
Notes

RC32351 Design Guide

RC32351 Design Guide
This document is intended to reflect some of the design considerations that need to be applied when
designing a system based on the RC32351. This document is intended to document other, subtle behav-
iors of the RC32351 than the ones listed in the errata sheet for the device. These issues should be
considered early in the design process to avoid lengthy debug time.

Document Revision History
February 5, 2002: Initial publication.
June 6, 2003: Added Ethernet Controller Software Reset section.
November 17, 2003: Added UART Mode section.

DPTR and NDPTR Registers
The following procedure is suggested to maximize the efficiency of DMA processing.
1. Write the first descriptor chain to either the DPTR or the NDPTR register. However, if you intend to

write to DPTR first, it is recommended that you first clear the NDPTR register (NDPTR = = 0). Data sent
to the NDPTR register will automatically load to DPTR when DTPR has finished processing.

2. While the first chain of descriptors is being processed, a new chain is formed in memory. Write
subsequent descriptor chains to the NDPTR register.

3. When the current chain in DPTR completes, the DMA will interrupt the CPU (Interrupt on Done,
Finished, etc. as configured in the DMAxSM and IPEND registers), causing the chain residing in NDPTR
to load to DPTR. When the interrupt occurs, write the chain being formed in memory to NDPTR. In this
manner, while one chain is being processed in the DPTR register, there is always one chain residing in
NDPTR and one chain being formed in memory.

RC32351 SDRAM Design Considerations
For the SDRAM to operate at maximum efficiency for the maximum speeds specified in the RC32351

Data Sheet, the board designers using the RC32351 must keep the following within certain limits:
◆ SDRAM board architecture
◆ signal routing
◆ system loading.

SDRAM Board Architecture
For maximum SDRAM speed, IDT recommends that all SDRAM control and data signals be directly

connected to the RC32351. All other memory devices should be placed behind buffers. The SYSCLKP
pin should be used to drive only the clocks on the SDRAM chips. It should not be used to drive any other
device on the board.

The SDCLKINP signal should be tapped off from the SYSCLKP at the SDRAM. The length of the
resulting SDCLKINP trace should match the SDRAM data trace length as much as possible. In no case
should the length of the SDCLKINP trace exceed the length of the SDRAM data traces.
 1 of 6 November 17, 2003

Board Reset from EJTAG Probe

RC32351 Design Guide
Figure 1

Signal Routing
To provide the most margin for SDRAM hold times:

– Keep all signals going to the SDRAM, address, data, and control signals as short as possible
– Match trace lengths as close as possible
– Minimize as much as possible the trace length for SYSCLKP to the SDRAM (this is very important)
– Make the SYSCLKP trace the shortest SDRAM trace on the board
– Match the length of the SDCLKINP to the SDRAM data lines.

Although this optimum configuration may not be achievable, the further that the layout deviates from it,
the less margin there will be for SDRAM hold times.

System Loading
To support maximum speeds, reasonable SDRAM loading constraints must be followed.
For maximum speed operation, IDT recommends that no more than eight discrete SDRAM chips be

connected. SODIMMs with up to eight chips may also be used. IDT does not recommend DIMMs at this
speed. However, if customers wish to use DIMMs, they should limit themselves to some combination with
no more than eight loads. If two DIMMs are used, then each DIMM should have no more than four chips on
it. In addition, any unused clock lines should be left unconnected; otherwise, the loading on SYSCLKP will
exceed the drive capability of the RC32351 SYSCLKP pin.

It is possible to use more than eight SDRAM chips or very large DIMMs. However, if the loading exceeds
that recommended above, a customer should buffer all of the control, address, data, and clock lines accord-
ingly. Because of the extra delay associated with this, it will not be possible to achieve higher system
speeds.

Board Reset from EJTAG Probe
The EJTAG specification requires the RST* pin on the EJTAG header to reset the board. Many ICE

probes use the RST* pin (which is open drain output) to sense whether power is applied to the probe. When
the EJTAG probe initiates a board reset by bringing RST* low, the signal is driven low solidly.

However, at the end of the reset procedure the EJTAG probe cannot drive the RST* signal back high
because this pin is an open drain output. The EJTAG probe must rely on a pull-up resistor supplied by the
board.

RC32355

SDRAM

Address
Buffers

All other
Devices

Data
Transceivers

CS, BA,WE,
RAS, CAS

SYSCLKP

Control Lines

SDCLKINP

RC32351
2 of 6 November 17, 2003

Operation of UART in Polled Transmit Mode

RC32351 Design Guide
 Even with a resistor as small as 1000 ohms, it takes a full 100ns to pull this signal high even when it is
only driving one load. If that single load is an EPLD, the signal tends to oscillate a bit as it crosses the Vih
threshold for the EPLD. This causes the EPLD to register the deassertion and reassertion of the RST*
signal multiple times. Because all of the IDT parts require continuous reset pulses in the order of 100ms or
greater, this oscillation causes the part to fail reset in an unpredictable way.

