ISL72814SEH, ISL73814SEH

Neutron Test Results of the ISL72814SEH and ISL73814SEH 16-Channel Current Drivers

Introduction

This report summarizes the 1MeV equivalent neutron testing results of the ISL72814SEH and ISL73814SEH 16-Channel Current Drivers. These parts differ only in their TID rating. The test was conducted to determine the sensitivity of the part to displacement damage (DD) caused by neutron or proton environments. Neutron fluences ranged from 5×10^{11} n/cm² to 1×10^{13} n/cm².

Product Description

The ISL72814SEH and ISL73814SEH are radiation hardened, high-voltage, high-current, driver circuit ICs fabricated using the Renesas proprietary PR40 Silicon-On-Insulator (SOI) bipolar process technology to mitigate single-event effects. The devices integrate 16 driver channels with a high-voltage (42V), high-current (700mA) open-emitter PNP output stage.

To further reduce solution size, the ISL7x814SEH integrates a 4-bit, 16-channel decoder with Enable. This feature allows users to select 1 of 16 available driver channels or disable all channels. The inputs to the decoder are TTL and CMOS compatible, allowing an easy interface to FPGAs and microprocessors. A block diagram is shown in Figure 1.

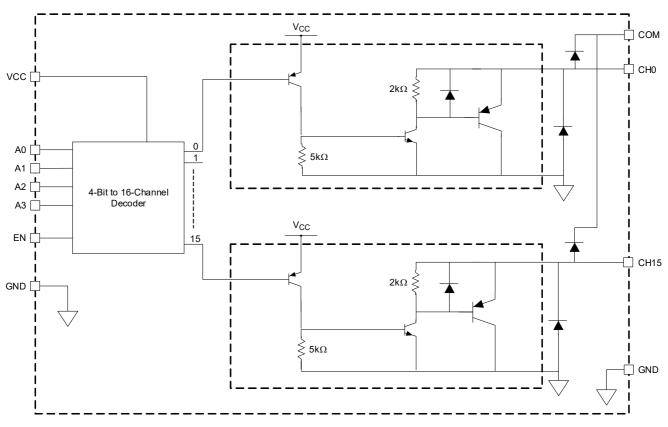
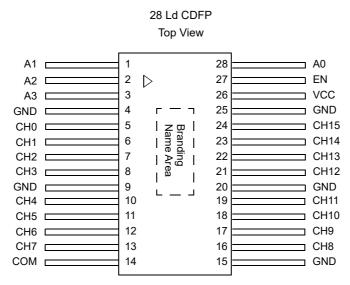



Figure 1. ISL7x814SEH Block Diagram

The ISL7x814SEH devices operate across the military temperature range from -55°C to +125°C and are available in a 28-lead hermetically sealed Ceramic Dual Flatpack (CDFP) package or die. Detailed Electrical Specifications for these devices are contained in SMD 5962-18221.

The package pin assignments of the ISL7x814SEH are shown in Figure 2.

Note: The ESD triangular mark is indicative of Pin #1. It is a part of the device marking and is placed on the lid in the quadrant where Pin #1 is located.

Figure 2. ISL7x814SEH Pin Assignments

Contents

1.	Test	Test Description				
	1.1	Irradiation Facilities	. 3			
	1.2	Test Fixturing	. 3			
	1.3	Radiation Dosimetry	. 3			
	1.4	Characterization Equipment and Procedures	. 3			
	1.5	Experimental Matrix	. 3			
2.	Results					
	2.1	Attributes Data	. 4			
	2.2	Key Parameter Variables Data	. 4			
3.	Discussion and Conclusion					
4.	Revision History					
Α.	Appendix					
	A.1	Reported parameters	14			
	A.2	Related Information				

1. Test Description

1.1 Irradiation Facilities

Neutron fluence irradiations were performed on the test samples on March 29, 2023, at the University of Massachusetts, Lowell (UMASS Lowell) fast neutron irradiator per Mil-STD-883G, Method 1017.2, with each part unpowered during irradiation. The target irradiation levels were 5×10¹¹n/cm², 2×10¹²n/cm², and 1×10¹³n/cm². As neutron irradiation activates many of the heavier elements found in a packaged integrated circuit, the parts exposed at the higher neutron levels required (as expected) some cooldown time before being shipped back to Renesas (Palm Bay, FL) for electrical testing.

