RENESAS ZWIR451x Programming Guide

Content
1 INTOAUCHION ., 5
0 O | PRSPPI 6
2 &0 V1Y A N PSP 6
1.3. Organization Of thiIS DOCUMENT ...ttt e e e e e e s bbb et e e e e e e s s abbbbe e e e e e e e s anbbeneeeaans 6
22 Vg T o F= U D =TT o] T o PP 7
P I = To [T €= g g T=T o1 SN[2= 14T o PP PRTPT 7
A I =1 0 01 T PSSP 7
P22 T N\ = 1o T g To O 0] o V=T oo o =S 8
A | o] = 1 VA AN (o] 11 (= Tox (1 £ PP PRTPTP 8
A T @ o 1=T =4 g To TNV (oo 1= S PP T U PUPPRTPTP 9
P2 T8 O B 1= Yot 1Y o o PP OUPRRPTPRR 9
A C T (=117 |V 1Y/ [To L= RS 10
A T T o1 1 (=Y g\ o o = PP 10
A T @ o =T = 1 1] o TS5 (=] o SR 11
P2 S T8 S 1011 =Y 4 11T | SRR 11
A I N[40 F= LN @ o T=T = 1o o F PP RTPT 11
P2 TR TR =011 = g 1Y o T [ORI 13
PG S ¢ (o gl = Vg o |1 o SR 14
2.7. Firmware Version INFOMMEALIONuuuiiiiiiiieiiiiiiieieieee et ee e e e e e e e e e eeeeeeeeeeeeseeeeeeeeeseereeseeeeeaeeeeeeeeeeeeeees 14
P % V=Y o To (o | LSOO 15
P N = oo F T A |5 SRRSO 15
2.7.3. M@aJOr FIrMWEAIE VEISIONeuiiiiiaiiiiiitiie et e e e ettt e e e e e e e ae ettt e e e e e s e abebeeeeaaeasaaanbe bt eeeaaesaaanbbeeeeaaeesaannnsenes 15
2.7. 4. MiINOT FIFMWAEIE VEISION ...ceiiitiiiieiiiiiee ittt ettt ee ettt ee e s tte e e e stee e e e sbee e e e sbbeeeeanbbeeeesabbeeeeanbaeeeesnsbeeeeanneeeas 15
2.7.5. FIrmware VErsion EXIENSIONoouiiiiiiiiiie ittt sttt st ettt e e sbb e e s snbb e e e snbaeeeennneeeas 15
A S T W o] = 1Y /=1 £ (o] [P P U RPPT P 15
2 S T Ao [0 | 1711 o SR 15
2 & I A Vo [0 (=S 1Y/ 0= PSR 16
D = T | =Y G T Y [[£ YT Y= PP 16
2.8.3. IPV6 Address AUtO-CONFIQUIALIONuuiiiieeiiiiiiiiiie e e s s st e e e e e s e e e e s s s e e e e e e s e snn e e e e e e e e e e nnnnrees 18
2.8.4. Validation Of AddreSS UNIQUENESSuuueiiieeiiiiiiiiieeeeeeiesiteieeee e e e s e ssstnaeeeeeeesssnntereeeeeeesesnsrneeeeeeesannnnsnnns 18
2.9. Data TransmisSion and RECEPLIONuuuiiiiiiiiiiiitie ittt e e e e e et e e e e e e e e e e sabbeeeeeaeeeaaanneeees 20
P22 S I I U [T =T g D 7 - Vo |- g 0] (o Lo o SR 20
2.9.2. Data TransmisSion anNd RECEPLONuuiiiieeiiiiiiiiie e e e s e esieee e e e e et s e e e e e s e st e reeeesssnnnrerereeeesanannnrens 20
AR TR T Ao [0 £ ST TSR ==Y o] 11 1T o PP 22
P IR S = (= Toto) 0T =T oo F= Vi o] o L SRR 23
220 0 R /1= o T o 114 o SR 23
b2 O T O /o=] A I = 1[PPI 24
O U 1ot 1) = 11 [OO 24
2.10.3. Mesh Routing Parameter Configuration Recommendationscc.uuuvereeeiiiiiiiireee e sssireee e e e s 24
2.11. NEtWOrK and DEVICE STALUSeuviiiiiiriiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerreereeeeetereeeretererererrrrerrrrrtrrrrrrrrrrerrrereees 26

© 2019 Renesas Electronics Corporation 1 April 12,2016

RRENESANS

0 T o U 1Y/ SR 26
2.12.1. Internet ProtoCol SECUTILY (IPSEC)......uuuiiiiiiiiiiiiii ettt e e e e e e eneaees 27
2.12.2. Internet Key Exchange Version 2 (IKEV2)uueiiiii ittt a e e e e e e 28
P A T = (= Too) 0T =T 0o F= Vi o] L ORI 28

2.13. Firmware OVer-the-AIr UPALES.ccoii ittt ettt e e e e ettt e e e e e s s bt ebe e e e e e e e e snbbeaeeeaeesaannreees 28
P2 I N I ¥ g [ex T g = Ll DTSt] o] o o TSP RPPR 29
2.13.2. FIrMWArE CONSITAINTSueiiiiitiiiie it ie ettt et e ettt ettt e st et e e sbb et e e sttt e e e snbb e e e e sabbeeeesnbbeeeesnbbeeesanneeeas 30

P V1= o g To VA @] g IS o (= = 11T S S PP RRTT 30
S R O 1| 1S - Vo PRSP 31
2.14.2. IDT Network Stack Dynamic RAM REQUIrEMENLSccuviiiieeeeeiiiiiiieieee e s e ssiereeeee e e s s snnnrnneeeeeessnnnnnnnns 31
2.14.3. Using Dynamic Memory AHIOCALIONcoiiiiiiiiiiiiiia ettt e e e e e e e e e e eneeees 32

2.15. Supported NetWOrK STANUAIAScccooiiiiiiiiiiii ettt e e e e e e e s bbb e e e e e e e s e sanbbeaeeaaeeeaannreees 33

G I 0o 1= I o = A U= (== o = PO 36

I N [0111 =Y [11T o IS RPPTPRPTIPRR 36

I o To | = T 4 I ©Xo] 011 o] LN TR 37

G TR T N\ 1Yo (] o SR 41
G TR 4 I Vo [0 [(=TS V= T F= Vo 1= 0 0= o) USSR 41
3.3.2. Socket and Datagram HandIINGoooiiiiiiiiiie e e e e e be e e e e e e e e anneeees 44
GG TR T = = (o [T I =T = 0 =Y (=] ORI 49
3.3.4. Gateway MOAE FUNCHIONScoiiiiiiiiiiiiiiie e e e e st e e e e e s s st e e e e e e s s e e e e e e e s s snnte e e eeeeeseansrnneneeeessannnnnnns 51
IR T /1o =11 F= T =0 U TP UPRPPT P 52

S 01V G 1Y = F= o =T o 41T o P 55

3.5, Firmware Version INFOMMALIONoiuiiiiiiiiie ittt sttt e et e e e e sttt e e s sbbe e e e s sbbeeeessnbeeeeans 59

3.6. Properties and Par@mMeEterS.coui ittt e e e e e bbb e e e e e e e e e b e b e e e e e e e e e nb b e e e e aae e e e anreees 60

I R = 1 (o] g @70 o [T PP PTPRPRTIPPR 61

O U 7Y o I I o] = U Y = LT (=T (=1 o= PRSP 62

A1, SYMDBDOI REFEIENCEottt e oottt e e e e e e e ab b bt e et e e e e e s e abbbeeeeaaeeeaanbbbbeeaaaaeeaanns 62

4.2, Custom UART /O CONFIQUIALIONuviiieeieiiiiiieisee e e s st e e e e e s s st e e e e e e s s sanbeeeeaaeeesnsnnnteneeeaeessnnnnrnneeeeessanns 64

e T Y { (o] g o [PPSO 65

5 GPIO LIDrary REEIENCE ...ttt e ettt e e e e e s e bbbt e e e e e e e e e s nbbbbe e e e e e e e e annbbeaeeaaens 66

TN I 0] o Lo I =Y (=T = g o= OSSR 66

I | ST Yol T o] = VYA = =Y (=1 (= o7 SO 71
6.1, SYMDBDOI REFEIEICE ...ttt e e e e ettt et e e e e e e e bbb e e e e e e e e e e sanbbeeeaaaeeeaannnreees 71
L = 1 (o] @70 o [T PP PTPRPTRPRR 74
A | S 7 o = Vg YA = =Y (=1 (= o7 SO 75
7.1, SYMDBOI REFEIEICE ...ttt e e oo ettt e e e e e e e ab bbb e eeae e e s e aanbbeeeaaaeeeaannnreees 75
A | o = LY == U= 1 1] 1= SR 76
8 OVEr-the-Air Update LIBIaryoooiiiiiiiee ettt e e e e e st e e e e e e s s e e e e e e e e e e ansrenneeeens 77

o0 I I o = 1 Y 2 (] (T €= o (ot TSP RUPTO 77

8.2. INCIUSION Of the OTAU LIBIAIY ...veeeiii i e e e e e s e e e e e e e s s snn e e e e e e e s e nnnrnees 79

ST O = 1 (o] g @70 Lo [= T RPRPUPRPTIPRRN 80

2 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

LS L= 1Y N B o =T TS PP 81
LS % I N = 11 N I o = Y U PRRPT 81
9.1.1. NetMA1L Library SYmMBOl REFEIENCEcoiiiiiiie e e 81
9.1.2. INclusion Of the NEIMAL lDIArYuvuiiiiee e s e e e s e e e e e e s e s re e e e e e e e e nnnnnees 86

S I N = 1 A o] = T [T TP PPRUTT 87
9.2.1. NetMA2 Library SYmMBDOI REFEIENCEcooiiiiii et 87
9.2.2. INnclusion of the NEtMAZ LIDIAriESooueiiiiiiiiie ittt e e e e snneeas 88

10 Accessing MICrOCONTIOIEr RESOUITEScuiiiiiiiiiiiiieie e ettt e e e e ettt ettt e e e e e st et et e e e e e e s anbbeeeeeaeeesaannbbeeeaaaaeaann 89
10.1. Internal Microcontroller CONFIQUIALTIONooiiiuiiiiiii et e e e e e e e e e snebnreeeaeas 89
O = - (o (U o D= L= B =T] (= R 89
O A [0 (=T q U] o) o F= T o | T ST PTP PRI 89
10.4. Default 1/O CONFIQUIALIONeiiiiiiieite ettt e et e e e e e s e bbb et e e e e e e e s bbb be e e e e e e e e anbbnneeeaeas 92
R O =T 1] {Tot= Vo o O PP 96
11.1. European R&TTE DireCtive STatEMENTS......ccciicveiieiiee e e cetiiieee e e s e e e e e e s s s re e e e e e s s e e e e e e e e snnnrnneeeees 96
11.2. Federal Communication Commission Certification StatementSeeviiiiiiiiiiiie e 96
O B S = 1 (=T 0 1] o PP O PP UPP P PR PPTRPPI 96
2 = o W1 =Y g T=T o £SO 96
11.2.3. ACCESSING the FCC ID ...ttt et e e e e e bbbttt e e e e e s s nbbbe e e e e e e e e annbrneeeaans 97
G TR W o) o Lo T (Yo AN 1 1=] - T 97
12 Alphabetical Lists Of SYMDOIS.......cccoiiiiiiiiiie e e e e e e s e s s e e e e e e e s s nanraeeeeeeeeaaans 98
12.1. Functions and FUNCHON-LIKE MACIOSccciiiiiiiiiiiiiiae ettt e e e et e e e e e e e snnbnreeeaeas 98
D I - Y - N 1Y/ o =2 99
12.3. Variables and CONSIANTScocuuiiiiiiiie ittt e e s sr b et e e s sabe e e e s srbeeeesasbeeeesaabeeeeans 101
R I S L] PN C=To I Do To U 41T o TP UUTT PRI 102
I] 017 Y/ USSP 103
15 DOoCUMENT REVISION HISTOIYviiiiiieiiiiiiiiei e ee e s e et e e e s s e e e e s e e e e e e e e s s st ate e e eeeaesansananeeeeeeesannnannneeees 105

List of Figures

[T 1] (T I AV, VA | =27 K% BYQAY o] o] [Tor= 14 o] 1 0 L] 42 -1 o SO PSERP 5
FIgure 2.1 LIDIrary AFCNITECIUIEooi i ittt e oo e ettt et e e e e e s b bbb et e e e e e e e e aabbbeeeeaaeeeannbbbbeeeaaaeeaanns 9
Figure 2.2 Application Interface into the Protocol Stack in Different Operating Modes...........cccccceeiiiiiiiiinnnennn. 10
Figure 2.3 IPV6 UNICASt AQArESS LAYOUL......cciiiiiiiiiiiiiiie e e s e ciiiiie e e e e e s st e e e e e s st e e e e e e s s annteereeaeeesnnnnnanneeaeeenanns 17
Figure 2.4 IPV6 MUIICASt AQAIESS LAYOULciiiiiiiiiiiiiie ettt e ettt e e e e e e e s et e e e e e e e s e sannbeeeeaaeeeaans 17
Figure 2.5 Resolving Address Conflicts in LoCal NEIWOIKScooiiiiiiiiiiii e 19
Figure 2.6 WOrking PrinCIPIE Of IPSECuuuiiiieiiiiiiiieie ettt e e e e e st e e e e e e e s s baeeeeaeeesennnnaeneeaeeeeanns 27
Figure 2.7 Memory Layout of OTAU-Enabled APPIICALIONScoii i 29
Figure 2.8 Heap MEMOIY SCAEIINGueiiiiiieeeitiiie ettt e e e e et e e e e e e e st b abeeeea e e s s anbbeeeeeaeeeaaannbbeeaaaaeeaanns 32
Figure 5.1 ZWIR_GPIO_ReadMultiple Result Alignment in ZWIR4512AC1 DEVICEScccccuvvvveeeeeeeiiiiiiieeeaeeen 67
Figure 5.2 ZWIR_GPIO_ReadMultiple Result Alignment in ZWIR4512AC2 DEVICESooccuuviieieeeeeiiiiiiieeaaennn 67
Figure 11.1 FCC Compliance Statement to be Printed on Equipment Incorporating ZWIR4512 Devices............ 97

3 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

List of Tables

Table 2.1 Naming Conventions USEd iN C-COUE............uuiiiiiiiiiiiiiiie ettt e e e e e e e e snbeeeeeaeas 8
Table 2.2 Event Processing Priority in the Main EVENt LOOP.......cccviiiiiieie et e s e e 12
Table 2.3 POWET MOUES OVEIVIEWeeiiiieeiiiiiiieieee e e ettt e e e e e s e bbbt et e e e e e s aabeteeeaaa e s e aabbeeeeeeaesaaasnbbeaeaaaeesaannnenes 13
Table 2.4 Interrupts that Result in @ SYSEM RESEL.......c...uiiiiiiiiie e 14
Table 2.5 Unicast SOCKEt EXAMIPIESceiieeiiiiieiiee et e e e e s s st e e e e e e s s snnte e e e aeessnnnnneees 21
Table 2.6 Multicast Addressing EXAmMPIES...........ooo it e e e e e aneeees 22
Table 2.7 Stack Parameter Dynamic Memory Size REQUIEMENTScoiiiiiiiiiiieaaiiiiiieee e e 31
Table 2.8 Supported RFCS and LIMiItatiONS.........uueiieeiiiiiiieireee e iiiitiie e e e e s s st e e e e e e s s snnrraeeeeeessssnsseneeeaeessnnsnneens 33
Table 3.1 Configurable Stack Parameters and Their Default Values...........ccuuvieiiiiiiiiiii e 60
Table 3.2 Error Codes Generated by the Core LIDIary.........oo it 61
Table 4.1 Error Codes Generated by the UART LIDIari€S......cccoiiiiiiieiiiee i s st e e e s snveen e e e e e s 65
Table 6.1 Error Codes Generated by the IPSEC LIBrari@s.........ccoovuiiiiiiei s 74
Table 7.1 Overview of IKEv2 Library Parameters and Properties...........ooouiuiiiiiiaainiiiiiiieeeee e e 76
Table 8.1 Error Codes Generated by the OTAU LIBrary ... 80
Table 10.1 STM32 INterrupt VECIOr TADIE ... e e e e e e e e s e et ee e e e e e s e nnnneees 90
Table 10.2 STM32 Default I/O CONFIGUIALION.eiiiiiiiiiie e e e e e e e e e e e e anneees 93

4 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

1 Introduction

This guide describes the usage of the 6LoWPAN application programming interface (API) for application devel-
opment using ZWIR451x modules. These modules provide bidirectional IPv6 communication over an IEEE
802.15.4 wireless network. Using IPv6 as the network layer protocol allows easy integration of sensor or actor
nodes into an existing Internet Protocol (IP) infrastructure without the need for additional hardware. Refer to the
data sheet for the ZWIR451x module for detailed information about the module, including pin assignments.

Figure 1.1 ZWIR451x Application Domain

Specific Devices:

LAN
_— I:I D) ZWIRA45Xx

Device

) [\
\ / \ \ - (« ZWIR45xx

))) - (((,3— —l| Gateway

N Off-the-Shelf
\ / Components:

°)) —_ coud/ N, | B= L AN
o)) Internet Router
\ E Handheld
/ Device
.)) PAN | | WAN 2 — Computer

Figure 1.1 shows a typical network configuration. The Personal Area Network (PAN) is built from a set of various
ZWIR451x modules. The network is connected via a border router to the local area network (LAN) and from there
to a wide area network (WAN) such as the Internet. With this setup, each module can be accessed from
anywhere in the world with just its unique IPv6 address.

The radio nodes are typically organized in a mesh topology. Routing of IP packets over this topology is handled
by the software stack transparently for the user. The network allows dropping in new nodes or removing existing
nodes without requiring manual reconfiguration. Routes to new nodes will be found automatically by the stack.

Application software runs on an STM32F103RC ARM® Cortex™ M3~ microcontroller (MCU) on top of the
ZWIR451x API. The MCU is clocked with up to 64 MHz and provides 256 kByte flash memory and 48 kByte RAM,
which allows the implementation of memory and computationally intensive applications. The API provides
functions to communicate with remote devices, access different I/O interfaces, and support power-saving modes.

* The ARM® and Cortex™ trademarks are owned by ARM, Ltd.

© 2019 Renesas Electronics Corporation 5 April 12,2016

RRENESANS

1.1. IPv6

IPv6 is the successor of the IPv4 protocol, which has been the major network protocol used for Internet
communication over the past decades. One of the main advantages of IPv6 over IPv4 is its huge address area,
which provides 2% (about 3.4 x 10%) unique addresses. This enormous address space allows assignment of a
globally unique IP address to every imaginable device that could be connected to the Internet. Another advantage
with respect to sensor networks is the stateless address auto-configuration mechanism, allowing nodes to obtain
a unique local or global IP address without requiring a specific server or manual configuration.

The use of IPv6 makes it possible to connect sensor networks directly to the Internet. Basically this is possible
with other network protocols, too, but those require a dedicated gateway that translates network addresses to IP
addresses and vice versa. Usually this translation requires application knowledge and maintenance of the
application state in the border router, and therefore changing the border router software might be required with
each application update. The protocol gateway might also introduce an additional point of attack if secure
communication between devices inside and outside of the PAN is required.

IDT's 6LOWPAN implementation supports IPSec, which is the mandated standard for secure communication over
IPv6. The use of IPv6 throughout the whole network allows real end-to-end security.

1.2. 6LoWPAN

IPv6 has been designed for high bandwidth internet infrastructure, which does not put significant constraints on
the underlying network protocols due to the vast amount of memory, computing power, and energy. In contrast,
the IEEE 802.15.4 standard is intended for low data-rate communication of devices with very limited availability of
all these resources. In order to make both standards work together, the 6LoWPAN standard (RFC 4944) has
been developed by the Internet Engineering Task Force (IETF) to carry IP packets over IEEE 802.15.4 networks.

6LOWPAN adds an adaption layer between the link layer and network layer of the Open Systems Interconnection
(OSI) reference model. This layer performs compression of IPv6 and higher layer headers as well as
fragmentation to get large IPv6 packets transmitted over IEEE 802.15.4 networks. The 6LoWPAN layer is
transparent for the user, and therefore on 6LOWPAN devices, the IPv6 protocol is used in exactly the same way
as on native IPv6 devices. The presence of the 6LoWPAN adaption layer does not restrict IP functionality. The
user of a 6LOWPAN system does not recognize the existence of the 6LoWPAN layer.

1.3. Organization of this Document

Sections 2 to 7 cover the API documentation, which is divided into two parts. The first part, covered by section 2
provides a functional description of the network stack. It explains the correlation of the different API functions and
provides background information about stack internals. The second part is the function reference and is covered
by sections 3 to 7. If familiar with the general stack functionality, the reader can simply use these sections to look
up function signatures or basic usage information.

Section 8 explains how user applications can use the resources provided by the microcontroller and which
resources are blocked by the operating system.

Terms set in bold monospace font can be clicked, activating a hyperlink to the section where a detailed
definition of this term can be found.

© 2019 Renesas Electronics Corporation 6 April 12,2016

RRENESANS

2 Functional Description

The following subsections give a generic overview of the different functionalities of the firmware delivered with
ZWIR451x modules. Background information is provided if required for proper use of the libraries. Usage
recommendations are given for optimal performance in certain application configurations. A detailed description of
the functions, types, and variables available for application programming is given in sections 3 through 7.

2.1. Requirements Notation

This document uses several words to indicate the requirements of IDT's 6LOWPAN stack implementation. The
key words MusT, MusT NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHouLD NOT, RECOMMENDED, MAY and
OPTIONAL, set in italic small caps letters denote requirements as described below

MusT, SHALL, REQUIRED These words denote an absolute requirement of the implementation. Disregarding these
requirements will cause erroneous function of the system.

MusT NOT, SHALL NOT These phrases mean that something is absolutely prohibited by the implementation.
Disregarding these requirements will cause erroneous function of the system.

SHouLD, RECOMMENDED These words describe best practice, but there might be reasons to disregard it. Before
ignoring this, the implications of ignoring the recommendation must be fully understood.

SHouLb NoT, NoT RECOMMENDED These words describe items that can impair proper behavior of the system
when implemented. However, there might be reasons to choose to implement the item anyway. Implications of
doing so must be fully understood.

MAY, OPTIONAL These words describe items which are optional. No misbehavior is to be expected when these
items are ignored.

2.2. Terms

This document distinguishes between three types of functions: hooks, callbacks, and API functions. Basically, all
three types are defined as normal functions in the programming language C, but they differ in the way that they
are used.

API Functions are functions which are defined and implemented by IDT's 6LoOWPAN stack. They provide a
functionality that can be accessed by the user code. The declarations of API functions are provided in the header
file belonging to the library in which the function is implemented.

Hooks are functions that provide the user the ability to extend the default behavior of the stack. They are called
from the operating system (OS) to give the application the opportunity to implement custom features or reactions
to events. The operating system provides a default implementation of the hook that is called if no custom hook is
defined. The prototypes of all available hooks are defined in the header file belonging to the library in which the
default implementation is located. ZWIR_AppInitNetwork and ZWIR_Error are examples of hooks.

Callbacks are also called from the operating system, but they must be registered explicitly at the OS. The
function may have a custom name, but the signature must be matching. Callback functions are registered at the
OS using API functions. One example for a function expecting a callback is ZWIR_OpenSocket. In contrast to
hooks, callbacks do not have default implementations. For each callback function, there is a type declaration
declaring how the signature of the user function should look.

© 2019 Renesas Electronics Corporation ! April 12,2016

RRENESANS

2.3. Naming Conventions

For better readability of the code, all user accessible functions and types of the APl comply with a set of naming
conventions. Each identifier that is an element of the API is prefixed with “ZWIR_.” Function, variable, function
argument and type identifiers are defined using “CamelCase” style. This means that each single word of a
multiple word identifier starts with a capital letter. The remaining letters of the word are lower case. Preprocessor
macros are defined using all capital letters.

Different style rules apply to functions, variables, and types definitions. Function-name and type-name identifiers
start with a capital letter in the first word, while variable identifiers start with a lower case letter in the first word.
Type names have an additional “_t” suffix. Variable names and function arguments are not differentiated in the
naming conventions.

Table 2.1 Naming Conventions Used in C-Code

Identifier Type Style
variableName, functionArgument First word starts with lower case, all other words with capital letters.
FunctionName All words start with capital letters (“CamelCase”).
TypeName_t All words start with capital letters and name ends with “_t” suffix.
PREPROCESSOR_MACRO All letters are capitalized.

2.4. Library Architecture

ZWIR451x modules are freely programmable by means of an API that is implemented in a set of libraries. The
libraries provide different functionality and can be linked into the user program. The use of the core library is
mandatory, as it provides the operating system and all generic communication functionality. All other libraries are
optional and can be linked depending on the requirements of the target application. Each library exposes a set of
functions and types that are required to implement the desired functionality. The library architecture is depicted in
Figure 2.1.

To make programming as easy as possible, the libraries make use of an event and command approach wherever
possible. Using this approach, application code is not required to poll for data on the different interfaces. Instead,
newly available data is passed to user-defined callback functions automatically. Timer hooks and callbacks are
available, and they are automatically executed periodically or after expiration of a user-defined time interval.

Linking the library without any additional code will result in a valid binary that can be programmed on a radio
module. Such binaries will not provide user-specific functionality. However, the nodes relay packets in mesh
networks and respond to ping requests. In order to add functionality, several functions that have empty default
implementations can be defined by the user.

© 2019 Renesas Electronics Corporation 8 April 12,2016

RRENESANS

Figure 2.1 Library Architecture

=
f-, % Application
£
T -g. libZWIR45xx-6LoWPAN.a
= = -
(o] IKEv2
<5 g ﬁ 9 libZWIR451x-OTAU.a
= R I
°f E E &
[S] g < < = libZWIR45xx-IPSec.a
ICMPv6 H H IPSec 2121248
IPv6 L2 o ;
= o libZWIR45xx-IKEv2.a
o
(U]
6LoWPAN libZWIR4512.a
Network
. Buffers
Mesh Routing HAL libZWIR451x-UART1.a
libZWIR451x-UART2.a
IEEE 802.15.4 MAC <">
‘ libZWIR45xx-NetMA2.a
|EEE 802.15.4 MAC i;ﬁ libZWIR451x-NetMA2-Ext.a
|IEEE 802.15.4 PHY Hardware

2.5. Operating Modes

The API provides three operating modes: Device Mode, Gateway Mode and Sniffer Mode. The modes differ in
how many of the protocol layers are processed by the network stack. All other API functionality remains the same.
Setting the operating mode of a node must be done before any initialization of the API and the hardware. For this
purpose, the ZWIR_SetOperatingMode function is provided. Figure 2.2 shows how application code interfaces
into the network stack in different operating modes. A description of the three different modes is provided in the
next subsections.

2.5.1. Device Mode

The Device Mode is preconfigured since this is the most commonly used mode for ZWIR451x modules. Each
node with sensing or acting functionality should use this operating mode. Full protocol processing is performed for
incoming and outgoing data. This means that all header information is removed from incoming User Datagram
Protocol (UDP) packets and only payload data is passed to the application. Accordingly, the application only has
to provide payload data that should be sent over the network. The stack automatically adds all necessary header

information.

Device-configured devices behave as normal IPv6 devices. Therefore address auto-configuration and neighbor-
discovery is performed as defined by the IPv6 standard. Data are sent and received over UDP sockets. The
functions ZWIR_SendUDP and ZWIR_SendUDP2 serve as an interface to the network stack. Incoming data is
passed to an application callback that must be registered when a socket is opened using ZWIR_OpenSocket.