 Listed below are two methods to avoid this problem.
1. The reset signal from the ICE probe can be routed through the power management IC. Generally,

these ICs contain an input which initiates a reset of the circuit. The pulse width of this reset depends on the
resistor/capacitor combination attached to the IC.

 2. If the signal goes into an EPLD, the assertion of RST* can be used to initiate a cold reset of the
processor and board circuit. But when RST* deasserts, a counter with a count length of greater than two
microseconds should be used before deasserting the cold reset to the processor and board.

 The IDT79EB351 evaluation board uses the second method.

Operation of UART in Polled Transmit Mode
The RC32351 provides 2 UARTs which are designed to be compatible with both the 16450 and the

16550. The 16550 is identical to the 16450 except that the 16550 provides a 16 byte FIFO on both receive
and transmit sides.

FIFOs for the 16550 are enabled by setting bit 0 of the Buffer Control Register, BCR[0].
There are two modes in which users can program the UARTs:

◆ Interrupt driven mode, when it is supported by the UART Controller and the board design
◆ Polled mode.

The RC32351 UARTs behave in compliance with the 16550 specifications in the interrupt driven mode.
FIFOs were introduced in the 16550 to enable the 16 bytes of FIFOs to be filled (transmit) or emptied

(receive) in a single execution of the interrupt handler, thereby reducing the load on the CPU. However,
these FIFOs can be used in polled mode, although the benefit is less compared to the interrupt driven
mode.

Typically, in the polled transmit mode, the Line Status Register (LSR) checks to see if it is appropriate for
the software to write the next byte to the UART or the FIFO. The 16550 specifications state that LSR[5] can
be guaranteed to be 1 when the Transmit Holding Register (THR) is empty, and LSR[5] can be guaranteed
to be a 0 when THR is not empty. A non-empty THR implies at least one byte in the FIFO buffer. Therefore,
writing a single byte to the transmit FIFO ought to result in LSR[5] returning a 0.

IDT recommends two possible procedures for ensuring the current operation of the RC32351 when it is
used in polled transmit mode:

◆ Test LSR[6] bit instead of LSR[5] bit. LSR[6] bit, when set to 1 by the controller, indicates to the user
that the transmit buffer as well as the THR is empty. This will allow the user to transmit one byte at
a time in the polled mode.

◆ Set the DMA mode in the Buffer Control Register, BCR[3], to 1. This will activate the TXRDY inter-
rupt signal when the transmit FIFO buffer is completely empty and will deactivate the TXRDY signal
when the buffer is completely full. The state of the TXRDY signal can be probed by software
through the Expansion Interrupt Controller. Register Group 5 deals with UART channel 0 and Group
6 deals with UART channel 1. TXRDY Interrupt State can be read through the “Interrupt Pending
Register” corresponding to the UART channel under consideration. Once a completely empty buffer
condition is sensed by polling the Interrupt Pending Register, up to 16 bytes can be written to the
transmit FIFO in a single attempt without worrying about the level of fullness of the buffer, etc.
3 of 6 November 17, 2003

Synchronization Problems for Chip Modules with Multiple Clock Domains

RC32351 Design Guide
Synchronization Problems for Chip Modules with
Multiple Clock Domains

There is a potential synchronization / timing issue when resetting various on-chip modules using the EN
bit in each module (e.g. Ethernet and USB) that have multiple clock domains within the RC32351. For
example, the IPBusTM portion of the Ethernet module runs at the system clock frequency (say 66 MHz),
while the MAC side of the Ethernet module runs at the MII clock rates (2.5 or 25 MHz). When the EN bit in
the Ethernet module register has been cleared to reset the module, one expects the module to be reset
immediately (within the next system-clock cycle) and then can re-enable the module by setting the EN bit
on the next instruction. However, there is a possibility that the MAC portion of the module did not reset
because the internal EN bit did not have enough time to cross clock domains and get sampled at the rising
edge of the slower MII clock. As a result, the Ethernet module may continually request DMA transfers and
write unspecified data to memory. This result also applies to the USB interface.

Follow these steps to ensure the modules are reset:
1. Clear the EN bit
2. Wait for a period of time (several interface clock cycles) to make sure the EN bit was sampled by the

other clock domain and that the module has been completely reset
3. Re-enable the module by setting the EN bit.

