LENESAS

RL78 Family R20UT2645EJ0110
EEPROM Emulation Library Pack02 Package Ver.3.00 Var e
Release Note ’

Thank you for using the RL78 Family EEPROM Emulation Library Pack02 Package Ver.3.00.
This document contains precautionary and other notes regarding use of the EEPROM Emulation Library
Pack02 Package Ver.3.00. Please read this document before using the library.

Contents
Chapter 1 Target Product...........cccomimmiiiiiierrr s 2
Chapter 2 User's Manualccoooiiiiiiiiiiiiiiise s s s ssss s s s s s s s s s e s s s s s s s sssessesssssssssssssssssssssssssssenssnnnnnnnnns 2
(04 -1 o1 0T g R & T LT T o o 1= 2
Chapter 4 Supported TOOIS.......cceeeiiiiirieirieerrererrrerrsersreeerererrrererrrrrrerrrrerreesrresreenreesrennrrennnnnnn 3
(0d -1 o3 (= T | T3 11 P 14 o o 3
5.1 INSAllAtion ..o 3
5.2 UNINStallationcocciiiiiiii s 3
5.3 File Organizationccccciiiiniimiiinir s s 4
Chapter 6 How to Build @ Program.............cccommmmiiieerrn s 5
6.1 Software to be Used..........cociiiiiiiiiii i 5
6.2 Building Using CS+ (Formerly CubeSuitet)........ccccciiiiiimiiinniiisrss s 5
6.2.1 BuUilding @ C Programcccccerireierinsseeresssseesssssssesssssssesssssssesssssnsesssssnsesssssnsesssssnsesssssnnees 5
6.2.2 Building an Assembly-Language Programcccocciimmnrnsmsnnss s ssssssnees 8
6.3 Building USiNg €2 StUMIO......ccceecerrierrieerrerrrerrrerrersseesseesseessnssssesssessssesssessssssssssssssssesssessnsssnsssnees 1
6.3.1 Creating @ Project ... 1
6.3.2 Building @ C Program ..o s s ssss s ssssss s sssss s snne s 13
6.3.3 Building an Assembly-Language Program (only when the CC-RL Compiler is used) 18
6.4 Notes at BUild ... s 20
6.4.1 When the CA78KOR Compiler is Used...........cccoomiiiiriiicccienmrreiessccsssssne e s s s ss s ssssssesssssnnnes 20
6.4.2 When the CC-RL Compiler is Usedcccccviiiccimmrriiiiisccssseses s ss s sssssssessssssssssssssssssssssnnnes 21
Chapter 7 How to Debug a Programccocciiiiiiiiiiiiiiissssssseesssesssesssssssessssesssessssssssssssnne 22
7.1 Notes at DebUQ ... s 22
Chapter 8 Sample Program.............ooooiiiiiiiiiiiiiiiiieeeeseesessssssssessssssesssssss s s sesssssssssnnssnmssnnnsnnns 23
8.1 Initial Settings of the Sample Program...........cccccrrrrimmnnniemnnssee e sme e e 23
8.2 Settings of Option Byte and On-Chip Debugging........ccccccrrrrrmrrrrssmemrnssmersss e s seee s sssmees 24
8.3 Defining the ON-Chip RAM Area..........cccoirmmmirriiiisssssmeeeressssssssssssnsesesssssssssssssessssasssssnssssssssssnnss 26
8.3.1 When the CA78KO0R Compiler is Used..........cccvivmmiiiimniiirer s 26
8.3.2 When the CC-RL Compiler is Used..........ccoccimiiiimmiiiiniee s s 28
8.3.3 When the LLVM Compiler is USed ... sssmsss s ssmsn e 34
R20UT2645EJ0110 Rev.1.10 RENESAS Page 1 of 35

Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Chapter 1 Target Product

EEPROM Emulation Library Pack02 package Ver.3.00 contains EEPROM Emulation Library Pack02 for CA78KOR
compiler, CC-RL compiler and LLVM compiler (LLVM for Renesas RL78).

The following shows the target product for this release note.

Product Name Ver. Installer Name Ver.

RL78 Family EEPROM Emulation Library Pack02

for the CA78KOR Compiler V1.01

RL78 Family EEPROM Emulation Library Pack02

for the CC-RL Compiler V1.01 |RENESAS_RL78_EEL-FDL_T02_PACK02_3V00.exe | V3.00

RL78 Family EEPROM Emulation Library Pack02

for the LLVM Compiler V1.01

Chapter 2 User's Manual

The following user's manual covers this version of the library.

Target Compiler Title of User's Manual Document Number

CA78KOR, CC-RL RL78 Family EEPROM Emulation Library Pack02
R0O1US0068EJ0110

and LLVM Compilers | Japanese Release User's Manual Nt

Note: Download this document from the Renesas Electronics website.

Chapter 3 Revisions

The following shows the items upgraded in the new version.

Package
Ver.

No. Target Contents

RL78 Family EEPROM
Emulation Library Pack02 | There is no change in the library body from Package Ver.2.00.
for CA78KOR

RL78 Family EEPROM
Emulation Library Pack02 | There is no change in the library body from Package Ver.2.00.
1 V3.00 for CC-RL

RL78 Family EEPROM
Emulation Library Pack02 | Newly added.

for LLVM

Rev.1.01 to Rev.1.10 Revision
User's Manual For revision contents, please refer to the revision history of the user's
manual (RO1US0068EJ0110).

R20UT2645EJ0110 Rev.1.10 RENESAS Page 2 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Chapter4 Supported Tools

Use the following tool version when using tools in combination with this library.

Target Library Tool Used Version
Integrated development environment CubeSuite+ V1.00.00 or later

Library for CA78KOR Compiler
Integrated development environment CS+ V3.00.00 or later
Integrated development environment CS+ V3.01.00 or later

Library for CC-RL Compiler Listed from

. 2 :
Integrated development environment e* studio Version: 2024-01 Note

Library for LLVM Compiler Integrated development environment e? studio Version: 2024-01 or later

Note: The CC-RL Compiler V1.00 or later can be used with the installed version.

Chapter 5 Installation

This chapter describes how to install and uninstall the EEPROM Emulation Library Pack02 package Ver.3.00.

5.1 Installation

Install the EEPROM Emulation Library Pack02 by using the following procedure:

(1) Start Windows.

(2) Decompress the file that contains the EEPROM Emulation Library Pack02 package and run the installer.
(3) Select "Asia/Oceania - English" from the drop-down list.
(

4) Click on the "OK" button to proceed installation according to the instructions of the installer.

Please select your region. >

Renesas does not offer suppart nor will
o take any potential responsibility or liability
for software based on a false selection.

I {Asia/Oceania - English Do I
Cancel

Figure 5-1. Select "Asia/Oceania - English"

5.2 Uninstallation

Uninstall the EEPROM Emulation Library Pack02 by using the following procedure:
(1) Start Windows.
(2) Delete the folder that contains the EEPROM Emulation Library Pack02 files.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 3 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

5.3 File Organization

The file organization after this library is installed is shown below.