© 2019 Renesas Electronics Corporation 9 April 12,2016

RRENESANS

Figure 2.2 Application Interface into the Protocol Stack in Different Operating Modes

’ ZWIR_OpenSocket

Device Mode: Gateway Mode: Sniffer Mode: Explanation:
Application Application >
< ‘ ZWIR_SendUDP(2)
UDP ‘ UDP ‘ ZWIR_Send6LoWPAN >
IPv6 & IPv6
6LoWPAN 6LoWPAN - >

Mesh Routing Mesh Routing

IEEE 802.15.4 MAC

IEEE 802.15.4 MAC IEEE 802.15.4 MAC ‘

ZWIR_SetOperatingMode

IEEE 802.15.4 PHY

IEEE 802.15.4 PHY |IEEE 802.15.4 PHY ‘

25.2. Gateway Mode

The Gateway Mode is intended for use with modules that should work as protocol gateways. Protocol gateways
change the physical media used for IPv6 packet transmission. This enables the integration of 6LoWPAN networks
into Ethernet-based IPv6 networks for example.

In contrast to the Device Mode, not all network layers are processed in Gateway Mode. For any IPv6 packet that
is received via the air interface, only the 6LoWPAN-specific modifications of the headers are removed, resulting in
a packet containing all IPv6 and higher layer headers. This packet is passed to the receive callback function.
Accordingly, all data that need to be sent over the network are assumed to have valid IPv6 and higher layer
headers. Only 6LoWPAN-specific modifications will be applied to outgoing packets.

Gateway-configured devices do not perform address auto-configuration and neighbor-discovery as defined by the
IPv6 standard. Moreover no router solicitation and router advertisement messages are generated automatically.

To enter the Gateway Mode, ZWIR_SetOperatingMode must be called from ZWIR_ApplInitHardware. It is
not possible to call ZWIR_SetOperatingMode from any other location in the code. ZWIR_SetOperatingMode
accepts a callback function that is called upon reception of data in the gateway. Sending data is accomplished
using the function ZWIR_Send6LoWPAN.

2.5.3. Sniffer Mode

The Sniffer Mode is provided to allow observation of raw network traffic. No protocol processing is performed.
Thus the data passed to the application layer includes all header information. In contrast to the two other
operating modes, all packets received over the air interface are passed to the application, regardless of the
address to which the packet has been sent. This also includes MAC layer packets.

© 2019 Renesas Electronics Corporation 10 April 12,2016

RRENESANS

Sniffer Mode is useful for debugging purposes. It can be used to find out which devices in the network are
transferring packets and which are not. Sniffer Mode devices do not generate any network traffic—not
autonomously or user triggered. That is why there is only an interface from the stack to the application code, but
not vice versa.

To enter Sniffer Mode, call ZWIR_SetOperatingMode (ZWIR_omSniffer, YourCal lbackFunction) from
ZWIR_ApplInitHardware. The functions ZWIR_Send6LoWPAN, ZWIR_SendUDP and ZWIR_SendUDP2 do not
function in this mode. However, it is still possible to change the physical channel and the modulation scheme of
the transceiver by calling ZWIR_SetChannel and ZWIR_SetModulation.

2.6. Operating System

The operating system is very light-weight and does not provide multi-threading. This means that any user-defined
function that is called from the operating system is completely executed before control is passed back to the
operating system. Therefore, the user is required to write cooperative code. Users must be aware that functions
requiring long execution time will block the operating system kernel and might cause the kernel to miss incoming
data, regardless of whether they are received over the air or any wired interface.

2.6.1. Initialization

During the operating system initialization phase, the different libraries and the MCU peripherals required for
system operation are initialized. Startup initialization is done in two phases, each with its own hook for user
application code. During the first phase, the internal clocks and the peripherals used by the stack are initialized
and the random number generator is seeded. Also peripherals required by certain libraries are initialized if the
corresponding library is linked into the project. After this, the ZWIR_AppInitHardware hook is called if present,
enabling application code to initialize any additional hardware. The application can initialize its I/Os and
peripherals in this function. ZWIR_SetOperatingMode must be called from here if the Gateway Mode is
required. Sending data over the network or initializing network sockets is not possible from here, as the network
stack is not initialized. However, functions controlling the physical parameters of the network (e.g., output power
or physical channel) SHouLD be called from here.

During the second phase, the transceiver and the network stack are initialized. If the Normal Mode is selected,
duplicate address detection (DAD) is also started and router information is solicited. DAD checks if the address
given to the module is unique on the link. After finishing network initialization, ZWIR_AppInitNetwork is called.
Application code can do its remaining initialization tasks such as setting up sockets at this point. Since DAD and
router solicitation are started before the call to ZWIR_ApplnitNetwork, it is recommended that physical
parameters of the network are set up first in ZWIR_ApplInitHardware. This ensures that DAD and RS are
performed on the correct channel with correct settings.

2.6.2. Normal Operation

During normal operation, the operating system collects events from the different peripherals and the application
and handles them according to their priority. Event processing priorities are fixed and cannot be changed. Events
are processed highest priority first; the lowest number represents the highest priority. Table 2.2 lists all events
with their priorities and triggered actions.

© 2019 Renesas Electronics Corporation 1 April 12,2016

RRENESANS

Table 2.2 Event Processing Priority in the Main Event Loop

Priority Event Triggered By Effect
0 Application Event 0 Application Code Call user-defined callback function
1 Transceiver Event Transceiver Interrupt Request Process transceiver request
2 Application Event 1 Application Code Call user-defined callback function
3 Callback Timer Expired SysTick Controlled Software Timer | Call user-defined callback function
4 Sleep Requested Software Sleep for the requested time
5 Received Data on UART1 UART1 Interrupt Call user-defined callback function
6 Application Event 2 Application Code Call user-defined callback function
7 10ms Timer Expired SysTick Controlled Software Timer | Call ZWIR_Mainl10Oms
8 100ms Timer Expired SysTick Controlled Software Timer | Call ZWIR_Main100ms
9 1000ms Timer Expired SysTick Controlled Software Timer | Call ZWIR_Main1000ms
10 Application Event 3 Application Code Call user-defined callback function
11 Received Data on UART2 UART?2 Interrupt Call user-defined callback function
12 Sending Data Failed due to Network Stack Retry sending

Resource Conflict

13 Application Event 4 Application Code Call user-defined callback function

The operating system provides five application event handlers that can be used to process application events in
the context of the operating system scheduler. Application event handlers sHouLD be used to react to
asynchronous events requiring computationally intensive processing. Interrupts are a typical example for such
events. If an interrupt occurs, the interrupt service routine (ISR) can trigger an event and delay the processing to
an appropriate time. This ensures that multiple asynchronous events are handled in the order of their priority,
without blocking interrupts.

Application events are triggered by calling ZWIR_TriggerAppEvent with the corresponding event number
(O through 4). When the OS scheduler reaches the user-triggered event, an application callback function is
executed. Multiple calls to this function before the corresponding application callback is invoked will not cause
multiple invocations of the application callback.

For each application event, an event handler callback function must be registered using
ZWIR_RegisterAppEventHandler. If no event handler is registered for a certain event, triggering this event
has no effect. In order to change an event handler, ZWIR_RegisterAppEventHandler must be called again
with the new handler. Unregistering event handlers can be performed by calling the registration function with a
NULL callback argument.

© 2019 Renesas Electronics Corporation 12 April 12,2016

RRENESANS

2.6.3.

The stack supports different modes to reduce the power consumption of the device. In Active Mode, all module
features are available. The Sleep, Stop, and Standby Modes reduce the power consumption by disabling different
module functionalities. Each of the power-saving modes affects the behavior of the MCU and the transceiver and
supports different wake-up conditions.

Power Modes

Table 2.3 Power Modes Overview
Mode Wakeup Clock Context” I/0 Transceiver
Source Time MCU Core Peripherals
Active On on? Retained | As configured on?
Sleep Any IRQ 1.8 us Off on? Retained | As configured off 9
RTC IRQ . . 4)
Stop External IRQ 5.4 us Off Off Retained As configured Off
Standby \F/{V-Iz-ackelsg?Pin 50 ps Off Off Lost Analog input Off
Y Refers to the status of the RAM and peripheral register contents after wakeup — the backup registers of the MCU are always
available.
2 Clock is enabled for all peripherals that have been enabled by application code and all peripherals that are used by the library.
® Can be powered off by application code.
4 Remains on if peripheralftransceiver is selected as wakeup source.

Active Mode is entered automatically after startup. In this mode, the MCU core and all peripherals used by the
application are running and all functionality is available. The transceiver is typically on but can be switched off
explicitly by a call to ZWIR_TransceiverOff. This mode has the highest power consumption.

In Sleep Mode, the MCU core is disabled but the MCU peripherals are still functioning if required. The transceiver
can be switched on or off. Memory contents and /O settings remain in the state that was active at the activation
of the Sleep Mode. Waking up from Sleep Mode is possible on any MCU interrupt. After the wakeup event, the
stack continues execution at the position it had been stopped. The power consumption in Sleep Mode is slightly
reduced compared to Active Mode. If more significant reduction of the power consumption is required, the Stop or
Standby Modes should be considered.

Stop Mode provides significant reduction of power consumption while still providing a short wakeup time and
context saving. Depending on the application’s requirements, the transceiver could remain enabled to wake up
the module when a packet comes in (set the transceiver as the wakeup source). By default, the transceiver is
disabled in Stop-Mode. The MCU core and all peripherals of the MCU are disabled in Stop Mode. Wakeup is only
possible by the built-in real-time clock (RTC) or an external interrupt, triggered at any GPIO line. For that, the
external interrupt must be configured appropriately.

Standby Mode is the lowest power mode. In this mode, the MCU is powered off and the transceiver is on standby.
Only the MCU's internal RTC is running, serving as a wakeup source. Additionally, the external wakeup pin can
be used to wake up the module. After wakeup, the memory contents of the MCU are lost and must be reinitialized
the same as after normal power-on.

© 2019 Renesas Electronics Corporation 13 April 12,2016

RRENESANS

Any of the low power modes is entered by calling the function ZWIR_PowerDown. It can be chosen whether
power-down is delayed until all pending events are processed or not. If delayed power down is chosen, the
power-down procedure can be aborted by a call to ZWIR_AbortPowerDown. The wakeup sources for the
different power modes are configured by ZWIR_SetWakeupSource.

2.6.4. Error Handling

The stack performs error handling in two different ways. The first is simply to reset the chip if an unrecoverable
MCU exception occurs that caused an interrupt. For errors that are not caused by MCU exceptions, the stack
provides a default handling, which may be overwritten by the application code.

The error handlers performing a system reset are triggered by one of the interrupts listed in Table 2.4. The reason
for resetting the whole system is that in the case of normal operation, none of the listed interrupts should appear.
However, if different behavior is desired, it is possible to overwrite the default implementation by providing the
user’s own interrupt service routines. See section 10.3 for details.

Table 2.4 Interrupts that Result in a System Reset

Resetting Interrupts

Non-maskable Interrupt

Hard Fault

Memory Management

Bus Fault

Usage Fault

Programmable Voltage Detector

In the case of a recoverable error, the ZWIR_Error hook is called by the operating system. The error number is
passed as a function argument. In order to provide custom error handling, the application MUST provide an
implementation of ZWIR_Error. The return value of the function determines whether the error has been handled
by the application (return true) or if the default handler will be executed (return false).

2.7. Firmware Version Information

The ZWIR451x API provides the capability of including firmware version information in the stack. This information
can be requested remotely afterwards and is required by the Firmware Over-the-Air Update Library. The complete
firmware version consists of the Vendor ID, the Firmware ID, the Major Firmware Version, the Minor Firmware
Version, and the Firmware Version Extension. These components are defined in the application code using global
variables. The role of the different components is explained in the following subsections.

In addition to the firmware version information mentioned above, the stack provides additional version information
for the library to which the application was linked. This version information consists of Major Stack Version, Minor
Stack Version, and Stack Version Extension field.

© 2019 Renesas Electronics Corporation 14 April 12,2016

RRENESANS

2.7.1. Vendor ID

The Vendor ID is a 32-bit number that identifies the company that developed the device firmware. A Vendor ID
must be requested from IDT. Each company must obtain its own Vendor ID before placing products on the
market. The Vendor ID is set using the global variable ZWIR_vendor ID. If this variable is not set, the firmware
will use the Vendor ID E966,ex, which is reserved for experimental purposes and must not be used for production
firmware.

2.7.2. Product ID

The Product ID is a 16-bit number identifying the product firmware. It is especially important for the Over-the-Air
Update functionality but could also serve for remote identification of the device type. Refer to the ZWIR451x
Application Note — Enabling Firmware Over-the-Air Updates for more information about the role of the Product ID
in IDT’s Over-the-Air Update Library.

The Product ID is set by defining the global variable ZWIR_productlD. If this variable is not defined, the value
will be read as zero.

2.7.3. Major Firmware Version

The Major Firmware Version is a version information field that is freely usable for application purposes. It is set by
defining the global variable ZWIR_FirmwareMajorVersion. If this variable is not defined, the value will be read
as zero.

2.7.4. Minor Firmware Version

The Minor Firmware Version is a version information field that is freely usable for application purposes. It is set by
defining the global variable ZWIR_FfirmwareMinorVersion. If this variable is not defined, the value will be read
as zero.

2.7.5. Firmware Version Extension

The Firmware Version Extension is a version information field that is freely usable for application purposes. It is
set by defining the global variable ZWIR_firmwareVersionExtension. If this variable is not defined, the value
will be read as zero.

2.7.6. Library Version

IDT’s firmware stack libraries have their own version information included. This information is compiled into the
binary libraries and can be requested by the application code using the function ZWIR_GetRevision. Like the
firmware version, the library version consists of the major and minor versions as well as extension information.

2.8. Addressing

Each module has three types of addresses: a PAN identifier, link layer address, and network layer address. This
section describes the different address types and explains how they are used in the stack.

© 2019 Renesas Electronics Corporation 15 April 12,2016

RRENESANS

2.8.1. Address Types

The PAN identifier (PANId) is a 16-bit-wide number carrying an identifier of the network. Each device in the
same network must have the same PANId. Nodes with different PANIds cannot communicate. A default PANId is
preprogrammed in the network stack. The current PANId can be requested or changed using the functions
ZWIR_GetPANId and ZWIR_SetPANId, respectively. The default value is ACCAgex.

The link layer address is also referred to as the MAC address or PAN address. This address is used by the
lower communication layers and does not need to be handled directly by the user. The link layer address must be
unique in the network. Each ZWIR451x module has a predefined, hardware programmed address that is globally
unigue. The PAN address is 64-bits-wide. It can be requested and changed by the functions
ZWIR_GetPANAddress and ZWIR_SetPANAddress. Changing the PAN address is not recommended as this
could cause problems as described in section 2.8.4.

The third address type is the network layer address, which is equivalent to the IPv6 Address. These addresses
are 128-hit-wide. They are used by the application to determine the destination that packets should be sent to or
the source packets should be received from. Each device needs at least one IPv6 address to be reachable.
However, multiple addresses can be assigned to each node. IPv6 addresses assigned to a node must be unique
on the network. However, typically users do not need to handle IPv6 address assignment. IPv6 provides a
mechanism that performs automatic address configuration. This mechanism is explained in section 2.8.3.

2.8.2. |IPv6 Addresses

IPv6 addresses are 128-bit and therefore 16-bytes wide. As it would be impractical to use the byte-wise notation
known from IPv4, IPv6 introduces a new notation. IPv6 addresses are represented by eight 16-bit hexadecimal
segments that are separated by colons. An example for such address is

2001:0db8:0000:0000:1b00:0000:0ae8:52F1

The leading zeros of segments can be omitted as they do not carry information. Furthermore the IPv6 notation
allows omitting a sequence of zero segments and representing it as double colon. With these rules, the above
address can be written as

2001:db8::1b00:0:ae8:52f1 or 2001:db8:0:0:1b00: :ae8:52f1

However, replacing multiple zero segments is not allowed, so the following address is invalid:
2001:db8::1b00::ae8:52f1

An IPv6 address consists of two components: a prefix and an interface identifier. The prefix specifies the network
that a device is part of; the interface identifier specifies the interface of a device. A node with multiple network
interfaces has multiple interface identifiers. The size of the prefix varies for different address types. In the IPv6
address notation, the prefix length can be appended to the address with a slash followed by the number of prefix
bits. For example, the notation 2001:db8::/64 represents a network containing the addresses from 2001:db8:: to
2001:db8::ffff:ffff . ffff ffff.

IPv6 supports three kinds of addressing methodologies: unicast addressing, multicast addressing, and anycast
addressing. Unicast and multicast addresses differ in how the prefix is formed. Anycast addresses can be used as
target addresses and are handled like unicast addresses.

© 2019 Renesas Electronics Corporation 16 April 12,2016

RRENESANS

Unicast addresses are shown in Figure 2.3 and use 64 bits each for the prefix and the interface identifier. Unicast
addresses exactly identify one single interface in a network. The prefix of the address determines the scope of the
unicast address. If the prefix equals fe80::/64 this is a link-local unicast address. Link local addresses are valid
only on the single link a node is connected to. The prefix of global unicast addresses is received via address auto-
configuration from a router that is connected to the Internet. There are additional prefix configurations with limited
scope that are not covered by this documentation.

Figure 2.3 IPv6 Unicast Address Layout

127 64 63 0
Prefix Interface-ldentifier

Multicast addressing allows sending out a single packet to multiple receivers. For this purpose, IPv6 provides
multicast addresses. A multicast address can only be used as the destination address, never as the source
address of a packet. The layout of a multicast address is shown in Figure 2.4. Multicast addresses have a 16-bit
prefix with the most significant 8 bits set to FF.ex, followed by two 4-bit fields for flags and the scope of the
multicast packet. The remaining bits specify the multicast group ID.

Figure 2.4 1Pv6 Multicast Address Layout

127 111 0
Prefix Multicast Group ID
8 4 4
Oxff Flags | Scope

In this document, it is assumed that the flags field is always either 0000g,y or 0001g,y. 0000g,y Specifies that the
multicast address is a well-known address. 0001g,y marks the address as a temporarily assigned address that is
not specified by Internet standards. These addresses must be used for custom multicast addressing. The scope
field is always assumed to be 0010gy, representing the link-local scope. Other scopes are usable but must be
supported by routers.

Two specific addresses should be noted as these are used very often. More information about their use can be
found in section 2.9.2.

1. The unspecified address ::
All segments of this address are zero. It is used by receivers to listen to any sender. This address must
never be used as destination address.

2. The link-local all nodes multicast address ff02::1
Packets sent to this address are received by all nodes in the network, so this multicast address is
equivalent to broadcasting.

For more detailed information about IPv6 addressing refer to REC 4291 — “IP Version 6 Addressing Architecture.

© 2019 Renesas Electronics Corporation 17 April 12,2016

http://tools.ietf.org/html/rfc4291

RRENESANS

2.8.3. IPv6 Address Auto-configuration

IPv6 provides a stateless address auto-configuration mechanism. This mechanism allows the configuration of
node addresses from information that is statically available on the node and information provided by routers.
Router information is only required if global communication is required. Addresses for link-local communication
can be derived from the link-layer address. This removes the need for manual configuration of addresses or
dynamic host configuration protocol (DHCP) servers in the network.

The local information used for auto-configuration is the interface EUI-64 address. The EUI-64 address is a factory
programmed link-layer address that IDT guarantees to be unique for each module. The EUI-64 address is often
referred to as the MAC address. During network initialization, each node generates a unique link-local 1Pv6
address by putting the prefix fe80::/64 in front of the EUI-64 address with bit 1 of the most significant EUI-64 byte
inverted. Assuming a link-layer address of 00:11:7d:00:12:34:56:78, the generated link-local IPv6 address would
be fe80::211:7d00:1234:5678.

It is possible to switch off the link-local address generation by setting the stack parameter
ZWIR_spDoAddressAutoConfiguration to zero before the stack initialization.

In addition to link-local address generation, nodes request router information during startup seeking a global prefix
for building a globally valid address. Those requests are called router solicitations. Routers present on the link will
respond to router solicitation messages of the node with router advertisements containing global prefix
information. Taking this prefix and the EUI-64 address of the node, a global address is generated in the same way
as for the link-local address. Router solicitation is done automatically during the startup phase.

If there is no router on the link, no global address will be assigned and only link-local communication is possible.
In this case, the router solicitation messages can be suppressed by setting the stack parameter
ZWIR_spDoRouterSolicitation to zero.

A host cannot rely on a generated address being unique, as there might be manually configured EUI-64
addresses on its link. Therefore, it must perform “duplicated address detection” (DAD) to be sure the generated
address is unique. Duplicate address detection is mandatory for each address being attached to a node and is
performed automatically by the network stack. It is described in more detail in the following section. Each address
being assigned to an interface is subject to duplicate address detection. Addresses are not valid until duplicate
address detection (DAD) is completed. Devices are not able to send or receive packets using a unicast address
that has not been validated to be unique. After device startup (and therefore after assignment of the link-local
unicast address), the network stack calls the hook ZWIR_App InitNetworkDone, signaling that DAD on the link-
local address has been completed and the address can be used. Applications should use this hook to send out
initial packets.

2.8.4. Validation of Address Uniqueness

After a node has configured its own address, it performs Duplicate Address Detection (DAD) to check if the newly
configured IPv6 address is unique on the link. For this purpose, the node starts to send neighbor solicitation (NS)
messages to the address to be checked (to its own address). If another node replies to one of those messages or
if another node also sends neighbor solicitation messages to this address, the assigned address is not unique
and must not be used. In this case, the error handler hook ZWIR_Error is called with the error code
ZWIR_eDADFai led. Itis up to users to provide their own error handling mechanism for such cases.

© 2019 Renesas Electronics Corporation 18 April 12,2016

RRENESANS

The default implementation provided in the library only removes the failing address from the interface. If the failing
address was the only address of the module, the module will not be reachable.

Figure 2.5 Resolving Address Conflicts in Local Networks

Q Start

y

Assign
link-address

v

Perform network
initialization & DAD

DAD failed?

no

v

Q Normal Operation

Application code can try to resolve the address conflict. One possible solution is to manually change the link-layer
address of the node, using random numbers or a dedicated algorithm. ZWIR_SetPANAddress must be called
with the new address and the network initialization must be restarted. This is done by calling
ZWIR_ResetNetwork. The procedure can be repeated for an arbitrary number of times until a unique address is
found.

Note that a duplicate address problem should not appear if each module in the network uses the factory
programmed link-layer address. In this case, the link-layer address is guaranteed to be globally unique.
Therefore, using the user’'s own addresses is not recommended. For some applications, the user knows that there
are no duplicate addresses in the network. In such cases, the duplicate address detection mechanism can be
disabled by setting the stack parameter ZWIR_spDoDuplicateAddressDetection to zero. This has the
positive side effect of the immediate ability to send and receive packets using the user’'s own IPv6 address(es).
Furthermore, less traffic is generated on the network.

© 2019 Renesas Electronics Corporation 19 April 12,2016

RRENESANS

2.9. Data Transmission and Reception

Data are transmitted using the User Datagram Protocol (UDP). If a destination node is not directly reachable from
the source node, packets are routed over intermediate nodes automatically. Route setup is done transparently for
the user. The following subsections describe the different aspects of data transmission and reception.

2.9.1. User Datagram Protocol

The User Datagram Protocol is used for data communication. UDP is a connectionless and lightweight protocol
with the benefit of minimal communication and processing overhead. No connection has to be created, and no
network traffic is required before data transmission between nodes can be started. Instead, communication is
possible immediately. However, UDP does not guarantee that packets that have been sent are reaching the
receiver. It is also possible that a single UDP packet is received multiple times. Furthermore, it is not guaranteed
that the receiving order of packets at the destination is the same as the sending order at the source. This must be
considered by the application programmer.

UDP uses the concept of ports to distinguish different data streams to a node. 65535 different ports can be
distinguished in UDP. A port can be seen as the address of a service running on a node. Depending on the
destination port of a packet, the network stack decides to which service the packet is routed on the receiver node.
In IDT’s 6LOWPAN stack, services that provide the callback functions to which network packets are passed are
running in the application code. Each service has its own callback function.

2.9.2. Data Transmission and Reception

Data transmission is requested by calling ZWIR_SendUDP or ZWIR_SendUDP2. Both functions send a single UDP
packet to a remote host. ZWIR_SendUDP2 accepts the address and port of the remote device as a parameter,
while ZWIR_SendUDP requires a socket handle specifying the destination parameters. For reception of data, a
socket is required as well.

A socket is an object that stores the address of a remote device and the remote and local UDP ports used for
communication. It can be seen as an endpoint of a unidirectional or bidirectional communication flow. Additionally,
it is possible to specify a callback that is called when data is received over the socket. Sockets are opened and
closed using the API functions ZWIR_OpenSocket and ZWIR_CloseSocket. The maximum number of sockets
that can be open in parallel is defined by the stack parameter ZWIR_spMaxSocketCount.

Four parameters must be provided when a socket is opened:

e |Pv6 address of the remote communication endpoint: This is the address that data should be sent to and/or
received from. Data reception is only possible if the remote address is a unicast address or the unspecified
address. If a multicast address is provided, only data transmission is possible.

e Remote UDP port: This is the UDP port that data are sent to. For reception of data, this port is ignored.

e Local UDP port: This is the UDP port that data are received on. Only packets that are sent to this port will be
handled in the callback function. If this number is 0, no data is received.

e Receive callback function: This is a pointer to a function that is called when data from a remote device is
received. If no data should be received, this pointer can be set to NULL.

The choice of whether ZWIR_SendUDP or ZWIR_SendUDP2 should be used for communication depends on the
characteristics of the network traffic between the communicating devices. ZWIR_SendUDP2 is intended to send a

© 2019 Renesas Electronics Corporation 20 April 12,2016

RRENESANS

few packets to a remote device without expecting a response from the target device. The function accepts the
remote address and UDP port together with the data to be sent. Internally the function will open a temporary
socket that is immediately closed after sending out the packet, so a slight overhead is added. ZWIR_SendUDP2
functions even if the maximum number of sockets is open. ZWIR_SendUDP must be used in cases where
responses are expected from the remote device or data must be transmitted frequently.

The following subsections will explain unicast and multicast communication in more detail and give examples of
how to use the IPv6 addresses and ports appropriately.

2.9.2.1. Unicast

Traffic that has only a single destination node is called unicast traffic. In order to send data unicast, the sender
must open a socket with the remote address set to the IPv6 address of the intended receiver. The receiver must
open a socket with the remote address field set to the sender’s IPv6 address or to the unspecified address. The
sender socket remote port field must match the receiver socket local port field in both cases. Table 2.5 shows
some example socket configurations and notes whether communication is possible or not.

Table 2.5 Unicast Socket Examples

A B C D E
fe80::1:1:1:1 fe80::2:2:2:2 fe80::2:2:2:2 fe80::2:2:2:2 fe80::3:3:3:3
Rem. Addr.: fe80::2:2:2:2 Rem. Addr.: fe80::1:1:1:1 Rem. Addr.: fe80::1:1:1:1 Rem. Addr.: i Rem. Addr.: fe80::1:1:1:1
Rem. Port: 55555 Rem. Port: 44444 Rem. Port: 44444 Rem. Port: 44444 Rem. Port: 44444
Local Port 44444 Local Port 55555 Local Port 33333 Local Port 55555 Local Port 55555

Sender Recipients
A B receives packet. (Remote address and remote port of A match interface address and local port of B.)

C does not receive packet. (Remote port of A does not match local port of C.)
D receives packet. (Remote address of D matches all addresses; local port of D matches remote port of A.)
E does not receive packet. (Remote address of A does not match interface address of E.)

B A receives packet. (Remote address and remote port of B match interface address and local port of A.)

No other socket receives packet. (Interface addresses do not match remote address field of B; local ports do
not match remote port of B.)

C A receives packet. (Remote address and remote port of C match interface address and local port of A.)
No other socket receives packet. (Interface addresses do not match remote address field of C.)

No socket receives packet. (Sending is not possible with an unspecified address as the destination.)

No socket receives packet. (Remote addresses of sockets A, B, and C do not match interface address of E;
local port of D does not match remote port of E.)

