1. Icc VS f(XIN) (High-speed clock mode) Topr= 25 degrees C Vcc=5V
2. Icc VS f(XIN) (High-speed clock mode) Topr= 85 degrees C Vcc=5V
3. Icc VS f(XIN) (High-speed clock mode) Topr= -40 degrees C Vcc=5V
4. Icc VS f(XIN) (High-speed clock mode) Topr= 25 degrees C Vcc=3V
5. Icc VS f(XIN) (High-speed clock mode) Topr= 85 degrees C Vcc=3V
6. Icc VS f(XIN) (High-speed clock mode) Topr= -40 degrees C Vcc=3V
7. Icc VS f(XIN) (High-speed clock mode) Topr= 25 degrees C Vcc=1.8V
8. Icc VS f(XIN) (High-speed clock mode) Topr= 85 degrees C Vcc=1.8V
9. Icc VS f(XIN) (High-speed clock mode) Topr= -40 degrees C Vcc=1.8V
10. Icc VS Topr (Low-speed on-chip oscillator mode)
11. Icc VS Topr (Stop mode)
12. Icc VS Topr (Low-speed on-chip oscillator wait mode) Peripheral clock operation
13. Icc VS Topr (Low-speed on-chip oscillator wait mode) Peripheral clock off
14. Icc VS Topr (Xin wait mode) SCU on
15. Icc VS Topr (High-speed on-chip oscillator wait mode) SCU on
16. Icc VS Topr (High-speed clock mode) Vcc=5V
17. Icc VS Topr (High-speed clock mode) Vcc=3V
18. Icc VS Topr (High-speed clock mode) Vcc=1.8V
19. Icc VS Topr (High-speed on-chip oscillator mode) Vcc=5V
20. Icc VS Topr (High-speed on-chip oscillator mode) Vcc=3V
21. Icc VS Topr (High-speed on-chip oscillator mode) Vcc=1.8V
22. Icc VS Vcc (Low-speed on-chip oscillator mode)
23. Icc VS Vcc (Stop mode)
24. Icc VS Vcc (Low-speed on-chip oscillator wait mode) Peripheral clock operation
25. Icc VS Vcc (Low-speed on-chip oscillator wait mode) Peripheral clock off
26. Icc VS Vcc (Xin wait mode) SCU on
27. Icc VS Vcc (High-speed on-chip oscillator wait mode) SCU on
28. Icc VS Vcc (High-speed clock mode) XIN = 20MHz No division
29. Icc VS Vcc (High-speed clock mode) XIN = 20MHz Division-by-8
30. Icc VS Vcc (High-speed clock mode) XIN = 16MHz No division
31. Icc VS Vcc (High-speed clock mode) XIN = 16MHz Division-by-8
32. Icc VS Vcc (High-speed clock mode) XIN = 10MHz No division
33. Icc VS Vcc (High-speed clock mode) XIN = 10MHz Division-by-8
34. Icc VS Vcc (High-speed clock mode) XIN = 5MHz No division
35. Icc VS Vcc (High-speed clock mode) XIN = 5MHz Division-by-8
36. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 20MHz No division
37. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 20MHz Division-by-8
38. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 10MHz No division
39. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 10MHz Division-by-8
40. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 5MHz No division
41. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 5MHz Division-by-8
42. Icc VS Vcc (High-speed on-chip oscillator mode) High-speed on-chip oscillator = 4MHz Division-by-16
43. Aicc VS Avcc
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.

R8C/33T Group
Vcc=3V
Topr=25degrees C
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Sensor Control Unit on
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc vs Topr
(Low-Speed On-Chip Oscillator mode)

- R8C/33T Group
- Divide-by-8
- XIN clock off
- High-speed on-chip oscillator off
- Low-speed on-chip oscillator on = 125 kHz
- FMR27 = 1, VCA20 = 0

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
R8C/33T Group
XIN clock off
High-speed on-chip oscillator 5MHz
Low-speed on-chip oscillator on = 125 kHz
While a WAIT instruction is executed
Peripheral clock operation
VCA27 = VCA26 = VCA25 = VCA20 = 0
Sensor Control Unit on

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc VS Topr
(High-speed on-chip oscillator mode)

R8C/33T Group
Vcc=1.8V
XIN clock off
High-speed on-chip oscillator on
Low-speed on-chip oscillator on = 125 kHz
Sensor Control Unit on

fOCO=5MHz no division
fOCO=5MHz divide-by-8
fOCO=4MHz divide-by-16 MSTTRC = 1

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc vs Vcc
(High-speed clock mode)

R8C/33T Group
XIN = 16 MHz (square wave)
High-speed on-chip oscillator off
Low-speed on-chip oscillator on = 125 kHz
Divide-by-8
Sensor Control Unit on

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc VS Vcc
(High-speed on-chip oscillator mode)

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc VS Vcc
(High-speed on-chip oscillator mode)

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
Icc VS Vcc
(High-speed on-chip oscillator mode)

R8C/33T Group
XIN clock off
High-speed on-chip oscillator on = 4MHz
Low-speed on-chip oscillator on = 125 kHz
Divide-by-16
MSTTRC = 1
Sensor Control Unit on

The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.
The mentioned value is only for your reference. The value is for the arbitrary samples and does not guarantee the product's characteristics.