This document outlines the target devices, simulation functions and cautions of RL78/G12 simulator.

Contents

Chapter 1. Target Devices and simulation functions ... 2
Chapter 2. User's Manuals .. 3
Chapter 3. Uninstallation ... 4
Chapter 4. Cautions .. 5
 4.1 Differences between target devices and simulator ... 5
 4.2 Cautions for using simulation function ... 11
Chapter 1. Target Devices and simulation functions

The following target devices are supported by the RL78/G12 simulator.

In addition to CPU instruction simulation, the following simulation functions are available.
(For other RL78 devices, the simulator works as CPU instruction simulation mode alone.)

- The MCU peripheral function simulation. Timer, Serial, and so on.
- Virtual target board simulation by using "I/O panel" window
- MCU pin signal waveform by using "Timing chart" window

<table>
<thead>
<tr>
<th>Device group</th>
<th>Device name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL78/G12</td>
<td>R5F10266, R5F10267, R5F10268, R5F10269, R5F1026A, R5F10366, R5F10367, R5F10368, R5F10369, R5F1036A, R5F10377, R5F10378, R5F10379, R5F1037A, R5F102A7, R5F102A8, R5F102A9, R5F102AA, R5F103A7, R5F103A8, R5F103A9, R5F103AA</td>
</tr>
</tbody>
</table>
Chapter 2. User’s Manuals

Please read the following user’s manuals along with this document.

<table>
<thead>
<tr>
<th>Manual Name</th>
<th>Document Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS+ V5.00.00 Python Console</td>
<td>R20UT3932EJ0100</td>
</tr>
<tr>
<td>CS+ V5.00.00 Message</td>
<td>R20UT3952EJ0100</td>
</tr>
<tr>
<td>CS+ V5.00.00 RL78 Debug Tool</td>
<td>R20UT3939EJ0100</td>
</tr>
</tbody>
</table>
Chapter 3. Uninstallation

This simulator is included CS+ for CC installer. Therefore when uninstalling this simulator, please uninstall “CS+ for CC”.
Chapter 4. Cautions

This section describes cautions for using RL78/G12 simulator. The following two types of cautions are described:

• Differences between target devices and simulator: Behavior differences between simulator and the target devices due to simulator specifications

• Cautions for using simulation functions: Cautions for the usage of simulator (e.g. configurations and GUI operation)

4.1 Differences between target devices and simulator

4.1.1 Unsupported peripheral functions

The simulator does not support the following peripheral functions of the target device (the following functions are not simulated).

- Regulator
- Power-on-reset circuit
- Voltage detector
- Flash self programming function
- Simplified I2C of serial array unit

4.1.2 Peripheral I/O redirection register (PIOR)

If using Peripheral I/O redirection register (PIOR), simulator’s alternate pin function are switched same as target device. Note that the PIOR register setting for serial interface pins should not be changed, because “Serial” window could not communicate with a serial interface, if the port related to the serial interface pins is switched.

In addition, in case of switching alternate pin function, be sure to select port name on the “Select Pin” dialog. Do not use alternate function pin name.
4.1.3 Oscillation stabilization time of Clock Generator

Since the simulator does not simulate the clock oscillator oscillation stabilization time, the value remains at 0 second. When the oscillation is started, the OSTC register is set to one of the following values without count up operations.

<table>
<thead>
<tr>
<th>OSTS Setting Value</th>
<th>OSTC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0 : 2^8/\text{fx}</td>
<td>0x80</td>
</tr>
<tr>
<td>0x1 : 2^9/\text{fx}</td>
<td>0xc0</td>
</tr>
<tr>
<td>0x2 : 2^{10}/\text{fx}</td>
<td>0xe0</td>
</tr>
<tr>
<td>0x3 : 2^{11}/\text{fx}</td>
<td>0xf0</td>
</tr>
<tr>
<td>0x4 : 2^{12}/\text{fx}</td>
<td>0xf8</td>
</tr>
<tr>
<td>0x5 : 2^{15}/\text{fx}</td>
<td>0xfc</td>
</tr>
<tr>
<td>0x6 : 2^{17}/\text{fx}</td>
<td>0xfe</td>
</tr>
<tr>
<td>0x7 : 2^{18}/\text{fx}</td>
<td>0xff</td>
</tr>
</tbody>
</table>

The following figure illustrates this operation.
In the target device, the X1 clock oscillation starts after the states (1) to (4) have passed. In the simulator, states (1) through (4) are skipped and instantly the X1 clock oscillation starts.

