iW1699B

Off-Line Digital Green-Mode Quasi-Resonant PWM Controller

1 Description

The iW1699B is a high performance AC/DC power supply controller that uses digital control technology to build peak current mode PWM flyback power supplies. The device operates in quasi-resonant mode to provide high efficiency along with a number of key built-in protection features while minimizing the external component count, simplifying EMI design and lowering the total bill of material cost. The iW1699B removes the need for secondary feedback circuit while achieving excellent line and load regulation. It also eliminates the need for loop compensation components while maintaining stability over all operating conditions. Pulse-by-pulse waveform analysis allows for a loop response that is much faster than traditional solutions, resulting in improved dynamic load response. The built-in power limit function enables optimized transformer design in universal off-line applications and allows for a wide input voltage range.

Dialog’s innovative proprietary technology ensures that power supplies built with the iW1699B can achieve both the highest average active efficiency and less than 30mW no-load power consumption, and have fast dynamic load response in a compact form factor in typical 5V, 2.4A 12W applications. The active start-up scheme enables the shortest possible start-up time without sacrificing no-load power loss.

2 Features

- No-load power consumption < 30mW at 230V$_{AC}$ along with fast dynamic load response and short turn-on delay in typical 5V, 2.4A 12W compact adapter/charger applications
- Tight constant-voltage and constant current regulation across line and load range
- Primary-side feedback eliminates opto-isolators and simplifies design
- Intelligent low power management achieves ultra-low operating current (~250μA) at no-load
- Proprietary optimized 89kHz maximum PWM switching frequency with quasi-resonant operation achieves best size, efficiency and common mode noise
- User-configurable 5-level cable drop compensation provides design flexibility
- **EZ-EMF** design enhances manufacturability
- Adaptive multi-mode PWM/PFM control improves efficiency
- Complies with DoE External Power Supply and EU CoC Version 5, Tier 2 standards
- Built-in single-point fault protections against output short-circuit, output over-voltage and output over-current
- Dedicated pins for external over-temperature protection and over-voltage protection, with latch function available
- **SmartDefender™** smart hiccup technology helps to address issues of soft shorts in cables and connectors by effectively reducing the average output power at fault conditions without latch
- Optional on-chip internal over-temperature protection
- No audible noise over entire operating range

3 Applications

- Compact AC/DC adapters or chargers for media tablets and smart phones
- AC/DC adapters for consumer electronics
Figure 3.1: iW1699B Typical Application Circuit (Using Depletion Mode N-FET as Active Start-up Device) (Achieving < 30mW No-load Power Consumption in 5V, 2.4A 12W Adapter Designs)

Figure 3.2: iW1699B Typical Application Circuit (Alternative Circuit without Using Active Start-up Device)

Note: Pin 4 (ASU) can be left unconnected if an active start-up device is not needed in the application circuit.
4 Pinout Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Type</th>
<th>Pin Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSENSE</td>
<td>Analog Input</td>
<td>Auxiliary voltage sense. Used for primary side regulation.</td>
</tr>
<tr>
<td>2</td>
<td>SD</td>
<td>Analog Input</td>
<td>External shutdown control. Can be configured for external over-temperature protection (OTP) by connecting an NTC resistor from this pin to Ground.</td>
</tr>
<tr>
<td>3</td>
<td>CFG</td>
<td>Analog Input</td>
<td>Used for external cable drop compensation (CDC) configuration and supplemental over-voltage protection (OVP).</td>
</tr>
<tr>
<td>4</td>
<td>ASU</td>
<td>Output</td>
<td>Control signal. Used for active start-up device (BJT or depletion mode NFET).</td>
</tr>
<tr>
<td>5</td>
<td>ISENSE</td>
<td>Analog Input</td>
<td>Primary current sense. Used for cycle-by-cycle peak current control and limit.</td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT</td>
<td>Output</td>
<td>Gate drive for external MOSFET switch.</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>8</td>
<td>VCC</td>
<td>Power Input</td>
<td>IC power supply.</td>
</tr>
</tbody>
</table>