Installation folder
r20ut2645ejxxxx_rl78.pdf Nete! : Release Note (this document)
support.txt : Support information file for EEL
CA78KOR_110, CCRL_100 or LLVM_202312 : The target CA78KOR compiler version is V1.10 or later,
the target CC-RL compiler version is V1.00 or later
- or the target LLVM for Renesas RL78 10.0.0.202312 or later
— eel.lib or libeel.a : EEPROM emulation library (EEL)
— fdllib or libfdl.a : Data flash library (FDL)
|— eel.h : EEL header file for C program
I— eelinc : EEL header file for assembler Noe
— eel_types.h : EEL header file that specifies definitions for C program
— eel_types.inc : EEL header file that specifies definitions for assembler Note5
— fdl.h : FDL header file for C program
— fdl.inc : FDL header file for assembler Not¢5
L— fdl_types.h : FDL header file that specifies definitions for C program
L— Sample
| —asm Notes
I— eel_descriptor.inc : EEL descriptor header file
— eel_descriptor.asm : EEL descriptor source file
— eel_sample_linker_file.dr : EEL sample link directive file (CA78KOR version only)
— fdl_descriptor.inc : FDL descriptor header file
'— fdl_descriptor.asm : FDL descriptor source file
— C
|— eel_descriptor.h : EEL descriptor header file
| eel_descriptor.c : EEL descriptor source file
|— eel_sample_linker_file.dr : EEL sample link directive file (CA78KOR version only)
|— eel_user_types.h : EEL user-defined header file
— fdl_descriptor.h : FDL descriptor header file
| fdl_descriptor.c : FDL descriptor source file
L r_eel_sample_c.c : EEL sample program file Note234
'— r_eel_sample_c.dr : Link directive file for EEL sample program (CA78KOR version only) Nete2
orr_eel_sample_c.ld : Linker script file for EEL sample program (LLVM version only) Note4

Notes: 1. x indicates the omitted numerals in version or revision numbers.

2. If you wish to use the sample program for CA78KOR, include both the program file (*.c) and the link directive
file (*.dr) [setting file for link information].

3. To use the sample program for CC-RL, the program file (*.c) should be embedded. The link information for
the sample program for CC-RL should be specified through the link setting window on the CS+ or the e
studio.

4. To use the sample program for LLVM, the program file (*.c) and linker script file (*.Id) should be embedded
together.

5. The assembler files are only included in the CA78KOR and CC-RL folders.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 4 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Chapter6 How to Build a Program

This chapter describes how to build a program using the EEPROM Emulation Library Pack02.

6.1 Software to be Used

Below are the system requirements for building programs using the EEPROM Emulation Library Pack02.
e For CA78KO0R compiler : Integrated development environment CS+ V3.00.00 or later or integrated development
environment CubeSuite+ V1.00.00 or later.
e For CC-RL compiler : Integrated development environment CS+ V3.01.00 or later or integrated development
environment e? studio listed from Version 2024-01 or later N,
Note Available for e? studio with embedded CC-RL compiler V1.00 or later.

e For LLVM compiler : Integrated development environment e? studio Version 2024-01 or later.

6.2 Building Using CS+ (Formerly CubeSuite+)

This section describes how to include the EEPROM Emulation Library Pack02 in a user-created program and build the

user program by using CS+. The target compilers for CS+ are CC-RL compiler and CA78KO0R compiler.

6.2.1 Building a C Program

(1) Creating a project and specifying the source files

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click
Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 6-1).

Click the Files of type drop-down list, select C source file (*.c), and then register the user-created program file
(r_eel_sample_c.c for the sample file of source code) and the descriptor files for the EEPROM emulation library

and data flash library (eel_descriptor.c and fdl_descriptor.c) as the source files.

1 Add
I£| | €3 Add Existing File x
E = = v « CATBKOR oo » Sample s C v D Search C r
Organize v New folder =~ T @
I This PC N e
[Desktop 3 | | eel_deseriptor.c
& Documents | | fdl_descriptor.c
l’ N || r_eel_sample_c.c
J‘! Music
&=/ Pictures
m Videos
#. Local Disk (C:) v € >
File name: | 2| C source file (*.c) w
P .
Figure 6-1. Specifying the Source Files
R20UT2645EJ0110 Rev.1.10 RENESAS Page 5 of 35

Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(2) Specifying the include file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File.

The Add Existing File dialog box is displayed (as shown in Figure 6-2).

Click the Files of type drop-down list, select Header file (*.h; *.inc), and then register the header files and
descriptor header files for the EEPROM emulation library and data flash library (eel.h, eel_types.h, fdl.h,
fdl_types.h, eel_descriptor.h, fdl_descriptor.h, and eel_user_types.h).

1 Add C W 1 Add File_
Twnizn Erildar with Evrilneer [#EY] Add Mew File_
@3 Add Existing File X
ategon
= v « CATBKOR_ox » lib v | O Search lib el %
Organize ~ New folder = @ @ BKOR_soox » Sample » C v O Search C P
S ~
I This PC pene - @ @

[Desktop Mame 6 B

l‘:f| Documents —

e || eel_descriptor.h

. | | eel_user_types.h

J’ Music IJ fdl_descriptor.h

&= Pictures o

B videos [7] fdi_types.h

. Local Disk (C:)

v >
File name: | 2/|I Header file (*.h; *.inc) VI E =z
(o] C |
4 QOpen o e: | 5 || Header file (h; *

| 7

Figure 6-2. Specifying the Include Files

(3) Specifying the library file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File
dialog box is displayed (as shown in Figure 6-3).

Click the Files of type drop-down list, select Library file (*.lib), and then register the EEPROM emulation library
and data flash library files (eel.lib and fdl.lib).

R20UT2645EJ0110 Rev.1.10 RENESAS Page 6 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

Wi A1) Ardd Mo Fila
i +f
=l @3 Add Existing File P
-1 E 1 « A || « CATBKOR ox » lib v @ | searchlib o
Organize « Mew folder + [H o
= ~
I This PC Name
[Desktop 3 u eellib
[Documents L] fdllib
* Downloads
D Music
&= Pictures
B videos
. Local Disk (C:)
v >
File name: 2|I Library file (*.lib) ~ I
4 I| Open I Cancel

Figure 6-3. Specifying the Library Files

(4) Specifying the link directive file (only when the CA78KOR compiler is used)

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File

dialog box is displayed (as shown in Figure 6-4).

Click the Files of type drop-down list, select Link Directive File (*.dr; *.dir), and then register the link directive file

that has the same name as the user-created program (r_eel_sample_c.dr for the sample file of source code N°€).

@3 Add Existing File
g

v D

Search C

« v P « CATBKOR oox » Sample » C
Organize = New folder
~ [This PC MName
[Desktop @ eel_sample_linker file.dr
E] Documents 3 | | r_eel_sample_c.dr
& Downloads
J‘! Music
&=/ Pictures
m Videos
» ‘ig Local Disk (C:)
¥ Network) 8
File name: |

2| ILink directive file (*.dr: *.dir)

Hi

4

Cancel

Figure 6-4. Specifying the Link Directive File

Note: The sample directive file that comes with the library may require editing or modification before use.

(5) Building
On the CS+ Build menu, click Build Project to build the project.

R20UT2645EJ0110 Rev.1.10

ENESAS
Mar 15, 2024 R

Page 7 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

6.2.2 Building an Assembly-Language Program

(1) Creating a project and specifying the source files

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click

Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 6-5).

Click the Files of type drop-down list, select Assemble file (*.asm), and then register the user-created program file

and the descriptor files for the EEPROM emulation library and data flash library (eel_descriptor.asm and

fdl_descriptor.asm) as the source files.

w

[4] Search asm yel

>

|
= ‘ij. Cpen Folder with Explorer 1] Add Mew File_
€3 Add Existing File ®
flew Category
= v « USer » asm v O Search asm R
Organize + New folder = > [T o BKORsonc > Sample » asm
~
~
B This PC [NamE_ r
[Desktop 3 d 3000K,35M
: I—— Name @
|| Documents -
‘ Destininads d eel_descriptor.asm
|| fdl_descriptor.asm
J) Music
&=/ Pictures
m Videos
= Local Disk (C3)
v < >
File name: 2|I Assembly source file (".asm; "5 ~ I
<
4 I| Open I Cancel
me: |

(2) Specifying the include file

5| Assembly source file (*.asm; *.s ~
]

Figure 6-5. Specifying the Assemble Files

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File.

