link directive file (CA78K0R version only) 

            fdl_descriptor.inc  : FDL descriptor header file 

     fdl_descriptor.asm  : FDL descriptor source file 

                C 

eel_descriptor.h  : EEL descriptor header file 

     eel_descriptor.c    : EEL descriptor source file 

         eel_sample_linker_file.dr  : EEL sample link directive file (CA78K0R version only) 

       eel_user_types.h  : EEL user-defined header file 

       fdl_descriptor.h    : FDL descriptor header file 

                                       fdl_descriptor.c    : FDL descriptor source file 

r_eel_sample_c.c   : EEL sample program file Note2,3,4 

r_eel_sample_c.dr                 : Link directive file for EEL sample program (CA78K0R version only) Note2 

or r_eel_sample_c.ld           : Linker script file for EEL sample program (LLVM version only) Note4 

5.3 File Organization 

The file organization after this library is installed is shown below.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: 1. x indicates the omitted numerals in version or revision numbers. 

 2. If you wish to use the sample program for CA78K0R, include both the program file (*.c) and the link directive  

file (*.dr) [setting file for link information]. 

 3.  To use the sample program for CC-RL, the program file (*.c) should be embedded. The link information for 

the sample program for CC-RL should be specified through the link setting window on the CS+ or the e2 

studio. 

            4. To use the sample program for LLVM, the program file (*.c) and linker script file (*.ld) should be embedded 

together. 

 5. The assembler files are only included in the CA78K0R and CC-RL folders. 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 5 of 35 
Mar 15, 2024  

 

Chapter 6 How to Build a Program 

This chapter describes how to build a program using the EEPROM Emulation Library Pack02. 
 
6.1 Software to be Used 

Below are the system requirements for building programs using the EEPROM Emulation Library Pack02. 

• For CA78K0R compiler : Integrated development environment CS+ V3.00.00 or later or integrated development  

environment CubeSuite+ V1.00.00 or later. 

• For CC-RL compiler : Integrated development environment CS+ V3.01.00 or later or integrated development  

environment e2 studio listed from Version 2024-01 or later Note. 

            Note Available for e2 studio with embedded CC-RL compiler V1.00 or later. 

• For LLVM compiler : Integrated development environment e2 studio Version 2024-01 or later. 
 
6.2 Building Using CS+ (Formerly CubeSuite+) 

This section describes how to include the EEPROM Emulation Library Pack02 in a user-created program and build the 

user program by using CS+. The target compilers for CS+ are CC-RL compiler and CA78K0R compiler. 
 

6.2.1 Building a C Program 
 

(1) Creating a project and specifying the source files 

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click 

Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 6-1). 

Click the Files of type drop-down list, select C source file (*.c), and then register the user-created program file 

(r_eel_sample_c.c for the sample file of source code) and the descriptor files for the EEPROM emulation library 

and data flash library (eel_descriptor.c and fdl_descriptor.c) as the source files. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 6-1. Specifying the Source Files  

1 

2 
4 

3 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 6 of 35 
Mar 15, 2024  

 
(2) Specifying the include file 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. 

The Add Existing File dialog box is displayed (as shown in Figure 6-2). 

Click the Files of type drop-down list, select Header file (*.h; *.inc), and then register the header files and 

descriptor header files for the EEPROM emulation library and data flash library (eel.h, eel_types.h, fdl.h, 

fdl_types.h, eel_descriptor.h, fdl_descriptor.h, and eel_user_types.h). 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 6-2. Specifying the Include Files 

 
 
(3) Specifying the library file 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File 

dialog box is displayed (as shown in Figure 6-3). 

Click the Files of type drop-down list, select Library file (*.lib), and then register the EEPROM emulation library 

and data flash library files (eel.lib and fdl.lib). 
  

1 

2 

3 

4 
7 
5 

6 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 7 of 35 
Mar 15, 2024  

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-3. Specifying the Library Files 

 
(4) Specifying the link directive file (only when the CA78K0R compiler is used) 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File 

dialog box is displayed (as shown in Figure 6-4). 

Click the Files of type drop-down list, select Link Directive File (*.dr; *.dir), and then register the link directive file 

that has the same name as the user-created program (r_eel_sample_c.dr for the sample file of source code Note). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4. Specifying the Link Directive File 

Note: The sample directive file that comes with the library may require editing or modification before use. 
 