1.2 Test Fixturing

No formal irradiation test fixturing is involved, as these DD tests are 'bag tests' in the sense that the parts are irradiated with all leads unbiased.

1.3 Radiation Dosimetry

 Table 1 shows dosimetry from UMASS Lowell, indicating the total accumulated gamma dose and actual neutron fluence exposure levels for each set of samples.

Irradiation	Requested Fluence (n/cm ²)	Reactor Power (kW)	Time (s)	Flux (n/cm ² -s) ^{[1][2]}	Gamma Dose (rad(Si)) ^[3]	Measured Fluence (n/cm ²) ^[4]
CRF#77981-B	5.00E+11	50	131	3.83E+09	75	5.30E+11
CRF#77981-C	2.00E+12	80	327	6.12E+09	298	2.33E+12
CRF#77981-D	1.00E+13	1000	131	7.65E+10	1492	1.04E+13

Table 1. ISL7x814SEH Neutron Fluence Dosimetry Data

1. Dosimetry method: ASTM E-265

2. The neutron fluence rate is determined from "Initial Testing of the New Ex-Core Fast Neutron Irradiator at UMass Lowell" (6/18/02). Validated on 6/07/2011 under the Trident II D5LE neutron facility study by Navy Crane.

3. Based on reactor power at 1000kW, the gamma dose is 41 ±5.3% krad(Si)/hr as mapped by TLD-based dosimetry.

4. Validated by S-32 flux monitors.

1.4 Characterization Equipment and Procedures

Electrical testing was performed before and after irradiation using the Renesas production automated test equipment (ATE). All electrical testing was performed at room temperature.

1.5 Experimental Matrix

Testing proceeded in general accordance with the guidelines of MIL-STD-883 TM 1017. The experimental matrix consisted of six samples to be irradiated at 5×10^{11} n/cm², six at 2×10^{12} n/cm², and six 1×10^{13} n/cm². The actual levels achieved were 5.3×10^{11} n/cm², 2.3×10^{12} n/cm², and 1×10^{13} n/cm², as shown in Table 2. Two control units were used.

The eighteen ISL7x814SEH samples were drawn from Lot XDD2AB. Samples were packaged in the standard 28 lead hermetically sealed Ceramic Dual Flatpack. Samples were processed through burn-in before irradiation and screened to the SMD limits at room, low, and high temperatures before the neutron testing started.

2. Results

Neutron testing of the ISL7x814SEH is complete, and the results are reported in the balance of this report. It should be understood when interpreting the data that each neutron irradiation was performed on a different set of samples; this is not total dose testing, where the damage is cumulative.

2.1 Attributes Data

1MeV Flue	nce, (n/cm²)	Sample	Pass ^[1]	Fail	Notes	
Planned	Actual	size	F 455 4	i an		
5×10 ¹¹	5.30×10 ¹¹	6	6	0	All passed	
2×10 ¹²	2.33×10 ¹²	6	6	0	All passed	
1×10 ¹³	1.04×10 ¹³	6	6	0	All passed	

 Table 2. ISL7x814SEH Attributes Data

1. A Pass indicates a sample that passes all post-irradiation SMD limits.

2.2 Key Parameter Variables Data

The plots in Figure 3 through Figure 20 show data plots for key parameters before and after irradiation to each neutron fluence level. The plots show the mean of each parameter as a function of neutron irradiation. Each marker represents a different set of six samples. The line connecting them is for trend visualization only. The plots also include error bars at each down-point, representing the minimum and maximum measured values of the samples. However, in some plots, the error bars might not be visible due to their values compared to the scale of the graph. While the applicable electrical limits taken from the SMD are also shown, these limits are provided for guidance only as the ISL7x814SEH is not specified for the neutron environment. All samples passed the post-irradiation SMD limits after all three exposures up to and including 1.04×10¹³n/cm².

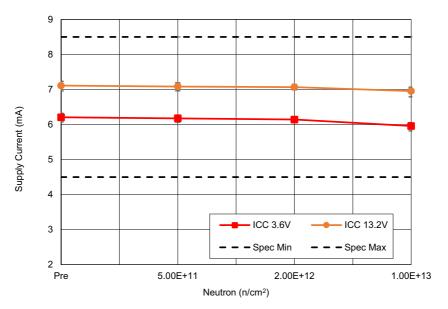


Figure 3. ISL7x814SEH average supply current (I_{CC}) at V_{CC} = 3.6V and 13.2V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 4.5mA minimum and 8.5mA maximum.