[In target device (an example of when OSTS is set to 0x07)]

[In simulator (an example of when OSTS is set to 0x07)]
Therefore, pay attention to the code that waits for oscillation stabilization.

There is no problem if a program is created with the condition that the execution exits the oscillation stabilization wait period when the OSTC register value becomes the maximum value, or when the OSTC register value exceeds the specified value, but if a program is created with the condition that the execution exits the oscillation stabilization wait period when the OSTC register value becomes a value other than the maximum value, the execution enters an infinite loop.

The following shows examples of code that causes/does not cause problems.

(This is an example when OSTS is set to 0x07)

<table>
<thead>
<tr>
<th>Correct program example (1)</th>
<th>Correct program example (2)</th>
<th>Example of program that may cause problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>while(OSTC != 0xff)</td>
<td>while(OSTC <= 0xf0)</td>
<td>while(OSTC != 0xf0)</td>
</tr>
<tr>
<td>{</td>
<td>{</td>
<td>{</td>
</tr>
<tr>
<td>NOP(); /* wait */</td>
<td>NOP(); /* wait */</td>
<td>NOP(); /* wait */</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
<td>}</td>
</tr>
</tbody>
</table>

4.1.4 SFR with clock generator (AMPH/HIOTRM)

The following SFRs which belong to the clock generator are not simulated. Although read/write accesses for each register can be performed normally, the operation does not change even if its value is changed.

- Bit 0 (AMPH) of clock operation mode control register (CMC)
- High-speed internal oscillator trimming register (HIOTRM)

4.1.5 Operation clock of timer array unit

Do not specify an operation clock that is 233 Hz or lower. If the operation clock of the timer array unit is 233 Hz or lower, then the timer array unit will not work properly (it will behave as if operating via a clock that is faster than the one selected).

4.1.6 Noise filter of timer array unit

Although the target device's timer array unit has a function to turn the noise filter on and off in order to reduce noise from the timer input pin, the simulator does not simulate this function. (There is no difference in behavior whether filtering is on or off.) Since there is no noise in the simulator's signal, it would be meaningless to simulate this function.
4.1.7 Interval interrupt of watchdog timer

The following differences occur between the target device and simulator when using an interval interrupt of
watchdog timer.
[Target device]
An interval interrupt is generated when 75% + 1/2fL of overflow time is reached.
[Simulator]
An interval interrupt is generated when 75% of overflow time is reached.

4.1.8 Operation clock of serial array unit

Do not specify an operation clock that is 233 Hz or lower. If the operation clock of the serial array unit is 233
Hz or lower, then the serial array unit will not operate correctly (it will behave as if operating via a clock that
is faster than the one selected).

4.1.9 Noise filter of serial array unit

Although the target device's serial array unit has a function to turn the noise filter on and off in order to
reduce noise on the input pin, the simulator does not simulate this function. (There is no difference in
behavior whether filtering is on or off.) Since there is no noise in the simulator's signal, it would be
meaningless to simulate this function.

4.1.10 SDRmn register of serial array unit

The following differences occur between the target device and simulator when the serial data register
(SDRmn) is read during serial operation.
[Target device]
The value is 0.
[Simulator]
The value remains at the moment of serial operation started.
4.1.11 Serial interface IICA

IICA supports pin waveform generation and the communication with “Serial” window. The following functions are not supported.
- Digital filter
- Arbitration
- Detection of transmission errors
- Communication reservation

4.1.12 Reset

The behavior differs as follows if a reset is generated by the RESET pin.

[Target device]
MCU goes into reset status when the RESET pin goes to low level. Reset status is released when it goes to high level.

[Simulator]
MCU does not go into reset status when the RESET pin goes to low level. When it goes to high level, the simulator momentarily goes into reset status, and then the reset status is released immediately.

4.1.13 Reset control flag register (RESF)

The simulator only responds to WDTRF bit of Reset control flag register (RESF).
The simulator does not support TRAP bit and RPERF bit and IAWRF bit and LVIRF bit.
These bits are not changed from the initial value.