(5) Building 

On the CS+ Build menu, click Build Project to build the project. 

 

1 

2 

3 

4 

1 

3 

2 
4 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 8 of 35 
Mar 15, 2024  

6.2.2 Building an Assembly-Language Program 
 

(1) Creating a project and specifying the source files 

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click 

Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 6-5). 

Click the Files of type drop-down list, select Assemble file (*.asm), and then register the user-created program file 

and the descriptor files for the EEPROM emulation library and data flash library (eel_descriptor.asm and 

fdl_descriptor.asm) as the source files. 
 

 

 

 

 

 

Figure 6-5. Specifying the Assemble Files 

 
(2) Specifying the include file 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. 

The Add Existing File dialog box is displayed (as shown in Figure 6-6). 

Click the Files of type drop-down list, select Header file (*.h; *.inc), and then register header files and the 

descriptor header files for the EEPROM emulation library and data flash library (eel.inc, eel_types.inc, fdl.inc, 

eel_descriptor.inc and fdl_descriptor.inc). 
  

1 

2 
4 

3 6 

5 
7 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 9 of 35 
Mar 15, 2024  

 

 

 

 

 
Figure 6-6. Specifying the Include Files 

 
(3) Specifying the library file 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File 

dialog box is displayed (as shown in Figure 6-7). 

Click the Files of type drop-down list, select Library file (*.lib), and then register the EEPROM emulation library 

and data flash library files (eel.lib and fdl.lib). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-7. Specifying the Library Files 

  

1 

2 

3 

4 

1 

2 

3 

4 

5 
7 

6 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 10 of 35 
Mar 15, 2024  

 
(4) Specifying the link directive file (only when the CA78K0R compiler is used) 

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File 

dialog box is displayed (as shown in Figure 6-8). 

Click the Files of type drop-down list, select Link Directive File (*.dr; *.dir), and then register the link directive file 

that has the same name as the user-created program. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6-8. Specifying the Link Directive File 
 

(5) Removing the automatically generated files (only when the CC-RL compiler is used) 

CS+ for the CC-RL compiler automatically generates some files under the File node in the Project Tree window. 

Among these, the processing of the "main.c" file is included in the EEPROM emulation library. Therefore, remove 

this file from the target of the build process (as shown in Figure 6-9). 

 

 

 

 

 

 

 

 

 

 

Figure 6-9. Removing the Automatically Generated Files 
 

(6) Building 

On the CS+ Build menu, click Build Project to build the project. 

  

1 

3 

2 
4 

After removal 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 11 of 35 
Mar 15, 2024  

 

6.3 Building Using e2 studio 

This section describes how to include the EEPROM Emulation Library Pack02 in a user-created program and build the 

user program by using e2 studio. The target compilers for e2 studio are CC-RL compiler and LLVM compiler. 

 

6.3.1 Creating a Project 
 

The e2 studio starts and from the [File] menu, select [New] – [C/C++ Project], the "Templates for New C/C++ 
Project" window will open (as shown in Figure 6-10). 

 

 

 

 

 
Figure 6-10. Create a New Project 

 

- When using the CC-RL compiler, select [Renesas CC-RL C/C++ Executable Project] displayed after selection in 

[Renesas RL78], and press "Next" button (as shown in Figure 6-11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11. Select the CC-RL Compiler for the Tool Chain 

Input "project name" on "New Renesas CC-RL Executable Project" window, and press "Next" button. 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 12 of 35 
Mar 15, 2024  

 

- When using the LLVM compiler, Select [LLVM for Renesas RL78 C/C++ Executable Project] displayed after 

selection in [Renesas RL78], and press "Next" button (as shown in Figure 6-12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12. Select the LLVM Compiler for the Tool Chain 

Input "Project name" on "New LLVM for Renesas RL78 Executable Project" window, and press "Next" button. 

 

Select the [Target Device] of [Device Settings] and select "RL78 – G13" - "R5F100LE". (When the target device is 

RL78/G13 [Part Number: R5F100LE].) 

It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check mark 

to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)". Press "Finish" button 

(as shown in Figure 6-13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-13. Device Selection  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 13 of 35 
Mar 15, 2024  

 

6.3.2 Building a C Program 
 

(1) Specifying the source and include files 

Specifying the EEPROM emulation library and the data flash library files in the created project. 