© 2019 Renesas Electronics Corporation 21 April 12,2016

RRENESANS

2.9.2.2. Multicast

Multicast is used to send data to multiple nodes at the same time. For a multicast transmission, the sender must
open a socket with the remote address set to a multicast IPv6 address. The semantics of ports is the same as for
unicast communication. The receiver must open a socket with the remote address set to the IPv6 address of the
sender or to the unspecified address. Note that a socket with a multicast remote address cannot be used for data
reception.

IDT’s implementation of the IPv6 multicast feature does not support explicit assignment of multicast groups to
single nodes. Instead, if a packet is received that was sent to a temporary multicast address, the hook function
ZWIR_CheckMulticastGroup is called by the network stack. This function must be implemented by the
application code in order to use the multicast feature. The application can check the multicast group of the
destination address and decide if it is part of it. This mechanism allows very flexible and application-tailored
multicast addressing schemes. If the application does not provide the ZWIR_CheckMulticastGroup, temporary
multicast addresses are rejected by the stack.

Table 2.6 Multicast Addressing Examples

A B C D E
fe80::1:1:1:1 fe80::1:1:1:1 feg80::1:1:1:1 fe80:x:x:x:x fe80::x:x:X:x
Rem. Addr.: ff02::1 Rem. Addr.: ffo2:xx:xixixixixiX| | |Rem. Addr.: ffl2:xexaxixxix:x| | |Rem. Addr.: fe80:1:1:1:1| | |Rem. Addr.:
Rem. Port: 55555 Rem. Port: 55555 | [Rem. Port: 55555 | | Rem. Port: X Rem. Port: X
Local Port 44444 Local Port 44444| | | Local Port 44444 | | Local Port 55555 | |Local Port 55555
Sender Recipients
A D and E receive packet. (Remote address matches interface address of A; local port of D and E matches
remote port of A.)
B No socket receives packet. (If multicast group ID is not 1, packets are dropped by the receiver as well-
known addresses must not be used by applications.)
C D and E receive packet if multicast group ID resolution is implemented in user code and returns “true.”
(Remote address of C is temporary link-local multicast group; local ports of D and E match remote port of
C)

2.9.3. Address Resolution

Before unicast data can be transmitted from one device to another, the sending node must determine the link-
layer address of the receiver. This is called address resolution and is done automatically by the sender’s network
stack, using the neighbor discovery protocol (NDP). NDP replaces the address resolution protocol (ARP), which
was used in IPv4 networks. Address resolution starts on demand and is transparent to the user.

If a data packet is to be sent to a receiver for which the link-layer address is not known, the sender performs
address resolution to find the link-layer address of the receiver. The result is added to the neighbor cache and the
data packet is sent out. The maximum size of the neighbor cache is configurable using the stack parameter
ZWIR_spNeighborCacheSize. Note that changing this parameter at runtime will result in the loss of all cache
entries, regardless of whether the neighbor cache size is increased or decreased.

© 2019 Renesas Electronics Corporation 22 April 12,2016

RRENESANS

Neighbor cache entries are valid only for a limited time. After this time, the accessibility of the neighbor must be
verified. This is also automatically done by the NDP and is beyond the scope of this document. The NDP’s
NeighborRetransTime parameter can be adjusted with the stack parameter ZWIR_spNeighborRetransTime.
This time defines the timeout in ms between retransmitted NDP packets. The lifetime of neighbor cache entries is
defined by routers attached to the network. If the network does not have any routers, a default reachable time is
used. IDT’s network stack provides the stack parameter ZWIR_spNeighborReachableTime for configuring this
time. In cases where routers advertise lifetime information, this information is given precedence over the stack
parameter.

Note that the default value for this constant (see Table 3.1) significantly differs from the Ethernet default setting of
30 seconds. This is to reduce communication overhead generated by neighbor reachability detection messages. It
is possible to disable the timeout completely. This is done by setting ZWIR_spNeighborReachableTime to
zero.

The exact specification of the neighbor discovery protocol can be found in REC 4861 — “Neighbor Discovery for IP
version 6 (IPv6)”.

2.9.4. Recommendations

The 6LOWPAN protocol performs IPv6 header compression to make the transmission of IPv6 packets more
efficient over IEEE 802.15.4 based networks. The header compression mechanism assumes that the interface
identifier (i.e., the lower 64 bits of the IPv6 address) is generated from the link-layer address of the device. In such
situations, the header compression mechanism is capable of eliding link-local IPv6 addresses completely from the
compressed header. Therefore, using manually assigned IPv6 addresses is NOT RECOMMENDED. Instead the IPv6
addresses generated by address auto-configuration after device startup SHoOULD be used.

In order to achieve maximum compression of global IPv6 addresses, it is possible to define compression contexts
using the parameters ZWIR_spHeaderCompressionContextl, ZWIR_spHeaderCompressionContext?2
and ZWIR_spHeaderCompressionContext3. These parameters define frequently occurring prefixes that
should be compressed by the 6LoWPAN header compression mechanism. If such prefixes are defined, it must be
ensured that each device in the network uses the same configuration of these parameters!

In addition to IPv6 header compression, the 6LoWPAN layer can also compress the UDP header. This is done if
the source and/or destination port is in the range of 61616 to 61631. Thus, if the application does not explicitly
require another port range, these ports SHOULD be used to maximize the data transmission efficiency.

2.10.Mesh Routing

IDT's 6LOWPAN stack enables devices to work in a mesh network topology. If the distance between two
communicating devices is too wide for direct radio transmission, packets are routed over intermediate devices —
known as “hops” — automatically. Routes through the mesh are detected transparently for the application. Nodes
can take two roles in a mesh network scenario: they can act as endpoints only, or they can provide relaying
service. In this documentation, devices are named endpoints or relays depending on their configuration. If the
stack configuration is not changed by the application, each node is configured as a relay with a maximum hop
count of four.

IDT's mesh routing protocol functions on top of the MAC layer, immediately below the network layer.

© 2019 Renesas Electronics Corporation 23 April 12,2016

http://tools.ietf.org/html/rfc4861

RRENESANS

2.10.1. Multicast Traffic

Network layer multicast traffic is handled by broadcast messages on the mesh and lower layers. Receivers of a
mesh broadcast message can forward it depending on their configuration. The decision of whether the message
is forwarded is determined based on the configuration parameter ZWIR_spMaxHopCount. This value determines
the upper limit of hops that a broadcast packet can take through the network. Each broadcast packet carries its
hop count in its mesh routing headers. This field is incremented each time the packet is forwarded by a relay.
When a node receives a packet with a hop count that is equal to or higher than ZWIR_spMaxHopCount, the node
does not forward the packet. Otherwise, the hop count is incremented and the packet is forwarded. Thus nodes
can be forced to function as endpoints by setting ZWIR_spMaxHopCount to zero. Any other configuration makes
a node function as a mesh network relay.

2.10.2. Unicast Traffic

For unicast traffic all nodes, hence endpoints and relays, maintain a routing table. The routing table stores the
MAC address of the next hop to be taken to a specific destination MAC address. After power on, reset, or network
reset, the routing table does not contain any entries. A node requiring unicast communication must set up a route
to each of its unicast destination nodes. This is done on demand and transparent for the application.

When the transmission of a unicast packet is requested and there is no matching routing table entry for the
destination, the packet to be sent is queued and the route discovery process is started. A Route Request (RReq)
is broadcasted into the network, requesting a route to the destination address of the unicast packet. Nodes
receiving an RReq check whether the requested address matches their own address or not. If not, the packet is
retransmitted by relays and ignored by endpoints, respectively. If the node’s own address is matched, a Route
Reply (RRep) message is sent to the source hop of the RReq packet. Nodes receiving an RRep packet
create/update a record in their routing tables, storing the source address of the RRep packet as the next hop to
the requested destination.

Unicast packets always take the same route through the network as long as the route is not removed from the
routing tables. Routing table entries are removed if one of the following conditions occurs:

e The route has not been used for ZWIR_spRouteTimeout seconds.
e The route has been failing for ZWIR_spRouteMaxFai ICount times.

e The route was oldest when creation of a new route was required but the routing table was full.

If a hop fails for ZWIR_spRouteMaxFai ICount times (no acknowledge is sent by the hop), the sender considers
the route as broken and sends an informative packet to the originator of the packet. The originator then reinitiates
the route discovery process, searching for an alternative route.

2.10.3. Mesh Routing Parameter Configuration Recommendations

In order to maximize the network performance for different application scenarios while maintaining a high level of
stability and without wasting resources, the different routing parameters should be configured according to the
application’s characteristics. All parameters are listed below with explanations of the basic function of the
parameter and recommendations for their setting in different application scenarios.

© 2019 Renesas Electronics Corporation 24 April 12,2016

RRENESANS

ZWIR_spMaxHopCount

This parameter determines whether a node acts as endpoint or as a relay and constrains the forwarding of
multicast packets. With ZWIR_spMaxHopCount set to zero, the node acts as a communication endpoint. Note
that the node is still able to communicate with remote nodes over multiple hops. Only the ability to forward
packets is constrained by this parameter!

In order to make a node function as a mesh network relay, ZWIR_spMaxHopCount MUST be set to a value
greater than zero. However, the value sHoOULD NOT be chosen arbitrarily, but it SHouLD reflect the actual size of the
network. The optimal value is the number of hops required to reach the farthest remote communication partner. If
no mesh routing is required, setting ZWIR_spMaxHopCount to zero will improve the performance.

Limiting the number of nodes working as a relay in the network is strongly recommended. As a rule of thumb, a
relay should not have more than ten other relays within direct reachability. Otherwise, the network latency and the
packet loss are very likely to increase.

If a large number of relays is desired, using the ZWIR_spRouteRequestMinRSSI parameter should be
considered for limiting the amount of traffic generated during the route discovery process.

ZWIR_spRoutingTableSize

This parameter configures how many routes can be kept “alive” concurrently. Thus, this parameter defines the
number of nodes that the device can communicate with before needing to drop and reestablish routes. The
routing table is required in endpoints and relays! On endpoints, the table size should be equal to or larger than the
number of remote nodes that the device is intended to communicate with. On relays, this number should be
increased by the number of nodes for which the relay service is provided.

The routing table is stored in the RAM and therefore limited by the RAM size. The RAM for the routing table is
quasi-statically allocated before the ZWIR_AppInitNetwork hook is called. Therefore it is recommended to
define the size of the routing-table in ZWIR_AppInitHardware. Otherwise a network reset has to be performed
in order to get the change into effect.

ZWIR_spRouteTimeout

This parameter defines how many seconds an idle route is kept in the routing table. The default value is 3600
seconds. The idle time counter is restarted each time the route is used. Typically the route timeout parameter
does not explicitly affect memory consumption or application performance. However, in frequently changing
network configurations, reduction of the timeout value may be advantageous, as old routes do not have to be
tested and found to be defective before a new route is established.

ZWIR_spRouteMaxFailCount

This parameter controls how often a route can fail before it is considered to be dead. Depending on the network
characteristics, this value should be set to a rather low value between zero and five. The higher the probability of
unreachability of a relay or endpoint, the lower this value should be configured. In networks with frequent changes
of positions of nodes or a rapidly changing environment, the probability of unreachability is high and therefore this
variable should be low. In contrast, fixed installations of nodes and relays can select a higher value, as the
unreachability of a node/relay is very likely to be temporary.

© 2019 Renesas Electronics Corporation 25 April 12,2016

RRENESANS

ZWIR_spRouteRequestAttempts

This parameter configures how many attempts are made to set up a route to a remote device. By reducing this
number, the application can reduce the network load caused by failing route discovery attempts. However,
reducing this number will increase the chance of a failing route discovery when it would be physically possible.

ZWIR_spRouteRequestMinLinkRSSI and ZWIR_spRouteRequestMinLinkRSSIReduction

Propagation of electromagnetic waves is influenced by a multitude of external parameters. As a result, radio
transmission sometimes appears to behave randomly. Typically this is caused by subtle changes in the external
environment. The occurrence of random behavior might increase noticeably in mesh network topologies. For one
logical connection of two nodes, there are typically multiple physical links included, all of which have an
independent failure probability.

In order to make links more robust against loss of connection due to environmental variations, the parameters
ZWIR_spRouteRequestMinLinkRSSI and ZWIR_spRouteRequestMinLinkRSSIReduction are provided.
These parameters allow specifying link quality constraints on each physical link of the whole route. With such
constraints in place, smaller environmental changes will impair the routes less, as the signal quality on any link is
less likely to drop below the sensitivity level of the module.

2.11.Network and Device Status

The API provides functions for discovering the network and requesting the device status. Network discovery is
performed using the ZWIR_DiscoverNetwork function. This function broadcasts a message to all devices in the
PAN and makes the answers available to the user. For each device, the hop-distance, the link-quality, and all
assigned IPv6 addresses are returned.

The node status is returned by ZWIR_GetTRXStatistic. The returned data structure contains information such
as sent and received packet and byte count and failing transmission attempts. However, the most important value
is the sender duty cycle. This value is important, as frequency regulations require nodes to keep their
transmission duty cycle lower than 1%. It is the responsibility of the application code to ensure that this number is
not exceeded.

2.12.Security

Most applications require secure communication in order to protect sensitive data and to protect actors from
unauthorized accesses through attackers. For that reason, IDT provides an implementation of the Internet
Protocol Security Suite (IPSec) and the Internet Key Exchange protocol version 2 (IKEv2). IPSec is used to
encrypt and authenticate data, while IKEv2 is used to manage the keys used for encryption and authentication.
IPSec and IKEv2 are standardized by the Internet Engineering Task Force (IETF). Both protocols are mandated
to be used for encryption and key management in IPv6. The implementation of the protocols is provided in two
separate libraries.

© 2019 Renesas Electronics Corporation 26 April 12,2016

RRENESANS

2.12.1. Internet Protocol Security (IPSec)

IDT provides an IPSec implementation in conjunction with its communication libraries. IPSec is a protocol suite for
encryption and authentication of data sent over an IP network. IPSec is supported by virtually all modern
operating systems. The encapsulating security payload (ESP) and authentication header (AH) protocols are
supported for data encryption and authentication, respectively. Data encryption ensures confidentiality of
information transmitted over the network. Authentication is applied to ensure that data are not modified along the
way and that the sender is the entity that it claims to be.

In order to use the security features of the stack, the libZWIR45xx-IPSec.a library must be included in the project
and must be configured appropriately. IPSec maintains a Security Policy Database (SPD) that contains rules for
how outgoing and incoming traffic must be handled. For each incoming and outgoing packet, the stack checks the
SPD for a matching rule that contains information on how the packet should be handled. The rules can direct the
network stack to either drop, bypass or process the packet in the security module. Bypassing a packet means that
no security processing is applied. Rules can be applied to single addresses or complete subnets.

Each item in the SPD requiring security processing contains a pointer into the Security Association Database
(SAD). Each item of this database contains the required information for encryption and decryption of packets. This
information includes keying material and the algorithm to be used for encryption and decryption.

Figure 2.6 Working Principle of IPSec

Protected Network Interface

No Policy or v No Policy or

Policy: Drop ; i Policy: Drop
Lookup in SPD SPD Lookup in SPD —-@

Policy: Policy:
Do not secure packet Secure packet e s
A
v Entry found
No entry
' Lookup in SAD Lookup in SAD 4>®
A
No entr
Entry found v Y 4 Secured Unsecured
Negotiate SA incoming incoming
‘ IPSec Process ‘ using IKEv2 packet packet
Y ¢

Unprotected Network Interface

© 2019 Renesas Electronics Corporation 21 April 12,2016

RRENESANS

The SAD items can be configured manually or automatically. For automatic configuration, the Internet Key
Exchange protocol is used. This protocol is implemented in a separate library and is described in the following
section. In either case, SPD entries for incoming and outgoing traffic must be configured by the application. This
is done using the function ZWIRSEC_AddSecurityPolicy. If manual configuration should be used, the
function ZWIRSEC_AddSecurityAssociation must be called on both communicating devices, setting the
security parameters for the connection.

2.12.2. Internet Key Exchange Version 2 (IKEv2)

The Internet Key Exchange version 2 protocol can be used for automatic creation of keying material for secured
connections. This protocol is implemented in the libZWIR45xx-IKEv2.a library. If IKEv2 is used, no manual
configuration of the SAD is required. Instead, keying material is negotiated automatically on demand. If
application code attempts to send data to a remote node and the corresponding SPD entry requires security
processing of this data, it is checked to determine if a security association (SA) is assigned to the SPD entry. If no
entry exists, IPSec requests the establishment of a security association from the IKEv2 daemon.

IKEv2 first attempts to set up a secure communication channel over which keying material is exchanged. This
channel is set up using the Diffie-Hellmann-Key-Exchange algorithm.

Both communicating parties use a Pre-Shared Key (PSK) for mutual authentication. The PSK is registered using
the ZWIRSEC_AddIKEAuthenticationEntry function. After setup of the secure channel, keying material for
the security association to be created is exchanged.

2.12.3. Recommendations

IDT strongly recommends using the security features provided by the network stack. Security is not only required
to prevent data from being visible for third parties—more critical is active attacks on a network. Most applications
will suffer from such attacks. In the best case, applications might behave erratically; however, in the worst case,
perilous behavior of actors can be caused by an attack. Attacking possibilities are manifold: packets can be
changed on their way to the destination; they can be sent again; invalid packets infiltrate into the network; or
packets can be simply blocked by an attacker. IPSec can protect against all of these attacks. IPSec in conjunction
with IKEv2 further increases the security, as the keying material can be renewed on a regular basis.

2.13.Firmware Over-the-Air Updates

IDT provides an over-the-air update (OTAU) library. This library extends the application with functionality for the
reception and processing of update packets, as well as functionality for replacing the existing code with a new
version. The update mechanism incorporates recovery mechanisms, ensuring the proper recovery after occur-
rence of an error during the update process.

The OTAU firmware library is designed to require minimal interaction of the firmware programmer. However, it
places some constraints on the firmware in order to ensure reliability of the OTAU function.

© 2019 Renesas Electronics Corporation 28 April 12,2016

RRENESANS

2.13.1. Functional Description

Integrating the firmware over-the-air update (OTAU) adds two components into the user application. The first one
is a service for the reception and processing of OTAU-related network traffic. The second one is a boot-loader
that replaces the old firmware image with the new one after complete reception and verification of all update
traffic. The boot-loader component is located in a program section called .update_code. The location of this
segment MUST be the first flash memory page(s). During the update process, the boot-loader is not replaced!

A second segment that is dedicated to OTAU-enabled code is the .status_seg. This segment resides directly
behind the boot-loader component and stores status information about the firmware update.

Including the sections referenced above, the application’s memory layout would be as shown in Figure 2.7. The
application code is located after the _update_code and .status_seg sections. Optionally the OTAU memory
layout can incorporate a section for the storage of permanent parameters. This section MUST be located at the end
of the flash. In contrast to non-OTAU-enabled applications, the amount of memory available for the application is
limited to less than one half of the microcontroller’s total flash memory size. This is because the space for the
buffering of the full new firmware image must be provided.

The OTAU network service is started through a call to the ZWIR_OTAU_Register function. The function takes
the UDP port to be used by the OTAU network service as the argument. Calling this function is all that is required
to enable the reception and processing of firmware over-the-air updates. All other update parameters are con-
trolled by the update server, which is typically a computer in the network.

Figure 2.7 Memory Layout of OTAU-Enabled Applications

.update_code

(OTAU Boot-Loader)

.status_seg
(OTAU Status Information)

.text
.data

(Active Application Firmware)

.text*
.data*

*

(New Application Firmware Image)

Optional section for permanent
parameter storage

© 2019 Renesas Electronics Corporation 29 April 12,2016

RRENESANS

A new firmware image to be loaded into the device is typically received in small chunks of data. Whenever a
chunk of data is received, the corresponding flash location in the new application firmware image portion of the
flash is updated. If this is the first chunk written to a flash page, the flash page is completely erased before the
chunk is written to it. All packets corresponding to the same firmware update mMuUST include the same version
information and the size of data chunks MusT be the same for all packets. Packets containing fragments of a
different size than the first fragment are ignored once the update is started. Packets containing different version
information trigger a complete re-initialization of the update.

2.13.2. Firmware Constraints

The OTAU network service uses a dedicated UDP port for the reception and transmission of OTAU-related pac-
kets. The application MUST NOT use the same port for any other purpose. If this limitation is ignored, the
application behavior is determined by the behavior of sockets being reopened with the same parameters.

The contents of the .update_code and .status_seg segments must not be changed in any way by the appli-
cation. This means the application MusT NOT explicitly place functions or data in either of these sections!

In order to allow the OTAU from a firmware-version A to a firmware version B, the firmware versions MUST share
the following properties:

e The call stack of A and B must be located at the same RAM position.
e The call stack of A and B must be of the same size.

e The flash memory layout of A and B must be the same (e.g., no optional section as shown in Figure 2.7
can be added or removed).

2.14.Memory Considerations

Applications must manage their memory consumption — especially with respect to RAM (random access
memory). There are basically three components that contribute to the overall RAM size requirements of the
application:

1. Statically allocated memory
2. Dynamically allocated memory
3. Call stack

The call stack is required by the application to store the return addresses from function calls, function arguments,
and variables stored locally in functions. The RAM size reserved for the call stack can be configured in the linker
script. Applications utilizing IDT’s network stack need a minimum of 2kB of call stack. In order to leave some
flexibility for the user application, the default stack size configured in the linker script is 5kB. The call stack resides
at the lower end of the RAM area.

Static memory is consumed by globally declared and local statically declared variables. IDT’s network stack
requires less than 8kB of static memory in a minimal configuration. The static memory consumption can easily be
determined by examining the map file generated by the linker. Static memory is allocated immediately behind the
call stack.

© 2019 Renesas Electronics Corporation 30 April 12,2016

RRENESANS

The third component, the dynamically allocated memory, is allocated in the unused area between static memory
and the end of RAM. Memory in this area is typically allocated at runtime using C’'s mal loc function. Memory can
be freed using the free function. Some lists and buffers used by IDT’s network stack are allocated dynamically.
There is no tool support for automatic determination of the dynamic memory size requirements of applications.
The size of dynamic memory used by IDT's network stack depends on the configured parameters. This is
explained in more detail in section 2.14.2.

2.14.1. Call Stack

IDT’s network stack places the call stack of the application at the lower end of the RAM. This is enables detection
of stack overflows. The stack grows downwards from its topmost address towards the beginning of the RAM. If a
stack overflow occurs, the MCU tries to access an address that is not in the RAM area and the MCU will generate
a Bus-Fault interrupt. Note that during interrupt handling, the interrupt handler function does not have a working
stack. Thus, it is not secure to use local variables or calling subroutines. The Bus-Fault interrupt default handler
performs a system reset.

2.14.2. IDT Network Stack Dynamic RAM Requirements

IDT’s network stack has a number of configurable parameters that require allocation of memory at runtime. During
system startup and after reset, memory for these variables is allocated dynamically on the heap. Table 2.7 shows
on how these parameters influence the dynamic RAM requirements of the application.

Table 2.7 Stack Parameter Dynamic Memory Size Requriements

Note: The “Size” column specifies the size of a single element. It must be multiplied with the configured parameter value. For
each row, an additional 32-byte element is required for storing the allocation record if not otherwise noted.

Parameter Size Element Count Notes
[bytes] Min Default

ZWIR_spRoutingTableSize 28 1 8

ZWIR_spNeighborCacheSize 60 1 8

ZWIR_spMaxSocketCount 28 4 8

- 238 - 6 This memory is allocated for internal

buffers for which size cannot be

) 48) 2 configured.

In addition to the quasi-statically allocated memories above, IDT’s network stack dynamically allocates memory at
runtime if packets must be sent to destinations for which address resolution and route discovery have not been
performed. One packet can be buffered for each destination node. Allocation is performed if enough memory is
available. If no memory is left, the packet to be sent is dropped, but the address resolution and route detection
procedure is initiated in any case. Thus, even if the packet is not being buffered, the next packet being sent is
likely to arrive at the destination node.

© 2019 Renesas Electronics Corporation 3l April 12,2016

RRENESANS

Application developers must always ensure that the parameter settings allow proper allocation of all quasi-static
memory. If parameters are chosen too large, stack initialization will fail and report the failure as error
ZWIR_eMemoryExhaustion. The default handling of this error is a system reset. Thus, if the parameters
causing the memory exhaustion are set during system startup, this will result in an infinitive loop. The error is
detected easily with a custom implementation of the ZWIR_Error function.

2.14.3. Using Dynamic Memory Allocation

Applications requiring dynamic memory allocation can freely use the functions malloc and free for allocation
and de-allocation of RAM at runtime, respectively. However, the application developers must be aware of the
limited availability of RAM on the device. Each allocated block consumes an additional 32-byte block on the heap
for the allocation record.

Due to memory fragmentation effects, it cannot be guaranteed that memory allocation is successful, even if the
total amount of free heap space is sufficient for an allocation request. If memory blocks are allocated and freed
frequently, the free space in memory might become scattered over the whole heap, not providing any free block
large enough for holding a requested block. Figure 2.8 demonstrates this with a simple example that has 3kB of
free memory but does not allow the allocation of a 2kB memory block with mal loc.

Figure 2.8 Heap Memory Scattering

N
M1 — 2kB Memory blocks have been allocated in the order
M1 > M2 > M3

P

o

g M2 was freed after M3 had been allocated.

=
M2 - 1.5kB > g M4 has never been allocated

(]

T

s]
M3 - 1kB & => 3kB of free memory remaining, but allocation of

2kB block is not possible
M4 — 1.5kB
J

© 2019 Renesas Electronics Corporation 32 April 12,2016

RRENESANS

2.15.Supported Network Standards

Table 2.8 lists RFCs that are supported by IDT’s network stack, and it specifies the limitations that apply with
respect to these RFCs.

Table 2.8 Supported RFCs and Limitations

RFC Limitations

Internet Protocol Version 6 (IPv6) Specification

2460 e Hop-by-hop options header

0 Only Padl and PadN options are supported (as specified in RFC).

o0 Other options will cause unrecognized option processing as proposed in RFC.
e Routing extension header

o If “Segments Left” > 0, packets are ignored and an Internet Control Message Protocol (ICMP) error
message parameter problem is sent. However, the use of the type 0 routing header has been
deprecated by RFC 5095!

e Fragmentation extension header
o Not supported — packets received with this extension header are silently dropped.

0 Specification requirement of receiving 1500-byte packets is not supported. However, use of
fragmentation is discouraged by the RFC!

e Destination options header
0 Only Padl and PadN options are supported (as specified in RFC).
o0 Other options will cause unrecognized option processing as proposed in RFC.
0 Packets with next header 59 are dropped.
o Traffic class and flow label are always set to zero in packets sent from 6LoWPAN nodes.

Security Architecture for the Internet Protocol

4301 e Tunnel mode is not supported.

e ESP SA with both null encryption and no integrity algorithm is allowed.
e Events are not logged.

e Local IPv6 address cannot be used as a selector.

e No sequence counter overflow handling.

e SAlifetime is handled by IKE and only time controlled.

e Certificates are not supported for IKE authentication.

e No ICMP error messages processing and generation.

e Fragmentation and reassembly is not supported.

IP Authentication Header

4302 e AHis not supported.

© 2019 Renesas Electronics Corporation 33 April 12,2016

RRENESANS

RFC

Limitations

IP Encapsulating Security Payload (ESP)

4303

SPI 0 to 255 are not reserved.

Anti-replay service is not active.

The sequence number will cycle.

ESN is not supported.

Dummy packets are not supported.

Traffic flow confidentiality (TFC) padding is not supported.
Auditing is not supported.

Cryptographic Algorithm Implementation Requirements for ESP and Authentication Header (AH)

4835 e Supports ONLY NULL encryption and AES-CTR.
e Supports ONLY NULL authentication and AES-XCBC-MAC-96.
Neighbor Discovery for IP Version 6 (IPv6)
4861 e Only host functionality is implemented.