The Add Existing File dialog box is displayed (as shown in Figure 6-6).

Click the Files of type drop-down list, select Header file (*.h; *.inc), and then register header files and the

descriptor header files for the EEPROM emulation library and data flash library (eel.inc, eel_types.inc, fdl.inc,

eel_descriptor.inc and fdl_descriptor.inc).

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS

Page 8 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

th, Evelren W 4dd New File—
@ Add Existing File ®
= “ |« CATSKOR ox » lib v & | Searchlib b *
Organize + New folder - @ @ ample > asm v|o e
~
-~ d -
[This PC Ham? = o e
—_ - —
[Desktop =S Mame 6
@ Documents D eel_descriptorine
4 Downloads — |7 fdi_descriptor.inc
i 3 |] eel_types.inc
o e e
| Pictures D fdlinc
n Videos A pes.
i Local Disk (C:) 2 &5
File name: | 2| Header file (*.h; *.inc) ~
4 @ e name: | 5| Header file (*.h; *.inc) w
| 7

Figure 6-6. Specifying the Include Files

(3) Specifying the library file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File

dialog box is displayed (as shown in Figure 6-7).

Click the Files of type drop-down list, select Library file (*.lib), and then register the EEPROM emulation library

and data flash library files (eel.lib and fdl.lib).

1 Add
Ovrien Enddar with Evnlnrer 530 Add New File
@3 Add Existing File X
« CA78KOR... » lib
= v o CATEKOR oo » lib v | O Search lib »p
Organize + MNew folder + @ @
I This PC ® Name
Ree: B
E] Documents u fdl.lib
‘ Downloads
J‘! Music
| Pictures
m Videos
. Local Disk (C:) o IE =
File name: | 2| Library file (*.lib) v
4o oo
Figure 6-7. Specifying the Library Files
R20UT2645EJ0110 Rev.1.10 RENESAS Page 9 of 35

Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(4) Specifying the link directive file (only when the CA78KOR compiler is used)

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File
dialog box is displayed (as shown in Figure 6-8).
Click the Files of type drop-down list, select Link Directive File (*.dr; *.dir), and then register the link directive file

that has the same name as the user-created program.

1 Add v | 1 addFle
-
@ Add Existing File *
S v <« Sample 3 asm v | O Search asm P
Organize » New folder = M @
v B This PC "~ Name ”

- s 3

|§| Documents
* Downloads
D Music

=/ Pictures

m Videos

» a Local Disk (C3)

¥ Network v < 3

FI|EﬂEmE:| 2| Link directive file (*.dr; *.dir) ~
4 e T oo

Figure 6-8. Specifying the Link Directive File

(5) Removing the automatically generated files (only when the CC-RL compiler is used)

CS+ for the CC-RL compiler automatically generates some files under the File node in the Project Tree window.
Among these, the processing of the "main.c" file is included in the EEPROM emulation library. Therefore, remove
this file from the target of the build process (as shown in Figure 6-9).

B compie
% R5F100LE (Microcontrol |

b
i Ay CC-RL (Build Tool))
iz, RLTE Simulator (Debug |

.. % RSF100LE (Microcontroller)
.4, CC-RL (Build Tool)

: -2, RLT8 Simulator (Debug Tool)
Open with Selected Application_. Elj.—l\ File

e

Il e)]
) Open Folder with Explorer o ﬂ Build tool generated files
E ‘Windowrs Explarer Menu BL"" cstart.asm

BEM ctkinit.asm

Op=n

Open with Internal Editor_

B sthinit.asm Add J

i iodefine.h
ﬂli E! in E‘ Remaove from Project Shift+Dal
LM iodefineh %
Y oo CtilC
Past; Caty
Renamse F2

Change Extension..

Property

Figure 6-9. Removing the Automatically Generated Files

(6) Building
On the CS+ Build menu, click Build Project to build the project.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 10 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

6.3 Building Using e? studio

This section describes how to include the EEPROM Emulation Library Pack02 in a user-created program and build the

user program by using e? studio. The target compilers for e? studio are CC-RL compiler and LLVM compiler.

6.3.1 Creating a Project

The e? studio starts and from the [File] menu, select [New] — [C/C++ Project], the "Templates for New C/C++
Project" window will open (as shown in Figure 6-10).

B <2 studio - & studio
File | Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help
New Alt+Shift+N >| @ Makefile Project with Existing Code
Open File... r@ C/C++ Project
[} Open Projects from File System... =] Project...
Cloze Ctrl+W Convert to a C/C++ Project (Adds C/C++ Nature)

Figure 6-10. Create a New Project

- When using the CC-RL compiler, select [Renesas CC-RL C/C++ Executable Project] displayed after selection in

[Renesas RL78], and press "Next" button (as shown in Figure 6-11).

a New C/C++ Project O X

Templates for New C/C++ Project

All [Deprecated] GCC for Renesas RL78 C/C++ Executable Project
CMake e A C/C++ Executable Project for Renesas RL78 using the GCC for Renesas
Make RL78 Teolchain,

Renesas Debug

Renesas RL78

[Deprecated] GCC for Renesas RL78 C/C+ + Library Project
RN A C/C++ Library Project for Renesas RL78 using the GCC for Renesas RL78
Toolchain.

LLVM for Renesas RL78 C/C++ Executable Project
e A C/C++ Executable Project for Renesas RL78 using LLVM for Renesas RL78
Toolchain.

LLVM for Renesas RL78 C/C++ Library Project
e A C/C++ Library Project for Renesas RL78 using LLVM for Renesas RL78 Tooichain.

Renesas CC-RL C/C++ Executable Project
oo A C/C++ Executable Project for Renesas RL78 using the CC-RL toolchain.

— Renesas CC-RL C/C++ Library Project
F.{,;—QE‘ A G/C++ Library Project for Renesas RL78 using the CC-RL toolchain.

: < Back Finish Cancel
Figure 6-11. Select the CC-RL Compiler for the Tool Chain

Input "project name" on "New Renesas CC-RL Executable Project” window, and press "Next" button.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 11 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

- When using the LLVM compiler, Select [LLVM for Renesas RL78 C/C++ Executable Project] displayed after

selection in [Renesas RL78], and press "Next" button (as shown in Figure 6-12).

& New C/C++ Project

Templates for New C/C++ Project

All GCC for Renesas RL78 C/C++ Executable Project
CMake ST A GC++ Executable Project for Renesas RL78 using the GCC for Renesas RL 78 Toolchain.
Make

Renesas Debu
m GCC for Renesas RL78 C/C++ Library Project

EEIZm A GC++ Library Project for Renesas RL78 using the GCC for Renesas RL78 Toolchain.

LLvM for Renesas RL78 C/C++ Executable Project
== A G/C++ Executable Project for Renesas RL78 using LL VM for Renesas RL78 Toolchain.

LLVM for Renesas RL78 C/C++ Library Project
S A GG+ Library Project for Renesas RL78 using LLVM for Renesas AL 78 Toolchain,

Renesas CC-RL C/C++ Executable Project
=N A GCe+ Executable Project for Renesas RLT8 using the CORL toolchain,

Renesas CC-RL C/C++ Library Project
S A G/C+ + Library Project for Renesas AL 78 using the CCRL toolchain,

< Back ‘ Finish Cancel

Figure 6-12. Select the LLVM Compiler for the Tool Chain

Input "Project name" on "New LLVM for Renesas RL78 Executable Project” window, and press "Next" button.