- CC-RL: Register "eel.h", "eel_types.h", "eel.lib", "fdl.h”, "fdl_types.h" and "fdl.lib" in the "src" folder output by  

e2 studio. Also, register descriptor files "eel_descriptor.c", "eel_descriptor.h", "eel_user_types.h", 

"fdl_descriptor.c". "fdl_descriptor.h" and sample program file "r_eel_sample_c.c" (as shown in Figure 6-

14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14. Specifying the Source and Include Files (CC-RL) 

  

・Project tree ・Lib folder 

・Sample\C folder 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 14 of 35 
Mar 15, 2024  

 

- LLVM: Register "eel.h", "eel_types.h", "libeel.a", "fdl.h", "fdl_types.h" and "libfdl.a" in the "src" folder output by  

e2 studio. Also, register descriptor files "eel_descriptor.c", "eel_descriptor.h", "eel_user_types.h", 

"fdl_descriptor.c". "fdl_descriptor.h" and sample program files "r_eel_sample_c.c" and 

"r_eel_sample_c.ld" (as shown in Figure 6-15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-15. Specifying the Source and Include Files (LLVM) 

 

 

 

 

  

・Project tree ・Lib folder 

・Sample\C folder 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 15 of 35 
Mar 15, 2024  

 

Exclusion of the file automatically added by the function of e2 studio. 

There are files added automatically in the created project. The same file as these exists also in the "sample" folder 

of EEPROM Emulation Library Pack02. Therefore, using the function of IDE, Select those files from tree, and 

excludes from a project. 

Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the "Properties", put a 

check mark to [Exclude resource from build] and exclude a target file (target folder). 

- CC-RL: Target file is [project name] .c (ex: "EELPack02_PJ01.c") in a [project name]/src folder. 

- LLVM: Target files are "linker_script.ld" in a [project name]/generate folder, and [project name] .c 

("EELPack02_PJ01.c") in a [project name]/src folder. 
 

(2) Specifying the library files 

- CC-RL: Click the right mouse button for the project in a tree, and select "Properties". In the "Add file" window that 

appears by clicking the "+" button to the right of "Relocatable files, object files, and library files" on the 

"C/C++ Build" [Settings] – "Linker" [Input] screen, change the [Format] to "library", and register the path 

to the library files "eel.lib" and "fdl.lib" (as shown in Figure 6-16).  

 

 

 

 

 

 

 

 

 

 

Figure 6-16 (a). Specifying the Library Files (CC-RL) 

 

 

 

 

 

 

 

Figure 6-16 (b). Specifying the Library Files (CC-RL) 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 16 of 35 
Mar 15, 2024  

- LLVM: Click the right mouse button for the project in a tree, and select "Properties". Register the file path of the 

library files "libeel.a" and "libfdl.a" in the "Additional input files" field on the screen displayed in "C/C++ 

Build" [Settings] – "Linker" [Source] (as shown in Figure 6-17).  

 

 
Figure 6-17. Specifying the Library File (LLVM) 

 
(3) Specifying the linker script file (only when the LLVM compiler is used) 

Click the right mouse button for the project in a tree, and select "Properties". Register the file path of the linker 

script file ".ld" in the "Linker script" field on the screen displayed in "C/C++ Build" [Settings] – "Linker" [Source] (as 

shown in Figure 6-18). 

Here, select the file path of "r_eel_sample_c.ld" prepared for the EEPROM Emulation Library Pack02.  

 

 
Figure 6-18. Specifying the Linker Script File (LLVM only) 

Note: Refer to each reference manual of LLVM about the descriptive content of linker script file, and the details of 

the description method.  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 17 of 35 
Mar 15, 2024  

 
(4) Building 

Right-click on the [Project] in the e2 studio project tree and select "Build Project" to build the project. 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 18 of 35 
Mar 15, 2024  

 

6.3.3 Building an Assembly-Language Program 
(only when the CC-RL Compiler is used) 

 

(1) Specifying the source and include files 

Specifying the EEPROM emulation library and the data flash library files in the created project. 