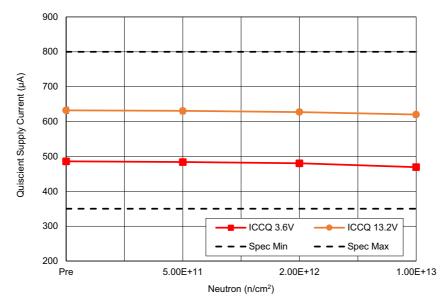


Figure 4. ISL7x814SEH average quiescent supply current (I_{CCQ}) at V_{CC} = 3.6V and 13.2V as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 350µA minimum and 800µA maximum.

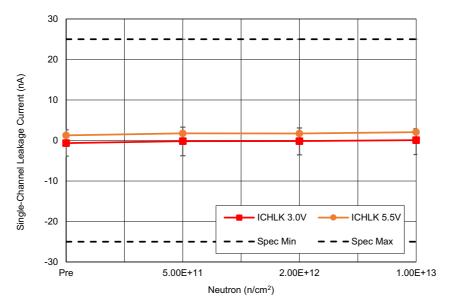


Figure 5. ISL7x814SEH average single-channel leakage current (I_{CHLK}) at V_{CC} = 3V and 5.5V as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are -25nA minimum and 25nA maximum.

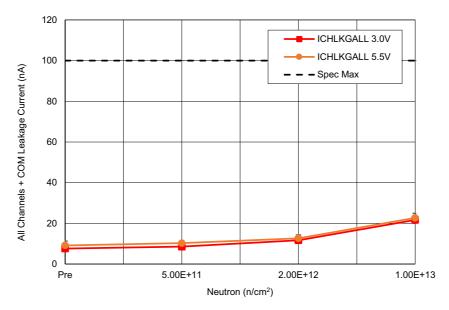


Figure 6. ISL7x814SEH average all channels + COM leakage current ($I_{TOTCHLK}$) at V_{CC} = 3V and 5.5V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are -30nA minimum and 100nA maximum.

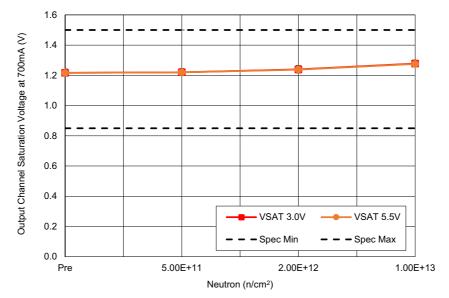


Figure 7. ISL7x814SEH average output channel saturation voltage ($V_{CH(Sat)}$), at V_{CC} = 3V and 5.5V, with I_{CHx} = 700mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.85V minimum and 1.5V maximum.

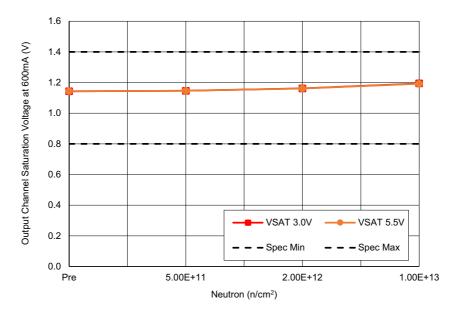


Figure 8. ISL7x814SEH average output channel saturation voltage ($V_{CH(Sat)}$), at V_{CC} = 3V and 5.5V, with I_{CHx} = 600mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.8V minimum and 1.4V maximum.

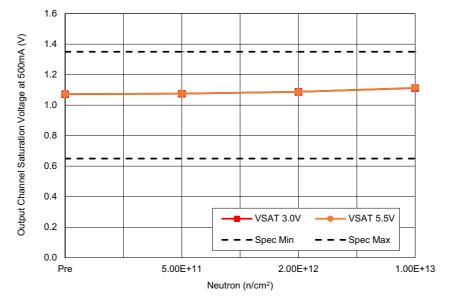


Figure 9. ISL7x814SEH average output channel saturation voltage ($V_{CH(Sat)}$), at V_{CC} = 3V and 5.5V, with I_{CHx} = 500mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.65V minimum and 1.35V maximum.

