RZ/V2MA SoC

VIDEO CODEC INTEGRATION GUIDE

RENESAS SOC
RZ Family / RZ/V Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement of any other claims involving patents, copyrights, or other intellectual property rights of third parties. You are responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly defined as a high quality product or otherwise stated, these Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is used in such applications.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS AND THEIR COMPONENTS, ARE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATING TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is used in such applications.

10. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or to danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. RENESAS ELECTRONICS DISCLAIMS ANY AND ALL LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF YOUR NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. The document shall not be printed, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Renote1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Renote2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2023 Renesas Electronics Corporation. All rights reserved.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact;
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Table of Contents

1. Overview ... 1
 1.1 Introduction .. 1
 1.2 Features ... 1

2. Required Environment ... 2
 2.1 Hardware requirement .. 2
 2.2 Software requirement ... 2

3. Install in Linux Package ... 3
 3.1 Preparations .. 3
 3.2 Copy files to Linux PC ... 3
 3.3 Building BSP .. 3
 3.4 Prepare for booting from SD card .. 3
 3.5 Run on the Board .. 4
 3.6 Building SDK .. 4

4. Encoding and decoding procedure example ... 5
 4.1 H.264 encode ... 5
 4.2 H.264 decode ... 5
 4.3 H.265 encode ... 5
 4.4 H.265 decode ... 5
1. Overview

1.1 Introduction

This document is the integration manual of Codec library for Linux.

1.2 Features

This software supports the following features.

- Support for H.264 decoding and encoding
- Support for H.265 decoding and encoding
2. Required Environment

2.1 Hardware requirement

Please refer to the document RZ/V Verified Linux Package Start-up Guide for RZ/V2MA.

2.2 Software requirement

RZ/V Verified Linux Package V3.0.4 is required as a base software layer.
To integrate the libraries for Codec to the Linux Package, the below archives is required.

- RTK0EF0131F02000SJ-v0.97.zip

<table>
<thead>
<tr>
<th>Table 2-1. RZ/V2MA Video Codec package contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
</tr>
<tr>
<td>Recipe files, libraries, and source code</td>
</tr>
<tr>
<td>Binary</td>
</tr>
<tr>
<td>Document</td>
</tr>
</tbody>
</table>

This Codec library uses DRPB. Please apply the following package to use DRPB.

- r11an0592ej0740-rzv2ma-drpai-sp.zip

<table>
<thead>
<tr>
<th>Table 2-2. RZ/V2MA DRP-AI Support Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
</tr>
<tr>
<td>Recipe files</td>
</tr>
<tr>
<td>Document</td>
</tr>
</tbody>
</table>

Note: When using RZ/V2MA OpenCV Accelerator Support Package, DRPB is shared by Video Codec software and OpenCV Accelerator. Please refer to the documentation included in the RZ/V2MA OpenCV Accelerator Support Package for more information.
3. **Install in Linux Package**

3.1 **Preparations**

Prepare the following packages and document.

A) r01us0578ej0120-rz-v(StartUp_Guide_V2MA).pdf (included RTK0EF0045Z0024AZJ-v3.0.4.zip)
B) RZ/V2MA Video Codec Package V0.9.7 (RTK0EF0131F02000SJ-v0.97.zip)
C) RZ/V2MA DRP-AI Support Package Version.7.40 (r11an0592ej0740-rzv2ma-drpai-sp.zip)

3.2 **Copy files to Linux PC**

Copy the following files included in the packages B) and C) to `/home/user/` on your Linux PC.

- The file included in B)
 - meta-rz-features.tar.gz

- The file in rzv2ma_drpai-driver directory included in C)
 - meta-rz-drapai.tar.gz

3.3 **Building BSP**

Refer to the document A) chapter 2. **Building Instructions**.

After Step 5. Decompress OSS files to “build” directory (Optional) in A), running the following command.

```bash
$ cd $WORK
$ unzip ~/RTK0EF0131F02000SJ-v0.97.zip
$ tar xzvf ./RTK0EF0131F02000SJ-v0.97/meta-rz-features.tar.gz
$ unzip ~/r11an0592ej0740-rzv2ma-drpai-sp.zip
$ tar xzvf ./rzv2ma_drpai-driver/meta-rz-drapai.tar.gz
$ cd build
$ bitbake-layers add-layer ../meta-rz-features/meta-rzv2ma-codec
$ bitbake-layers add-layer ../meta-rz-features/meta-rz-drapai/
```

Note: RZ/V2MA Video Codec Package supports ORC to accelerate Encode processing. This function is no effect as a default. To decide whether to use it according to your system.