Register user program file ("xxxxxx.asm"), the EEPROM emulation library and the data flash library files "eel.inc",  

"fdl.inc", "eel.lib" and "fdl.lib" in the "src" folder output by e2 studio (as shown in Figure 6-19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-19. Specifying the Source and Include Files 

 

- Exclusion of the file automatically added by the function of IDE. 

There are files added automatically in the created project. The same file as these exists also in the 

"sample" folder of EEPROM Emulation Library Pack02. Therefore, using the function of IDE, Select those files 

from tree, and excludes from a project. 

Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the 

"Properties", put a check mark to [Exclude resource from build] and exclude a target file (target folder). 

(Exclusion of a folder is also possible) 

Target file is [project name] .c (ex: "EELPack02_PJ01.c") in a [project name]/src folder. 
  

・Project tree ・Lib folder 

・Sample\asm folder 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 19 of 35 
Mar 15, 2024  

 
(2) Specifying the library files 

Click the right mouse button for the project in a tree, and select "Properties". In the "Add file" window that appears 

by clicking the "+" button to the right of "Relocatable files, object files, and library files" on the "C/C++ Build" 

[Settings] – "Linker" [Input] screen, change the [Format] to "library", and register the path to the library files "eel.lib" 

and "fdl.lib" (as shown in Figure 6-20).  

 

 

 

 

 

 

 

 

Figure 6-20 (a). Specifying the Library Files (CC-RL) 

 

 

 

 

 

 

 

Figure 6-20 (b). Specifying the Library Files (CC-RL) 

 
(3) Building 

Right-click on the [Project] in the e2 studio project tree and select "Build Project" to build the project. 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 20 of 35 
Mar 15, 2024  

 

6.4 Notes at Build 

6.4.1 When the CA78K0R Compiler is Used 
(1)  When the on-chip debugging function is in use 

After the on-chip debugging function is enabled in the CS+, building a program generates the following type of 

error. 

 

 

 

This error occurs when the segment for the monitor area (OCDROM) used by the on-chip debugging function 

cannot be allocated. Therefore, to avoid this error, add the following code to the link directive file (*.dr) embedded 

in the project and prepare a separate area for allocating the segment. 

 

 

 

Notes: 1. xxxxx: Start address of the location where the error occurred. 

2. The area name "OCD_ROM" is an example of the notation. 
  

RA78K0R error E3212: Default segment can't allocate to memory - ignored 
                  Segment '??OCDROM' at xxxxxH-200H 

MEMORY OCD_ROM : ( 0xxxxxH, 00200H ) 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 21 of 35 
Mar 15, 2024  

 

6.4.2 When the CC-RL Compiler is Used 
 

(1) When the on-chip debugging function is in use 

 

After the on-chip debugging function is enabled in the CS+, building a program may generate the following type of 

error. 

 

 

Remark 1. xxxxx: Indicates the section name. 

 

This error occurs when the section for the monitor area (OCDROM) used by the on-chip debugging function 

cannot be allocated. Therefore, to avoid this error, right click the CC-RL (Build Tool) node (1) in the CS+ Project 

Tree window, select Property to open the CC-RL Property panel (2), and select the Link Options tab (3). In the 

Section category (4), modify the setting for Section start address (5) so that no other areas overlap the area 

where the section for the on-chip debugger monitor is allocated (monitor2: the initial address range is 0xFE00 to 

0xFFFF in R5F100LE). (as shown in Figure 6-21) 

 
For details of the section settings, refer to the CC-RL Compiler User's Manual. 

 

Figure 6-21. Modifying the Section Allocation 
 

 

 

  

E0562321:Section ".monitor2" overlaps section "xxxxx" 

1 

2 

3 

5 
4 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 22 of 35 
Mar 15, 2024  

 

Chapter 7 How to Debug a Program 

For details about how to perform debugging by using IECUBE or the on-chip debug emulator E1, E2, E2 emulator 

Lite or E20, see the following document.  

 
Title 

CubeSuite+ Integrated Development Environment User's Manual: RL78 Debug [ CS+ for CA,CX ] 

CS+ Integrated Development Environment User's Manual: RL78 Debug Tool [ CS+ for CC ] 

e² studio Integrated Development Environment User's Manual: Getting Started Guide 

Note: You can download this document from the "CS+ Integrated Development Environment" or "e² studio Integrated 

Development Environment" page of the Renesas Electronics website. 