Destination cache as proposed by the standard is not available. However, there is no need for this as the
purpose of the cache is to reduce the time required for the next hop determination, but this is already
done in a fraction of the time that message transport requires.

No checking of the linkMTU option is performed — however this is not required as 6LoWPAN only
supports the minimum linkMTU of 1280 and never sends larger packets.

If no reachable router is in the router list, default router selection is not performed in a round-robin manner
as proposed by the standard; instead the first entry found is taken. However, reachable routers still have
precedence over routers whose reachability is unknown (see section 6.3.6 of RFC4861).

Variables are mainly implemented as constants.

During address resolution, packets must be queued until address resolution is complete. The memory for
this is allocated dynamically at runtime. If memory allocation fails, the packet is not queued! Only a single
packet will be queued. A queued packet is not replaced with the latest one if more than one packet needs
to be buffered during the address resolution process.

Changes of the link-layer address are not advertised as proposed in section 7.2.6 of RFC4861. However,
this is not required, as the node will also change its IPv6 address.

Anycast neighbor solicitation is not supported.
Redirect messages are not supported (see section 8 of RFC4861).

Nodes that use multicast do not use the Multicast Listener Discovery (MLD) protocol to announce the
groups in which they are members.

IPv6 Stateless Address Auto-configuration

4862

Maximum number of NS for DAD is limited to 1.

Address deprecation is not implemented. Behavior is the same as preferredLifetime==validLifetime.
However, router advertisements with a preferredLifetime>validLifetime are ignored by the device.

© 2019 Renesas Electronics Corporation

34 April 12, 2016

RRENESANS

RFC

Limitations

Transmission of IPv6 Packets over IEEE 802.15.4 Networks

4944

e IDT's implementation does not support one of the specified header compression algorithms proposed by
the RFC. Instead, it implements the RFC draft-hui-6lowapn-hc version 01 (see “6LoWPAN Compression
of IPv6 Datagrams” below).
031ex is used as the dispatch value for this compression format.

e Mesh functionality specified in the RFC is not implemented. Instead, a proprietary link-layer mesh
implementation is provided.

e Only 64-bit link-layer addresses are supported at this time.

IPv6 Configuration in Internet Key Exchange Protocol Version 2 (IKEv2)

5996

e Supports only the negotiation of an ESP in transport mode between two protected endpoints.
e The Diffie-Hellman group cannot be changed.

e Only one initial exchange can occur at the same time.

e Only one pair of child SAs can be negotiated with one IKE SA.
¢ Windowing is not supported.

e Timeouts are defined by user.

e The critical flag is ignored.

e Cookies are not supported.

e Implementation provides only one proposal.

e Only packets for port 500 are accepted.

e Extensible Authentication Protocol (EAP) is not supported.

e |IP Compression (IPComp) is not supported.

e Network address translation (NAT) traversal is not supported.
e OnlyID_IPV6_ADDR is supported.

e Only shared key message integrity code is supported.

e Vendor ID payload is not supported.

e Configuration payload is not supported.

Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)

4307

e Supports only 768 MODP (Modular Exponential) Group.
e Supports only ENCR_AES_CBC.

e Supports only PRF_AES128 CBC.

e Supports only AUTH_AES_XCBC_96.

6LoWPAN Compression of IPv6 Datagrams

draft-hui-
6lowpan-
hc-01

e ISA100_UDP Header Compression is not implemented (see section 3.3 in draft specification).

© 2019 Renesas Electronics Corporation

35 April 12, 2016

RRENESANS

3 Core-Library Reference

3.1. Initialization

The core library provides two different hooks that can be used to initialize the application during system startup.
The first hook, named ZWIR_AppInitHardware, is called before network initialization. The second one, named
ZWIR_ApplInitNetwork, is called afterwards.

void
ZWIR_ApplnitHardware (ZWIR_ResetReason_t resetReason)

This hook is called after power on and after reset to configure the module peripherals. The resetReason
argument specifies the reset source that triggered the execution of this function. If required, the operating
mode of the module sHouLD be set from this function.

Note: Most API functions must not be called from this function. The documentation specifies which API
functions can be called from ZWIR_ApplInitHardware.

void
ZWIR_ApplInitNetwork (ZWIR_ResetReason_t resetReason)

This hook is called when the default networking parameters have been initialized after power-on or reset. It
should be used to open sockets and initialize further network parameters if required. However, it must not
be used for sending out data, as the node has not completed Duplicate Address Detection (DAD); refer to
section 2.8.4 for further details) at this point. The resetReason argument specifies the reset source that
triggered the execution of this function.

void
ZWIR_ApplInitNetworkDone (ZWIR_ResetReason_t resetReason)

This hook is called after successful completion of the DAD procedure. It is also called when DAD is
disabled. In this case, the function is called immediately after the call to ZWIR_AppInitNetwork. The
resetReason argument specifies the reset source that triggered the execution of this function. All API
functions can be called from this function.

void
ZWIR_SetOperatingMode (ZWIR_OperatingMode_t opMode,
ZWIR_RadioReceiveCallback_t callback)

This function sets the operating mode of the device. Device Mode, Gateway Mode, or Sniffer Mode can be
selected (refer to section 0) with the opMode argument. The cal Iback argument is used in Gateway Mode
and Sniffer Mode to specify the function to be called on the reception of data. If the callback is NULL, no
function will be called. If Device Mode is selected callback is ignored. It is RECOMMENDED that
ZWIR_SetOperatingMode only be called from ZWIR_AppInitHardware.

© 2019 Renesas Electronics Corporation 36 April 12,2016

RRENESANS

typedef enum { ... } ZWIR_OperatingMode t

Type enumerating the different operating modes of the device. Possible values include:
ZWIR_omNormal Device Mode
ZWIR_omGateway Gateway Mode
ZWIR_omSniffer Sniffer Mode

typedef enum { ... } ZWIR_ResetReason_t

Type enumerating the different reasons for system reset. Possible values include:

ZWIR_rPowerOnReset
Reason: The device has been powered on after being switched off.

ZWIR_rStandbyReset
Reason: The device is waking up from standby mode

ZWIR_riIndependentWatchdogReset
Reason: The MCU'’s independent watchdog (IWDG) was triggered.

ZWIR_rSoftwareReset
Reason: A software reset has been performed

ZWIR_rPinReset
Reason: System reset was triggered by pulling low the reset pin.

ZWIR_rWindowWatchdogReset
Reason: The window watchdog has triggered

ZWIR_rLowPowerReset
Reason: The supply voltage dropped below the specified threshold.

3.2. Program Control

The API does not provide the concept of a central main function as is typical in traditional C programs. Only three
timing-driven hooks, named ZWIR_Main10ms, ZWIR_Main100ms, and ZWIR_Main1000ms, are provided; they
are called periodically after 10, 100 and 1000 milliseconds, respectively. Sensing and acting by the user
application should be implemented in these hooks. For more fine-tuned time control, a user-programmable
callback timer is available. This timer can be programmed at 1ms increments. Initialization and de-initialization of
this freely programmable timer function is via ZWIR_StartCal IbackTimer and ZWIR_StopCal IbackTimer.

The ZWIR_Mainl10ms, ZWIR_Mainl100ms, and ZWIR_Main1000ms hooks can be defined to implement applica-
tion behavior that has to be executed periodically. The default implementations of these hooks do nothing, so
these hooks can be left undefined if they are not required.

© 2019 Renesas Electronics Corporation 37 April 12,2016

RRENESANS

In addition to the fixed period main functions, the API also provides a freely configurable callback timer. The timer
is started using the ZWIR_StartCal IbackTimer function. It is possible to provide a data pointer to this function,
which is passed to the callback when the timer expires. This allows for delayed data processing. Whether the
timer is triggered just once or periodically can be selected.

The timer is stopped with the ZWIR_StopCal IbackTimer.

void
ZWIR_Reset (void)

This function causes a software reset of the system. Both, the microcontroller and the transceiver are reset.
The complete startup sequence is executed. If this function is called while the transceiver receives or
transmits data, the packet will be lost.

void
ZWIR_ResetNetwork (void)

This function resets the radio transceiver and reinitializes the network stack. After a call to this function,
IPv6 address auto-configuration is restarted and manually assigned addresses are lost. Also routing and
address resolution information are lost.

void

ZWIR_MainlOms (void)
void

ZWIR_Mainl00Oms (void)
void

ZWIR_Main1000ms (void)

These hooks are called with a period of 10, 100 and 1000 milliseconds. On timeslots that are multiples of
10ms or 100ms, the shorter period function has priority over the longer period. This means that
ZWIR_MainlOms is called before ZWIR_Main100ms, which is called before ZWIR_Main1000ms. All three
functions are called immediately at system startup.

Note: These functions are not suitable if exact timer behavior is required. A constant execution interval
cannot be guaranteed nor is it guaranteed that the function is executed at each intended time instant.

© 2019 Renesas Electronics Corporation 38 April 12,2016

RRENESANS

void
ZWIR_StartCallbackTimer (uint32_t timeout,
ZWIR_TimeoutCallback t callback,
void* data,
bool periodic)

If this function is called, the freely programmable timer is initialized and started. The function provided with
the cal Iback argument will be called about timeout ms after the call to ZWIR_StartCal lbackTimer.
The value provided with data will be passed to cal Iback when it is called. If the periodic flag is set to
one, cal Iback is called periodically; otherwise cal Iback is called just once. If this function is called while
the timer is running, the timer will be reprogrammed and the previous programming will be lost.

Note: The callback timer is not suitable if exact timer behavior is required. Consider using a MCU timer
peripheral for exact timing.

void
ZWIR_StopCallbackTimer ()

This function stops a running callback timer. If no timer is running, nothing will happen.

void
ZWIR_TriggerAppEvent (uint8 _t eventld)

This function allows the processing of application events with a certain operating system priority. This
function notifies the operating system of the presence of an application event and schedules the
appropriate callback function for execution. Typically this is used to execute computationally intensive code
in response to an interrupt.

void
ZWIR_RegisterAppEventHandler (uint8_t eventlid,
ZWIR_AppEventHandler_t handler)
This function registers an application event handler callback for a certain application event in the operating

system. If this function is called more than once with the same eventld, the callback function provided
with the last call will be in effect.

typedef void (* ZWIR_AppEventHandler_t) (void)

This function pointer type defines the signature of a callback function that is executed in response to an
application event.

typedef void (* ZWIR_TimeoutCallback_t) (void* data)

Function pointer type for the callback function that should be called if the callback timer expires.

© 2019 Renesas Electronics Corporation 39 April 12,2016

RRENESANS

ZWIR_Revisioninfo_t
ZWIR_GetRevision (void)

This function returns a structure containing detailed version information. This information must be provided
if support requests are sent to IDT.

typedef struct { int8_t majorRevision
int8 t minorRevision
intlé_t versionExtension } ZWIR_Revisioninfo_t

Type for objects carrying version information. If problems are encountered while using the stack, request
this structure using ZWIR_GetRevision and provide the information obtained to IDT with an error report.

void
ZWIR_NetEventCallback (ZWIR_NetEvent_t event)

This function is called when a network event occurs. The event type is passed in the ZWIR_NetEvent_t
event argument.

typedef enum { ... } ZWIR_NetEvent_t

Net events enumeration type accepted by ZWIR_NetEventCal Iback. Possible values:

ZWIR_neAppReceive
Event: UDP receive callback function is called.

ZWIR_neAppTransmit
Event: UDP transmit function is called.

ZWIR_nelPv6Receive
Event: IPv6 stack receive function is called.

ZWIR_nelPv6Transmit
Event: IPv6 stack transmit function is called.

ZWIR_neMACReceive
Event: Receiver receive function is called.

ZWIR_neMACTransmi
Event: Receiver transmit function is called.

© 2019 Renesas Electronics Corporation 40 April 12,2016

RRENESANS

bool
ZWIR_Error (int32_t errorCode)

This function is called when a recoverable library error is encountered. The error-code is passed in the
errorCode argument. If true is returned, the error is assumed to be processed and no action will be taken
by the stack. If false is returned, the default error handler will be executed.

int32_t
ZWIR_Rand (void)

This function returns a random number. The sequence of numbers generated by this function is actually
only pseudo-random, as a linear feedback shift register with a generator polynomial is used. However, by
calling ZWIR_SRand with zero as argument, the random number generator is seeded with a true random
number.

int32_t
ZWIR_SRand (Int32_t seed)

This function seeds the random number generator. If zero is provided as seed, a true random number is
generated from thermal noise. Any value other than zero is used to initialize the generator directly. This
allows creating reproducible application behavior for debug purposes. Using non-zero seed values in pro-
duction code is not recommended.

3.3. Networking

A ZWIR451x node can join any IPv6 network. Each device automatically gets an IPv6 address that is computed
from the link-layer address of the module. Additionally, the user’s own IPv6 addresses can be assigned to the
module. The modules can communicate bidirectionally using the UDP protocol.

3.3.1. Address Management

The API provides a set of functions for managing the different addresses of a 6LoWPAN module. A module has
three different types of addresses: the PAN identifier, the link-layer address, which is also called the PAN
address, and a set of IPv6 addresses.

3.3.1.1. PAN Identifier

The PAN identifier is a 16-bit value that determines the personal area network that the module belongs to. All
devices in a PAN must have the same PAN identifier. Devices with different PAN identifiers cannot communicate
with each other. They cannot even use each other as a network relay. Each device has exactly one PAN
identifier. It can be read and altered using the ZWIR_SetPANId and ZWIR_GetPANId functions, respectively.
The default value of the PAN identifier is ACCAex.

© 2019 Renesas Electronics Corporation 4l April 12,2016

RRENESANS

uintl6é_t
ZWIR_GetPANId (void);

Reads and returns the PAN identifier of the module.

void
ZWIR_SetPANId (uintl6_t panld);

Sets the PAN identifier of the node to the value provided in panld. The value is retained until the next reset
or until Standby Mode is entered. After waking up, the factory-programmed value is active again until the
next call to this function.

3.3.1.2. Link-Layer Address

The link-layer address, also called the PAN address, is a 64-bit-wide value that identifies the device in the PAN.
All communication between devices in a PAN is based on the link-layer address. Higher layer protocols, such as
IPv6, resolve their addresses into link-layer addresses. A globally unique link-layer address is programmed into
each device during manufacturing. Changing this address is not recommended, as this could cause the address
to be no longer unigue. Nevertheless, the functions ZWIR_SetPANAddress and ZWIR_GetPANAddress allow
reading and writing the PAN address.

ZWIR_PANAddress_t const*
ZWIR_GetPANAddress (void)

Reads and returns the link-layer address of the module.

void
ZWIR_SetPANAddress (ZWIR_PANAddress_t const* panAddress)

Sets the link-layer address to the value provided in panAddress. Changing the link-layer address of the
module is not recommended for the reasons given in section 2.8.4. However, if manual assignment of
addresses is required, calling ZWIR_SetPANAddress from ZWIR_ApplInitHardware is recommended.
The assigned panAddress value is retained until the next system reset or deep sleep. After waking up, the
factory-programmed value is active again until the next call to this function.

Note: Changing the link-layer address of a device during normal operation will typically cause a loss of all
incoming packets for a period of time. The standard allows sending unsolicited neighbor advertisements as
an option if the link-layer address changes. This feature is not included in IDT's 6LoWPAN stack.

typedef uint8_t ZWIR_PANAddress_t [8]

Data type for representation of link-layer addresses. Bytes are stored in network byte order, which is big
endian. This means that the highest-order byte is stored first.

© 2019 Renesas Electronics Corporation 42 April 12,2016

RRENESANS

3.3.1.3. IPv6 Addresses

Although manual assignment of IPv6 addresses is not required by most applications, the API provides the
function ZWIR_SetlPv6Address. This function can be used to assign additional IPv6 addresses to an interface.
Up to three addresses can be assigned in total, but the first address is always allocated by the automatically
configured link-local address. The function ZWIR_GetlPv6Addresses can be used to request all addresses
assigned to an interface.

The ZWIR_CheckMulticastGroup hook is called if a multicast packet is received that does not belong to the all
nodes multicast group or the node solicited address multicast group. This function must be implemented by the
application if multicast addressing is used.

bool
ZWIR_SetlPv6Address (ZWIR_IPv6Address_t const* 1ipv6)

Add the address provided in ipv6 to the network interface.

The function returns true if the operation was successful or false otherwise. The function fails if the
maximum number of IPv6 addresses is assigned to the interface already.

uint8_t
ZWIR_GetlPv6Addresses (ZWIR_IPv6Address_t const* ipv6Buffer,
uint8_t maxCount)

Request a set of addresses assigned to the interface. The 1pv6Buffer argument must carry a pointer that
points to a buffer that is able to store at most maxCount IPv6 addresses. The function will store maxCount
addresses in this buffer if the interface has at least maxCount addresses assigned. If the number of
assigned address is lower than maxCount, the function will store all available addresses. The return value
determines the number of addresses that have actually been stored. Thus, if O is returned, the interface has
no IPv6 address assigned. This could be due to failing duplicate address detection (DAD).

void
ZWIR_SetDestinationPANId (uintl6_t pandID)

This function is used for changing the destination PAN identifier temporarily. The configured value remains
in effect until ZWIR_ResetDestinationPANId is called or the device is reset.

© 2019 Renesas Electronics Corporation 43 April 12,2016

RRENESANS

void
ZWIR_ResetDestinationPANId (void)

This function resets the PAN identifier of the device to the last value that had been configured before it was
changed using ZWIR_SetDestinationPANId.

bool
ZWIR_CheckMulticastGroup (ZWIR_IPv6Address_t const* ipv6)

This hook is called whenever a multicast packet is received that contains a multicast group that is not
known by the network stack. The user implementation must decide if the node is part of the multicast group
provided with the multicast group ID (the lower 112 bytes) in the IPv6 address. True must be returned if the
node belongs to the multicast group, false otherwise.

typedef union { uint8_t u8 [16],
uintlée_t ul6 [8 1],
uint32_t u32 [4 1 } ZWIR_IPv6Address_t

Data type for representation of IPv6 addresses. Bytes are stored in network byte order, which is big endian;
i.e., the highest-order byte is stored first. Therefore using the ul6 or u32 elements might cause unexpected
results especially when printing. Consider changing the byte order if host byte order is required.

3.3.2. Socket and Datagram Handling

The functions ZWIR_OpenSocket and ZWIR_CloseSocket are provided for opening and closing sockets,
respectively. Datagrams are sent over sockets wusing the ZWIR_SendUDP, ZWIR_SendUDP2 and
ZWIR_Send6LoWPAN functions, depending on the operating mode of the device.

Incoming datagrams are handled by user-defined callback functions, which must be to be assigned to sockets
using the ZWIR_OpenSocket function. The API functions ZWIR_GetPacketSenderAddress,
ZWIR_GetPacketDestinationAddress, ZWIR_GetPacketSenderPort and ZWIR_GetPacketHopCount
are provided for requesting the address and port of a sender.

© 2019 Renesas Electronics Corporation 44 April 12,2016

RRENESANS

ZWIR_SocketHandle_t
ZWIR_OpenSocket (ZWIR_IPv6Address_t const* remoteAddr
uintlé_t remotePort,
uintl6é_t localPort,
ZWIR_RadioReceiveCallback_t rxHandler)

This function opens a new socket to a remote host. The remoteAddr and remotePort arguments specify
the IPv6 address and the UDP port of the remote host, respectively. The TocalPort argument specifies
the port on which incoming data is accepted. If localPort is set to zero, an unused port from the range
from 4096 through 32000 is chosen. If incoming data should be received, a pointer to a callback function
must be passed in the rxHandler argument. If no data is expected, the value of localPort does not
matter and rxHandler must be set to NULL. In order to receive packets from arbitrary remote hosts, the
unspecified address can be passed to the function. In this case, the socket is not suitable for sending
packets.

On success, the function returns a socket handle that can be used with datagram handling functions. The
function fails if the maximum number of sockets is already opened or if a socket with the same parameters
for remoteAddress and localPort already exists. In this case NULL is returned.

void
ZWIR_CloseSocket (ZWIR_SocketHandle_t socket)

Open sockets are closed using this function. If a socket is invalid or has already been closed, the function
has no effect. Closing a socket has no effect on any previously sent packets, even if transmission is not yet

completed.
bool
ZWIR_SendUDP (ZWIR_SocketHandle_t socket,
uint8_t const* data,
uintle_t length)

UDP datagrams are sent over a specific socket using this function. The socket denoted by the socket
argument determines the destination address and port of the datagram. The data and length arguments
specify the payload. The maximum packet size is 1232 bytes. The function returns a non-zero value if the
packet to be sent was successfully queued in the output queue; otherwise zero is returned. If zero is
returned, there is not enough room in the output queue to buffer this packet. In this case, control must be
passed back to the operating system.

Note: A non-zero return value does not automatically denote the successful delivery of the packet.
Successful delivery can only be verified by response packets sent on the application level.

Note: Calling this function in a while loop waiting for a non-zero result will deadlock the system if a packet
cannot be queued. After a zero result, control must always be passed to the operating system. Otherwise
the output buffers will never be freed and this function continues to fail, resulting in a deadlock.

Note: This function cannot be used in the Gateway Mode; use ZWIR_Send6LoWPAN when in Gateway
Mode!

© 2019 Renesas Electronics Corporation 45 April 12,2016

RRENESANS

bool
ZWIR_SendUDP2 (uint8_t* data,
uintlé t size,
ZWIR_IPv6Address_t* remoteAddress,
uintl6é_t remotePort)

This function sends an UDP packet without the need for opening a socket. The destination address and
destination port are provided in the remoteAddress and remotePort arguments. The local UDP port is
selected arbitrarily by the network stack. The maximum packet size is 1232 bytes. The function returns a
non-zero value if the packet to be sent was successfully queued in the output queue; otherwise zero is
returned. If zero is returned, there is not enough room in the output queue to buffer this packet. In this case,
control must be passed back to the operating system.

Note: A non-zero return value does not automatically denote the successful delivery of the packet.
Successful delivery can only be verified by response packets sent on the application layer.

Note: Calling this function in a while loop waiting for a non-zero result will deadlock the system if a packet
cannot be queued. After a zero result, control must always be passed to the operating system. Otherwise
the output buffers will never be freed and this function continues to fail, resulting in a deadlock.

Note: This function cannot be used in the Gateway Mode; use ZWIR_Send6LoWPAN when in Gateway
Mode!

ZWIR_IPv6Address_t const*
ZWIR_GetPacketSenderAddress (void)

This function returns a pointer to the IPv6 source address of the last received packet. It can be used reliably
in the RX callback function. Using this function outside of the RX callback function might cause
unpredictable results.

Note: This function cannot be used in Gateway Mode.

ZWIR_IPv6Address_t const*
ZWIR_GetPacketDestinationAddress (void)

This function returns a pointer to the IPv6 destination address of the last received packet. It can be used
reliably in the RX callback function. Using this function outside of the RX callback function might cause
unpredictable results.

Note: This function cannot be used in Gateway Mode.

uintl6é_t
ZWIR_GetPacketSenderPort (void)

This function returns the sender port of the last received packet. It can be used reliably in the RX callback
function. Using this function outside of the RX callback function might cause unreliable results.

Note: This function cannot be used in Gateway Mode.

© 2019 Renesas Electronics Corporation 46 April 12,2016

RRENESANS

uint8_t
ZWIR_GetPacketHopCount (void)

Returns the number of hops the last received packet has taken.

Note: Using this function outside of the RX callback function might cause unreliable results.

int32_t
ZWIR_GetLastRSS1 (void)

Returns the receive signal strength indicator (RSSI). The value approximately corresponds to the receive
power level in dBm. Using this function outside of the RX callback function might cause unreliable results.

ZWIR_PANAddress_t*
ZWIR_GetSourcePANAddress (void)

Returns the source PAN address of the latest received packet.

Note: Using this function outside the receive callback might cause unreliable results.

ZWIR_PANAddress_t*
ZWIR_GetDestinationPANAddress (void)

Returns the destination PAN address of the last received packet.

Note: Using this function outside the receive callback might cause unreliable results.

ZWIR_SocketHandle_t
ZWIR_GetPacketRXSocket (void)

Returns the socket handle of the socket on which the last packet was received.

ZWIR_IPv6Address_t*
ZWIR_GetFailingAddress (void)

Returns the last address for which address resolution failed. This function is typically called from
ZWIR_Error when the ZWIR_eHostUnrechable error was reported. If no address resolution error
occurred since the last reset, the result is undefined.

© 2019 Renesas Electronics Corporation 4 April 12,2016

RRENESANS

bool
ZWIR_Send6LoWPAN (ZWIR_PANAddress_t const* remoteAddr,
uintl6é_t const* data,
uint8_t const length)

This function is used to send complete IPv6/UDP packets to the remote host with the link-local address
remoteAddr. No UDP or IPv6 header processing is performed on the packet. Instead it is passed directly
to the 6LOWPAN processing layer. The data argument must point to the first header byte of the IPv6/UDP
packet; length specifies the size including all headers. This is useful in conjunction with the Gateway
Mode.

Note: Calling this function in a while loop waiting for a non-zero result will deadlock the system if a packet
cannot be queued. After a zero result, control must always be passed to the operating system. Otherwise
the output buffers will never be freed and this function continues to fail, resulting in a deadlock.

© 2019 Renesas Electronics Corporation 48 April 12,2016

RRENESANS

typedef
void (* ZWIR_RadioReceiveCallback t) (uint8 _t* data,
uintlé_t length)

Function pointer type for the callback function that should be called on reception of data over an UDP
socket.

typedef
void* ZWIR_SocketHandle_t

Type representing a socket.

3.3.3. Radio Parameters

The radio module provides the capability to alter the physical radio channel and the transmit output power. This is
accomplished using the ZWIR_SetChannel, ZWIR_SetModulation, and ZWIR_SetTransmitPower
functions. Changes to the radio parameters take effect immediately. The changes are reset by ZWIR_Reset, but
not by ZWIR_ResetNetwork. Changing radio parameters during the transmission/reception of a packet will very
likely cause the loss of the packet.

To verify the transceiver parameter, the corresponding get function ZWIR_GetChannel, ZWIR_GetModulation
or ZWIR_GetTransmitPower can be called.

void
ZWIR_SetChannel (zZWIR_RadioChannel_t channel)
Sets the module to the radio channel specified by channel.

Note: If this is done while a transmission or reception is ongoing, the transmitted or received packet will be
lost. It is recommended that this function be called from ZWIR_AppInitHardware.

Note: Local regulations limit the use of the spectrum. The user MUST only select channels that are allowed
to be used in the area where the application is going to be installed! Check with local authorities to
determine which part of the spectrum the application is allowed to use.

ZWIR_RadioChannel_t
ZWIR_GetChannel ()

Returns the current ZWIR_RadioChannel_t channel

void
ZWIR_SetModulation (ZWIR_Modulation_t modulation)

This function is used to change the modulation scheme to the value specified with the modulation
argument.

© 2019 Renesas Electronics Corporation 49 April 12,2016

RRENESANS

Note: If this is done while a transmission or reception is ongoing, the transmitted or received packet will be
lost. It is recommended that this function be called from ZWIR_App InitHardware.

ZWIR_Modulation_t
ZWIR_GetModulation ()

Returns the current ZWIR_Modullation_t modulation

void
ZWIR_SetTransmitPower (int power)

Sets the transceiver output power to the value specified by power. The valid range of values depends on
the channel being selected. In the European frequency band, a transmission power of -10dBm to 5dBm can
be selected; in the US band, -10dBm to 10dBm are permitted. Values that are too low or too high are
automatically adjusted to the closest valid value.