Select the [Target Device] of [Device Settings] and select "RL78 — G13" -

RL78/G13 [Part Number: R5F100LE].)

"R5F100LE". (When the target device is

It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check mark

to "Create Hardware Debug Configuration" by [Configurations]. And select "E2 Lite(RL78)". Press "Finish" button

(as shown in Figure 6-13).

e} O x
New Renesas CC-RL Executable Project —

Select toolchain, device & debug settings

Toolchain Settings

Language: ®C OC++
Toolchain: Renesas CC-RL ©?
Toolchain Version: ' v1.12.01 ~
Manage Toolchains...
Device Settings Configurations
Target Board: |Custom V| Create Hardware Debug Configuration
Download additional boards.. | E2 Lite (RL78) v

Target Device: | RSF100LE

] Create Debug Configuration

Unlock Devices...
RL78 Simulator ~

Endian: |Little

Project Type: |Default [] Create Release Configuration

(’ ?\ — <ﬁack = Lo Cancel

Figure 6-13. Device Selection

R20UT2645EJ0110 Rev.1.10 REN ESNS

Mar 15, 2024

Page 12 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

6.3.2 Building a C Program

(1) Specifying the source and include files
Specifying the EEPROM emulation library and the data flash library files in the created project.

- CC-RL: Register "eel.h", "eel_types.h", "eel.lib", "fdl.h”, "fdl_types.h" and "fdl.lib" in the "src" folder output by
e? studio. Also, register descriptor files "eel_descriptor.c", "eel_descriptor.h", "eel_user_types.h",

"fdl_descriptor.c". "fdl_descriptor.h" and sample program file "r_eel_sample_c.c" (as shown in Figure 6-

14).
- Project tree - Lib folder
v (B src « v 1 « EEL > CCRL_100 > lib v
v (= lib -~
o =t

|n] eel_typesh
R eelh e]

|n| fdl_types.h "...] eelinc
|_h] fdl.h —]) eellib
b eellib] eel typesh

) eel_typesinc

—

v (= Sample 2 fdl.inc
v &) dllib

|| eel_descriptor.c) fdi_typesh
|n| eel_descriptorh
|| eel_user typesh - Sample\C folder
L€ fdl_descriptor.c \ . v 21 «sc > sample > C .
|n| fdI_descriptorh ~
|| r_eel_sample_c.c A

D eel_descriptor.c
D eel_descriptorh
D eel_user_types.h
D fdl_descriptor.c
D fdl_descriptor.h
D r_eel_sample_c.c

Figure 6-14. Specifying the Source and Include Files (CC-RL)

R20UT2645EJ0110 Rev.1.10 RENESAS Page 13 of 35
Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

- LLVM: Register "eel.h", "eel_types.h", "libeel.a", "fdl.h", "fdl_types.h" and "libfdl.a" in the "src" folder output by

e? studio. Also, register descriptor files "eel_descriptor.c", "eel_descriptor.h", "eel_user_types.h",

"fdl_descriptor.c". "fdl_descriptor.h" and sample program files "r_eel_sample_c.c" and

"r_eel_sample_c.Id" (as shown in Figure 6-15).

* Project tree

v (2 sic

v = lib
|n] eel_typesh
b eelh

[n] fdl.h
b libeel.a
b libfdl.a

- Lib folder

— v T « LIVM_202312 > lib v

)
Name

|n] fdI_types.h «

v (= Sample
viEC
| eel_descriptor.
) eel_descriptor.h
|| eel_user typesh
l€| fdI_descriptor.c

|n| fdl_descriptorh
l£| reel sample_c.c

D eelh

D eel_types.h
7 tdih

) fdl_typesh
] libeel.a
] libfdl.a

- Sample\C folder

«— v 1 « Sample » C v

L
Name

|L| r_eel_sample_c.ld

D eel_descriptor.c
D eel_descriptor.h
D eel_user_types.h
D fdl_descriptor.c
D fdl_descriptor.h
D r_eel_sample_c.c
D r_eel_sample_cld

Figure 6-15. Specifying the Source and Include Files (LLVM)

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS Page 14 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Exclusion of the file automatically added by the function of e? studio.

There are files added automatically in the created project. The same file as these exists also in the "sample" folder
of EEPROM Emulation Library Pack02. Therefore, using the function of IDE, Select those files from tree, and
excludes from a project.

Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the "Properties", put a

check mark to [Exclude resource from build] and exclude a target file (target folder).

- CC-RL: Target file is [project name] .c (ex: "EELPack02_PJ01.c") in a [project name]/src folder.
- LLVM: Target files are "linker_script.Id" in a [project name]/generate folder, and [project name] .c

("EELPack02_PJ01.c") in a [project name]/src folder.

(2) Specifying the library files

- CC-RL: Click the right mouse button for the project in a tree, and select "Properties”. In the "Add file" window that
appears by clicking the "+" button to the right of "Relocatable files, object files, and library files" on the
"C/C++ Build" [Settings] — "Linker" [Input] screen, change the [Format] to "library", and register the path
to the library files "eel.lib" and "fdl.lib" (as shown in Figure 6-16).

Q Properties for EELPack02_PJO1

|t',fpe filter text Settings
Resource -
Builders i3 Tool Settings | Toolchain| Device| # Build Steps Build Artifact | laib Binary Parsers| @ Error Parsers
C/C++ Build - o
v +f o X %3 Common Use standard/mathematical libraries (-library)
Build Variables - . .) o
. 3 Compiler Use C99 edition libraries (-library)
Environment .
Logging 2 Assembler Check memory smashing on releasing memory (-library)
Settings v® I‘;'T:(erm Use runtime libraries (-library)
. 22 Inp
Stack Analysis K@ List Relocatable files, object files and library files (-input/-library/-binary)]
Tool Chain Editor -
C/C++ General (222 Optimization "${workspace_loc:;/${ProjName}/src/lib/eellib}”
. 5 Section "$iworkspace loc/${ProjNamel/src/lib/fdllib}”
Project Natures :5 .
. =2 Device
Drniert Referances —

Figure 6-16 (a). Specifying the Library Files (CC-RL)

& Add file X
Format: I Iibraryl e
File name: |${workspace_loc:f${ProjName}fsrc,flibfeel.lib}

File system...

None
OK Cancel
Figure 6-16 (b). Specifying the Library Files (CC-RL)
R20UT2645EJ0110 Rev.1.10 RENESAS Page 15 of 35

Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

- LLVM: Click the right mouse button for the project in a tree, and select "Properties”. Register the file path of the

library files "libeel.a" and "libfdl.a" in the "Additional input files" field on the screen displayed in "C/C++

Build" [Settings] —

"Linker" [Source] (as shown in Figure 6-17).

ﬁ Properties for EELPack02_PJO1

|type filter text

Resource
Builders
~v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QE
Run/Debug Settings

Settings

O

.
=1 4 ~

) Tool Settings | 3 Toolchain|) Device|

Build Artifact

b Binary Parsers| **

é% CPU Entry point: |—WI,—e_PowerON_Reset

;E% Optimization
é% Debug
é% Warnings
53 Library Generator
B3 Compiler
255 Assembler
v 83 Linker
é—’. Source
é?. Archives

Linker script

e_loc:/${ProjNamel}/src/Sample/C/r_eel_sample_cId}"

€8¢l

(3 Miscellaneous — : :
Additional input files

£8 850

é?. Other
53 Objcopy $ pace ${ProjName b/libeel.a
@ Print Size “${workspace_loc:/${ProjName}/src/lib/libfdl.a}”

Figure 6-17. Specifying the Library File (LLVM)

(3) Specifying the linker script file (only when the LLVM compiler is used)

Click the right mouse button for the project in a tree, and select "Properties". Register the file path of the linker

script file ".Id" in the "Linker script" field on the screen displayed in "C/C++ Build" [Settings] —

shown in Figure 6-18).
Here, select the file path of "r_eel_sample_c.Id" prepared for the EEPROM Emulation Library Pack02.