 

7.1 Notes at Debug 

The following describes notes apply when using the EEPROM Emulation Library Pack02 with the E1, E2, E2 emulator 

Lite or E20 on-chip debugging emulator. 

 

(1) When a command of the EEPROM Emulation Library Pack02 is executed in a version older than CubeSuite+ Ver. 

1.01 and the E1 or E20 on-chip debugging emulator is in use, do not execute a break until you have confirmed 

completion of the command by the sequencer. The sequencer will malfunction if a break occurs before the 

sequencer has completed the command. 

(2) The flash library cannot be debugged by a simulator. To perform debugging, either use the on-chip debugging 

function of the RL78 microcontroller or prepare the IECUBE. 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 23 of 35 
Mar 15, 2024  

 

Chapter 8 Sample Program 

The attached sample program (r_eel_sample_c.c) is provided to enable the usage method of the EEPROM 

Emulation Library Pack02 to be easily confirmed on the QB-R5F100LE-TB boards with R5F100LEA (RL78/G13) as the 

target microcontrollers. The sample program is just a reference example and the user program does not have to be 

created to match the sample program. The sample program should be used as a simple program to confirm operation. 

- The link directive file (r_eel_sample_c.dr) for the sample program for the CA78K0R compiler has a purpose to 

specify that a stack or data buffer used by the sample program is not allocated to an area where allocation is 

prohibited Note1. When using the sample program, this file should also be embedded with the sample 

program.Note2 

- The sample program for the CC-RL compiler, should be allocated appropriately in the section category on the 

"Link Options" tabbed page in the CS+ window, or on the "Linker" [Section] page in the e² studio, so that a stack 

or data buffer used by the sample program is not allocated to an area where allocation is prohibited Note1,2. 

- The linker script file (r_eel_sample_c.ld) for the sample program for the LLVM compiler has a purpose to specify 

that a stack or data buffer used by the sample program is not allocated to an area where allocation is prohibited 
Note1. When using the sample program, this file should also be embedded with the sample program.Note2 

Notes:  1. For details, refer to chapter "6.2 Software Resource" in the  EEPROM Emulation Library Pack02 user’s manual. 

2.  The data in usage may be placed at an unintended area depending on how the environment in use or the 

program is changed. After an execution module is generated, the map file (*.map)  and allocation state of 

programs or data must be confirmed. For the definition method and allocation conditions of each code or data, 

refer to the user’s manual of the compiler used. 
 
8.1 Initial Settings of the Sample Program 

The sample program operates with the following initial settings. When these settings need to be changed, modify the 

sample program. 
 

• CPU operating frequency : High-speed on-chip oscillator 32 MHz 

• Flash memory programming mode : Full-speed mode 
 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 24 of 35 
Mar 15, 2024  

 
8.2 Settings of Option Byte and On-Chip Debugging 

(1) When using CA78K0R or CC-RL compiler with the CS+ 

When performing on-chip debugging, set "Set enable/disable on-chip debug by link option" to "Yes" and specify "84" for 

"Option byte values for OCD". For the property of the CC-RL compiler, set "Set debug monitor area" to "Yes". 

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. After setting "Set user 

option byte" to "Yes" on select "Link Options" tab on CS+, specify "xxxxE8" for "User option byte value" (as shown in 

Figure 8-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1 (a) Setting of Option Byte when Using the CS+ (CA78K0R Compiler) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-1 (b) Setting of Option Byte when Using the CS+ (CC-RL Compiler) 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 25 of 35 
Mar 15, 2024  

 

(2) When using CC-RL compiler with the e2 studio 

Select "C/C++ Build" [Settings] - "Linker" [Device]. And set device items on the displayed screen. 

When performing on-chip debug, put a check mark to "Set enable/disable on-chip debug by link option" and specify 

"84" for "On-chip debug control value". Put a check mark to "Secure memory area of OCD monitor". 

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Put a check mark to 

"Set user option byte" on the "Tool Settings" tabbed page, specify "xxxxE8" for "User option byte value" and set the 

high-speed on-chip oscillator at 32 MHz (as shown in Figure 8-2). 

 

 
Figure 8-2 Setting of Option Byte when Using the e2 studio (CC-RL Compiler) 

 

(3) When using LLVM compiler with the e2 studio 

Device item settings are configured in the "vects.c" file output from e2 studio. 