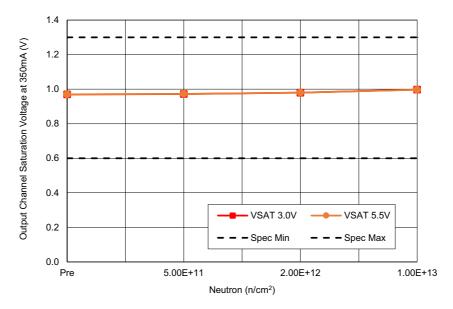


Figure 10. ISL7x814SEH average output channel saturation voltage ($V_{CH(Sat)}$), at V_{CC} = 3V and 5.5V, with I_{CHx} = 350mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.60V minimum and 1.30V maximum.

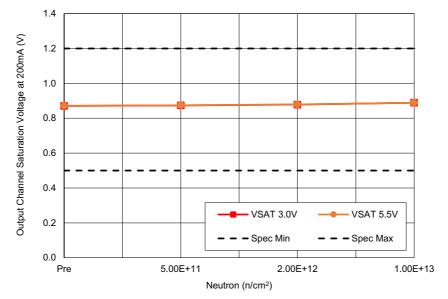


Figure 11. ISL7x814SEH average output channel saturation voltage ($V_{CH(Sat)}$), at V_{CC} = 3V and 5.5V, with I_{CHx} = 200mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.50V minimum and 1.20V maximum.

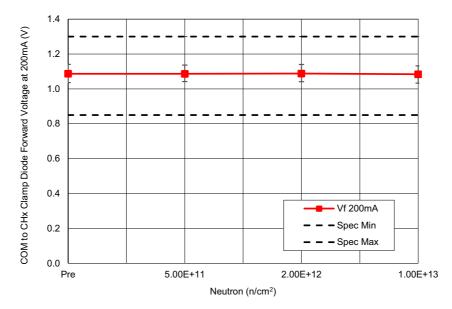


Figure 12. ISL7x814SEH average COM to CHx clamp diode forward voltage (V_F), with I_{CHx} = 200mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 0.85V minimum and 1.30V maximum.

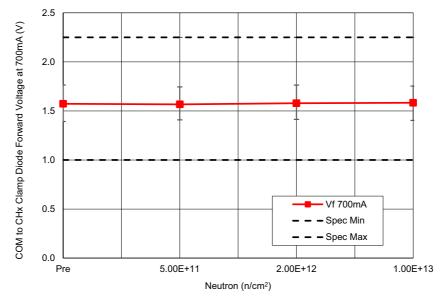


Figure 13. ISL7x814SEH average COM to CHx clamp diode forward voltage (V_F), with I_{CHx} = 700mA, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are 1.0V minimum and 2.25V maximum.

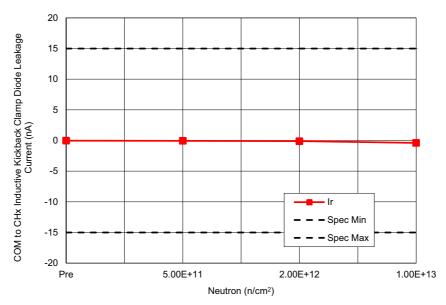


Figure 14. ISL7x814SEH average COM to CHx inductive kickback clamp diode leakage current (I_R), as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are -15nA minimum and 15nA maximum.

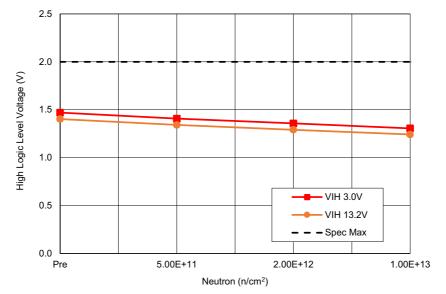


Figure 15. ISL7x814SEH average high logic level voltage (V_{IH}), at V_{CC} = 3V and 13.2V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limit is 2.0V maximum.