Note: If this is done while a transmission is ongoing, the transmitted packet is very likely to be lost. For that
reason, it is recommended that this function be called only from ZWIR_ApplInitHardware.

int
ZWIR_GetTransmitPower ()

Returns the current transmit power.

typedef enum { ... } ZWIR_RadioChannel_t

Radio channel enumeration type accepted by ZWIR_SetChannel. Possible values include

ZWIR_channelO, ZWIR_eu868 EU Band, 868.3 MHz
ZWIR_channell, ZWIR_us906 US Band, 906 MHz
ZWIR_channel2, ZWIR _us908 US Band, 908 MHz
ZWIR_channel3, ZWIR_us910 US Band, 910 MHz
ZWIR_channel4, ZWIR_us912 US Band, 912 MHz
ZWIR_channel5, ZWIR_us914 US Band, 914 MHz
ZWIR_channel6, ZWIR_us916 US Band, 916 MHz
ZWIR_channel?7, ZWIR_us918 US Band, 918 MHz
ZWIR_channel8, ZWIR_us920 US Band, 920 MHz
ZWIR_channel9, ZWIR_us922 US Band, 922 MHz
50 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

ZWIR_channell10, ZWIR us924 US Band, 924 MHz

ZWIR_channell100, ZWIR _eu865 EU Band, 865.3 MHz

ZWIR_channell1l0l1, ZWIR _eu866 EU Band, 866.3 MHz

ZWIR_channel102, ZWIR_eu867 EU Band, 867.3 MHz
typedef enum { ... } ZWIR_Modulation_t

Enumeration of modulation schemes accepted by ZWIR_SetModulation. Possible values include
ZWIR_mBPSK Binary Phase Shift Keying
ZWIR_mQPSK Offset Quadrature Phase Shift Keying

3.3.4. Gateway Mode Functions

The ZWIR45xx network stack provides the Gateway Mode to allow easy implementation of network bridges.
Therefore, the stack only performs network processing up to and including the 6LoWPAN layer. Thus, when a
packet comes in, a full IPv6 packet is passed to the receive callback. This allows the implementation of a perfectly
transparent network bridge. However, if the bridge should be updateable or configuration parameters should be
set remotely, it would be desirable to have the opportunity of performing higher layer processing of incoming
packets that are addressed to the bridge. For this purpose, the types and functions defined in this section are
provided.

bool
ZWIR_GatewayProcessPacket (uint8 t* data,
uintlé _t size);

This function must be called to cause the network stack to process the network and higher layer protocols
of an incoming packet. The function is intended to be called from the receive callback of Gateway Mode
devices. The data and size arguments of the receive callback should be passed unmodified to this
function.

void
ZWIR_GatewaySetOutputFunction (ZWIR_GatewayOutputFunction_t fn)

Devices operating in Gateway Mode typically have more than one network interface. When higher layer
protocol processing is in place, it must be decided which network interface is used for sending out packets.
This decision must be determined by an application callback that must be registered at the network stack
using this function. NULL resets to default output function.

© 2019 Renesas Electronics Corporation 51 April 12,2016

RRENESANS

typedef
uint8_t (*ZWIR_GatewayOutputFunction_t) (uint8_t* data,
uintlé t size,
ZWIR_PANAddress_t* address);

This type defines the signature of functions to be used as the output function in Gateway Mode. The task of
this function is determining to which interface an outgoing packet must be sent and calling the
corresponding output function for this interface. The decision is typically based on the PAN address of the
destination node that is provided in the address argument. The data argument carries a pointer to the
IPv6 packet to be sent; the size argument determines the size of this packet.

3.3.5. Miscellaneous

void
ZWIR_LocalBroadcast (uint8_t value)

Disable or enable rebroadcasting of broadcast packets to send a local broadcast. If enabled, all broadcast
packets will be sent with the maximum hop count so they will not be rebroadcast.

Note: The usual way to use this function is to enable the local broadcast, to send a broadcast packet, and
to disable the local broadcast.

void
ZWIR_MulticastPreferExistingRepeater (uint8_t value)

Disable or enable sending broadcast packets that will be rebroadcasted by nodes with existing multi-hop
routes (repeater) only. If enabled all broadcast packets will only be rebroadcast from devices with existing
multi-hop routes. This feature reduces the rebroadcast traffic in larger networks and ensures that existing
repeaters are most likely to be used for multi-hop routes.

Note: If all retries of the route discovery and the address resolution fail and the “multicast prefer existing
repeater” option is enabled, the route discovery and the address resolution will restart and use all possible
hop routes. This ensures communication during the network start up.

ZWIR_TRXStatistic_t
ZWIR_GetTRXStatistic (void)

This function returns statistic information about transmission and reception. The returned data structure
contains the number of packets, the number of bytes received and transmitted, the number of
re-transmissions, and the number of CRC failures on reception. Furthermore, the transmit duty-cycle is
included. The counters are reset either on reset or if ZWIR_ResetTRXStatistic is called.

Checking the duty cycle should be performed on a regular basis in order to meet the duty cycle
requirements at the operation site of the device. Contact the local authorities to find out if duty-cycle
limitations apply in the target market(s).

© 2019 Renesas Electronics Corporation 52 April 12,2016

RRENESANS

Note: All values in the structure might be higher than expected. This is due to the overhead communication
that is required for address resolution and route discovery. Refer to section 2.10 to determine if it is
possible to optimize constant settings in order to reduce overhead traffic to a minimum.

void
ZWIR_ResetTRXStatistic (void)

This function resets all values of the transceiver statistics to 0. This function has no effect on ongoing
transfers.

typedef struct {
uint32_t txBytes
uint32_t txPackets
uint32_t rxBytes
uint32_t rxPackets
uint32_t txFail
uint32_t dutyCycle

} ZWIR_TRXStatistic_t

This structure is returned by ZWIR_GetTRXStatistic. The values contained are counted starting from
reset, network reset (initiated by ZWIR_ResetNetwork) or a call to ZWIR_ResetTRXStatistic. In
addition to data sent from the application code, the fields contained in the structure also consider packets
that are sent in the background (e.g., route and neighbor discovery). The dutyCycle filed contains the
ratio of time spent sending and the time elapsed since the occurrence of one of the above events. In order
to obtain the actual duty cycle percentage, divide dutyCycle by 1000.

void
ZWIR_SetDutyCycleWarning (uint32_t percentage,
ZWIR_DutyCycleCallback_t callback)

This function defines a duty cycle threshold for the transmit duty cycle that, if exceeded, triggers a call to
the callback function specified with cal 1back.

If percentage is set to 0 or cal Iback is set to NULL, no warning will be triggered. Otherwise, callback
will be called once per second as long as the 1h duty cycle exceeds the value defined with the
percentage argument. The percentage parameter defines the duty cycle threshold for triggering duty
cycle warnings (the value must be specified as 1/1000 percent, thus percentage = 1000 sets a threshold
of 1%).

The cal Iback parameter defines the function that should be called if the duty cycle threshold is exceeded.

typedef
void (* ZWIR_DutyCycleCallback t) (uint32_t percentage)

Function pointer type for the callback function that should be called if the duty cycle warning threshold is
exceeded. The percentage parameter contains the duty cycle in 1/1000 percent.

© 2019 Renesas Electronics Corporation 53 April 12,2016

RRENESANS

void
ZWIR_SetPromiscuousMode (bool enable)

This command puts the device into Promiscuous Reception Mode. This means that on the MAC layer, all
packet filtering is disabled. In Promiscuous Mode, the device receives packets sent to all PAN identifiers
and all PAN addresses, regardless of its own PAN identifier and PAN address configuration. Filters on
higher protocol layers are still active.

The Promiscuous Mode should not be used in nhormal operation. It might be appropriate for gateways, and
it is required for sniffers.

bool
ZWIR_CreateAlternativeAddressList (uintl6é _t size)

This function is used in Promiscuous Mode to allocate memory for an alternative PAN address list. The
device will treat each packet sent to one of the addresses in the alternative PAN address list in the same
way as if the packet had been sent to the device’s own PAN address. The size argument determines the
maximum number of entries in the list. The function returns true on success or false otherwise.

bool
ZWIR_AddAlternativeAddress (ZWIR_PANAddress_ t* address,
ZWIR_AlternativeAddressType t type)

This function adds a PAN address to the alternative address list. The address argument specifies the
address to be added and the type argument specifies the type of the address. The function returns true if
the address was added successfully; False is returned if no alternative address list has been allocated
(refer to ZWIR_CreateAlternativeAddressList). If address is already in the address list, true is
returned. If there is no free item in the alternative address list, the item that has not been used for the
longest time is overwritten.

ZWIR_AlternativeAddressType_t
ZWIR_IsAlternativeAddress (ZWIR_PANAddress_t* address,
ZWIR_AlternativeAddressType t type)

This function checks whether the address of type is in the alternative PAN address list or not. type is
used as filter. The type of address stored in the address list is logically AND’ed with type. The function
returns the type of the stored address if available or ZWIR_aatNone otherwise.

typedef enum {...} ZWIR_AlternativeAddressType t

This type is used by ZWIR_IsAlternativeAddress and ZWIR_AddAlterantiveAddress as address
type, address filter, or return value. Possible values are

ZWIR_aatNone 0x00 Address not found (only with ZWIR_1sAlternativeAddress)

© 2019 Renesas Electronics Corporation 54 April 12,2016

RRENESANS

ZWIR_aatEUI64 0x01 Address is a EUI64 address
ZWIR_aatEUI48 0x02 Address is a EUI48 address
ZWIR_aatAny 0x03 Only to be used as a filter in ZWIR_IsAlternativeAddress

bool
ZWIR_ExternalClockEnable (bool enable)

This function is used to select whether the external or the internal clock is used as the system clock. The
external clock is much more precise, but it is not possible to use Sleep Mode or turn off the transceiver
when the external clock is used. The return value indicates whether the transceiver clock is used or not. It is
not possible to use the external clock if the transceiver is switched off, so switching to the external clock
from ZWIR_App InitHardware will fail.

void
ZWIR_SetPAControl (ZWIR_PAControl_t pacontrol)

The ZWIR module provides two pins to control an external power amplifier. These pins are toggled
depending on RX or TX. This function will enable or disable the PA pins and adjust the switching lead time.

typedef enum {...} ZWIR _PAControl_t

Enumeration of selectable PA control configurations. Possible values are

ZWIR_paOff 0x00 PA pins are switched off

ZWIR_pa2us 0x10 PA control is on with 2us lead time
ZWIR_padus 0x11 PA control is on with 4us lead time
ZWIR_pabus 0x12 PA control is on with 6us lead time
ZWIR_pa8us 0x13 PA control is on with 8us lead time

char const*
ZWIR_GetFCCID (void)

This function returns the FCC ID of the module. The FCC ID is returned as a NULL-terminated string.

3.4. Power Management

The MCU on the module can operate at different clock rates. The lowest possible clock frequency matching the
needs of the application should be selected in order to work as power efficiently as possible. The operating
system frequency is set using ZWIR_SetFrequency.

© 2019 Renesas Electronics Corporation 55 April 12,2016

RRENESANS

In addition to the clock speed modification, the API provides the function ZWIR_SetRTC to set and ZWIR_GetRTC
to get the RTC counter. Furthermore the function ZWIR_SelectRTCSource selects the RTC clock source. The
RTC clock interval is 1s and is suitable for UNIX time. Due to the inaccuracy of the internal RC oscillator, an
external crystal should be used for RTC applications. The RTC clock source selection remains unless the backup
domain is powered via the VBAT pin. The internal clock is used as the default clock source.

The radio module supports the Sleep, Stop and Standby Modes (see section 2.6.3). The wakeup conditions are
adjustable for each power mode individually. By default, the system continues its execution after an RTC alarm.
The state of the transceiver depends of the selection of the transceiver interrupt or event as the wakeup source.
When the transceiver interrupt or event is masked, the transceiver will be switched off automatically.

All three power modes can be executed immediately or delayed to send out all buffered packets. After entering
the Standby Mode, all RAM content is lost and the microcontroller will be reset.

The functions ZWIR_SetWakeupSource, ZWIR_PowerDown and ZWIR_AbortPowerDown are used to
configure, enter, or leave the low power modes.

void
ZWIR_SetFrequency (ZWIR_MCUFrequency_t freq)

This function sets the clock speed of the MCU core. Peripheral clocks are not changed.

void
ZWIR_SetRTC (uint32_t value)

This function sets the internal RTC counter to the given value.

uint32_t
ZWIR_GetRTC (void)

This function reads the current RTC counter and return the value.

uint8_ t
ZWIR_SelectRTCSource (ZWIR_RTCSource_t source);

This function selects the RTC clock source. Possible return values are

0 Selection fails. This occurs if the external clock sources is selected but no crystal connected.
1 Clock source was successfully changed.
2 Clock source was not changed because source was already selected.

void
ZWIR_AbortPowerDown (void)

This function stops all delayed power down actions.

© 2019 Renesas Electronics Corporation 56 April 12,2016

RRENESANS

void

ZWIR_PowerDown (ZWIR_PowerDownState t powerDownMode,

void

uint32_t time)

This function changes the power mode of the system immediately or after sending all buffered fragments.
The powerDownMode argument defines the next power down mode. The time parameter specifies the
power down time. For all modes, time is given in seconds. If the RTC alarm is not selected as the source,
the time parameter will be ignored.

ZWIR_SetWakeupSource (ZWIR_PowerDownState t powerDownMode,

void

uint6é4_t wakeupSource)

This function sets the wakeup condition for a power mode. The powerDownMode argument defines the
power down mode to be configured and the wakeupSource parameter specifies the event(s) that will
cause the module to enter active mode again. Depending on the value of powerDownMode, the
wakeupSource parameter is interpreted differently. The settings being applied to different registers will be
revoked when exiting power down mode.

In Sleep Mode, each interrupt can be used to wake up the system. Accordingly, the wakeupSource
parameter is interpreted as an interrupt mask. The interrupt mask allows selecting one or more of the lower
64 interrupts to be selected as a wakeup source. The bits correspond to the interrupt position according to
the Nested Vectored Interrupt Controller (NVIC) documentation in the STM32 Reference Manual.

For Stop Mode, only events are supported as a wakeup source. Therefore, the wakeupSource parameter
is used to configure the external interrupt/event controller’s event mask register (EXTI_EMR). The external
interrupt controller limits the wakeup sources for Stop Mode to the external pins, the programmable voltage
detector, the real-time clock, and the USB wakeup function. Refer to the STM32 Reference Manual for
further information about the external interrupt controller.

Exit from Standby Mode is only possible using the real-time clock (RTC) or the external wakeup pin.
Wakeup by RTC is selected if ‘1’ is passed as wakeupSource, the WKUP pin is selected by ‘2’, and an
argument of ‘3’ selects both.

If an invalid wakeup source is selected, the default wakeup source, which is the RTC, is set.

ZWIR_Sleep (uintl6_t sleepTime)

This function puts the system into Sleep Mode. The sleepTime argument controls the duration of Sleep
Mode and is given in 10ms multiples. This means that a sleepTime value of 100 puts the system into
Sleep Mode for 1 second. During Sleep Mode, all memory contents are retained. Waking up the system
from sleep is not possible.

Note: This function is deprecated — use ZWIR_PowerDown instead .

© 2019 Renesas Electronics Corporation

57 April 12, 2016

RRENESANS

void
ZWIR_Standby (uint32_t standbyTime)

This function puts the system into Standby Mode. The standbyTime argument controls the duration of
Standby Mode and is given in seconds. In order to consume minimal power, almost all power domains of
the MCU are disconnected. Memory contents are not retained during Standby Mode. The system can be
awakened before expiration of the standby timer if the external wakeup pin of the module is triggered.

Note: This function is deprecated — use ZWIR_PowerDown(ZWIR_ pStandby, standbyTime)
instead

void
ZWIR_TransceiverOff (void)

This function switches the transceiver off manually. Attempts to send data using one of the functions
ZWIR_SendUDP, ZWIR_SendUDP2 and ZWIR_Send6LoWPAN while the transceiver is switched off will fail
and the sent data will be lost. To turn the transceiver on, the functions ZWIR_TransceiverOn or
ZWIR_ResetNetwork can be used. The transceiver is re-enabled after a system reset.

void
ZWIR_TransceiverOn (void)

This function switches the radio transceiver on manually after having it switched off using
ZWIR_TransceiverOff. If the transceiver is already active, this function does nothing.

typedef
enum { ... } ZWIR_PowerDownState_t

MCU frequency enumeration type accepted by ZWIR_PowerDown and ZWIR_SetWakeupSource.
Possible values include

Value FI:/cI)c\;ziir ngénl.:’r;til Possible Wakeup Sources
ZWIR_pSleep Sleep No IRQ O to 63
ZWIR_pSleepAfterActivities Sleep Yes IRQ 0to 63
ZWIR_pStop Stop No EXTIOto 18
ZWIR_pStopAfterActivities Stop Yes EXTIOto 18
ZWIR_pStandby Standby No RTC, wakeup pin (WKUP pin)
ZWIR_pStandbyAfterActivities Standby Yes RTC, wakeup pin (WKUP pin)

© 2019 Renesas Electronics Corporation 58 April 12, 2016

RRENESANS

typedef
enum {...} ZWIR_RTCSource_t

RTC source enumeration type accepted by ZWIR_SelectRTCSource. Possible values are

ZWIR_rintern 0x00 Use the internal RC oscillator as RTC clock source
ZWIR_rExtern 0x01 Use an external crystal as RTC clock source
typedef
enum { ... } ZWIR_MCUFrequency_t

MCU frequency enumeration type accepted by ZWIR_SetFrequency. Possible values include

ZWIR_mcu8MHz 8 MHz

ZWIR_mcul6MHz 16 MHz
ZWIR_mcu32MHz 32 MHz
ZWIR_mcu64MHz 64 MHz

ZWIR_mcu8MHzLowPower 8 MHz with disabled PLL

ZWIR_mcuUserFrequency Customer MCU clock settings

3.5. Firmware Version Information

Each productive firmware version MUST include a valid set of version information. The complete set consists of
major and minor version number, version extension, vendor ID, and product ID. For more detailed information
about these elements refer to section 2.7.

Version information is included in the firmware by global definition of the variables listed below. If these variables
are not defined by the application code, they will contain default values.

uint32_t ZWIR vendorlID = 0xe966

This variable defines the Vendor ID. A vendor ID is assigned by IDT. It MusT be defined appropriately in
production code!

uintlé_t ZWIR productID = 0

This variable identifies a product or firmware type, respectively. It MUST be defined appropriately for each
firmware type. It is used by the firmware over-the-air update mechanism to distinguish different firmware
types.

© 2019 Renesas Electronics Corporation 59 April 12,2016

RRENESANS

uint8_t ZWIR_firmwareMajorVersion = 0

This variable defines the major version number of the firmware.

uint8_t ZWIR_firmwareMinorVersion = 0

This variable defines the minor version number of the firmware.

uintlé_t ZWIR_FfirmwareVersionExtension = 0

This defines version extension information of the firmware.

3.6. Properties and Parameters

The behavior of the built-in network stack functionality is configurable to some extent by a set of parameters that
are changed using the function ZWIR_SetParameter.

int32_t
ZWIR_SetParameter (ZWIR_SystemParameter_t parameter,
inté4_t value)

This function changes the setting of a single network stack parameter. Configuration changes are effective
immediately when this function is called from ZWIR_ApplInitHardware. Otherwise, the new value is
buffered until ZWIR_ResetNetworKk is called.

inté4 t
ZWIR_GetParameter (ZWIR_SystemParameter_t parameter)

This function queries the current value of a stack parameter. The function returns the parameter value that
is currently in effect. Thus, if ZWIR_GetParameter is called after ZWIR_SetParameter but before
ZWIR_ResetNetwork has been called, the previous parameter value is returned and not the value set
with ZWIR_SetParameter.

typedef enum { ... } ZWIR_SystemParameter_t

This enumeration names the different parameters that can be configured using ZWIR_SetParameter.
Possible names are listed in Table 3.1 below:

Table 3.1 Configurable Stack Parameters and Their Default Values

Enumerator Size Default Description
ZWIR_spRoutingTableSize 1 8 Refer to section 2.10.3.
ZWIR_spNeighborCacheSize 1 8 Refer to section 2.9.3.

© 2019 Renesas Electronics Corporation 60 April 12,2016

RRENESANS

Enumerator Size Default Description
ZWIR_spMaxSocketCount 1 8 Refer to section 2.9.2.
ZWIR_spRouteTimeout 2 3600 (s) Refer to section 2.10.3.
ZWIR_spNeighborReachableTime 2 3600 (s) Refer to section 2.9.3.
ZWIR_spMaxHopCount 1 4 Refer to section 2.10.3.
ZWIR_spRouteMaxFai lCount 1 3 Refer to section 2.10.3.
ZWIR_spRouteRequestMinLinkRSSI 1 -128 (dBm) Refer to section 2.10.3.
ZWIR_spRouteRequestMinLinkRSSIReduction 1 0 (dB) Refer to section 2.10.3.
ZWIR_spDoDuplicateAddressDetection 1 1 Refer to section 2.8.4.
ZWIR_spDoRouterSolicitation 1 1 Refer to section 2.8.3.
ZWIR_spRouteRequestAttempts 1 4 Refer to section 2.10.3.
ZWIR_spHeaderCompressionContextl 8 0 Refer to section 2.9.4.
ZWIR_spHeaderCompressionContext2 8 0 Refer to section 2.9.4.
ZWIR_spHeaderCompressionContext3 8 0 Refer to section 2.9.4.
ZWIR_spNeighborRetransTime 1 3000 (ms) Refer to section 2.9.3.
ZWIR_spDoAddressAutoConfiguration 1 1 Refer to section 2.8.3.

3.7. Error Codes

The error codes listed in Table 3.2 are generated by the core library and passed to the ZWIR_Error hook if it is
implemented in the application code.

Table 3.2 Error Codes Generated by the Core Library

C — Identifier Code Default Handling
ZWIR_eDADFai led 100ex Node shutdown (permanent deep-sleep, node can only be
restarted with external reset).
ZWIR_eProgExit 101Hex Node shutdown (permanent deep-sleep, node can only be
restarted with external reset).
ZWIR_eReadMACFailed 1024ex System reset triggered.
ZWIR_eMemoryExhaustion 103Hex System reset triggered.

Important: This error is only triggered when allocation fails for the
memories required by the network stack. Failing allocation
attempts from the application code must be detected by checking
the allocation result for NULL!

ZWIR_eHostUnreachable 1041Ex Ignore — the packet causing this failure is dropped.
ZWIR_eExtClockPowerDown 1051Ex Ignore — the node will not enter power-down mode.
ZWIR_eRouteFailed 106HEx Ignore — the node received information about a broken route.

61 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

4 UART Library Reference

The libZWIR451x-UART1.a and libZWIR451x-UART2.a libraries provide functions for easy access to the UART
interfaces provided by the microcontroller. Each ZWIR451x module has two UART interfaces. IDT provides two
separate libraries, one for each UART interface. Both libraries expose exactly the same interface. Symbol names
only differ in the number after “UART,” which is part of each symbol name. Simply replace the question mark in
the following function and type names with 1 or 2 depending on which UART is being used.

It is possible to use only one of the UARTSs or both in parallel. Consider the different priorities of the interfaces
when selecting the UART (refer to section 2.6.2). The initialization of a UART interface is performed automatically
if the UART library is linked into the project. The UARTSs can be used after hardware initialization but not inside of
ZWIR_ApplnitHardware.

Note: If UART I/Os are configured by the user application inside ZWIR_AppInitHardware, the UART library
retains the configured GPIOs without changes.

The UART's receive buffer is 256 bytes. If data are received on the UART interface, data are kept in the buffer
until read by ZWIR_UART?_ReadByte. If the buffer is full and more data are received, ZWIR_Error is called with
ZWIR_UART1_eOvfl as the argument. The UART libraries use an event-based programming approach. Instead
of relying on polling the UART interfaces, a callback function must be specified, which is called automatically
when data is available in the receive buffer. This is done using the function ZWIR_UART?_SetRXCal Iback. If
this function is not called, the UART receiver remains disabled, saving some power.

4.1. Symbol Reference

bool
ZWIR_UART?_SendByte (uint8_t data)

Single bytes are sent via the interface using this function. The byte to be sent is provided in data. The
function returns true if the byte was successfully placed in the transmit buffer or false otherwise. If bytes are
in the buffer, they are written immediately until the buffer is empty. However, note that significant time can
elapse between a call to ZWIR_UART?_SendByte and the actual sending of the byte if there is already
data in the buffer.

uint8_t
ZWIR_UART?_Send (uint8_t* data,
uintlé_t dataSize)

A block of bytes is written to the buffer and transmission is started. The data argument must point to the
data to be written. dataSize determines the number of bytes to be transferred. The return value contains
the number of bytes that have actually been written. It can be lower than dataSize.

© 2019 Renesas Electronics Corporation 62 April 12,2016

RRENESANS

bool
ZWIR_UART? ReadByte (uint8 _t* data)

This function reads a single byte from the receive buffer. The read byte is stored to the location to which
data points. The function returns true if a byte is successfully read and false otherwise.

void
ZWIR_UART?_SetRXCallback (ZWIR_UART_RXCallback t callback)

This function registers a callback function that is called if data is received on the UART. The cal Iback
argument is a pointer to the function to be called. The UART receiver is not started until
ZWIR_UART?_SetRXCallback is called. If NULL is passed as callback argument, the receiver is
disabled.

void
ZWIR_UART? Setup (uint32_t baudRate,
uint32_t parameters)

This function configures the UART peripheral of the microcontroller. The baudRate argument configures
the speed of the transmission line. Its value must be given in bits per second. The parameters argument
is a set of flags that configure the parity bit generation, the stop bit generation, and controls whether flow
control is used or not. The parameters argument is generated from a binary OR combination of one
constant from each block described below. Default values can be omitted. In order to set all values to their
default settings, a zero can be passed in the parameters argument.

The following configuration options are available for parity configuration:

ZWIR_UART_NoParity No parity bit is transmitted (default).
ZWIR_UART_OddParity Odd parity bit is transmitted/checked.
ZWIR_UART_EvenParity Even parity bit is transmitted/checked.

The following configuration options are available for stop-bit configuration:
ZWIR_UART_Stop_1 One stop-bit is transmitted at the end of a frame (default).
ZWIR_UART_Stop_ 2 Two stop bits are transmitted at the end of a frame.

The following configuration options are available for flow-control configuration:
ZWIR_UART_NoFlowControl Flow control is disabled (default).
ZWIR_UART_HWFIowControl Use hardware flow control with the CTS and RTS pins.

Note: A call to this function drops all bytes that are still in the transmission buffer. If this function is called
during an active transmission, the active transmission is very likely to fail.

© 2019 Renesas Electronics Corporation 63 April 12,2016

RRENESANS

Note: When flow control is enabled, the configuration of the CTS and RTS pins of the corresponding UART
interface are configured as input and alternative push/pull output, respectively. This configuration overwrites
the existing configuration of these pins. When flow control changes from enabled to disabled, the pin con-
figuration of the CTS and RTS pins is not changed.

bool
ZWIR_UART?_IsTXEmpty (void)

This function returns false if there are still bytes in the UART transmit buffer and returns true otherwise.

uintl6é_t
ZWIR_UART?_GetAvailableTXBuffer (void)

This function returns the number of free bytes in the UART TX buffer.

typedef
void (* ZWIR_UART _RXCallback _t) (void)

This is the type definition for a UART callback function. This type is used with
ZWIR_UART?_SetRXCal lback. The callback does not accept any elements and does not return
any.

ZWIR_UART?_PRINTF

This macro is provided for convenience. If high-level functions for text output like printf are used, an
appropriate low-level function must be provided that can output characters to a device. This macro defines
a low-level output function writing to the UART interface. This macro must only be used once in the whole
application source code. It must not be put inside of function definitions and should not be put in header
files. It is not possible to use both, ZWIR_UART1_PRINTF and ZWIR_UART2_PRINTF in the same project.