Target file path: "Project Folder"¥generate¥vects.c 

 

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Therefore, set the 

user option byte value "xxxxe8" and the on-chip debug option byte value in the "Option_Bytes" of the "vects.c" file as 

follows: 

 

[The example for RL78/G13] 

"0xff, 0xff, 0xe8, 0x84" (WDT Enable, LVD reset mode, HS mode /32MHz, Enable on-chip debug operation) 

 

 

 

 
Note: Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes" and "On-chip debug 

option byte" by the user’s manual of a target device. And describe the set value used with user application. 
  

const unsigned char Option_Bytes[]  __attribute__ ((section (".option_bytes"))) = { 
 0xff, 0xff, 0xe8, 0x84 
}; 
 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 26 of 35 
Mar 15, 2024  

 
8.3 Defining the On-Chip RAM Area 

8.3.1 When the CA78K0R Compiler is Used 
The following describes how to define the on-chip RAM area in the link directive file. 

Normally, the entire on-chip RAM area is automatically defined as an area with the name "RAM" unless otherwise stated 

in the link directive file. The stack and data buffers are to be allocated to this area except when specifically stated 

otherwise Note. However, in this case, the stack and data buffers would be allocated by default to an area (self-RAM and 

FFE20H to FFEFFH) for which use by the EEPROM Emulation Library Pack02 is prohibited, so the program may not run 

correctly. 

In the attached link directive file for the sample program, as a solution, re-define the area with the name "RAM" so that it 

does not include the above area, ensuring that stack and so on are not allocated to the area for which usage is prohibited. 
 

 
 

The above statement redefines the area with the name "RAM" to be the DA0H bytes area starting from the address 

FF080H (FF080H to FFE1FH) Note. This prevents attempted use of the area which the EEPROM Emulation Library Pack02 

is prohibited to use by excluding the prohibited portion from the area with the name "RAM". 

However, if this is the only change setting that is explicitly made, the area from FFE20H to FFEFFH is also unusable for 

any other purpose. Accordingly, separately add the following definition. No particular restrictions apply to the name of 

this area. 
 

 

If there is a self-RAM area, automatic allocation of variables to this area can be restricted by defining its range as an area 

with the name "SELFRAM". 

 

 

 

An example of the settings for an RL78/G13 (the product with 4 KB of RAM and 64 KB of ROM) is given below. 
 

 

 

 

 

 

 

 

 

 

  

MEMORY RAM      :(0FF080H, 000DA0H) 

; ---------------------------------------------------------- 
; Define new memory entry for Self-RAM 
; ---------------------------------------------------------- 
MEMORY SELFRAM   : ( 0FEF00H, 000180H )          Definition of the self-RAM area 

 
; ---------------------------------------------------------- 
; Redefined default data segment RAM 
; ---------------------------------------------------------- 
MEMORY RAM       : ( 0FF080H, 000DA0H )           Definition of the RAM area to be used normally 

 
; ---------------------------------------------------------- 
; Define new memory entry for saddr area 
; ---------------------------------------------------------- 
MEMORY RAM_SADDR : ( 0FFE20H, 0000E0H )      Definition of the area from FFE20H to FFEFFH 

MEMORY SADDR_RAM:(0FFE20H, 0000E0H) 

MEMORY SELFRAM  :(0FEF00H, 000180H) 

 

 

 
 



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 27 of 35 
Mar 15, 2024  

 

Note:  The CA78K0R linker allocates data with a non-specified destination for allocation (segment types DSEG and 

BSEG) to the on-chip RAM area according to the re-allocation attribute of the data. Accordingly, specific data 

may not be allocated to the area with the name "RAM" in some situations. 

  For details on the methods of defining and allocating the individual categories of data, refer to the user’s manual  

for CS+.  

  Reference to the map file (*.map) generated at the time of building is required to confirm the state of allocation. 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 28 of 35 
Mar 15, 2024  

 

8.3.2 When the CC-RL Compiler is Used 
 
(1) Adding the include path 

In CS+ and e2 studio, no include path is specified in the initial state: The include paths for the header files used by 

the EEPROM emulation library need to be added. The EEPROM emulation library uses header files "eel.h", 

"eel_types.h", "eel_user_types.h", "eel_descriptor.h", "fdl.h", "fdl_types.h", "fdl_descriptor.h" and  "iodefine.h" (this file 

is automatically generated by CS+ and e2 studio).  