"Linker" [Source] (as

ﬁ Properties for EELPack02_PJO1

|type filter text

Resource
Builders
~v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QF
Run/Debug Settings

O
Settings =R <
5 Tool Settings | &3 Toolchain| 83 Device| ; Build Artifact | b Binary Parsers| *1

;E% CPU Entry point: |—WI,—e7PowerON7Reset

éﬁ Optimization
é% Debug
(%3 Warnings

Linker script

“${workspace_loc:/${ProjName}/src/Sample/C/r_eel_sample_c.Id}"

€ 8l

53 Library Generator
25 Compiler
) Assembler
v 83 Linker
é?. Source
(3 Archives

é?. Miscellaneous — . .
Additional input files

\,‘E?. Other
%3 Objcopy "${workspace_loc rojNamel/src/lib/libeel.a}”
3 Print Size "$iworkspace_loc:/${ProjName]}/src/lib/libfdl.a}"

L

Figure 6-18. Specifying the Linker Script File (LLVM only)

Note: Refer to each reference manual of LLVM about the descriptive content of linker script file, and the details of

the description method.

R20UT2645EJ0110 Rev.1.10

Mar 15, 2024

RENESAS

Page 16 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(4) Building

Right-click on the [Project] in the e? studio project tree and select "Build Project" to build the project.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 17 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

6.3.3 Building an Assembly-Language Program
(only when the CC-RL Compiler is used)

(1) Specifying the source and include files
Specifying the EEPROM emulation library and the data flash library files in the created project.

Register user program file ("xxxxxx.asm"), the EEPROM emulation library and the data flash library files "eel.inc",

"fdl.inc", "eel.lib" and "fdl.lib" in the "src" folder output by e? studio (as shown in Figure 6-19).

* Project tree - Lib folder
v =5 EELPack02_PJO1 [HardwareDebug] « v 1 « EEL > CCRL_100 > lib v
1;-?' Binaries \ -~
ame
it Includes -
2 generate Jj eelh
- - Linc
v [src e
vy ©] eellib
== li =
B) "] eel_typesh
|n| eel_types.inc 3 -
e e
|n] eelinc 5wy
) fdlinc 7 fdl.inc
lih eellib] fdllib
[fdLlib “] fdi_types.h
¥ = Sample
¥ =~ asm + Sample\asm folder
5| i .
L, eel_descriptor.asm . NP « Sample > asm y
|n] eel_descriptor.inc N
|S] fdI_descriptor.asm Name
|n] fdI_descriptor.inc] eel_descriptor.asm
18] xo0000casm) eel_descriptor.inc
?J fdl_descriptor.asm
) fdi_descriptor.inc

Figure 6-19. Specifying the Source and Include Files

- Exclusion of the file automatically added by the function of IDE.

There are files added automatically in the created project. The same file as these exists also in the

"sample" folder of EEPROM Emulation Library Pack02. Therefore, using the function of IDE, Select those files
from tree, and excludes from a project.

Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the

"Properties", put a check mark to [Exclude resource from build] and exclude a target file (target folder).
(Exclusion of a folder is also possible)

Target file is [project name] .c (ex: "EELPack02_PJ01.c") in a [project name]/src folder.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 18 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(2) Specifying the library files

Click the right mouse button for the project in a tree, and select "Properties”. In the "Add file" window that appears
by clicking the "+" button to the right of "Relocatable files, object files, and library files" on the "C/C++ Build"
[Settings] — "Linker" [Input] screen, change the [Format] to "library”, and register the path to the library files "eel.lib"

and "fdl.lib" (as shown in Figure 6-20).

& Properties for EELPack02_PJO1

|t';pe filter text Settings
Resource — ; .
Builders i3 Tool Settings | Toolchain| Device| # Build Steps Build Artifact | a1y Binary Parsers| €3 Error Parsers
v C’ICPT Buﬂd_ 53 Common Use standard/mathematical libraries (-library)
Build Variables . . L : R
i &) Compiler Use C99 edition libraries (-library)
Environment %
Logging & Assembler Check memory smashing on releasing memory (-library)
Settings v I;;Tker Use runtime libraries (-library)
: =2 Input "
Stack Analysis E List Relocatable files, object files and library files (-input/-library/-binary) il_,
Tool Chain Editor r4 o - - -
C/C++ General (=2 Optimization “${workspace_loc:/${ProjName}/src/lib/eel lib}"
i 3 Section "$iworkspace loc:/${ProjName}/src/lib/fdllib}"
Project Natures ng K
Drniart Bafarancac (5 Device

Figure 6-20 (a). Specifying the Library Files (CC-RL)

& Add file e
Format: I Iibraryl b
File name: |${workspace_loc:/${ProjName};’src[lib,feel.lib}

File system...

None

OK Cancel

Figure 6-20 (b). Specifying the Library Files (CC-RL)

(3) Building

Right-click on the [Project] in the e? studio project tree and select "Build Project" to build the project.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 19 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

6.4 Notes at Build

6.4.1 When the CA78KOR Compiler is Used
(1) When the on-chip debugging function is in use
After the on-chip debugging function is enabled in the CS+, building a program generates the following type of

error.

RA78KOR error E3212: Default segment can't allocate to memory - ignored
Segment "??0OCDROM' at xxxxxH-200H

This error occurs when the segment for the monitor area (OCDROM) used by the on-chip debugging function
cannot be allocated. Therefore, to avoid this error, add the following code to the link directive file (*.dr) embedded

in the project and prepare a separate area for allocating the segment.

MEMORY OCD_ROM : (OxxxxxH, 00200H)

Notes: 1. xxxxx: Start address of the location where the error occurred.

2. The area name "OCD_ROM" is an example of the notation.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 20 of 35
Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

6.4.2 When the CC-RL Compiler is Used

(1) When the on-chip debugging function is in use

After the on-chip debugging function is enabled in the CS+, building a program may generate the following type of

error.

E0562321:Section ".monitor2" overlaps section "xxxxx"

Remark 1. xxxxx: Indicates the section name.

This error occurs when the section for the monitor area (OCDROM) used by the on-chip debugging function

cannot be allocated. Therefore, to avoid this error, right click the CC-RL (Build Tool) node (1) in the CS+ Project

Tree window, select Property to open the CC-RL Property panel (2), and select the Link Options tab (3). In the

Section category (4), modify the setting for Section start address (5) so that no other areas overlap the area

where the section for the on-chip debugger monitor is allocated (monitor2: the initial address range is 0xFEQO to

OxFFFF in R5F100LE). (as shown in Figure 6-21)

For details of the section settings, refer to the CC-RL Compiler User's Manual.

=
&-[J File
----- ﬂ Build tool generated files
..... B_lj! cstart.asm
..... Bj' hdwinit.asm
..... Bﬂ" stkinit.asm
..... b-| iodefine.h
- incri7e
&Ll smprl78
..... [1] tibri7s

Project Tree n - X

8 @ 2

z ® 3 ':‘ 2 » |

=-| 75 RSF100LE (Project)* ,\
R A= Ratal i e, | 1

1

_const. text..RLIB..SLIB. texif. constf. data..sdata/0/...