CPU Interrupts
When the RISCore 32300 CPU core processes an interrupt, there are two code components: a generic

interrupt handler function, and a specific ISR (Interrupt Service Routine). The generic handler must do the
following:

1. Save the current state of the CPU (all registers)
2. Determine the pending interrupt with the highest priority
3. Call the appropriate ISR (Somewhere in here, the interrupt source should be cleared)
4. [Optional] return to step 2 if other interrupts are still pending
5. Restore the state of the CPU (all registers)
6. Execute ERET instruction to return to the original PC location.
 In the ISR, the code should clear the source of the interrupt. For example, if you are processing a DMA

interrupt for USB Input, the ISR should clear the DMA13S register bits before exiting the ISR. If this is not
done, we will get the same interrupt as soon as we are done (i.e. go from step 6 directly back to step 1). A
problem occurs in that even though the source of the interrupt in the ISR is cleared, the system still gives an
additional interrupt after completing step 6. When handling this interrupt (in step 2), we cannot find ANY
interrupts pending. As a result, we display an error an exit.

 The system gives an additional interrupt because the register write to clear the source of the interrupt
gets delayed going from the YY Bus to the IP Bus. The reason for the delay is that an external master has
been granted the bus, so the IP Bus cannot accept the transaction from the BIU until the external arbiter
has completed. Although the delay here occurred due to the external arbiter, it could just as easily have
occurred if the DMA had been granted the bus. In either case, during this delay the CPU continues onto
steps 5 and 6. The instructions AND the data for these steps are already in the cache. As a result, the CPU
is able to complete these steps very quickly with no need to perform a transaction over the YY Bus
(Remember, the YY Bus is tied up now with our pending register write transaction that cannot complete until
the external arbiter has released the bus). Immediately after completing step 6, the CPU branches to the
interrupt vector and begins step 1. By the time it gets to step 2, the write transaction has completed, and the
interrupt source has been cleared. Since no pending interrupts are active, an error is displayed.

To avoid this problem, make sure that the transaction in the ISR that clears the interrupt source
completes before exiting the ISR. Since the RC32351 can only queue up one external write at a time, one
could simply perform the write twice in a row before exiting the ISR. If the first one is delayed (due to the
external arbiter or DMA being granted the bus), the CPU will have to stall on the second write.
4 of 6 November 17, 2003

Disabling DMA Channels

RC32351 Design Guide
Disabling DMA Channels
The RC32351 enables the users to disable the DMA channels at will, depending on the need of the

application. Any of the DMA channels can be disabled by writing a zero into DMAxC[RUN] bit. Usually it is
recommended to disable the DMA Channel when there is no more activity on the interface the DMA
channel is servicing. However, special sequence must be used when disabling certain DMA channels (see
below) and their corresponding peripherals.

 Ethernet Output DMA (DMA Channel 10),
 USB Output DMA (DMA channel 14),
 ATM VC DMA (DMA Channels 1-8),
Specifically, when disabling the DMA channels (and their corresponding peripherals) listed above, the

following sequence must be used:
1. Disable the DMA channel first
2. Wait for the DMAxS[H] bit to get set
3. Then disable the on-chip peripheral.
This limitation doesn't apply for the other DMA channels.
For example, when an Ethernet overrun condition occurs, the following sequence must be used:
1. Disable the Ethernet output DMA channels first
2. Wait for both DMAxS[H] bits to set
3. Then disable the Ethernet interface.
Note: The Ethernet Input DMA channel can be disabled any time, i.e., before or after disabling the

Ethernet interface.
Re-enable both the DMA channels and Ethernet interface to recover from the overrun condition.

Connecting 8-bit, 16-bit, and 32-bit Devices to the
RC32351 Memory Controller

When accessing 8-bit or 16-bit devices, the device controller always reads a word (32 bits) from the
device regardless of the device size setting specified in the device control register. For example, if the
RISCore 32300 CPU core reads one byte from an 8-bit device, the device controller will perform four single
byte reads. This can cause problems in certain applications.

The width of a device—8-bit, 16-bit, or 32-bit—is configured in the device size field of the device control
register. 8-bit devices connect to memadd[25:0], 16-bit devices connect to memadd[25:1], and 32-bit
devices connect to memadd[25:2]. During write transactions to 16-bit and 32-bit devices, the byte write
enable (BWEN[3:0]) signals are used to select the number of bytes to be written.