- In CS+, add the include path where each file resides in [Compile Options] – [Preprocessing] – [Additional Include 

Path]. 

- In e2 studio, in the "Properties" window, add the include path where each file exists in the "Include file directories 

(-l)" field on the screen displayed by "C/C++ Build" [Settings] – "Compiler" [Source]. 

 
(2) Defining sections 

The sections used for the ROM and RAM areas need to be defined.  

- Sections can be defined in the Section category on the Link Options tab in the CS+ window. When the Layout 

sections automatically property is set to No, select the Section start address property to open the Section Settings 

dialog box and add the sections necessary for the EEPROM emulation library to the ROM area (as shown in Figure 

8-3). (In this example, the FDL_CODE, FDL_CNST_f, EEL_CODE and EEL_CNST_f sections that are necessary 

for operation of the sample are added.) Also add a section of the EEPROM emulation library to the RAM area (as 

shown in Figure 8-4). (In this example, the FDL_SDAT and EEL_SDAT sections that are necessary for operation of 

the sample are  added.) 

After adding sections, return Layout sections automatically property to Yes. 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 29 of 35 
Mar 15, 2024  

Enter the section name (FDL_CODE) and 
click the OK button. Repeat this procedure for 
FDL_CNST_f, EEL_CODE and EEL_CNST_f. 

After adding all necessary sections, click the OK 
button to close the Section Settings dialog box. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 8-3. Example of Section Settings for EEPROM Emulation Library when Using CS+ (ROM Area) 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 30 of 35 
Mar 15, 2024  

Enter the section name (FDL_SDAT) and 
click the OK button. Repeat this procedure 
for EEL_SDAT. 

After adding all necessary sections, click the OK 
button to close the Section Settings dialog box. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-4. Example of Section Settings for EEPROM Emulation Library when Using CS+ (RAM Area) 

 
 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 31 of 35 
Mar 15, 2024  

 

- Setting of the section items on e2 studio inputs in the "Properties" window. Select "C/C++ Build" [Setting] - "Linker" 

[Section]. And set section items on the displayed screen. Remove a check mark to [Layout sections automatically(-

auto_section_layout)]. Press the "      " button of the right-hand side which sections are displaying, and a "Section 

Viewer" screen is displayed and add the sections necessary for the EEPROM emulation library to the ROM area (as 

shown in Figure 8-5). (In this example, the FDL_CODE, FDL_CNST_f, EEL_CODE and EEL_CNST_f sections that 

are necessary for operation of the sample are added.) Also add a section of the EEPROM emulation library to the 

RAM area (as shown in Figure 8-6). (In this example, the FDL_SDAT and EEL_SDAT sections that are necessary 

for operation of the sample are  added.) 

After adding a section, check the [Layout sections automatically(-auto_section_layout)] checkbox. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-5. Example of Section Settings for EEPROM Emulation Library when Using e2 studio (ROM Area) 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 32 of 35 
Mar 15, 2024  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-6. Example of Section Settings for EEPROM Emulation Library when Using e2 studio (RAM Area) 
 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 33 of 35 
Mar 15, 2024  

Change the section address from FEF00 to FF080. 

After changing the address, click the OK button 
to close the Section Settings dialog box. 

 
(3) Allocating the Self-RAM Area 

In the initial state of the section settings in CS+ for the CC-RL compiler, the user RAM area is allocated at the 

beginning of the internal RAM area (from address FEF00H for R5F100LEA, which is the target microcontroller of the 

sample program). However, in R5F100LEA, the EEPROM emulation library uses the address range from 0xFEF00 

to 0xFF07F as the self-RAM area. Therefore, the user RAM area must be allocated outside this area. In this example, 

the user data start address 0xFEF00 is changed to 0xFF080 (as shown in Figure 8-7 or Figure 8-8). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-7. Example of Changing the User RAM Area Allocation when Using CS+ (RAM Area) 

  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 34 of 35 
Mar 15, 2024  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-8. Example of Changing the User RAM Area Allocation when Using e2 studio (RAM Area) 

Note: When sections are automatically allocated again after the automatic section allocation setting has been 

removed and the user RAM area has been changed in the section settings, the sections will be automatically 

allocated again, including user-defined sections. In this case, sections may be allocated to areas that are not 

specified by the user; that is, data may be placed in unintended areas. Be sure to refer to the map file (*.map) 

to check if the software resources (especially RAM data) used by the EEPROM emulation library are placed 

in relocatable areas. 