ROM to RAM mapped section ROMto RAM mapped section[Z]

> Verily v
Section start address 3

Commaon Options_,(Compile Options /(Assemble Upﬁo.i_}. Link Options _,iHa(Output Op ... ,(I/0 Header File. .. / ¥
Error List o x

@lErmrs| |90Warn'irgs| |' E.":IMES-EQE| S

Mumber Message File Line Project
@ ED562321 E0562321:Section " monitor?” ovedaps section " text” REF100LE m

Figure 6-21. Modifying the Section Allocation

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS Page 21 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Chapter 7 How to Debug a Program

For details about how to perform debugging by using IECUBE or the on-chip debug emulator E1, E2, E2 emulator
Lite or E20, see the following document.

Title
CubeSuite+ Integrated Development Environment User's Manual: RL78 Debug [CS+ for CA,CX]
CS+ Integrated Development Environment User's Manual: RL78 Debug Tool [CS+ for CC]

e? studio Integrated Development Environment User's Manual: Getting Started Guide

Note: You can download this document from the "CS+ Integrated Development Environment" or "e? studio Integrated

Development Environment" page of the Renesas Electronics website.
7.1 Notes at Debug

The following describes notes apply when using the EEPROM Emulation Library Pack02 with the E1, E2, E2 emulator
Lite or E20 on-chip debugging emulator.

(1) When a command of the EEPROM Emulation Library Pack02 is executed in a version older than CubeSuite+ Ver.
1.01 and the E1 or E20 on-chip debugging emulator is in use, do not execute a break until you have confirmed
completion of the command by the sequencer. The sequencer will malfunction if a break occurs before the

sequencer has completed the command.

(2) The flash library cannot be debugged by a simulator. To perform debugging, either use the on-chip debugging
function of the RL78 microcontroller or prepare the IECUBE.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 22 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Chapter 8 Sample Program

The attached sample program (r_eel_sample_c.c) is provided to enable the usage method of the EEPROM
Emulation Library Pack02 to be easily confirmed on the QB-R5F100LE-TB boards with RSF100LEA (RL78/G13) as the
target microcontrollers. The sample program is just a reference example and the user program does not have to be

created to match the sample program. The sample program should be used as a simple program to confirm operation.

~ The link directive file (r_eel_sample_c.dr) for the sample program for the CA78KOR compiler has a purpose to
specify that a stack or data buffer used by the sample program is not allocated to an area where allocation is
prohibited No¢', When using the sample program, this file should also be embedded with the sample
program.Note2

- The sample program for the CC-RL compiler, should be allocated appropriately in the section category on the
"Link Options" tabbed page in the CS+ window, or on the "Linker" [Section] page in the e? studio, so that a stack

or data buffer used by the sample program is not allocated to an area where allocation is prohibited Note'2,

~ The linker script file (r_eel_sample_c.Id) for the sample program for the LLVM compiler has a purpose to specify
that a stack or data buffer used by the sample program is not allocated to an area where allocation is prohibited

Notel \When using the sample program, this file should also be embedded with the sample program.Nete2

Notes: 1. For details, refer to chapter "6.2 Software Resource" in the EEPROM Emulation Library Pack02 user’'s manual.
2. The data in usage may be placed at an unintended area depending on how the environment in use or the
program is changed. After an execution module is generated, the map file (*.map) and allocation state of

programs or data must be confirmed. For the definition method and allocation conditions of each code or data,

refer to the user's manual of the compiler used.

8.1 Initial Settings of the Sample Program

The sample program operates with the following initial settings. When these settings need to be changed, modify the

sample program.

o CPU operating frequency : High-speed on-chip oscillator 32 MHz

e Flash memory programming mode : Full-speed mode

R20UT2645EJ0110 Rev.1.10 RENESAS Page 23 of 35
Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

8.2 Settings of Option Byte and On-Chip Debugging

(1) When using CA78KOR or CC-RL compiler with the CS+

When performing on-chip debugging, set "Set enable/disable on-chip debug by link option" to "Yes" and specify "84" for

"Option byte values for OCD". For the property of the CC-RL compiler, set "Set debug monitor area" to "Yes".

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. After setting "Set user

option byte" to "Yes" on select "Link Options" tab on CS+, specify "xxxxE8" for "User option byte value" (as shown in

Figure 8-1).

= Property

A, CAT3KOR Property
» Debug Information
> Input File

Qutput File

Option byte values for OCD
Debug monitor area start address
Debug menitor area size[byte]
Set user option byte
User option byte value
Specify mirror area
Set flash start address
Boot area load module file name
Control allocation to self RAM area
» Message
> Stack
» Link List
» Error ist
Others

Device

Set enable/dizable on-chip debug by link option

Yes(
[Hex]

)

£y

Fi

A

00

H

Yes(-gb)
[=%] FEFFES
MAA=D-mi0)
No

No

ICommonOplin..._,(CompileOptions_,{ Assemble Opti... I Link Options _,IROMizaticn Pro... ,(Object Convert... ,(Variables/Func... / ¥

Figure 8-1 (a) Setting of Option Byte when Using the CS+ (CA78KOR Compiler)

4, CC-RL Property
Debug Information
O ptimization
Input File

Option byte values for OCD

Set debug monitor area

Set user option byte

User aption byte value

Caontrel allecation to self RBAM area
Output Code

List

Variables /funchons information
Section

Verily

Message

Others

Device

Set enable/disable on-chip debug by link option Yes(-OCDBG)

(=] 84
Yes(DEBUG _MONIT!

Yes(-LISER_OPT_BYTE]

[F=:] FFFFES

No

\ Common Options_,{ Compile Options ,{J Azsemble Opﬁo...l’, Link Options ,.I Hex Output Op ... ,{ I/0 Header File... / ¥

Figure 8-1 (b) Setting of Option Byte when Using the CS+ (CC-RL Compiler)

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS

Page 24 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(2) When using CC-RL compiler with the e? studio
Select "C/C++ Build" [Settings] - "Linker" [Device]. And set device items on the displayed screen.
When performing on-chip debug, put a check mark to "Set enable/disable on-chip debug by link option" and specify
"84" for "On-chip debug control value". Put a check mark to "Secure memory area of OCD monitor".
The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Put a check mark to
"Set user option byte" on the "Tool Settings" tabbed page, specify "xxxxE8" for "User option byte value" and set the

high-speed on-chip oscillator at 32 MHz (as shown in Figure 8-2).

a Properties for EELPack02_PJO1

‘type filter text

Settings
Resource B
Builders ¥ Tool Settings Toolchain| Device| #* Build Steps Build Artifact | s Binary Parsers| €3 Error Parsers
w CfC++ Build o . .
Build Variables z: Common Security ID value (-security_id) 0
¥ Compiler

Environment -
& Assembler

~ B Linker [Reserve working memory for RRM/DMM function (-rrm)
Settings .
) 53 Input
Stack Analysis "
Tool Chain Editor = L'Str o Secure memory area of OCD monitor (-debug_monitor)
(%2 Optimization .
C/C++ General ¥ section Memary area (-debug_monitor=<start address>-<end address>) ‘DFEDD—[}FFFF

Project Natures
Project References
Refactoring History
Renesas QE
Run/Debug Settings

(22 Output
(2 Miscellaneous
(2 User

&3 Library Generator

% Converter

Set user option byte (-user_opt byte)

User option byte value (-user_opt_byte=<value>) ‘FFFFES
Set enable/disable on-chip debug by link option (-ocdbg)
On-chip debug control value (-ocdbg=<value>) ‘84

Set security option byte (-security_opt_byte)

Figure 8-2 Setting of Option Byte when Using the e? studio (CC-RL Compiler)

(3) When using LLVM compiler with the e? studio
Device item settings are configured in the "vects.c" file output from e? studio.