This tendency to read multiple bytes during byte accesses might conflict with devices which contain 8-
or 16-bit flag registers. When theses types of flag registers are inadvertently read by the four byte access
created by the attempt to read only one location, it modifies the contents of the registers. These types of
interfaces are often referred to as CTRL-E, IDMA, or “mailbox” interfaces. One example of a CTRL-E imple-
mentation that is affected by this problem is the Alcatel ADSL MTK20150 chipset (see Application Note AN-
304) which is included in the 79RP351 Reference Platform. This interface is seen by the device controller
as an 8-bit device, and it contains several 8-bit flag registers used for operations on the ADSL line. If these
registers are mapped as 8-bit registers, then accessing any register located within the same word of
address space (0-3,4-7,8-B,C-F) will cause the contents of these registers to be corrupted.

In order to prevent register corruption, 8-bit/16-bit devices must be connected to the device controller as
32-bit devices (using memadd[25:2]), and the associated software must access the devices as 32-bit
devices. The code should then use the “cast” command to convert the word to byte or byte back to word for
reads and writes respectively.
5 of 6 November 17, 2003

Ethernet Controller Software Reset

RC32351 Design Guide
Figure 1 8-bit, 16-bit, and 32-bit Devices Mapped as x32

Figure 1 gives a pictorial example of how data are physically stored (byte mapping). The data in bold
type refers to relevant data while the addresses in bold type account for word-based mapping (the
addresses really accessed by the Device Controller if it is connected as a 32-bit device).

 Ethernet Controller Software Reset
The RC32351 Ethernet controller can be reset manually by clearing the EN bit in the corresponding

ETHxINTFC register. When the EN bit is cleared, an Ethernet interface reset is generated and the RIP bit is
set to indicate that an Ethernet reset is in progress. The reset may take several clock cycles to complete
due to the crossing of multiple clock domains. When the reset has completed, the RIP is cleared and the
Ethernet interface may be re-enabled by setting the EN bit.

However, if the MII clocks disappear or are not present during the Ethernet interface reset, the RIP bit
will remain set, preventing the Ethernet interface from being reset until an MII clock is provided. The only
other way to clear the RIP bit is to generate a cold_reset. The Ethernet PHY normally drives the MII clocks.
Consequently, the behavior described above can be avoided by ensuring that any software which resets
the RC32351 Ethernet controller does not reset the Ethernet PHY at the same time.

UART Mode
Do not change between UART 16450 and 16550 modes (bit [0] of the FIFO control register) and then

flush the FIFOs while there are characters still in the FIFO TX buffer waiting to be sent. This may result in a
UART transmit status malfunction. If this happens, the TE and THR bits in the UARTxLS register may be
permanently cleared until the interface is reset. Characters can otherwise still be transmitted and the other
status signals will continue to function.

Data 1
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
Data 2
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
Data 3
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
Data4

Address[3:0] Data

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C

 8-bit device

Data 1.1
Data 1.2
xxxxxxxxxxxx
xxxxxxxxxxxx
Data 2.1
Data 2.2
xxxxxxxxxxxx
xxxxxxxxxxxx
Data 3.1
Data 3.2
xxxxxxxxxxxx
xxxxxxxxxxxx
Data 4.1

Address[3:0] Data

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C

 16-bit device

Data 1.1
Data 1.2
Data 1.3
Data 1.4
Data 2.1
Data 2.2
Data 2.3
Data 2.4
Data 3.1
Data 3.2
Data 3.3
Data 3.4
Data 4.1

Address[3:0] Data

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C

 32-bit device
6 of 6 November 17, 2003

	RC32351 Design Guide
	Document Revision History
	DPTR and NDPTR Registers
	RC32351 SDRAM Design Considerations
	SDRAM Board Architecture
	Figure 1

	Signal Routing
	System Loading

	Board Reset from EJTAG Probe
	Operation of UART in Polled Transmit Mode
	Synchronization Problems for Chip Modules with Multiple Clock Domains
	1. Clear the EN bit
	2. Wait for a period of time (several interface clock cycles) to make sure the EN bit was sampled...
	3. Re-enable the module by setting the EN bit.

	CPU Interrupts
	1. Save the current state of the CPU (all registers)
	2. Determine the pending interrupt with the highest priority
	3. Call the appropriate ISR (Somewhere in here, the interrupt source should be cleared)
	4. [Optional] return to step 2 if other interrupts are still pending
	5. Restore the state of the CPU (all registers)
	6. Execute ERET instruction to return to the original PC location.

	Disabling DMA Channels
	1. Disable the DMA channel first
	2. Wait for the DMAxS[H] bit to get set
	3. Then disable the on-chip peripheral.
	1. Disable the Ethernet output DMA channels first
	2. Wait for both DMAxS[H] bits to set
	3. Then disable the Ethernet interface.

	Connecting 8-bit, 16-bit, and 32-bit Devices to the RC32351 Memory Controller
	Figure 1 8-bit, 16-bit, and 32-bit Devices Mapped as x32

	Ethernet Controller Software Reset
	UART Mode