4.2. Custom UART I/O Configuration

During system startup, the UART library configures the GPIOs appropriately to provide the configured function-
ality. UART output pins (i.e., TX and RTS if flow control is enabled) are configured as 2MHz push/pull alternative
outputs; input pins are configured as floating inputs. If this configuration is not appropriate for the application, an
alternative configuration can be supplied in the ZWIR_App InitHardware hook. If an alternative configuration is
supplied the UART does not overwrite this configuration.

Note: It is required that all pins are configured appropriately. The UART library does not configure any pin if one of
the UART pins is not in its default state.

Note: Inappropriate manual pin configurations could lead to a non-functional UART.

© 2019 Renesas Electronics Corporation 64 April 12,2016

RRENESANS

4.3. Error Codes

The error codes listed in Table 4.1 are generated by the UART libraries and passed to the ZWIR_Error hook if it
is implemented in the application code.

Table 4.1 Error Codes Generated by the UART Libraries

C - Identifier Code Default Handling
libZWIR451x-UART1.a
ZWIR_UART1_eOvfl 2101Ex Ignore
ZWIR_UART1_eParity 211 1ex Ignore
ZWIR_UART1_eFrame 2124ex Ignore
ZWIR_UART1 eNoise 2131ex Ignore
libZWIR451x-UART2.a
ZWIR_UART2_eOvTl 220HEx Ignore
ZWIR_UART2_eParity 221 1ex Ignore
ZWIR_UART2_eFrame 2221Ex Ignore
ZWIR_UART2_eNoise 2231Ex Ignore

© 2019 Renesas Electronics Corporation 65 April 12,2016

RRENESANS

5 GPIO Library Reference

The GPIO library provides a convenient interface for accessing and controlling the GPIO ports of the module. It
allows configuring GPIOs to be used as application programmable inputs or outputs, and it is possible to enable
or disable special functions of certain ports such as the JTAG ports. All functions from the GPIO library are also
accessible using the MCU'’s peripheral control registers.

The intention of the GPIO library is to provide a high-level, lightweight, convenient interface to the GPIOs. For that
reason, the GPIO library functions do not implement parameter checking. It is the responsibility of the application
to ensure that appropriate parameters are used. All microcontroller GPIO pins that are not connected to one of
the modules I/O pins are locked so that it is impossible to change their configuration accidentally.

5.1. Symbol Reference

void
ZWIR_GP10_ConfigureAsQOutput (ZWIR_GPIO_Pin_t pins,
ZWIR_GPIO_DriverStrength_t driver,
ZWIR_GP10_OutputMode_t mode)

This function registers one or multiple pins as output. The pins argument specifies the pin to be
configured. If multiple pins are to be configured, provide a binary OR’ed combination of the enumeration
values corresponding to the pins. The driver argument determines the driving strength of the pin; the
mode argument determines the output mode. If multiple pins are specified, all pins will be configured in the
same way.

Be sure to use a combination of ZWIR_GPIO_Pin_t enumeration values to specify which pins are to be
configured. Otherwise the wrong pins might be configured, resulting in a configuration that could cause
damage to the system.

void
ZWIR_GP10_ConfigureAslinput (ZWIR_GPIO_Pin_t pins,
ZWIR_GPI10_InputMode_t mode)

This function registers one or multiple pins as input. The pins argument specifies the pin to be configured.
If multiple pins are to be configured, provide a binary OR’ed combination of the enumeration values
corresponding to the pins. The mode argument selects the configuration of the inputs. If multiple pins are
specified, all pins will be configured in the same way.

Important: Use a combination of ZWIR_GPI0_Pin_t enumeration values to specify which pins are to be
configured. Otherwise the system might not behave as expected.

bool
ZWIR_GPI10_Read (ZWIR_GPIO_Pin_t pin)

This function reads the input value of a single pin. The function does not care if the pin is configured as
input or output pin. If the pin is configured as analog input, the return value is undefined.

© 2019 Renesas Electronics Corporation 66 April 12,2016

RRENESANS

uint32_t

ZWIR_GP10_ReadMultiple (ZWIR_GPIO _Pin_t pins)

This function reads the input value of multiple pins. For this function, it does not matter if the pins are
configured as inputs or outputs. If a pin is configured as an analog input, the return value at the
corresponding bit is undefined. The result is aligned as shown in Figure 5.1 and Figure 5.2. In order to
extract single bit results, the return value of the function can be binary OR’ed with the ZWIR_GPI0_Pin_t
enumeration values.

Figure 5.1 ZWIR_GPIO_ReadMultiple Result Alignment in ZWIR4512AC1 Devices
31 30 29 28 27 26 25 24
Reserved Pin 9 Reserved
23 22 21 20 19 18 17 16
Pin 23 Pin 24 Reserved | Reserved Pin 19 Reserved
15 14 13 12 11 10 9 8
Pin 21 Pin 22 Pin 20 Pin 17 Pin 16 Pin 12 Pin 13 Reserved
7 6 5 4 3 2 1 0
Pinl Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8
Figure 5.2 ZWIR_GPIO_ReadMultiple Result Alignment in ZWIR4512AC2 Devices
31 30 29 28 27 26 25 24
Pin 18 Pin 17 Pin 9 Reserved
23 22 21 20 19 18 17 16
Pin 25 Pin 26 Reserved | Reserved Pin 21 Reserved
15 14 13 12 11 10 9 8
Pin 23 Pin 24 Pin 22 Pin 20 Pin 19 Pin 13 Pin 14 Reserved
7 6 5 4 3 2 1 0
Pinl Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7 Pin 8
© 2019 Renesas Electronics Corporation 67 April 12,2016

RRENESANS

Note: Only pins from the same GPIO bank are read at the same time. If pins do not share the same GPIO
bank, there will be a time difference between the accesses to their input registers. All pins belonging to the
same GPIO bank are highlighted with the same color in Figure 5.1 and Figure 5.2.

void
ZWIR_GPIO_Write (ZWIR_GPIO_Pin_t pins,
bool value)

This function sets the output value of one or multiple pins. All pins specified in the pins argument are set
to value.

Important: The output is written regardless of the pin configuration! If one of the pins was configured as a
pull-up or pull-down input, writing to the output register of this pin can change the pull-up/pull-down config-
uration accidentally!

void
ZWIR_GPI10_Remap (ZWIR_GPI0_RemapFunction_t function,
int32_t value)

This function is used to control the remapping of GPIO pins to system functions. It allows configuring

whether the JTAG pins are used for debugging purposes or as normal GPIO pins. The value argument
must be one of the options defined by the enumeration type ZWIR_GPI10_SWJRemapValue_t.

typedef enum { ... } ZWIR_GPIO_Pin_t

This enumeration type assigns a name to each pin. Some GPIO operations allow specifying multiple pins.
This is done by OR-combining the pins.

Enumeration MCU I/O Port
Name ZWIR4512AC1 ZWIR4512AC2
ZWIR_Pinl A7 A7
ZWIR_Pin2 A6 A6
ZWIR_Pin3 AS AS
ZWIR_Pin4 A4 A4
ZWIR_Pin5 A3 A3
ZWIR_Pin6 A2 A2
ZWIR_Pin7 Al Al
ZWIR_Pin8 A0 A0
ZWIR_Pin9 C13 C13

© 2019 Renesas Electronics Corporation 68 April 12,2016

RRENESANS

ZWIR_Pin12 Al10 -
ZWIR_Pin13 A9 Al0
ZWIR_Pin14 - A9
ZWIR_Pin16 All -
ZWIR_Pin17 Al2 Cl4
ZWIR_Pin18 - C15
ZWIR_Pin19 B3 All
ZWIR_Pin20 Al3 Al2
ZWIR_Pin21 Al5 B3
ZWIR_Pin22 Ala Al3
ZWIR_Pin23 B7 AlS
ZWIR_Pin24 B6 Al4
ZWIR_Pin25 - B7
ZWIR_Pin26 - B6
typedef enum { ... } ZWIR_GPIO DriverStrength_t

This enumeration value specifies the driving strength of GPIO output pins.

ZWIR_GPI10_dsLow Low driving strength

ZWIR_GP10_dsMedium Medium driving strength

ZWIR_GP10_dsHigh High driving strength
typedef enum { ... } ZWIR_GPI10_OutputMode_ t

This enumeration value specifies the mode of GPIO output pins.

ZWIR_GP10_omPushPull Application controlled push/pull output
ZWIR_GP10_omOpenDrain Application controlled open drain output
ZWIR_GP10_omAlternativePushPull Hardware controlled push/pull output
ZWIR_GP10_omAlternativeOpenDrain Hardware controlled open drain output

69 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

typedef enum { ... } ZWIR_GPIO_InputMode_t

This enumeration value specifies the mode of GPIO input pins.
ZWIR_GP10_imAnalog Analog input (default configuration)
ZWIR_GP10_imFloating Floating input
ZWIR_GPI0O_imPullUp Pull-up input
ZWIR_GPI10O_imPulIDown Pull-down input

typedef enum { ... } ZWIR_GPI10_RemapFunction_t

This enumeration type is used to specify which remapping is to be changed with ZWIR_GP10_Remap.

ZWIR_GPI10_rfswJ Configure remapping of the JTAG/SWD pins (Pin19 — Pin 22)

typedef enum { ... } ZWIR_GPI10_SWJRemapValue_t

In calls to ZWIR_GPI10_Remap, this enumeration value specifies which configuration is used for
JTAG/SWD remapping.

ZWIR_GP10_swjrEnableSwJ Enable full JTAG/SWD support
ZWIR_GPI10O_swjrSwonly Enable SWD support only
ZWIR_GP10_swjrDisableSWJ Disable JTAG/SWD support

© 2019 Renesas Electronics Corporation 70 April 12,2016

RRENESANS

6 IPSec Library Reference

The IPSec library provides functions to manage security policies and security associations. A security policy is
added using ZWIRSEC_AddSecurityPolicy. Security Associations can be added using the function
ZWIRSEC_AddSecurityAssociation. For more detailed information about security policies and security
associations, refer to the ZWIR451x Application Note — Using IPSec and IKEv2 in 6LoOWPANS.

6.1. Symbol Reference

uint8_t
ZWIRSEC_AddSecurityPolicy (ZWIRSEC_PolicyType_t type,
ZWIR_IPv6Address_t* remoteAddress,
uint8_t prefix,
ZWIR_Protocol_t proto,
uintl6é_t lowerPort,
uintle_t upperPort,

ZWIRSEC_SecurityAssociation_t* securityAssociation)

A call to this function adds a security policy to the IPSec security policy database. The type argument
determines the traffic direction and how packets must be handled. The combination of the
remoteAddress, prefix, protocol, lowerPort, and upperPort arguments specify the traffic that is
affected by this policy. See section 2.12 and the ZWIR451x Application Note — Using IPSec and IKEv2 in
6LoWPANSs for more details. The function returns the security policy index of the newly created security
policy. If there is an error, FFyex is returned.

The last argument specifies the security association to be used by this policy. A security association must
be created using ZWIRSEC_AddSecurityAssociation before ZWIRSEC_AddSecurityPolicy is

called. If IKEv2 should be used for generating the security association automatically, pass NULL as the
securityAssociation argument.

void
ZWIRSEC_RemoveSecurityPolicy (uint8 t spi)

This function removes the security policy with the index spi from the security policy database. If no index is
stored at spi, the function does nothing.

ZWIRSEC_SecurityAssociation_t*

ZWIRSEC_AddSecurityAssociation (uint32_t securityParamldx,
uint8_t replayCheck,
ZWIRSEC_EncryptionSuite_t* encSuite,

ZWIRSEC_AuthenticationSuite_t* authSuite)

This function adds a security association to the security association database manually. Use this function
before calling ZWIRSEC_AddSecurityPolicy if not using IKEv2 for automatic key exchange.

© 2019 Renesas Electronics Corporation 1 April 12,2016

RRENESANS

The securityParamldx argument is a unique number identifying the security association. The
encSuite and authSuite parameters specify the encryption and authentication algorithms and keys.
The replayCheck parameter determines if replay checks are performed for this security association. The
internal replay check counter can only be reset by re-creating the specific security association. Refer to
section 2.12.1 and the links for ZWIRSEC_EncryptionSuite_t and
ZWIRSEC_AuthenticationSuite_t for more details.

The function returns a pointer to the security association descriptor if it was created successfully. If there is
an error, the function returns NULL.

void
ZWIRSEC_RemoveSecurityAssociation (ZWIRSEC_ SecurityAssociation_t* sa)

This function removes the security association pointed to by sa.

typedef enum { ... } ZWIRSEC PolicyType_ t

IPSec policy type enumeration. Possible values include

ZWIRSEC_ptOutputApply Secure outbound traffic with IPSec
ZWIRSEC_ptOutputBypass Bypass outbound traffic unsecured
ZWIRSEC ptOutputDrop Drop outbound traffic
ZWIRSEC_ptilnputApply Unsecure inbound traffic with IPSec
ZWIRSEC_ ptlnputBypass Bypass inbound traffic unsecured
ZWIRSEC_ptlnputDrop Drop inbound traffic

typedef enum { ... } ZWIR Protocol_t

IPSec protocol enumeration. Possible values include

ZWIR_protoAny Apply ISPec rule to any protocol
ZWIR_protoTCP Apply IPSec rule to TCP packets only
ZWIR_protoUDP Apply IPSec rule to UDP packets only

ZWIR_protolCMPVv6 Apply IPSec rule to ICMPV6 packet only

© 2019 Renesas Electronics Corporation 12 April 12,2016

RRENESANS

typedef struct {
ZWIRSEC_EncryptionoAlgorithm_t algorithm
uint8_t key [16]
uint8_t nonce [4]
} ZWIRSEC_EncryptionSuite_t

This structure carries all encryption related information. It is used to pass encryption information to
ZWIRSEC_AddSecurityAssociation

typedef struct {
ZWIRSEC AuthenticationAlgorithm_t algorithm
uint8_t key [16]
} ZWIRSEC_AuthenticationSuite_t

This structure carries all authentication related information. It is used to pass authentication information to
ZWIRSEC_AddSecurityAssociation

typedef void* ZWIRSEC_SecurityAssociation_t

Objects of this type are returned by ZWIRSEC_AddSecurityAssociation. They are passed to
ZWIRSEC_AddSecurityPolicy.

typedef enum { ... } ZWIRSEC_EncryptionAlgorithm_t

Enumeration of algorithms available for encryption; possible values include

ZWIRSEC_encNull no encryption
ZWIRSEC_encAESCTR AES' Counter Mode based encryption
typedef enum { ... } ZWIRSEC AuthenticationAlgorithm_t

Enumeration of algorithms available for authentication; possible values include
ZWIRSEC _authNull no authentication
ZWIRSEC _authAESXCBC96 Extended AES128 CBC* Mode based authentication.

" AES — Advanced Encryption Standard
¥ CBC - Cyclic Block Cipher

© 2019 Renesas Electronics Corporation 73 April 12,2016

RRENESANS

6.2. Error Codes

The error codes listed in Table 6.1 are generated by the IPsec libraries and passed to the ZWIR_Error hook if it
is implemented in the application code. ZWIRSEC_eDroppedICMP indicates that an ICMP packet was dropped
due to an IPsec rule and ZWIRSEC_eDroppedPacket indicates that any other (non-ICMP) packet was discarded
due to an IPsec rule. ZWIRSEC_eUnknownSP1 indicates that an IPsec packet was received but no associated
security association was found. With active replay check, ZWIRSEC eReplayedPacket indicates a replayed
packet.

IPsec indicates authentication vector mismatches (corrupted packet) with ZWIRSEC_eCorruptedPacket.

Table 6.1 Error Codes Generated by the IPsec Libraries

C - Identifier | Code ‘ Default Handling
libZWIR45xx-IPsec.a
ZWIRSEC_eDroppedICMP 5001ex Ignore
ZWIRSEC_eDroppedPacket 501 hex Ignore
ZWIRSEC_eUnknownSPI 5024ex Ignore
ZWIRSEC_eReplayedPacket 5034ex Ignore
ZWIRSEC_eCorruptedPacket 5044ex Ignore
74 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

7 IKEv2 Library Reference

IKEv2 is used for IPSec key management. Using IKEv2, it is possible to limit the lifetime of a security association
and automatically regenerate it with new keys. In order to add IKEv2 functionality to an application, the IKEv2
library must be linked into the project. If this is done, the IKEv2 daemon is automatically registered as the key
management engine for IPSec. All IPsec SAs, negotiated with IKEv2, have activated replay checking.

The only task to be performed by the application is adding the suitable authentication entries to the IKEv2 authen-
tication database. This is done using the ZWIRSEC_AddIKEAuthenticationEntry function.

7.1. Symbol Reference

uint8_t
ZWIRSEC_AddIKEAuthenticationEntry (ZWIR_IPv6Address_t* remoteAddress,
uint8_t prefixLength,
uint8_t* id,
uint8_t idLength,
uint8_t* presharedKey)

Calling this function adds an authentication entry to the IKE authentication database. The remoteAddress
argument contains the IPv6 address of the remote device; prefixLength contains the prefix length of
remoteAddress. The device identifier is given in id. Its length is specified in idLength.

The presharedKey argument carries a pointer to the pre-shared key that is used for authentication.

The function returns true on success or false otherwise. A false return indicates there is no room in the
authentication database.

uint8_t ZWIRSEC_ ikeRetransmitTime = 10

This is a weak constant defining how many seconds IKE waits for a reply before retransmission is
initiated. The time should be long enough to enable IKE processing at the receiver. This value largely
depends on the clock frequency. Set the value accordingly. The predefined value of 10 seconds is only
suitable for a receiver clock frequency of 32MHz or 64MHz. The value can be redefined by definition of
the variable ZWIRSEC _ikeRetransmitTime with an appropriate value in the application code.

uint32_t ZWIRSEC_ikeRekeyTime = 86400

This is a weakly defined variable that controls the interval at which the IKE connection must be rekeyed.
The default setting corresponds to one week. In order to change this value, the variable
ZWIRSEC _i1keRekeyTime must be defined with an appropriate value in the application code.

© 2019 Renesas Electronics Corporation 5 April 12,2016

RRENESANS

uint32_t ZWIRSEC ikeSARekeyTime = 604800
This weakly defined variable controls the interval during which security associations remain valid before

rekeying is required. The default setting corresponds to one day. In order to change this value, the variable
ZWIRSEC i1keSARekeyTime must be defined with an appropriate value in the application code.

7.2. Library Parameters

Table 7.1 shows a summary of IDT’s IKEV2 library parameters and properties.

Table 7.1 Overview of IKEv2 Library Parameters and Properties

Property Value
Authentication database size 5
Number of sockets used 2
Parameter Value
ZWIRSEC_ikeSARekeyTime 604800
ZWIRSEC_ikeRekeyTime 86400
ZWIRSEC_ikeRetransmitTime 10s
76 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

8 Over-the-Air Update Library

This library implements the Firmware Over-the-Air Update functionality. The only function exported from this
library is used to register the Over-the-Air Update daemon in the system.

8.1. Library Reference

void
ZWIR_OTAU_Register (uintl6_t localPort)

Register the Over-the-Air Update daemon and configure the UDP port on which the daemon is listening.

void
ZWIR_OTAU_Status (ZWIR_OTAU_StatusCode_t status)

This hook is provided for debugging purposes. If it is implemented in the application code, each OTAU
event will be reported through this function, providing progress and error indications. Refer to the list of
possible ZWIR_OTAU_StatusCode_t values for more detailed information about event indicators.

typedef enum { ... } ZWIR_OTAU_StatusCode_t

This enumeration defines event indicators that are supplied to the ZWIR_OTAU_Status hook. Possible
values include

ZWIR_slInval idPacketHeader

An OTAU packet with invalid header contents was received. Possible reasons are OTAU
packet is too short; Product or Vendor ID of the OTAU packet does not match the
corresponding device IDs; or Firmware Version of the OTAU packet is not higher than the
installed version.

ZWIR_sUpdatelnProgress

An OTAU packet was received after the update execution countdown has been started.
ZWIR_slInval idPacketCRC

An OTAU packet with an invalid packet CRC was received.
ZWIR_sUnknownPacketType

A packet with an invalid packet type has been received on the OTAU socket.

ZWIR_slInvalidFragmentSize

Fragment size is not a multiple of the page size.

© 2019 Renesas Electronics Corporation 1 April 12,2016

RRENESANS

ZWIR_slInvalidDataPacket

OTAU packet does not belong to the same firmware version as the ongoing OTAU, or
fragment is not inside the update segment.

ZWIR_sFragmentWriteError

Fragment could not be written to flash.

ZWIR_slInval idCRCPacket

OTAU packet does not belong to the same firmware version as the ongoing OTAU, or
fragment is not inside the CRC segment.

ZWIR_sCRCWriteError

CRC could not be written to flash.

ZWIR_slInvalidExecutePacket

OTAU packet does not belong to the same firmware version as the ongoing OTAU, or the
packet contains an invalid page count.

ZWIR_sFirmwarelmageVerifyFailed

Integrity of the new firmware could not be verified.

ZWIR_sInitNewFirmwareDone

Preparation for the new firmware is done, and the second flash segment was erased
successfully.

ZWIR_sWriteFragmentDone

Fragment was successfully written to flash.

ZWIR_sWriteCRCDone

CRCs were successfully written to flash.

ZWIR_sFirmwarelmageVerifyDone

Integrity of the new firmware was verified successfully.

ZWIR_sScheduleUpdate

Update execution was scheduled.

ZWIR_sStartUpdate

Update execution was started.

© 2019 Renesas Electronics Corporation

78 April 12, 2016

RRENESANS

8.2. Inclusion of the OTAU Library

Including the OTAU library requires special care to ensure that the OTAU will remain functional with different
firmware versions, which might be compiled with different compiler versions. The compiled binary program is
divided into two sections: the first section that replaces the old firmware with the new one and a second section
that handles the OTAU packet processing and storing the received data in the device’s flash memory. The first
section will remain in the device unchanged over the device’s lifetime. Therefore this section is referred to as the
invariant section. The second section is replaced with each update, allowing the addition of new functionalities to
the OTAU.

The binary data of the first section MUST reside at the beginning of the flash memory. For that purpose, the linker
script defines the following sections: .update_code, . interface_seg and .status_seg. The location, order,
and contents of these sections in the linker script MUST NOT be changed! The .update_code section contains
the code for replacing the old with the new firmware image. The .status_seg section is a reserved flash area
for storing OTAU status information. The . interface_seg section contains a list of pointers into the invariant
code section. This is required to ensure that the OTAU functions for firmware versions compiled with different
compiler versions.

For the parameter configuration of the application, take into account that the OTAU will consume one of the
available network sockets for reception of OTAU data. Consequently, when defining the system parameter
ZWIR_spMaxSocketCount, this must to be considered.

For production code, it is highly recommended that security policies be defined, protecting the UDP port used by
the OTAU to prevent devices from being hacked into and made dysfunctional by external attackers. If no
protection is installed, intruders who are aware of the network could replace the device’s firmware with their own
firmware.

© 2019 Renesas Electronics Corporation 9 April 12,2016

RRENESANS

8.3. Error Codes

During module startup, the OTAU library performs different checks to verify whether the firmware is configured
and linked appropriately. If one of these checks fails, the corresponding error is reported through ZWIR_Error
and the OTAU functionality is disabled. The error code ZWIR_elnvalidVID is reported if the Vendor ID
assigned in the firmware is invalid. Refer to the sections 2.13 and 3.5 for further information. The error code
ZWIR_elnvalidOTAUInterface typically indicates a linking problem, causing an incorrect position for the
function pointer table into the invariant OTAU code.

Table 8.1 Error Codes Generated by the OTAU Library

C — Identifier

Code

Default Handling

libZWIR45xx-IPsec.a

ZWIR_elnvalidVID

4004HEx

Ignore

ZWIR_elnvalidOTAUInterface

401HEex

Ignore

© 2019 Renesas Electronics Corporation

80

April 12, 2016

RRENESANS

9 NetMA Libraries

IDT provides a protocol called Network Monitoring and Administration (NetMA) protocol, providing different
functionalities to analyze the network. As of network stack version 1.9, there are two versions of this protocol
available: NetMA1 and NetMA2. NetMAL1 is deprecated and replaced with NetMA2. However, NetMAL1 it is still
available to keep compatibility with older stack releases. Using NetMA1 for new projects is not recommended.
Network stack releases prior to 1.9 had NetMAL1 included in the core library. As of network stack release 1.9,
NetMA functionality has been removed from the core library, providing dedicated libraries instead.

9.1. NetMA1 Library

The NetMAZ1 library provides functionality for discovery of network devices, determination of node configuration
parameters, and determination of routes through the network. The full functionality can be used from a computer
that is connected to the network or directly from PAN nodes. For the use with PAN nodes, the NetMA1 library
provides API functions for convenient access to its functionality.

9.1.1. NetMAL1 Library Symbol Reference

void
ZWIR_DiscoverNetwork (ZWIR_DiscoveryCallback t callback,
uint8_t responselnterval)

This function initiates network discovery. A network discovery request is broadcasted to all nodes in the
network. The cal lback argument is a pointer to a function that should be called to pass replying node
information to the application. The information provided includes the hop distance, the RSSI, IPv6 address
count, and all IPv6 addresses of the node. The responselnteval argument specifies a maximum time
interval within which a responding device must answer the request. The actual response time is chosen
randomly. responselnterval should be increased with increases in the number of devices in the net-
work. If zero is specified as responselnterval, the default response time of three seconds is used.

© 2019 Renesas Electronics Corporation 81 April 12,2016

RRENESANS

void

ZWIR_NetMA RemoteParameterRequest (ZWIR_IPv6Address_ t* address,

ZWIR_NetMA RPRCallback t callback,
ZWIR_NetMA RPRFields_t fields = 0,

ZWIR_NetMA Flags t flags = 0,
uint8_t resplnterval = 3,
uint8_t queryld = 0,
uintd_t hopLimit = 0)

Use this function to obtain configuration data remotely. Data can be requested from a single device or from
multiple devices. Different parameters control the answering of the requested devices. The function is
actually a macro providing the capability to use the function like a C++ style function with default
arguments.

The address parameter specifies the device(s) from which data is requested. The function provided with
cal lback will be called when a response is received. The remaining arguments are optional. As in C++ all
arguments before the last one to be specified must be provided. Assuming the application requires
specifying the resplnterval argument, Fields and Flags must be specified as well.

The fields argument controls which sets of information are requested from the remote device. Refer to
the documentation for ZWIR_NetMA_ RPRFields_t to determine which options are available. flags limits
the scope of the request, which is especially useful in conjunction with multicast addressing. For example, it
is possible to send requests only to devices configured in Gateway Mode using the flags argument.
resplnterval specifies the maximum number of seconds that a device waits before it sends its
response. The actual response interval is chosen randomly between zero and resplnterval seconds in
order to avoid collisions of responses sent from multiple devices at the same time.

The queryld is used to distinguish between different queries. A device that has successfully responded to
a remote parameter request will not respond to another remote parameter request with the same queryld.
However, the queryld is only considered when the corresponding flag in the Flags argument is set.

The hopLimit argument specifies the maximum number of hops allowed when devices respond to the
request. If hopLimit is left unspecified or explicitly set to zero, all devices will respond regardless of their
hop distance to the requesting device. However, the hopLimit is only considered when the corresponding
flag in the Flags argument is set.

typedef
void (*ZWIR_NetMA_RPRCallback_t) (ZWIR_NetMA RPRFields_t fields,

ZWIR_NetMA RemoteData t* data)

This type defines the signature of functions to be used as remote parameter request response callbacks.

© 2019 Renesas Electronics Corporation

82 April 12, 2016

RRENESANS

void
ZWIR_NetMA SetPort (uintl6_t port)

Using this function, the application can change the port used by the NetMA protocol. The default UDP port
is 1356.

void
ZWIR_NetMA Trace (ZWIR_PANAddress_t* routeDestination,
ZWIR_IPv6Address_t* routeSource,
ZWIR_NetMA TraceCallback t callback)

This function allows examining routes through the network. Routes to routeDestination can be
examined from the node calling this function or from a starting point that is passed as in the routeSource
argument. Selecting a different starting point is required for requests coming from nodes not implementing
IDT’s network stack, e.g. computers in a network.