4.1.14 A/D converter

When VDD, AVREFP signal has no input, the default reference voltage of A/D converter is 5.0V.
For changing the reference voltage, input it to VDD, AVREFP signal by using signal data editor and so on.
The temperature sensor output voltage is always 1.05V.
4.1.15 Clock output/buzzer output controller

When selecting \(f_{\text{MAIN}} \) as an output clock, “Timing chart” window does not show the clock waveform of PCLBUZn signal.
When selecting \(f_{\text{MAIN}}/2 \) or slower as an output clock, “Timing chart” window shows the clock waveform.

4.1.16 Execution of illegal instructions

If an illegal instruction (instruction code: 0xFF) is executed, the target device will be reset, but the simulator will go into an infinite loop (the illegal instruction will be executed repeatedly).

4.1.17 DMA controller

The transfer speeds of the target device and simulator differ as follows when simulating the DMA controller.

[Target device]
- It takes two clock cycles to complete one DMA transfer. The CPU waits during this period.
- Conflicted with another channel’s DMA transfer, then one of the DMA transfers will be placed on hold until the other DMA transfer has been completed.

[Simulator]
- It takes zero clock cycles to complete one DMA transfer. For this reason, the CPU does not wait.
- Even with confictions, all DMA channel's transfers will be performed simultaneously.
4.2 Cautions for using simulation function

4.2.1 Cautions for simulation speed

The simulation speed of RL78/G12 simulator depends on the numbers of operating peripheral functions. If many peripheral functions are operating, the simulation speed becomes several times to ten and several times slower than actual devices Note. Using a few, or even no peripheral functions, the simulation speed may become faster than actual devices. Note: The measurement environment of simulation speed.

CPU: 3.10GHz (Quad-Core), Memory: 4Gbyte, OS: Windws7 32-bit edition

4.2.2 Cautions for pin waveform of “Timing chart” window

The maximum length of the pin waveform is 4096 pin changing points. After reached to the maximum length, the data will be overwritten from the oldest one. If the length is not enough, please use the following method.
- Reduce the numbers of registered pin
- Stop the user program at the place where you want to confirm the waveform by using breakpoint.

4.2.3 Cautions for controlling each windows

The following keyboard operations are not available in the simulator windows (“Signal-data editor” window, “I/O panel” window, and “Serial” window).
- Navigation via tab or arrow keys (←, ↑, →, ↓)
- Deletion via the Del or Backspace keys
- Copy & paste and other operations via the Ctrl + C, V, X, A, or Z keys.

Perform the above operations as follows.
- Navigation: Navigate using the mouse.
- Deletion: Right click and perform the action via the context menu.
- Copy & paste, etc.: Right click and perform the action via the context menu.

4.2.4 Cautions for closing “Simulator GUI” window

The “Simulator GUI” window can only be closed by disconnecting from the debugging tool, or by closing CS+ in proper manner. (The X button cannot be used.) Additionally, although it appears that the X button can be pressed if Aero is enabled in Windows, pressing this button will not close the GUI window.
4.2.5 Cautions for disconnecting the debug tool

CS+ may exit if the debugging tool is disconnected while any of the following dialog boxes is open from the “Simulator GUI” window. Please be sure that the following dialog boxes have been closed before disconnecting the simulator.

- Save As
- Open
- New
- Color
- Font
- Customize
- Loop
- Select Pin
- Search Data
- Format (UART)
- Format (CSI)
- Format (IIC)
- Message (e.g. Error)
- Parts Button Properties
- Analog Button Properties
- Parts Key Properties
- Parts Level Gauge Properties
- Parts Led Properties
- Parts Segment LED Properties
- Parts Matrix Led Properties
- Parts Buzzer Properties
- Pull up / Pull down
- Entry Bitmap
- Object Properties

4.2.6 Cautions for setting the Host Machine’s language and region

If a Japanese OS is installed on your Host Machine, then if the language or region is set to other than Japanese/Japan, the menus and dialog-box names of the “Simulator GUI” window will be shown in English. Similarly, if a non-Japanese OS is installed on your Host Machine, then if the language or region is set to Japanese/Japan, the menus and dialog-box names of the “Simulator GUI” window will be shown in Japanese.

4.2.7 Cautions for “Serial” window

When using “Serial” window as the data receiver of IICA, only ACK can be generated after receiving the data.

NACK cannot be generated.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality.” The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crim system; and safety equipment etc.

6. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implants etc.), or may cause serious property damage (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by the in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Note 1: “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

Note 2: “Renesas Electronics product” means any product developed or manufactured by or for Renesas Electronics.