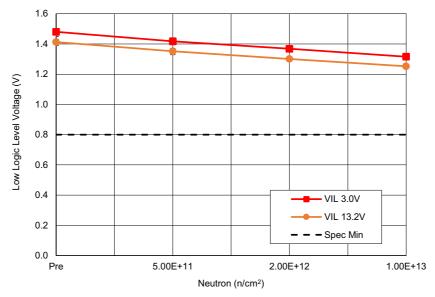


Figure 16. ISL7x814SEH average low logic level voltage (V_{IL}), at V_{CC} = 3V and 13.2V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limit is 0.8V minimum.

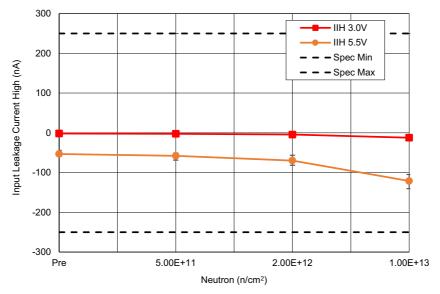


Figure 17. ISL7x814SEH average input high current (I_{IH}), at V_{CC} = 3V and 5.5V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are -250nA minimum and 250nA maximum.

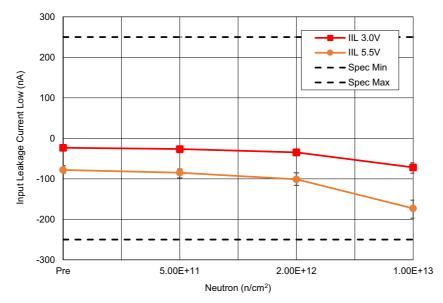


Figure 18. ISL7x814SEH average input low current (I_{IL}), at V_{CC} = 3V and 5.5V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limits are -250nA minimum and 250nA maximum.

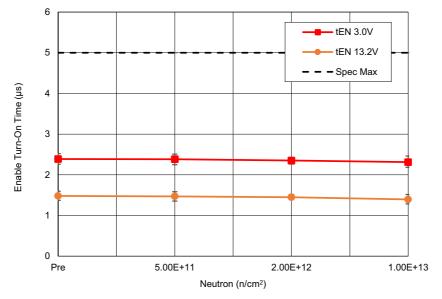


Figure 19. ISL7x814SEH average enable turn-on time (t_{EN}), at V_{CC} = 3V and 13.2V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limit is 5µs maximum.

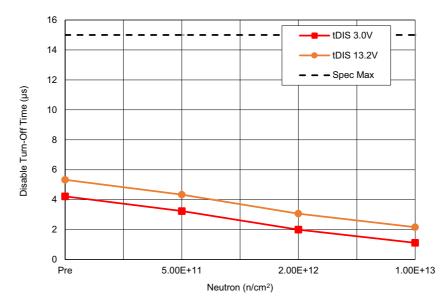


Figure 20. ISL7x814SEH average disable turn-off time (t_{DIS}), at V_{CC} = 3V and 13.2V, as a function of neutron fluence. The error bars represent the minimum and maximum measured values. The SMD limit is 15µs maximum.

3. Discussion and Conclusion

The results of 1MeV equivalent neutron testing of the ISL7x814SEH radiation-hardened 16-Channel Current Driver were reported. Parts were tested at actual fluences of 5.30×10^{11} n/cm², 2.33×10^{12} n/cm² and 1.04×10^{13} n/cm². The results of key parameters before and after irradiation to each level are plotted in Figures 3 through 20. The plots show the mean of each parameter as a function of neutron irradiation, with error bars that represent the minimum and maximum measured values. The figures also show the applicable electrical limits taken from the SMD, but it should be noted that these limits are provided for guidance only as the ISL7x814SEH is not specified for the neutron environment. All samples passed the SMD limits with little to no degradation after all exposures up to and including 1.04×10^{13} n/cm².

4. Revision History

Revision	Date	Description
1.00	Jul 3, 2023	Initial release.