Responses to route requests are received by the application through the function defined by cal Iback. If
callback is NULL, the trace request will not be executed. Returned route information contains the list of
all hops to routeDestination together with the forward RSSI of each hop. Take into account that
response times might be significant long if long routes are examined.

Note: The ZWIR_NetMA Trace function will not create routes between routeSource and
routeDestination, but can generate routes between the requesting device and routeSource if

required
typedef
void (* ZWIR_DiscoveryCallback t) (uint8_t hopCount,
int8 t rssi,
uint8_t addrCount,

ZWIR_IPv6Address_t* addresses)

Function pointer type for the callback function that should be called if network discovery reply packets are
received.

typedef
void (* ZWIR_NetMA_TraceCallback_t) (uint8_t hopCount,
ZWIR_NetMA HoplInfo t* hoplnfo)

This type defines the function signature that is required by functions to be used as callback for the
ZWIR_NetMA_Trace function.

© 2019 Renesas Electronics Corporation 83 April 12,2016

RRENESANS

typedef
struct {
ZWIR_PANAddress_t address;
intle_t 1inkRSSI ;

} ZWIR_NetMA Hoplinfo_ t

Objects of this type are passed to the trace route callback function. Each object contains the address of a
hop and the RSSI value of the forward path from the previous hop/source node to this node. Note that the
RSSI of the return path might be slightly different.

typedef
enum { ... } ZWIR_NetMA_RPRFields_t

This enumerator is used with ZWIR_NetMA RemoteParameterRequest to specify which sets of
information must be included in the response. The values can be binary OR’ed to request multiple sets of
information at the same time. The following values are available:

ZWIR_NetMA rprfMACAddress 0x0100 include ZWIR_NetMA RemoteMACAddr_t
ZWIR_NetMA rprfFirmwareVersion 0x0200 include ZWIR_NetMA RemoteVersion_t

ZWIR_NetMA_ rprfConfig 0x0400 include ZWIR_NetMA RemoteConfig_t
ZWIR_NetMA_rprflIPv6Addresses 0x0800 include ZWIR_NetMA RemotelPv6Addr_t
ZWIR_NetMA rprfTRXStatistics 0x1000 include ZWIR_NetMA RemoteStatus t
typedef
enum { ... } ZWIR_NetMA Flags_t

This enumerator defines flags to be used in conjunction with remote parameter requests. The flags limit the
scope of the request. Possible values include

ZWIR_NetMA_fDevice 0x04
ZWIR_NetMA fBridge 0x08
ZWIR_NetMA_fQuerylID 0x10
84 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

ZWIR_NetMA fHopCountLimitation 0x20

typedef

struct {
ZWIR_NetMA RemoteMACAddr_t* macAddr ;
ZWIR_NetMA RemotelPv6Addr_t* ipv6Addr;
ZWIR_NetMA RemoteConfig_ t* config;
ZWIR_NetMA RemoteVersion_t* version;
ZWIR_NetMA_RemoteStatus_t* status;

} ZWIR_NetMA_RemoteData_t

This structure contains pointers to the remote parameters received in response to a remote parameter
request. The fields correlate with the ZWIR_NetMA RPRFields_t enumerators. For each requested field,
the corresponding pointer should be set in the response. Fields that have not been requested result in a
NULL pointer of the corresponding structure element.

typedef
struct {
uintlé_t paniD;
ZWIR_PANAddress_t panAddr;
} ZWIR_NetMA_RemoteMACAddr_t

This structure type carries a remote device’s configured PAN ID and its PAN address.

typedef
struct {
uintd_t count;
ZWIR_IPv6Address_t addresses [];
} ZWIR_NetMA_RemotelPv6Addr_t

This type defines a structure carrying all IPv6 addresses of a device. The count argument defines how
many addresses are contained in the structure; the addresses element contains the actual addresses.
The size of memory required by this structure varies — it depends on the number of contained addresses.
The size of this structure cannot be determined using C's sizeof operator.

© 2019 Renesas Electronics Corporation 85 April 12,2016

RRENESANS

typedef

struct {
uintlé_t routeTimeout;
uintlé_t routingTableSize;
uintlé_t neighborReachableTime;
uint8_t neighborCacheSize;
uint8_t maxNetfloodHopCount;
uint8_t maxSocketCount;
uint8_t routeMaxFai lCount;
int8_t routeRequestMinLinkRSSI ;
uintd_t routeRequestMinLinkRSSIReduction;
uint8_t routeRequestAttempts;
uint8_t channel;
uint8_t power ;
uintd_t modulation;
uint8_t doDuplicateAddressDetection;
uint8_t doRouterSolicitation;

} ZWIR_NetMA_RemoteConfig_t

Objects of this type are used to report the configuration of the remote device.

typedef
ZWIR_TRXStatistic_t ZWIR_NetMA RemoteStatus_ t

This type defines the remote status as being equal to the transceiver statistics type.

typedef

struct {
uint32_t vendorlD;
uintlé_t productliD;
uint8_t firmwareMajorVersion;
uint8_ t firmwareMinorVersion;
uintle_t firmwareVersionkExtension;
uint8_t libraryMajorVersion;
uint8_t libraryMinorVersion;
uintlé_t libraryVersionExtension;

} ZWIR_NetMA_RemoteVersion_t

This type bundles all version information defined in a device.

9.1.2. Inclusion of the NetMAL library

Including the NetMAL library in an application does not require any specific measures. However, note that
NetMA1 will use one of the available network sockets for reception of data. When defining the system parameter
ZWIR_spMaxSocketCount, this additional socket must be taken into account.

© 2019 Renesas Electronics Corporation 86 April 12,2016

RRENESANS

9.2. NetMAZ2 Libraries

NetMA2 is an advancement of the NetMA1 protocol that is not downward compatible. It provides extended
functionality including network discovery, topology discovery, remote parameter readout and modification, param-
eter storage, route tracing and routing table readout. In addition to the extended functionality, NetMA2 provides
advanced filtering, allowing restriction of the scope of multicast requests sent into the network. The NetMA2
functionality is implemented in two separate libraries: one that provides only readout remote readout functionality
and one that provides all functionality for changing and storing network parameters.

The protocol specification is open and can be found in the ZWIR45xx Application Note — The NetMA Protocol. In
order to keep the footprint of the libraries as small as possible, NetMA2 does not provide API functions for the
different NetMA2 functionalities. However, due to the open protocol specification, applications can implement the
required functionality. For that purpose, NetMA2 requests must be sent explicitly using the function
ZWIR_SendUDP2 and a custom implementation of the ZWIR_NetMA_ResponseHandler must be provided for
processing the corresponding responses.

9.2.1. NetMA2 Library Symbol Reference

void
ZWIR_DiscoverNetwork (ZWIR_DiscoveryCallback t callback,
uint8_t responselnterval)

This function initiates network discovery. A network discovery request is broadcasted to all nodes in the
network. The cal Iback argument is a pointer to a function to be called to pass replying node information
to the application. The information provided includes the hop distance, the RSSI, IPv6 address count, and
all IPv6 addresses of the node. The responselnteval argument specifies a maximum time interval
within which a responding device must answer the request. The actual response time is chosen randomly.
responselnterval should be increased with increases in the number of devices in the network. If zero is
specified as responselnterval, the default response time of three seconds is used.

void
ZWIR_NetMA SetPort (uintl6_t port)

This function is used to change the port used by the NetMA protocol. By default port 61356 is used.

bool
ZWIR_NetMA ResponseHandler (uint8 t const* data,
uintl6é_t size)

This hook is provided to allow the reception of NetMA2 packets in the application. It is required to receive
NetMA2 responses triggered by NetMA2 requests sent by the application. The raw NetMA2 packet is
contained in the data pointed to by data. The packet size is provided with size. If the implementation
returns false, the NetMA2 stack continues packet processing. If true is returned, the NetMA2 packet does
not do further processing. If no implementation is provided, NetMA2 requests will be processed normally,
but it is impossible to receive responses to NetMA2 requests.

© 2019 Renesas Electronics Corporation 87 April 12,2016

RRENESANS

Note: This function is called for any packet received on the configured NetMA2 port. Thus, NetMA2
requests will trigger the execution of this function as well. In order to keep NetMA2 fully functional, the
application must return false for each NetMA2 request that has not been handled.

bool
ZWIR_NetMA Filter (uint8_t* data,
uintlé_t size,
uint8_t* dataOffset)

This function applies the filtering rules defined by the NetMA2 protocols and returns true if the packet has to
be filtered (i.e., the packet must be ignored) or false otherwise. The data and size determine the raw
packet data and size. The value pointed to by dataOffset is written by the function to indicate the offset
of the first byte after the NetMA2 header.

Note: This function is required for NetMA2 requests only, as NetMA2 responses typically do not use filters.
If no custom handling of NetMA2 requests is provided by the application, this function does not need to be
called as the NetMA2 request default handlers call this function automatically.

9.2.2. Inclusion of the NetMA2 Libraries

The NetMA2 functionality that does not require write access to stack parameters or flash memory is included in
the library 11bZWIR45xx-NetMA2.a. Including this library does not require special measures. However, note
that the library requires a network socket for reception of data. When defining the system parameter
ZWIR_spMaxSocketCount, this additional socket must be taken into account.

If the application requires functionality to configure devices remotely, the library 11bZWIR45xx-NetMA2-Ext._a
must be included in the project. This library requires having 1ibZWIR45xx-NetMA2.a included as well.
Furthermore, it must be ensured that the linker script contains the section .nvDataMemory. This section is
provided with the default linker script of stack release 1.9. When upgrading from a lower stack version, be sure to
replace the linker script with the newest version.

© 2019 Renesas Electronics Corporation 88 April 12,2016

RRENESANS

10 Accessing Microcontroller Resources

Many applications can be optimized by using the rich internal resources provided by the ZWIR451x module’s
STM32 microcontroller. Typically, this does not cause problems, but some caution must be taken when this is
considered. No resources must be used that are already occupied by the operating system (OS). Furthermore
some of the MCU configuration parameters must not be altered. Refer to the next section for a complete list of
resources that are used by the OS.

The library does not provide dedicated functions for configuration of the microcontroller peripherals. This must be
done by third-party libraries or by programming the appropriate configuration registers directly. Names for inter-
rupt handlers are predefined by the library. If interrupt handlers are required, a function with the library-determined
name must be implemented by the library user.

10.1.Internal Microcontroller Configuration

By default the internal STM32 is clocked from its internal 8MHz oscillator (HSI). Depending on the clock speed
setting (ZWIR_SetFrequency), the system clock (SYSCLK) is taken from the HSI directly or from the phase-
locked loop (PLL) output (PLLCLK). If the clock is taken from the PLL, the PLL source is HSI/2 and the PLL
multiplier is 16, so SYSCLK has a frequency of 64MHz. The Advanced High-Performance Bus (AHB) clock
(HCLK) is configured according to the selected CPU frequency (see ZWIR_SetFrequency). The APB1 clock
(PCLK1) frequency is always 4MHz. The APB2 clock (PCLK2) frequency is always 8MHz.

Important recommendation: The frequencies of APB1 and APB2 sHoOULD NOT be changed! Doing so would result
in improper timing behavior of the operating system and could result in system breakdown.

The Cortex® System Timer (SysTick) is used as the operating system base timer. It is configured to issue an
interrupt each millisecond. The real-time clock (RTC) is used for the different sleep modes.

All microcontroller GPIO pins that are not connected to one of the module’s /O pins are locked so that it is
impossible to change their configuration accidentally.

Important: The configuration of the external interrupt line 0 (EXTIO) and the configuration of the SPI2 peripheral of
the microcontroller MusT NOT be changed. Otherwise the interfacing between MCU and transceiver might be
impaired.

10.2.Backup Data Registers

The STM32 provides 42 backup data registers with a size of 2 bytes each. The stack uses the first register
(BKP>DR1) for internal configurations. The user application SHoULD NOT use or modify this register.

10.3.Interrupt Handlers

The API library comes with a set of predefined interrupt handlers that is sufficient for the built-in functionality but
does not go beyond it. For all other interrupts that are not required, default handlers are provided that typically do
nothing or perform a reset in the event of an error. Most of the interrupts are defined as weak symbols in the
library. This means that the default implementations of the handlers can be overwritten by simply defining the
interrupt handler symbol in the user’s application code. Only those interrupts that are required for proper operation
of the stack are not defined as weak and therefore cannot be overwritten. An attempt to overwrite these handlers
will result in a linker error.

© 2019 Renesas Electronics Corporation 89 April 12,2016

RRENESANS

Table 10.1 lists the interrupts for the STM32. For each interrupt, the handler name, the default priority, and the

default behavior is shown and whether or not the interrupt can be overwritten.

Table 10.1 STMS32 Interrupt Vector Table

Interrupt Implementation
Id Name Handler Priority | Fix Default Behavior
0 Reset Reset_Handler -3 Yes | Perform system reset
1 NMI ZWIR_ISR_NMI -2 No Perform system reset
2 HardFault ZWIR_ISR_HardFault -1 No Perform system reset
3 MemManage ZWIR_ISR_MemManage 0 No Perform system reset
4 BusFault ZWIR_ISR_BusFault 1 No Perform system reset
5 UsageFault ZWIR_ISR_UsageFault 2 No Perform system reset
6 SVCall ZWIR_ISR_SVCall 3 No NULL
7 DebugMonitor ZWIR_ISR_DebugMonitor 4 No NULL
8 PendSV ZWIR_ISR_PendSVv 5 No NULL
9 SysTick ZWIR_ISR_SysTick 6 Yes | Used as operating system timer
10 | WWDG ZWIR_ISR_WWDG 7 No NULL
11 | PVD ZWIR_ISR_PVD 8 No Perform system reset
12 | TAMPER ZWIR_ISR_TAMPER 9 No NULL
13 | RTC ZWIR_ISR_RTC 10 Yes | Reserved for OS use
14 | FLASH ZWIR_ISR_FLASH 11 No NULL
15 | RCC ZWIR_ISR_RCC 12 No NULL
16 | EXTIO ZWIR_ISR_EXTIO 13 Yes | Handle transceiver service request
17 | EXTI1 ZWIR_ISR_EXTI1 14 No NULL
18 | EXTI2 ZWIR_ISR_EXTI2 15 No NULL
19 | EXTI3 ZWIR_ISR_EXTI3 16 No NULL
20 | EXTI4 ZWIR_ISR_EXTI4 17 No NULL
21 | DMA1_Channell ZWIR_ISR_DMA1_Channell 18 No NULL
22 | DMA1_Channel2 ZWIR_ISR_DMA1_Channel2 19 No NULL
23 | DMA1_Channel3 ZWIR_ISR_DMA1_Channel3 20 No NULL
24 | DMA1_Channel4 ZWIR_ISR_DMA1_Channel4 21 No NULL
25 | DMA1_Channel5 ZWIR_ISR_DMA1_Channel5 22 No NULL
26 | DMA1_Channel6 ZWIR_ISR_DMA1_Channel6 23 No NULL
27 | DMA1_Channel7 ZWIR_ISR_DMA1_Channel7 24 No | NULL
28 | ADC1_ 2 ZWIR_ISR_ADC1 2 25 No | NULL

© 2019 Renesas Electronics Corporation

90

April 12, 2016

RRENESANS

Interrupt Implementation
Id Name Handler Priority | Fix Default Behavior
29 | USB_HP_CAN_TX | ZWIR_ISR_USB_HP_CAN1_TX 26 No | NULL
30 | USB_LP_CAN_RX0 | ZWIR_ISR_USB_LP_CAN1_RXO 27 No | NULL
31 | CAN_RX1 ZWIR_ISR_CAN1_RX1 28 No | NULL
32 | CAN_SCE ZWIR_ISR_CAN1_SCE 29 No | NULL
33 | EXTI9_5 ZWIR_ISR_EXTI9_5 30 No NULL
34 | TIM1_BRK ZWIR_ISR_TIM1_BRK 31 No NULL
35 | TIM1_UP ZWIR_ISR_TIM1_UP 32 No NULL
36 | TIM1_TRG_COM ZWIR_ISR_TIM1_TRG_COM 33 No | NULL
37 | TIM1_CC ZWIR_ISR_TIM1_CC 34 No | NULL
38 | TIM2 ZWIR_ISR_TIM2 35 No NULL
39 | TIM3 ZWIR_ISR_TIM3 36 No NULL
40 | TIM4 ZWIR_ISR_TIM4 37 Yes | NULL
41 | 12C1_EV ZWIR_ISR_I2C1_EV 38 No | NULL
42 | 12C1_ER ZWIR_ISR_I2C1_ER 39 No | NULL
43 | 12C2_EV ZWIR_ISR_I2C2_EV 40 No NULL
44 | 12C2_ER ZWIR_ISR_I12C2_ER 41 No NULL
45 | SPI1 ZWIR_ISR_SPI1 42 No NULL
46 | SPI2 ZWIR_ISR_SPI2 43 Yes | Used by network stack
47 | USART1 ZWIR_ISR_USART1 44 No NULL®
48 | USART2 ZWIR_ISR_USART2 45 No NULL™
49 | USART3 ZWIR_ISR_USART3 46 No NULL
50 | EXTI15_10 ZWIR_ISR_EXTI15_10 47 No NULL
51 | RTCAlarm ZWIR_ISR_RTCAlarm 48 Yes | Reserved for OS use
52 | USBWakeup ZWIR_ISR_USBWakeup 49 No | NULL
53 | TIM8_BRK ZWIR_ISR_TIM8_BRK 50 No NULL
54 | TIM8_UP ZWIR_ISR_TIM8_UP 51 No NULL
55 | TIM8_TRG_COM ZWIR_ISR_TIM8_TRG_COM 52 No | NULL
56 | TIM8_CC ZWIR_ISR_TIM8_CC 53 No | NULL
57 | ADC3 ZWIR_ISR_ADC3 54 No NULL

ilmplementation is provided if libZWIR451x-UART1.a is linked into the project
Implementation is provided if libZWIR451x-UART2.a is linked into the project

© 2019 Renesas Electronics Corporation

91

April 12, 2016

RRENESANS

Interrupt Implementation
Id Name Handler Priority | Fix Default Behavior
58 | FSMC ZWIR_ISR_FSMC 55 No NULL
59 | SDIO ZWIR_ISR_SDIO 56 No NULL
60 | TIM5 ZWIR_ISR_TIM5 57 No NULL
61 | SPI3 ZWIR_ISR_SPI3 58 No NULL
62 | UART4 ZWIR_ISR_UART4 59 No NULL
63 | UART5 ZWIR_ISR_UARTS5 60 No NULL
64 | TIM6 ZWIR_ISR_TIM6 61 No NULL
65 | TIM7 ZWIR_ISR_TIM7 62 No NULL
66 | DMA2_Channell ZWIR_ISR_DMA2_Channell 63 No NULL
67 | DMA2_Channel2 ZWIR_ISR_DMA2_Channel2 64 No NULL
68 | DMA2_Channel3 ZWIR_ISR_DMA2_Channel3 65 No NULL
69 | DMA2_Channel4 5 | ZWIR_ISR_DMA2_Channel4 5 66 No | NULL

10.4.Default I1/0O Configuration

Table 10.2 shows the default I/O configuration that is set when the device is powered on and no manual changes
are made to the 1/Os. In some cases, the I/0O configuration depends on the libraries included and the library
settings. For these 1/Os there are multiple lines, showing the configuration depending on the library and their
configuration.

© 2019 Renesas Electronics Corporation 92 April 12,2016

RRENESANS

Table 10.2 STM32 Default /0O Configuration

MCU Pin
3) 3)
< <
ﬁ (N}
Port 2 s Configuration Drive Comment
r | 2
2 | 2
A0 8 8 Analog Input - Freely configurable by application, but not
to be used as external interrupt source
Floating Input - With libZWIR451x-UART2.a with flow
control enabled
Al 7 7 Analog Input - Freely configurable by application
2 MHz Push/Pull Alternative Output X With libZWIR451x-UART2.a with flow
control enabled
A2 6 6 Analog Input - Freely configurable by application
2 MHz Push/Pull Alternative Output X With libZWIR451x-UART2.a
A3 5 5 Analog Input - Freely configurable by application
Floating Input - With libZWIR451x-UART2.a
A4 4 4 Analog Input - Freely configurable by application
A5 3 3 Analog Input - Freely configurable by application
A6 2 2 Analog Input - Freely configurable by application
A7 1 1 Analog Input - Freely configurable by application
A8 - - 2 MHz Push/Pull Output 0 Configuration Locked
A9 13 14 Analog Input - Freely configurable by application
2 MHz Push/Pull Alternative Output X libZWIR451x-UART1.a
A10 12 13 Analog Input - Freely configurable by application
Floating Input - libZWIR451x-UART1.a
All 16 19 Analog Input - Freely configurable by application
Floating Input - libZWIR451x-UART1.a with flow control
enabled
Al12 17 20 Analog Input - Freely configurable by application
2 MHz Push/Pull Alternative Output X libZWIR451x-UART1.a with flow control
enabled
A13 20 22 Pull-up Input - Initially configured as JTAG pin
Freely configurable by application when
remapping is enabled

© 2019 Renesas Electronics Corporation

93

April 12, 2016

RRENESANS

MCU Pin
3) 3)
< <
& N
Port Ir) o Configuration Drive Comment
T | g
]| B
Al4 22 24 Pull-down Input - Initially configured as JTAG pin
Freely configurable by application when
remapping is enabled
Al5 21 23 Pull-up Input - Initially configured as JTAG pin
Freely configurable by application when
remapping is enabled
BO - - Pull-up Input - Configuration locked, application MUST NOT
modify the output data register
B1 - - Floating Input - Configuration locked
B2 - - Floating Input - Configuration locked
B3 19 21 50 MHz Push/Pull Output - Initially configured as JTAG pin
Freely configurable by application when
remapping is enabled
B4 - - Floating Input - Configuration locked
B5 - - Floating Input - Configuration locked
B6 24 26 Floating Input - Freely configurable by application
B7 23 25 Floating Input - Freely configurable by application
B8 - - Floating Input - Configuration locked
B9 - - 2 MHz Push/Pull Output 1 Configuration locked
B10 - - 2 MHz Push/Pull Output 0 Configuration locked
B11 - - 2 MHz Push/Pull Output 0 Configuration locked
B12 - - 10 MHz Push/Pull Output 1 Configuration locked
B13 - - 10 MHz Push/Pull Alternative Output X Configuration locked
B14 - - 10 MHz Push/Pull Alternative Output X Configuration locked
B15 - - 10 MHz Push/Pull Alternative Output X Configuration locked
Co - - 2 MHz Push/Pull Output 1 Configuration locked
C1 - - 2 MHz Push/Pull Output 1 Configuration locked
Cc2 - - 2 MHz Push/Pull Output 1 Configuration locked
C4 - - Analog Input - Configuration locked
C5 - - Analog Input - Configuration locked

© 2019 Renesas Electronics Corporation

94

April 12, 2016

RRENESANS

MCU Pin
3) 3)
S | g
Port 0 0 Configuration Drive Comment
r |z
% |z
C6 - - Analog Input - Configuration locked
C7 - - Analog Input - Configuration locked
C8 - - Analog Input - Configuration locked
C9 - - Analog Input - Configuration locked
C10 - - Analog Input - Configuration locked
Cl1 - - Analog Input - Configuration locked
C12 - - Analog Input - Configuration locked
C13 9 9 Analog Input - Freely configurable by application
Cl4 - 17 Analog Input - Freely configurable by application
C15 - 18 Analog Input - Freely configurable by application

© 2019 Renesas Electronics Corporation

95

April 12, 2016

RRENESANS

11 Certification

11.1. European R&TTE Directive Statements

The ZWIR4512 module has been tested and found to comply with Annex IV of the R&TTE Directive 1999/5/EC
and is subject of a notified body opinion. The module has been approved for Antennas with gains of 4 dBi or less.

11.2. Federal Communication Commission Certification Statements

11.2.1. Statements

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to
Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference
in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instructions, may cause harmful interference to radio communications.
However, there is no guarantee that interference will not occur in a particular installation. If this equipment does
cause harmful interference to radio or television reception, which can be determined by turning the equipment off
and on, the user is encouraged to try to correct the interference by one or more of the following measures:

e Reorient or relocate the receiving antenna.

e Increase the separation between the equipment and receiver.

e Connect the equipment into an outlet on a circuit different from where the receiver is connected.

e Consult the dealer or an experienced radio/TV technician for help.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This
device may not cause harmful interference, and (2) this device must accept any interference received, including
interference that may cause undesired operation.

Modifications not expressly approved by ZMD AG could void the user's authority to operate the equipment.

The internal/external antennas used for this mobile transmitter must provide a separation distance of at least
20cm from all persons and must not be co-located or operating in conjunction with any other antenna or
transmitter.

11.2.2. Requirements

The ZWIR4512 complies with Part 15 of the FCC rules and regulations. In order to retain compliance with the
FCC certification requirements, the following conditions must be met:

1. Modules must be installed by original equipment manufacturers (OEM) only.
2. The module must only be operated with antennas adhering to the requirements defined in section 11.2.3.

3. The OEM must place a clearly visible text label on the outside of the end-product containing the text shown in
Figure 11.1 below.

IMPORTANT: The compliance statement as shown in Figure 11.1 must be used without modifications for both
ZWIR4512 product versions as the FCC ID covers the ZWIR4512AC1 and the ZWIR4512AC2!

© 2019 Renesas Electronics Corporation 96 April 12,2016

RRENESANS

Figure 11.1 FCC Compliance Statement to be Printed on Equipment Incorporating ZWIR4512 Devices
Contains FCC ID: COR-ZWIR4512AC1

This device complies with part 15 of the FCC Rules. Operation
is subject to the following two conditions: (1) This device may
not cause harmful interference, and (2) this device must accept
any interference received, including interference that may
cause undesired operation.

11.2.3. Accessing the FCCID

ZWIR451x modules are capable of showing their FCC-ID electronically. C-API applications can read the module’s
FCC-ID through the function ZWIR_GetFCCID. Due to space constraints, the FCC ID is not printed on the
module. Host devices incorporating this module must be marked according to the above guidelines.

11.3. Supported Antennas

The FCC compliance testing of the ZWIR4512 has been carried out using the MEXE902RPSM antenna from
PCTEL Inc. This antenna has an omnidirectional radiation pattern at an antenna gain of 2 dBi. In order to be
allowed to use the module without re-certification, the product incorporating the ZWIR4512 module must either
use the antenna mentioned above or must use an antenna with an omnidirectional radiation pattern and a gain
being less than or equal to 2 dBi.