Target file path: "Project Folder"¥generate¥vects.c

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Therefore, set the
user option byte value "xxxxe8" and the on-chip debug option byte value in the "Option_Bytes" of the "vects.c" file as

follows:

[The example for RL78/G13]
"Oxff, Oxff, 0xe8, 0x84" (WDT Enable, LVD reset mode, HS mode /32MHz, Enable on-chip debug operation)

const unsigned char Option_Bytes[]
oxff, Oxff, Oxe8, 0x84

__attribute__ ((section (".option_bytes"))) = {

1

Note: Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes" and "On-chip debug

option byte" by the user’'s manual of a target device. And describe the set value used with user application.

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS Page 25 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

8.3 Defining the On-Chip RAM Area

8.3.1 When the CA78KOR Compiler is Used

The following describes how to define the on-chip RAM area in the link directive file.

Normally, the entire on-chip RAM area is automatically defined as an area with the name "RAM" unless otherwise stated
in the link directive file. The stack and data buffers are to be allocated to this area except when specifically stated
otherwise N°t¢. However, in this case, the stack and data buffers would be allocated by default to an area (self-RAM and
FFE20H to FFEFFH) for which use by the EEPROM Emulation Library Pack02 is prohibited, so the program may not run
correctly.

In the attached link directive file for the sample program, as a solution, re-define the area with the name "RAM" so that it

does not include the above area, ensuring that stack and so on are not allocated to the area for which usage is prohibited.

MEMORY RAM :(OFF080H, 000DAOH)

The above statement redefines the area with the name "RAM" to be the DAOH bytes area starting from the address
FFO80H (FFO80H to FFE1FH) Nete, This prevents attempted use of the area which the EEPROM Emulation Library Pack02
is prohibited to use by excluding the prohibited portion from the area with the name "RAM".

However, if this is the only change setting that is explicitly made, the area from FFE20H to FFEFFH is also unusable for
any other purpose. Accordingly, separately add the following definition. No particular restrictions apply to the name of

this area.

MEMORY SADDR_RAM:(OFFE20H, 0000EOH)

If there is a self-RAM area, automatic allocation of variables to this area can be restricted by defining its range as an area

with the name "SELFRAM".

MEMORY SELFRAM :(OFEFOOH, 000180H)

An example of the settings for an RL78/G13 (the product with 4 KB of RAM and 64 KB of ROM) is given below.

; Define new memory entry for Self-RAM

MEMORY SELFRAM : (OFEFOOH, 000180H) <«———— Definition of the self-RAM area

)

; Redefined default data segment RAM

MEMORY RAM : (OFFO80H, 000DAOH) <4— Definition of the RAM area to be used normally

; Define new memory entry for saddr area

MEMORY RAM_SADDR : (OFFE20H, 0000EOH }¢—————— Definition of the area from FFE20H to FFEFFH

R20UT2645EJ0110 Rev.1.10 RENESAS Page 26 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

Note: The CA78KOR linker allocates data with a non-specified destination for allocation (segment types DSEG and
BSEG) to the on-chip RAM area according to the re-allocation attribute of the data. Accordingly, specific data
may not be allocated to the area with the name "RAM" in some situations.

For details on the methods of defining and allocating the individual categories of data, refer to the user’'s manual
for CS+.

Reference to the map file (*.map) generated at the time of building is required to confirm the state of allocation.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 27 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

8.3.2 When the CC-RL Compiler is Used

(1) Adding the include path

In CS+ and e? studio, no include path is specified in the initial state: The include paths for the header files used by
the EEPROM emulation library need to be added. The EEPROM emulation library uses header files "eel.h",
"eel_types.h", "eel_user_types.h", "eel_descriptor.h", "fdl.h", "fdl_types.h", "fdl_descriptor.h" and "iodefine.h" (this file
is automatically generated by CS+ and e? studio).
- In CS+, add the include path where each file resides in [Compile Options] — [Preprocessing] — [Additional Include
Path].
- In €2 studio, in the "Properties" window, add the include path where each file exists in the "Include file directories

(-1)" field on the screen displayed by "C/C++ Build" [Settings] — "Compiler" [Source].

(2) Defining sections

The sections used for the ROM and RAM areas need to be defined.

- Sections can be defined in the Section category on the Link Options tab in the CS+ window. When the Layout
sections automatically property is set to No, select the Section start address property to open the Section Settings
dialog box and add the sections necessary for the EEPROM emulation library to the ROM area (as shown in Figure
8-3). (In this example, the FDL_CODE, FDL_CNST_f, EEL_CODE and EEL_CNST _f sections that are necessary
for operation of the sample are added.) Also add a section of the EEPROM emulation library to the RAM area (as
shown in Figure 8-4). (In this example, the FDL_SDAT and EEL_SDAT sections that are necessary for operation of
the sample are added.)

After adding sections, return Layout sections automatically property to Yes.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 28 of 35
Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

Add Section *
Section name:
|| FDL_CODE | i

Enter the section name (FDL_CODE) and
click the OK button. Repeat this procedure for
FDL_CNST_f, EEL_CODE and EEL_CNST_f.

After adding all necessary sections, click the OK
button to close the Section Settings dialog box.

Section Settings x
(02000 const
1 Modify...
tend
RLIB New Oveday...
.5LIB T
| tef
constf Up L
data
e
[xFEFDD dataR
bss Import..
IFFE20 sdataR o B
Caree o
Section Settings X
Address Section Add..
Modfy...
teod
RLIB New Qveriay...
SLIB Termee
| texdf
constf
data
sdata
FDOL_CODE
FDL_CNST f
EEL_CODE
EEL_CNST_f
(xFEFDD dataR
bes
OFFE20 sdataR fopoc
shss Export.
I oK I Cancel Help

Figure 8-3. Example of Section Settings for EEPROM Emulation Library when Using CS+ (ROM Area)

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS

Page 29 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note
Section Settings X
Address i Section
(02000 const
T Modify...
fet
RLIE MNew Overay...
SLIB p—— Add Section 4

=

tedf

T Section name:

constf

o I::> [FoL_spaT | “]

s Cancel telp

FDL_CODE
FDL_CNST_f
EEL_CODE Enter the section name (FDL_SDAT) and
EEL_CNST f click the OK button. Repeat this procedure
[<FEFDD | dataR for EEL_SDAT.
bss
<FFE20 sdataR ot

=

Carce b

&

Section Settings X

Address Section Add...

Modify...

Yot

RLIB New Overlay...

SLIB
| tedtf

Bemove

constf
data

sdata
FDL_CODE

el After adding all necessary sections, click the OK

Sl button to close the Section Settings dialog box.
EEL_CNST_f

(<FEFOD | dataR
I bss
eFFE2D sdataR
sbss
FDL_SDAT Import...
EEL_SDAT

Ii OK I Cancel Help

Figure 8-4. Example of Section Settings for EEPROM Emulation Library when Using CS+ (RAM Area)

R20UT2645EJ0110 Rev.1.10 RENESAS Page 30 of 35
Mar 15, 2024

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

- Setting of the section items on e? studio inputs in the "Properties" window. Select "C/C++ Build" [Setting] - "Linker"
[Section]. And set section items on the displayed screen. Remove a check mark to [Layout sections automatically(-
auto_section_layout)]. Press the "/ ,,, |" button of the right-hand side which sections are displaying, and a "Section
Viewer" screen is displayed and add the sections necessary for the EEPROM emulation library to the ROM area (as
shown in Figure 8-5). (In this example, the FDL_CODE, FDL_CNST_f, EEL_CODE and EEL_CNST_f sections that
are necessary for operation of the sample are added.) Also add a section of the EEPROM emulation library to the
RAM area (as shown in Figure 8-6). (In this example, the FDL_SDAT and EEL_SDAT sections that are necessary
for operation of the sample are added.)