A. Appendix

A.1 Reported parameters

Table 3 lists the key parameters that are considered indicative of part performance. These parameters are plotted in Figure 3 through Figure 20. All limits are taken from the ISL7x814SEH SMD.

ly Current scent Supply Current e Channel Leakage Current	I _{CC} I _{CCQ}	$V_{CC} = 3.6V, 13.2V, CHx = OPEN, EN = V_{CC},$ COM= 0V, A0-A3 = 0V $V_{CC} = 3.6V, 13.2V, CHx = OPEN, EN = 0V,$ COM= 0V, A0-A3 = 0V	4.5 350	8.5	mA
			350		
e Channel Leakage Current	La			800	μA
	ICHLK	V_{CHX} (under test) = 34V, All other V_{CHX} channels= 35V, V_{CC} = 3V, 5.5V, COM = 35V, A0-A3 = 0V, EN = 0V	-25	25	nA
nannels + COM Leakage Current	ITOTCHLK	V _{CH0 - CH15} = COM = 34V, V _{CC} = 3V, 5.5V, A0-A3= 0V, EN = 0V		100	nA
ut Channel Saturation Voltage = 700mA)		I _{CHx} = 700mA, V _{CC} = 3V, 5.5V, COM = 35V, EN=V _{CC}	0.85	1.5	
ut Channel Saturation Voltage = 600mA)		I _{CHx} = 600mA, V _{CC} = 3V, 5.5V, COM = 35V, EN=V _{CC}	0.8	1.4	
ut Channel Saturation Voltage = 500mA)	V _{CHX(SAT)}	I _{CHx} = 500mA, V _{CC} = 3V, 5.5V, COM = 35V, EN=V _{CC}	0.65	1.35	v
ut Channel Saturation Voltage = 350mA)		I _{CHx} = 350mA, V _{CC} = 3V, 5.5V, COM = 35V, EN=V _{CC}	0.6	1.3	
ut Channel Saturation Voltage = 200mA)		I _{CHx} = 200mA, V _{CC} = 3V, 5.5V, COM = 35V, EN=V _{CC}	0.5	1.2	
to CHx Inductive Kickback p Diode Forward Voltage = 200mA)	V	I _{CHx} = 200mA, COM = 0V, V _{CC} = 0V, A0-A3 = 0V, EN = 0V	0.85	1.3	v
to CHx Inductive Kickback p Diode Forward Voltage = 700mA)	VF	I _{CHx} = 700mA, COM = 0V, V _{CC} = 0V, A0-A3 = 0V, EN = 0V	1.0	2.25	
to CHx Inductive Kickback p Diode Leakage Current	I _R	V_{COM} = 34V, V_{CC} = 0V, A0-A3 = 0V, EN = 0V, CHx channel under test = 0V, other CHx channels = open	-15	15	nA
Logic Level Voltage	V _{IH}	V _{CC} = 3V, 13.2V, COM = V _{CC}		2	V
_ogic Level Voltage	V _{IL}			-	
High Current	I _{IH}	V _{CC} = 3V, 5.5V, COM = V _{CC} , A0-A3 = EN = 2.0V	-250	250	nA
Low Current	IIL	V _{CC} = 3V, 5.5V, COM = V _{CC} , A0-A3 = EN = 0.8V		250	nA
le Turn-On Time	t _{EN}	V _{CC} = 3V, 13.2V, COM = 35V, A0-A3 = 0V. CH0 channel under test connected to 97Ω to 34V, other CHx channels connected to $10k\Omega$ to 34V		5	μs
ble Turn-Off Time	t _{DIS}			15	μs
	It Channel Saturation Voltage = 700mA) It Channel Saturation Voltage = 600mA) It Channel Saturation Voltage = 500mA) It Channel Saturation Voltage = 350mA) It Channel Saturation Voltage = 200mA) It Channel Saturation Voltage = 200mA) It CHX Inductive Kickback Diode Forward Voltage = 200mA) It OCHX Inductive Kickback Diode Forward Voltage = 700mA) It OCHX Inductive Kickback Diode Leakage Current Logic Level Voltage High Current Low Current e Turn-On Time	It Channel Saturation Voltage = 700mA) It Channel Saturation Voltage = 600mA) It Channel Saturation Voltage = 500mA) It Channel Saturation Voltage = 350mA) It Channel Saturation Voltage = 350mA) It Channel Saturation Voltage = 350mA) It Channel Saturation Voltage = 200mA) It Channel Saturation Voltage = 200mA) It CHX Inductive Kickback Diode Forward Voltage = 200mA) It OCHX Inductive Kickback Diode Forward Voltage = 700mA) It OCHX Inductive Kickback Diode Leakage Current IR Logic Level Voltage VIIL High Current IIL Low Current IIL e Turn-On Time	nannels + COM Leakage Current $I_{TOTCHLK}$ $V_{CH0-CH15} = COM = 34V, V_{CC} = 3V, 5.5V, A0-A3 = 0V, EN = 0V$ tt Channel Saturation Voltage = 700mA) $I_{CHx} = 700mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ tt Channel Saturation Voltage = 600mA) $V_{CHX}(SAT)$ tt Channel Saturation Voltage = 500mA) $V_{CHX}(SAT)$ tt Channel Saturation Voltage = 350mA) $V_{CHX}(SAT)$ tt Channel Saturation Voltage = 350mA) $V_{CHX} = 500mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ tt Channel Saturation Voltage = 200mA) $V_{CHX} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ tt Channel Saturation Voltage = 200mA) V_{F} $V_{CHX} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ to CHx Inductive Kickback to Diode Forward Voltage = 700mA) V_{F} V_{CC} $I_{CHx} = 200mA, COM = 0V, V_{CC} = 0V, A0-A3 = 0V, EN = 0V$ to CHx Inductive Kickback to Diode Forward Voltage = 700mA) $I_{CHx} = 700mA, COM = 0V, V_{CC} = 0V, A0-A3 = 0V, EN = 0V$ to CHx Inductive Kickback to Diode Leakage Current I_R $V_{COM} = 34V, V_{CC} = 0V, A0-A3 = 0V, EN = 0V, CC + A0-A3 = EN = 0, 0V, CH10 channel under test connected to 970 to 34V, other CHx channels under test connected to 970 to 34V, other CHx channel under test connected to 970 to 34V, other CHx channels under test connected to 970 to 34V, other CHx channels under test connected to 970 to 34V, other CHx channels under test connected to 970 to 0, 04V, other CHx channels $	$\begin{array}{ c c c c } \mbox{hannels} + COM Leakage Current \\ \mbox{hannels} + Com A) \\ \mbox{hannels} + Channel Saturation Voltage \\ = 600mA) \\ \mbox{ht} Channel Saturation Voltage \\ = 500mA) \\ \mbox{ht} Channel Saturation Voltage \\ = 500mA) \\ \mbox{ht} Channel Saturation Voltage \\ = 350mA) \\ \mbox{ht} Channel Saturation Voltage \\ = 200mA) \\ \mbox{ht} Channel Saturation Voltage \\ = 700mA) \\ \mbox{ht} Chan$	namels + COM Leakage Current ITOTCHLK $V_{CH0-CH15} = COM = 34V, V_{CC} = 3V, 5.5V, A - 30$ 100 Advalue Company ITOTCHLK $V_{CH0-CH15} = COM = 34V, V_{CC} = 3V, 5.5V, COM = 35V, A - 30$ 0.85 1.5 Advalue Company It Channel Saturation Voltage $V_{CHX} = 700mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ 0.85 1.4 It Channel Saturation Voltage $V_{CHX(SAT)}$ $I_{CHX} = 600mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ 0.65 1.35 It Channel Saturation Voltage $V_{CHX(SAT)}$ $I_{CHX} = 500mA, V_{CC} = 3V, 5.5V, COM = 35V, EN=V_{CC}$ 0.66 1.3 It Channel Saturation Voltage $V_{CHX} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, O.5 0.65 1.2 It Channel Saturation Voltage V_{CK} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, O.5 0.5 1.2 It Channel Saturation Voltage V_{CK} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, O.5 0.5 1.2 It Channel Saturation Voltage V_{CK} = 200mA, V_{CC} = 3V, 5.5V, COM = 35V, O.5 0.55 1.2 It Channel Saturation Voltage V_{CK} = 200mA, COM = 0V, V_{CC} = 0V, A_{CA} = 0V, A_{CC} = 0V, A_{CA} = 0V, EN = 0V 0.85 1.3 It ob Chan Inductive Kickback Ir R $

Table 3. ISL7x814SEH Ke	v Parameters ($T_{\Lambda} = 25^{\circ}C$
	y i arameters (A = 200

A.2 Related Information

For a full list of related documents, visit our website:

- ISL72814SEH and ISL73814SEH device pages
- MIL-STD-883 test method 1017

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>