(How To enable ORC library)
Add the following setting in $(WORK)/build/conf/local.conf

```bash
# Configuration for ORC 0.4.33
USE_ORC_0.4.33 ?= "1"
```

To set core-image-bsp as <core-image-target> at **Step 5. Start the build** in A).

3.4 **Prepare for booting from SD card**

Basically, it is the same with RZ/V Verified Linux Package. Refer to the document A) chapter 3. **Preparations**.

3.1.3 Files for SD card booting in A), add Codec_Bin.bin in Partition No.1 of SD card.
Table 3-1. SD card boot files and partitions

<table>
<thead>
<tr>
<th>Partition No.</th>
<th>Size</th>
<th>File system format</th>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128MB or more</td>
<td>FAT</td>
<td>Image-rzv2ma.bin</td>
<td>Linux kernel image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r9a09g055ma3gbgevaluation-board.dtb*</td>
<td>Device tree binary.</td>
</tr>
<tr>
<td>2</td>
<td>The rest</td>
<td>Ext4</td>
<td>Codec_Bin.bin</td>
<td>Codec support binary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>core-image-bsp-rzv2ma.tar.bz2</td>
<td>Root file system image.</td>
</tr>
</tbody>
</table>

3.1.5 Set U-Boot environment variables in A), add the setting of using Codec_Bin.bin to u-boot.

```bash
=> env default -a
=> setenv codaddr 0x7FD00000
=> setenv codbin Codec_Bin.bin
=> setenv bootargs 'run bootargs_sd;fatload mmc 0:1 ${codaddr} ${codbin};fatload mmc 0:1 ${loadaddr} ${kernel};fatload mmc 0:1 ${fdt_addr} ${fdt_file};booti ${loadaddr} - ${fdt_addr}'
=> saveenv
=> run bootsd
```

3.5 Run on the Board

It is the same with RZ/V Verified Linux Package. Refer to the document A) chapter 5. **Run on the Board.**

3.6 Building SDK

It is the same with RZ/V Verified Linux Package. Refer to the document A) chapter 6. **Building SDK.**
4. Encoding and decoding procedure example

This chapter describes examples of encoding and decoding procedure. It uses GStreamer included in the previous steps.

4.1 H.264 encode

Running gst-launch at the following command to encode H.264 data.

```
# gst-launch-1.0 -e videotestsrc num-buffers=30 ! video/x-raw, width=1920, height=1080, framerate=30/1 ! omxh264enc ! video/x-h264,level=(string)4.2, profile=high ! h264parse ! mp4mux ! filesink location=264.mp4
```

When playing 264.mp4 by some kind of Media player, can see the following image.

4.2 H.264 decode

Running gst-launch at the following command to decode H.264 data.

```
# gst-launch-1.0 -e filesrc location=264.mp4 ! qtdemux ! h264parse ! omxh264dec ! video/x-raw,format=I420 ! filesink location=264.yuv
```

4.3 H.265 encode

Running gst-launch at the following command to encode H.265 data.

```
# gst-launch-1.0 -e videotestsrc num-buffers=30 ! video/x-raw, width=1920, height=1080, framerate=30/1 ! omxh265enc ! video/x-h265,profile=main,tier=main,level=(string)5 ! h265parse ! mp4mux ! filesink location=265.mp4
```

When playing 265.mp4 by some kind of Media player, can see the following image.

4.4 H.265 decode

Running gst-launch at the following command to decode H.265 data.

```
# gst-launch-1.0 -e filesrc location=265.mp4 ! qtdemux ! h265parse ! omxh265dec ! video/x-raw,format=I420 ! filesink location=265.yuv
```
<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>22 Jul, 2022</td>
<td>— Preliminary Edition issued</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>22 Sep, 2022</td>
<td>1 Add H.265 function</td>
<td>2</td>
<td>Update table 2-1. based on the released package.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Update based on V0.9.5 Codec Library and change 3.3, 3.4 and 3.5 to refer to Linux Package document.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Change how to use encoding and decoding procedure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>25 Jan, 2023</td>
<td>2, 3 Change BSP version to 1.1.0</td>
<td>3, 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Update based on V0.9.6 Codec Library.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3, 4 Add how to integrate DRP-AI functions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3, 4 Add how to integrate Codec_Bin.bin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 Change how to use encoding and decoding procedure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>19 Jul, 2023</td>
<td>2, 3 Change based package to RZ/V Verified Linux Package V3.0.4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 3 Update based on V0.9.7 Codec Library.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 3 Update based on DRP-AI functions to Version.7.40.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3.3 Building BSP</td>
<td></td>
<td>Updated the building steps.</td>
</tr>
</tbody>
</table>
RZ/V2MA Video Codec Integration Guide

Publication Date: Rev.0.97 19 Jul. 2023

Published by: Renesas Electronics Corporation