Figure 4.1 : 8 Lead SOIC-8 Package
5 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded. For maximum safe operating conditions, refer to Electrical Characteristics in Section 6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC supply voltage range (pin 8, $I_{\text{CC}} = 20\text{mA max}$)</td>
<td>V_{CC}</td>
<td>-0.3 to 25.0</td>
<td>V</td>
</tr>
<tr>
<td>Continuous DC supply current at V_{CC} pin ($V_{\text{CC}} = 15\text{V}$)</td>
<td>I_{CC}</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>ASU output (pin 4)</td>
<td></td>
<td>-0.3 to 19.0</td>
<td>V</td>
</tr>
<tr>
<td>OUTPUT (pin 6)</td>
<td></td>
<td>-0.3 to 20.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{SENSE} input (pin 1, $I_{\text{Vsense}} \leq 10\text{mA}$)</td>
<td>V_{SENSE}</td>
<td>-0.7 to 4.0</td>
<td>V</td>
</tr>
<tr>
<td>I_{SENSE} input (pin 5)</td>
<td>I_{SENSE}</td>
<td>-0.3 to 4.0</td>
<td>V</td>
</tr>
<tr>
<td>SD (pin 2)</td>
<td></td>
<td>-0.3 to 4.0</td>
<td>V</td>
</tr>
<tr>
<td>CFG (pin 3, $I_{\text{CFG}} \leq 20\text{mA}$)</td>
<td>I_{CFG}</td>
<td>-0.8 to 4.0</td>
<td>V</td>
</tr>
<tr>
<td>Maximum junction temperature</td>
<td>T_{JMAX}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Operating junction temperature</td>
<td>T_{JOPT}</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Thermal resistance junction-to-ambient</td>
<td>θ_{JA}</td>
<td>160</td>
<td>°C/W</td>
</tr>
<tr>
<td>ESD rating per JEDEC JESD22-A114</td>
<td></td>
<td>±2,000</td>
<td>V</td>
</tr>
<tr>
<td>Latch-up test per JESD78A</td>
<td></td>
<td>±100</td>
<td>mA</td>
</tr>
</tbody>
</table>
Off-Line Digital Green-Mode
Quasi-Resonant PWM Controller

6 Physical Dimensions

8-Lead Small Outline (SOIC) Package

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.061 – 0.068</td>
<td>1.55 – 1.73</td>
</tr>
<tr>
<td>A1</td>
<td>0.0040 – 0.0098</td>
<td>0.127 – 0.250</td>
</tr>
<tr>
<td>A2</td>
<td>0.055 – 0.061</td>
<td>1.40 – 1.55</td>
</tr>
<tr>
<td>B</td>
<td>0.0138 – 0.0192</td>
<td>0.35 – 0.49</td>
</tr>
<tr>
<td>C</td>
<td>0.0075 – 0.0098</td>
<td>0.19 – 0.25</td>
</tr>
<tr>
<td>D</td>
<td>0.189 – 0.196</td>
<td>4.80 – 4.96</td>
</tr>
<tr>
<td>E</td>
<td>0.150 – 0.157</td>
<td>3.81 – 3.99</td>
</tr>
<tr>
<td>e</td>
<td>0.050 BSC</td>
<td>1.27 BSC</td>
</tr>
<tr>
<td>H</td>
<td>0.230 – 0.244</td>
<td>5.84 – 6.20</td>
</tr>
<tr>
<td>h</td>
<td>0.10 – 0.016</td>
<td>0.25 – 0.41</td>
</tr>
<tr>
<td>L</td>
<td>0.016 – 0.040</td>
<td>0.4 – 1.0</td>
</tr>
<tr>
<td>α</td>
<td>0° – 8°</td>
<td></td>
</tr>
</tbody>
</table>

Compliant to JEDEC Standard MS12F

Controlling dimensions are in inches; millimeter dimensions are for reference only

This product is RoHS compliant and Halide free.

Soldering Temperature Resistance:
[a] Package is IPC/JEDEC Std 020D Moisture Sensitivity Level 1
[b] Package exceeds JEDEC Std No. 22-A111 for Solder Immersion Resistance; package can withstand 10 s immersion < 270°C

Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 mm per side. D and E1 dimensions are determined at datum H.

The package top may be smaller than the package bottom. Dimensions D and E1 are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interlead flash, but including any mismatch between the top and bottom of the plastic body.

7 Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Options</th>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW1699B-02</td>
<td>No OVP/OTP latch, 0.75V shutdown voltage, no smart hiccup</td>
<td>SOIC-8</td>
<td>Tape & Reel¹</td>
</tr>
<tr>
<td>IW1699B-03</td>
<td>OVP/external OTP latch, 0.75V shutdown voltage, no smart hiccup</td>
<td>SOIC-8</td>
<td>Tape & Reel¹</td>
</tr>
<tr>
<td>IW1699B-05</td>
<td>No OVP/OTP latch, 3V CC shutdown voltage, no smart hiccup</td>
<td>SOIC-8</td>
<td>Tape & Reel¹</td>
</tr>
<tr>
<td>IW1699B-06</td>
<td>No OVP/OTP latch, 3V CC shutdown voltage, smart hiccup with 3/8 duty cycle</td>
<td>SOIC-8</td>
<td>Tape & Reel¹</td>
</tr>
<tr>
<td>IW1699B-15</td>
<td>No OVP/OTP latch, 3V CC shutdown voltage, no smart hiccup, no internal OTP</td>
<td>SOIC-8</td>
<td>Tape & Reel¹</td>
</tr>
</tbody>
</table>

Note 1: Tape & Reel packing quantity is 2,500/reel. Minimum ordering quantity is 2,500.
IMPORTANT NOTICE AND DISCLAIMER

RENASAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENASAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2022 Renesas Electronics Corporation. All rights reserved.

RoHS Compliance

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.