 

8.3.3 When the LLVM Compiler is Used 
 

(1) Adding the include path 

In e2 studio, no include path is specified in the initial state: The include path for the header files used by the 

EEPROM emulation library need to be added. The EEPROM emulation library uses header files "eel.h", 

"eel_types.h", "eel_user_types.h", "eel_descriptor.h", "fdl.h", "fdl_types.h", "fdl_descriptor.h", and "iodefine.h" and 

"iodefine_ext.h" (these files are automatically generated by e2 studio). 

In e2 studio, in the "Properties" window, add the include path where each file exists in the "Include file directories(-l)" 

field on the screen displayed by "C/C++ Build" [Settings] – "Compiler" [Includes]. 
  



RL78 Family  
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note 

R20UT2645EJ0110  Rev.1.10  Page 35 of 35 
Mar 15, 2024  

 
(2) Allocating the Self-RAM Area 

The LLVM compiler describes the link settings to be performed in the build in a linker script file (*.ld).  

In the linker script file (linker_script.ld) output from e2 studio, the built-in RAM area is defined as "RAM" section. In 

addition, the software resources used by the EEPROM emulation library are defined as an area called "SELFRAM" 

section. 

(Only for devices that require "Self-RAM" area) 

In the linker script file "r_eel_sample_c.ld" included with the sample program, the "RAM" section and "SELFRAM" 

section are defined so that they do not overlap. 

 

Note: The "r_eel_sample_c.ld" provided in the sample program is prepared on the assumption that R5F100LE will be 

used. When using other devices, please check the Self-RAM list and modify it according to the device.  

Refer to each reference manual of LLVM about the descriptive content of linker script file (*.ld), and the details 

of the description method. 



 

© 2024 Renesas Electronics Corporation. All rights reserved. 

Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use 
of these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, 
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.  

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics 
or others. 

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any 
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 
each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 

financial terminal systems; safety control equipment; etc. 
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space 
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics 
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product 
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 
specified ranges. 

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics 
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily 
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as 
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for 
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you. 

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations. 

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 
subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
 

(Rev.4.0-1  November 2017) 
 

Corporate Headquarters  Contact information 
TOYOSU FORESIA, 3-2-24 Toyosu, 
Koto-ku, Tokyo 135-0061, Japan 
www.renesas.com 

 For further information on a product, technology, the most up-to-date 
version of a document, or your nearest sales office, please visit: 
www.renesas.com/contact/. 

Trademarks   
Renesas and the Renesas logo are trademarks of Renesas Electronics 
Corporation. All trademarks and registered trademarks are the property 
of their respective owners. 

  

 
 

 

 

 

 

  

https://www.renesas.com/
https://www.renesas.com/contact/

	Cover
	Contents
	Chapter 1 Target Product
	Chapter 2 User's Manual
	Chapter 3 Revisions
	Chapter 4 Supported Tools
	Chapter 5 Installation
	5.1 Installation
	5.2 Uninstallation
	5.3 File Organization

	Chapter 6 How to Build a Program
	6.1 Software to be Used
	6.2 Building Using CS+ (Formerly CubeSuite+)
	6.2.1 Building a C Program
	6.2.2 Building an Assembly-Language Program

	6.3 Building Using e2 studio
	6.3.1 Creating a Project
	6.3.2 Building a C Program
	6.3.3 Building an Assembly-Language Program (only when the CC-RL Compiler is used)

	6.4 Notes at Build
	6.4.1 When the CA78K0R Compiler is Used
	6.4.2 When the CC-RL Compiler is Used


	Chapter 7 How to Debug a Program
	7.1 Notes at Debug

	Chapter 8 Sample Program
	8.1 Initial Settings of the Sample Program
	8.2 Settings of Option Byte and On-Chip Debugging
	8.3 Defining the On-Chip RAM Area
	8.3.1 When the CA78K0R Compiler is Used
	8.3.2 When the CC-RL Compiler is Used
	8.3.3 When the LLVM Compiler is Used


	Notice