After adding a section, check the [Layout sections automatically(-auto_section_layout)] checkbox.

5 w

Section Viewer

Address Section Name
| 0x00002000 .const
text
data
sdata
RLIB | Add Section |
SLIB O
textf ew Overlay
constf Remaove Section
FDL_CODE Move Up
FDLCNST_f Move Down
EEL CODE | rt
EEL_CNST f EEOEE
OxO0OFEFO0 .dataR Export...
bss
Ox000FFE20 .sdataR
sbss
FDL_SDAT
EEL_SDAT
[C] Override Linker Script
Browse

Re-Apply

Cancel

Figure 8-5. Example of Section Settings for EEPROM Emulation Library when Using e? studio (ROM Area)

R20UT2645EJ0110 Rev.1.10 RENESAS Page 31 of 35
Mar 15, 2024

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

Section Viewer

Address

Section Name

: 0x00002000

.const

0xQ00FEFOO

0x000FFE20

text

data

sdata

RLIB

SLIB

textf
constf
FDL_CODE
FDL_CNST_f
EEL_CODE
EEL_CNST_f
dataR

bss

sdataR
sbss

FDL_SDAT
EEL_SDAT

I Add Section I

] Override Linker Script

Re-Apply

New Overlay
Remove Section
Move Up
Move Down
Import...

Export...

Browse

Cancel

Figure 8-6. Example of Section Settings for EEPROM Emulation Library when Using e? studio (RAM Area)

R20UT2645EJ0110 Rev.1.10

Mar 15, 2024

RENESAS

Page 32 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

(3) Allocating the Self-RAM Area

In the initial state of the section settings in CS+ for the CC-RL compiler, the user RAM area is allocated at the

beginning of the internal RAM area (from address FEFOOH for RSF100LEA, which is the target microcontroller of the

sample program). However, in R5F100LEA, the EEPROM emulation library uses the address range from OxFEFOO0

to OxFFO7F as the self-RAM area. Therefore, the user RAM area must be allocated outside this area. In this example,

the user data start address OXFEFQO is changed to 0xFF080 (as shown in Figure 8-7 or Figure 8-8).

Section Settings *
Address Section Add
corst os]
Yot
RLIB MNew Qveray...
SLIB e
teodf
constf
data
sdata
FDL_CODE
FDL_CNST_f
EEL_CODE
EEL_CNST_f
bss
cFFE20 sdataR
sbss
FDL_SDAT Import...
EEL_SDAT o
Cancsl Help
Section Settings b
Address Section Add..
(02000 const
e Modify....
RLIB New Overlay...
SLB e
tendf
constf
data
sdata
FDL_CODE
FDL_CNST_f
EEL_CODE
EEL_CNST f
e
bss
xFFE20 sdataR
shss
FOL_SDAT Import...
EEL_SDAT T
= b

—

%

Section Address x

Address:

Change the section address from FEF00 to FF080.

s

Section Address >

Cancel Help

Address:

After changing the address, click the OK button
to close the Section Settings dialog box.

Figure 8-7. Example of Changing the User RAM Area Allocation when Using CS+ (RAM Area)

R20UT2645EJ0110 Rev.1.10

Mar 15, 2024

RENESAS

Page 33 of 35

RL78 Family

EEPROM Emulation Library Pack02 Package Ver.3.00

Release Note

m b4
Section Viewer
Address Section Name
0x00002000 .const
text
data
.sdata
RLIB Add Section
SLIB O
toxtf ew Overlay
constf Remove Section
FDL_CODE Move Up
FDL CNST f Move Down
EEL_CODE | rt
| EEL_CNST_f EOI
0x000FF080| dataR Export...
| .bss
0x000FFE20 sdataR
.sbss
FDL_SDAT
EEL_SDAT
[override Linker Script
Browse
Re-Apply
|| Cancel

Figure 8-8. Example of Changing the User RAM Area Allocation when Using e? studio (RAM Area)

Note: When sections are automatically allocated again after the automatic section allocation setting has been
removed and the user RAM area has been changed in the section settings, the sections will be automatically
allocated again, including user-defined sections. In this case, sections may be allocated to areas that are not
specified by the user; that is, data may be placed in unintended areas. Be sure to refer to the map file (*.map)
to check if the software resources (especially RAM data) used by the EEPROM emulation library are placed

in relocatable areas.

8.3.3 When the LLVM Compiler is Used
(1) Adding the include path

In €2 studio, no include path is specified in the initial state: The include path for the header files used by the
EEPROM emulation library need to be added. The EEPROM emulation library uses header files "eel.h",
"eel_types.h", "eel_user_types.h", "eel_descriptor.h", "fdl.h", "fdl_types.h", "fdl_descriptor.h", and "iodefine.h" and
"iodefine_ext.h" (these files are automatically generated by e? studio).

In €2 studio, in the "Properties” window, add the include path where each file exists in the "Include file directories(-l)"

field on the screen displayed by "C/C++ Build" [Settings] — "Compiler" [Includes].

R20UT2645EJ0110 Rev.1.10
Mar 15, 2024

RENESAS Page 34 of 35

RL78 Family
EEPROM Emulation Library Pack02 Package Ver.3.00 Release Note

(2) Allocating the Self-RAM Area

The LLVM compiler describes the link settings to be performed in the build in a linker script file (*.1d).

In the linker script file (linker_script.ld) output from e? studio, the built-in RAM area is defined as "RAM" section. In
addition, the software resources used by the EEPROM emulation library are defined as an area called "SELFRAM"
section.

(Only for devices that require "Self-RAM" area)

In the linker script file "r_eel_sample_c.Id" included with the sample program, the "RAM" section and "SELFRAM"

section are defined so that they do not overlap.

Note: The "r_eel_sample_c.Id" provided in the sample program is prepared on the assumption that R5F100LE will be
used. When using other devices, please check the Self-RAM list and modify it according to the device.
Refer to each reference manual of LLVM about the descriptive content of linker script file (*.Id), and the details

of the description method.

R20UT2645EJ0110 Rev.1.10 RENESAS Page 35 of 35
Mar 15, 2024

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)’ means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
WWww.renesas.com www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Cover
	Contents
	Chapter 1 Target Product
	Chapter 2 User's Manual
	Chapter 3 Revisions
	Chapter 4 Supported Tools
	Chapter 5 Installation
	5.1 Installation
	5.2 Uninstallation
	5.3 File Organization

	Chapter 6 How to Build a Program
	6.1 Software to be Used
	6.2 Building Using CS+ (Formerly CubeSuite+)
	6.2.1 Building a C Program
	6.2.2 Building an Assembly-Language Program

	6.3 Building Using e2 studio
	6.3.1 Creating a Project
	6.3.2 Building a C Program
	6.3.3 Building an Assembly-Language Program (only when the CC-RL Compiler is used)

	6.4 Notes at Build
	6.4.1 When the CA78K0R Compiler is Used
	6.4.2 When the CC-RL Compiler is Used

	Chapter 7 How to Debug a Program
	7.1 Notes at Debug

	Chapter 8 Sample Program
	8.1 Initial Settings of the Sample Program
	8.2 Settings of Option Byte and On-Chip Debugging
	8.3 Defining the On-Chip RAM Area
	8.3.1 When the CA78K0R Compiler is Used
	8.3.2 When the CC-RL Compiler is Used
	8.3.3 When the LLVM Compiler is Used

	Notice