© 2019 Renesas Electronics Corporation 91 April 12,2016

RRENESANS

12 Alphabetical Lists of Symbols

12.1.Functions and Function-Like Macros

ZWIR_AbOrtPowWerDOWNcccccvveeeeeiiiiiiieneeeeneinns 57 ZWIR_MulticastPreferExistingRepeater 52
ZWIR_AddAlternative Address...........ooccvvvvereeennnnns 54 ZWIR_NetEventCallbackcccovveeeeeeiiiiivinnnen. 41
ZWIR_AppInitHardware..........cccccceeeveiiciviieeeeee s 37 ZWIR_NetMA _Filter......cccovoveeeiiiiiieee e 87
ZWIR_APPINItNEWOrKccooiiiiiieee e 37 ZWIR_NetMA_ RemoteParameterRequest............ 81
ZWIR_AppINitNetworkDONEeccccovvevvvveeneeeeinnnns 37 ZWIR_NetMA ResponseHandler..............ccuvvee... 87
ZWIR_CheckMulticastGroupccccovveuviveeeeeeennnnns 45 ZWIR_NetMA_RPRCallback t......cccccccrvviirnnnnnn.n. 82
ZWIR_CI0SeSOCKELccoiiiiiiiiiiie e 46 ZWIR_NetMA_SetPort (NetMAL)ccceevvviivireennnn. 82
ZWIR_CreateAlternativeAddressList.........c............ 54 ZWIR_NetMA_SetPort (NetMA2)cccovvvvvinneennn. 87
ZWIR_DiscoverNetwork (NetMAL).......cccccceeeerinnnes 81 ZWIR_NetMA _Trace.......ccceieiiiiiii, 82
ZWIR_DiscoverNetwork (NetMA2).......cccccevvveeeenne 87 ZWIR_OPENSOCKEL.......coeiiiiiiiiiiiie e 45
ZWIR_EITOr ..ottt 42 ZWIR_OTAU_RegiSterccceeeeiieeieeeeeeeeeeeeeeee, 78
ZWIR_ExternalClockEnable............ccccvvvvvvvvvvvennnnnns 55 ZWIR_OTAU_Status........cceeeeeeeeeeeeeeeeeeeeeeeeeeee, 78
ZWIR_GatewayProcessPacketccccvvvvvvvvevennns 51 ZWIR_POWEIDOWN ...cvvviiiiiiiiiiiiiiiiiin e 57
ZWIR_GatewaySetOutputFunctionccc.ueee.. 52 ZWIR_Rand...........cccco e, 42
ZWIR_GetChanneluvvviviiieiviiiiiiiiiiiieeeinenennnns 49 ZWIR_RegisterAppEventHandler......................... 40
ZWIR_GetDestinationPANAAress.........cccvvvveveenes 48 ZWIR_RESEet ..o, 39
ZWIR_GetFailingAddress........ccoovveeeeiiiieeiiiiieeeee 48 ZWIR_ResetDestinationPANId..........cccceeviiveeennne 44
ZWIR_GELFCCID....coviiiiiiiiiiieieee et 56 ZWIR_ReSetNetworkccccvvieieiniiiee e 39
ZWIR_GetIPVBAdAressescocveeevvieeeeniiiieeen 44 ZWIR_ReSetTRXSIAtISHCcccvvvveeeiiiiieeeiiiiee e 53
ZWIR_GetLastRSSI........ccccvvviiieeiiiieeee e 48 ZWIR_SeleCtRTCSOUICEccevviiiieeiieee e 57
ZWIR_GetModulationcccceeviiieeeiiiieeeiiieeeens 50 ZWIR_Send6LOWPANcccoviiiiiniiee e 48
ZWIR_GetPacketDestinationAddressc........ 47 ZWIR_SenNdUDP..........cooiiiiiiiiiiiee e 46
ZWIR_GetPacketHopCountcccooeiivieeeeennnnns a7 ZWIR_SendUDP2...........ccoiii i, 46
ZWIR_GetPacketRXSocCKEt..........ccccvvvvnvninininiinnnnnns 48 ZWIR_SetChannel............cccccciii e, 49
ZWIR_GetPacketSenderAddress.........ccccvvvvvvnnnnnns 47 ZWIR_SetDestinationPANId.............cccoeveeiiinnl. 44
ZWIR_GetPacketSenderPortcooccuveeeeeeennnns 47 ZWIR_SetDutyCycleWarningcccccceeeeeiuveneen. 53
ZWIR_GetPANACAIeSScccueviiieieee et 43 ZWIR_SEtFreqUENCYuveveieeeeiiiiiiieeee e 56
ZWIR_GEtPANIdooeiiiiiiieiiie e 43 ZWIR_SetIPVBAdAress.......cccccovveeeeiiiiee e 44
ZWIR_GetParameter..........ccccvvveeeeeeeiiiiniieneee e 61 ZWIR_SetModulation.........cccccceevvevvvieeeee e, 50
ZWIR_GetREeVISIONcovveiiiciiiiiee e 41 ZWIR_SetOperatingModeccccvvvveeeeeiicnvnnnnnn. 38
ZWIR_GEIRTC .ottt 57 ZWIR_SetPACONLIOL....cccoiiiiieiiiiiee e 55
ZWIR_GetSourcePANAAAIeSS.......ccoovcvvvveeeeeenninns 48 ZWIR_SetPANAAAIESS.....uvvvieeeiiiiiiieeee e 43
ZWIR_GetTransSmitPOWETccceeeeviiciinieeeeeenninns 50 ZWIR_SEetPANI......ccociiieeeee e 43
ZWIR_GetTRXStatiStiC......vuvuvvieriieiiiiiiiriniiinininininnns 53 ZWIR_SetParameter.........cccccceiiiii 61
ZWIR_GPIO_ConfigureAsInput...........ccocoeveeernnnnns 67 ZWIR_SetPromiscuousModeccccccoeeiniininnnen. 54
ZWIR_GPIO_ConfigureAsOutput..........cccceeeeernnnnes 67 ZWIR_SEetRTC ..o, 57
ZWIR_GPIO_Read....ccccoviiiiiiiiiiie et 68 ZWIR_SetTransmitPOWerccccveeveeeeiiiiiiieeenn. 50
ZWIR_GPIO_ReadMultiplecccccooviiviiieenieeninns 68 ZWIR_SetWakeupSOUICe.........cccvvvveereeeeeiiiiieeennn 57
ZWIR_GPIO_REMaPccevieiiiiieeiiiiieeesiieee e ssiveea e 69 ZWIR_SIEEP..ciiiiiiieeiciiiii et sete e 58
ZWIR_GPIO_WHIE ..eeeiiiiiee it 69 ZWIR_SRAN.......ooviiiiiiieiiiiie e 42
ZWIR_IsAlternative Addresscccocevvveeeeeeeiinnnns 55 ZWIR_Standby.........coocviiiiiiei e, 58
ZWIR_LocalBroadcast.............uuvevereeerereeeneeerenennnnns 52 ZWIR_StartCallbackTimer............ccccceeeeeeeeeeee, 40
ZWIR_Main1000mMScvevvrererrrerreeeeeeeeeeeeeeeeeeeeeeeees 39 ZWIR_StopCallbackTimercccccoeeeeeeeieeeee, 40
ZWIR_MaiN100mMSccvvviiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 39 ZWIR_TransceiverOff.............cccc . 58
ZWIR_MaIN10MSuiiiiiiiiiiiiiiiiiee e 39 ZWIR_TransceiverONnccccceeeeeeeeeeeeeee e, 59
98 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

ZWIR_TriggerApPPEVENtcccvvveiiiiiiee e 40 ZWIR_UART2_PRINTF ..ottt 65
ZWIR_UART1_GetAvailableTXBuffer.................... 65 ZWIR_UART2_ReadBytecccvveeviiiieeeiiiee e 64
ZWIR_UARTL_ISTXEMPLY ..vveeeeiiiieee e 65 ZWIR_UART2_SeNd.....cccoiviiiiiiiieeiiiiie e 63
ZWIR_UARTL PRINTF. ...t 65 ZWIR_UART2_SendByteccccvvvveveeeeiiiiiiieeenn, 63
ZWIR_UART1_ReadByte........ccccoiivieeiiiiieeeiiieeeee 64 ZWIR_UART2_SetRXCallback..........cccceevvvreeennnnn 64
ZWIR_UARTL _Sendccooocviviieieaiiniiiiieeee e 63 ZWIR_UART2_SEtUP weevvvereeeeeiiiiiieeie e siieeeeeen 64
ZWIR_UARTL1 _SendByte......cccccceeiiiiiiiiiieeeeeeeees 63 ZWIRSEC_AddIKEAuthenticationEntry................. 76
ZWIR_UART1_SetRXCallbackcccouveeereernnnnns 64 ZWIRSEC_AddSecurityAssociation 72
ZWIR_UARTL_SEtUP ..eevvvvieiiiiieriiniiieiereieiereieneeenenes 64 ZWIRSEC_AddSecurityPoliCycccveeeveiivriinnnnnnn. 72
ZWIR_UART2_GetAvailableTXBuffer.................... 65 ZWIRSEC_RemoveSecurityAssociation 73
ZWIR_UARTZ2_ISTXEMPLY ...ovvviiiieeiieiiiiiieeeee e 65 ZWIRSEC_RemoveSecurityPolicyccceeeeee... 72

12.2. Data Types
ZWIR_AlternativeAddressType t.......cccccvveveeernnnns 55 ZWIR_GPIO _rfSWJ ... 71
ZWIR_QAANY ...evtiiiie e 55 ZWIR_GPIO_SWJRemapValue t...........ccccvvveeen... 71
ZWIR_8atEUI48eeiiiiiiiiiiiiiiiiiiiiieiveieeieis 55 ZWIR_GPIO_swijrDisableSWJ.........ccccccoevnnnnee 71
ZWIR_AAtEUIBAeeeiiiiiiiiiiiiiiiiiiiiiiveeeviieieieies 55 ZWIR_GPIO_swjrEnableSWJ........cccccccevrnnnnn 71
ZWIR_8AtNONEeuiiiiiiiiiiiiiiiiiiieieiiveieieieeeieieees 55 ZWIR_GPIO_swjrSWONIYcccceevviiiiiiiiiiaaeenne 71
ZWIR_AppEventHandler_t...........ccccceeviiieeiiiineenns 40 ZWIR_IPVBAAIESS_t...cveiiiiiieiiiiiie e 45
ZWIR_DiscoveryCallback_t.........cccceevviieeeiiiineanns 83 ZWIR_MCUFrequency _tcccooccvrveereeeniniirineeenen. 59
ZWIR_DutyCycleCallback_t.........cccccevvvvveennnn 53, 54 ZWIR_MCULBMHZcoiiiiiiiiiceeieece e 59
ZWIR_ErrorCode _t ZWIR_MCU32MHZ ... 59
ZWIR_eDADFailed.........ccccccovuiieeiiiiiee e 62 ZWIR_MCUBAMHZ ... 59
ZWIR_eExtClockPowerDowncccevvvvvvinnnnns 62 ZWIR_MCUBMHZccovveveviviviviiiiiiieeieeeeee 59
ZWIR_eHostUnreachable................ccoeeeeeieeeenn. 62 ZWIR_mcu8MHzLoOWPOWETrcccvvvvvvveverenannn, 59
ZWIR_eMemoryExhaustion.............ccoeeeeeeeeeeennn, 62 ZWIR_mcuUserFrequency........cccccccevvvevevenenennn.. 59
ZWIR_EProgEXitccoooeeeieieie e, 62 ZWIR_Modulation_t..........ccooeeiiii e, 51
ZWIR_eReadMACFailedcccoccveeiiiiciiiiinnennn, 62 ZWIR_MBPSK ...ttt 51
ZWIR_eRouteFailed...........cccoovveiiiiiiiiiiieee, 62 ZWIR_MOPSK ..o 51
ZWIR_GatewayOutputFunction_t.........cccccevvveeeennne 52 ZWIR_NetEvent_t........cocoiiiii 41
ZWIR_GPIO_DriverStrength_t........cccoocveeeiiiiennnns 71 ZWIR_NeAppPRECEIVE. ... 41
ZWIR_GPIO_dsHigh......cccceeiviiiiiiiiie e, 71 ZWIR_NeAPPTranSmMit........ccocvevivreeeinineeeninnenn 41
ZWIR_GPIO_dSLOW....ccooeeeeiiieeeeeeeeceeeeeeeeeee 71 ZWIR_nelPvBReceiVe.......cccccccvvviviiiiiiiiiiii, 41
ZWIR_GPIO_dsMediumccoeeeviiiiiiiiiciicccn, 71 ZWIR_nelPvBTransmit.........ccccccevvveviviiinininennn, 41
ZWIR_GPIO_InputMode_tccovvveeeiiiiiieeiiiieeans 71 ZWIR_NEMACRECEIVEccuvvvveeiiiieeeiiiiee e 41
ZWIR_GPIO_IiMANalOg......ccccovvvvveiiiiiee e 71 ZWIR_NEMACTIANSM ..ceeeviiieeeiiiieeesiieeesseieeens 41
ZWIR_GPIO_IMFIoatingccoevevrvvereeiiiineennne 71 ZWIR_NetMA _Flags_t.....ccccceeviiiiieeiiiiee e e 84
ZWIR_GPIO_IMPUlDOWNevvveiiiiiieeiiice e 71 ZWIR_NetMA _fBridge........ccccvvvvivvieniiiireniiinnnn 84
ZWIR_GPIO_IimPUllUp......cccooviiieeiiiie e 71 ZWIR_NetMA_fDeVICEccevveiriiiieiiiiiee e 84
ZWIR_GPIO_OutputMode_t.......ccccvveeeviirieeeiiiieneanns 71 ZWIR_NetMA_fHopCountLimitation 84
ZWIR_GPIO_omAlternativeOpenDrain 71 ZWIR_NetMA_fQuEeryID......ccccccevvvviiiiieeee e 84
ZWIR_GPIO_omAlternativePushPull.................. 71 ZWIR_NetMA HopInfo t.....ccccoiiiiiiiiee e, 83
ZWIR_GPIO_omOpenDraincccccceoevvvvveenennnn. 71 ZWIR_NetMA_RemoteConfig_t........cccceevvveveennnnen. 85
ZWIR_GPIO_omPushPuUll..........cccccooviiiiiinnnnn, 71 ZWIR_NetMA_RemoteData_t...........cccceeeviverennnne 84
ZWIR_GPIO_PIN_t .iiiiiiiiiiiiiiiiee e 70 ZWIR_NetMA_RemotelPv6Addr_t..........ccccvvveeeeen. 85
ZWIR_GPIO_RemapFunction_t........ccccceeeviivineennns 71 ZWIR_NetMA_RemoteMACAddr_t.........ccccvvveeenen. 84
99 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

ZWIR_NetMA_RemoteStatus_t........cccccvvvvevninennnns 85 ZWIR_ProtoTCP....ccvvvveiiiiieeeeeeeeee, 73
ZWIR_NetMA_RemoteVersion t.........ccccocvveeernnnns 86 ZWIR_ProtoUDPcciiiiiiiiiiiiiiiin e 73
ZWIR_NetMA RPRFields t....cccccccciiiiiiiiiireeeininns 83 ZWIR_RadioChannel_t.........cccccocviiineeeeniiiiiinnnnnn. 50
ZWIR_NetMA_rprfConfigccvveeeeieiiiiiiieeee, 84 ZWIR_channelO..........occoiiiiiiiiiniie e 50
ZWIR_NetMA_rprfFirmwareVersion 83 ZWIR_channell........ccocoiiiiiiiiiie e 50
ZWIR_NetMA_rprflPv6Addresses...........ccceee..... 84 ZWIR_channellO.........ccooieiiiiiiniiiiieeee e 51
ZWIR_NetMA_rprfMACAdIresscoccvvveeeennn. 83 ZWIR_channell00........ccccocvveeiiiiiiiiieeee e 51
ZWIR_NetMA_rprfTRXStatisticS..........cccvvveeeenenn. 84 ZWIR_channellOl.........coccooiiiieeeiiiiiieeeeee e 51
ZWIR_NetMA_TraceCallback t........ccccovevveeennnnns 83 ZWIR_channell02..........cccoiiiiieeeiiiiieee e 51
ZWIR_OperatingMode_t..........ccuvvvvvernimininnninininnnnn. 38 ZWIR_channel2............ovvveveviviiiiiiiiiiiiiiiiiveeeee, 50
ZWIR_OMGAIEWAYvuverernrnrererernrnrnrnrnrnrnrnennnnns 38 ZWIR_channel3..........cccovvvvvvviviiiiiiiiiiiiieieeeee, 50
ZWIR_omNOIrmMalouvvvuvmimrnrninininieneinnninennnnn. 38 ZWIR_channeld............ovveveviviiiiiiiiiiiiiiiienen, 50
ZWIR_omSniffer.......ccccoeiiie e, 38 ZWIR_channels..........vvvvveviviviiiiiiee 50
ZWIR_OTAU_ErrorCode_t ZWIR_channel6..........cccccovvvvviviiiiiiiiiiiiicee, 51
ZWIR_elnvalidOTAUInterfaceccccoeveeeennne. 80 ZWIR_channel7........cccociiiiiiiiiiice e 51
ZWIR_elnvalidVID..........ccoceiiiiieiiiiieeeiee e 80 ZWIR_channel8.............ccccoiiiiiiiiiiiiiiece, 51
ZWIR_OTAU_StatusCode_t........ccoevevnvreeenniienanns 78 ZWIR_channel9........ccccoiiiiiiiiiiec e, 51
ZWIR_SCRCWIItEEITOr.....ceiiiiiieiiiiiee e 79 ZWIR_EUBBSoviiieieeiiiiiiiiieeee e 51
ZWIR_sFirmwarelmageVerifyDone 79 ZWIR_EUBBOvvveeereeiiiiiiiieeee e 51
ZWIR_sFirmwarelmageVerifyFailed.................... 79 ZWIR_EUBBT ...t 51
ZWIR_sFragmentWriteErrorccooeeeeeieieeeennn, 79 ZWIR_EUBBScovvviiiiiiiiieiiiiii e 50
ZWIR_sInitNewFirmwareDoneccccceeennn. 79 ZWIR_US906covvvviviiiiiiiiiiiie 50
ZWIR_sInvalidCRCPackKet............cccveevivvreeenenen. 79 ZWIR_US908ovviiieiiiiie e 50
ZWIR_slnvalidDataPacket.............ccccceevviveeenen. 79 ZWIR_US910 ..oooiiiiii e 50
ZWIR_slInvalidExecutePacket...........cccceeeeieennnn. 79 ZWIR_US912 ..o 50
ZWIR_sInvalidFragmentSizecoccvveeeeeeennn. 78 ZWIR_USO14 ..o 50
ZWIR_sInvalidPacketCRC..........cccccceerriierennnnn 78 ZWIR_US9L6oviiiiiiiiiiiiiiieeee e 51
ZWIR_sScheduleUpdateccccoecvereiniienennnn 79 ZWIR_USOL8 ..ot 51
ZWIR_sStartupdate.........cccoevevvvvveeeeeeisiiiineeeenn, 79 ZWIR _US920vvvvieieeeiieiiiiee e e e e 51
ZWIR_sUnknownPacketTypeccccceeevvvcuvvvnnennnn. 78 ZWIR _US922vvviiieeei ittt 51
ZWIR_sUpdatelnProgress......ccccccvveeeeevcnvvnnnnnnnn. 78 ZWIR_US924 ..ottt 51
ZWIR_SWriteCRCDONEeuvvvuvninininiiininininnnnns 79 ZWIR_RadioReceiveCallback t............................ 49
ZWIR_sWriteFragmentDone.........cccccoovvuvvieeeennn. 79 ZWIR_ResetReason_t........ccccciiiiiiiiiii, 38
ZWIR_PACONIOL_t..ueiiiiiiiiiiiiiiiiiee e 56 ZWIR_rindependentWatchdogReset.................. 38
ZWIR_PAZUS ...ttt 56 ZWIR_rLowPowerResSetl..........cvvvvviiiiiiiiiiinenenn. 38
ZWIR_PBAUS ...ttt 56 ZWIR_IPINRESEL ...ccooiiiieiieeeeeeeee e 38
ZWIR_PABUSuvueiiiiiiiiiiiiiiiiiiiiibibeiebebebebebeeeeeeeees 56 ZWIR_rPowerONRESEtccvvvviviiiiiiiiiiieiiieeeeen, 38
ZWIR_PA8BUS ..covvviiieiiiiiiiiiiie et 56 ZWIR_rSoftwareResetcccccvvvvvvvveviviievinenennn, 38
A VAV A S o = L i S 56 ZWIR_rStandbyResetccccvvvvvvveviviiiiiiieeeeen, 38
ZWIR_PANAAAIESS t...cccoiiiiiiieieee e siiiieeee e 43 ZWIR_rWindowWatchdogResetccccceeeenne 38
ZWIR_PowerDownState t..........cccccvvvvvvvivrnnnininnnnns 59 ZWIR_RevisionInfo_t...........ccccco, 41
ZWIR_PSIEEP ...vuveririiiiiieiiiiieieieieieierernrerernrnenennnnns 59 ZWIR_RTCSO0UICE T..uuviiiiiiiiiiiiiiiiiiin e 59
ZWIR_pSleepAfterActivities..........ccceeeeeeeeeeeeeeennn, 59 pA VAT A | § == o PP 59
ZWIR_PStandby.........cccovieiiiiiiieiiieee e 59 ZWIR_IINEEIN ... 59
ZWIR_pStandbyAfterActivities..........cccovvveeeennne. 59 ZWIR_SocketHandle_t..........ccccoceeiieniiiiiiicinees 49
ZWIR_PSEOP.ceiiiiiiiiiiieiee et 59 ZWIR_SystemParameter_t........cccccoocvveeincieeennnn. 61
ZWIR_pStopAfterActivities........cccovvveeeiviee e, 59 ZWIR_spDoAddressAutoConfiguration 62
ZWIR_ProtoCol t....cccccvveiiiiiiiiiiee e sciiieeee e e e 73 ZWIR_spDoDuplicateAddressDetection............. 61
ZWIR_ProtOANY....c.eeiiiiieie e e eeieee e e esvaee e e 73 ZWIR_spDoRouterSolicitationcccceeevinnnne 61
ZWIR_ProtolCMPVGcooviiiiiiiiieeciieee 73 ZWIR_spHeaderCompressionContextl............. 62
100 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

ZWIR_spHeaderCompressionContext2.............. 62 ZWIR_UARTL €OVil....ccccuviiieiiiiiiiiiieeeeeeeee, 66
ZWIR_spHeaderCompressionContext3.............. 62 ZWIR_UARTL_€Paritycccovveeviiieeeiiiiee i 66
ZWIR_spMaxHopCountcoevevvvvvnnieeeieeeiiinnn, 61 ZWIR_UART2_ErrorCode_t
ZWIR_spMaxSocketCount..........ccccceeeviiiiivieneennn. 61 ZWIR_UART2_eFrame........cccccccvvvvveiiiiiiineeee, 66
ZWIR_spNeighborCacheSizeccocuvveeeenenn. 61 ZWIR_UART2_€NOISEuvvvvereeeiiiiiiiieeeee e e 66
ZWIR_spNeighborReachableTime...................... 61 ZWIR_UART2 _€OVfl....cccvieeveeeeiieieee e, 66
ZWIR_spNeighborRetransTime............cccveeeee.n. 62 ZWIR_UART2_€Parityccccccvveeeiiiiiiieeeee e 66
ZWIR_spRouteMaxFailCountccccuvveeeennn. 61 ZWIRSEC_AuthenticationAlgorithm_t................... 74
ZWIR_spRouteRequestAttempts...........ccccvvveneee 62 ZWIRSEC_authAESXCBC96cccocvvvveriirnnnnn 74
ZWIR_spRouteRequestMinLinkRSSI 61 ZWIRSEC _authNull.........ccccccoeiiiiiiiiiieee 74
ZWIR_spRouteRequestMinLinkRSSIReduction .61 ZWIRSEC_AuthenticationSuite_t............ccccuvveeeen. 74
ZWIR_SpRoUteTIiMeOoULevveeeeeeiiiiiiiieeeenn, 61 ZWIRSEC_EncryptionAlgorithm_t...........ccccveeeen. 74
ZWIR_spRoutingTableSize.........ccccccoonnininnnnnnn. 61 ZWIRSEC_encAESCTRccooviviiiiiiiiiiiiiiieeeeen, 74
ZWIR_TimeoutCallback_t.........cccccevvniiiiiiieiiennnins 41 ZWIRSEC _encNull.........ccccoviiiiiiiiiiee e 74
ZWIR_TRXStatiStiC_t.....ccovicviiiiiieeeieiiiiiieeee e 53 ZWIRSEC_EncryptionSuite_t..........ccccceeeeeeeeeeeen. 74
ZWIR_UART_FlowControl_t ZWIRSEC_ErrorCode_t
ZWIR_UART_HWFlowControl..........cccoccuveeennen. 64 ZWIRSEC_eCorruptedPacket...........cccceeeveeennnne 75
ZWIR_UART_NoFlowControlccccvveereeennn. 64 ZWIRSEC_eDroppedICMP........ccovvvvvvveiiviveeenn, 75
ZWIR_UART _Parity t ZWIRSEC_eDroppedPacket........cccccvvvvvvvvvenennn. 75
ZWIR_UART_EVeENParity.......ccccoevviiiieeiiiiee e, 64 ZWIRSEC_eReplayedPacketccccceeeeeene 75
ZWIR_UART_NoOParityooccvviiiiieeiiiiiiieeeeene 64 ZWIRSEC _eUnknownSPl..........ccoocciieeveeennnns 75
ZWIR_UART_OddParityccoovveriivvieeniiireeenennns 64 ZWIRSEC_PolicyTYpe_t...ccceveiiiiieeiiiieee e 73
ZWIR_UART_RXCallback t.......ccccceevvivviieniiireannne 65 ZWIRSEC_ptInputApPIY ... 73
ZWIR_UART_StopBits_t ZWIRSEC_ ptlnputBypass........ccccceevveveeeeeeeeeee. 73
ZWIR_UART_StOP_2.iiiiiiiiieiiiiieeeciee e 64 ZWIRSEC_ptINputDrop.....cceeeevivveeeeiiiieee i 73
ZWIR_UART_StopBits_t ZWIRSEC_ptOUtpUtAPPIY ...eeeeeiiiieeeiiieee e 73
ZWIR_UART_StOP_ L. 64 ZWIRSEC_ptOutputBypass.........ccccvvereeernnnnnee. 73
ZWIR_UART1_ErrorCode_t ZWIRSEC_ptOutputDropcoooccvvvvevereeniinnnnee 73
ZWIR_UARTI1_eFrame........cccccooeimmimnnnnnnnnnnnnnns 66 ZWIRSEC_SecurityAssociation_t............ccccvvveeeen.. 74
ZWIR_UARTL _€NOISE.....cccovvvvvriiireeeeissiiieeeeenn 66
12.3.Variables and Constants
ZWIR_firmwareMajorVersionccccoovveeeeinieenens 60 ZWIR_VENOFID ...coeiiiiiieiiiiiee e 60
ZWIR_firmwareMinorVersioncccccovveeeeinieeeens 60 ZWIRSEC_IKeREKEYTIME ...cccvviveireiiiiieeeiiee e, 76
ZWIR_firmwareVersionExXtension..........cccccccveeeennns 60 ZWIRSEC ikeRetransmitTimecccccceeevvvivvvnnnn. 76
ZWIR_ProducCtiDccoivieeiiiiiiieiiiiee et 60 ZWIRSEC_ikeSAReKeyTIMe.cccovcvvveeniiiieeenn, 77
101 April 12, 2016

© 2019 Renesas Electronics Corporation

RRENESANS

13 Related Documents

IETF Documents

Internet Protocol, Version 6 (IPv6) Specification

IP Version 6 Addressing Architecture

Security Architecture for the Internet Protocol

Internet Key Exchange (IKEv2) Protocol

Neighbor Discovery for IP Version 6 (IPv6)

IPv6 Stateless Address Autoconfiguration

Transmission of IPv6 Packets over IEEE 802.15.4
Networks

IDT Documents

ZWIR4512 Data Sheet
ZWIR451x Application Note — Using IPSec and IKEv2 in 6LOWPANs*

ZWIR451x Application Note — Enabling Firmware Over-the-Air Updates*

ZWIR45xx Application Note — The NetMA Protocol*

Visit www.IDT.com/ZWIR4512 or contact your nearest sales office for the latest version of these documents.

Note: Documents marked with an asterisk () require a free customer login account for access.

© 2019 Renesas Electronics Corporation 102 April 12,2016

http://www.idt.com/zwir4512

RRENESANS

14 Glossary

Term Description

6LOWPAN IPv6 over Low Power Wireless Personal Area Networks
AES Advanced Encryption Standard

AH Authentication Header

API Application Programming Interface
ARP Address Resolution Protocol

BPSK Binary Phase Shift Keying

CBC Cyclic Block Cipher

DAD Duplicate Address Detection

DHCP Dynamic Host Configuration Protocol
EAP Extensible Authentication Protocol
ESP Encapsulating Security Payload
GPIO General Purpose Input/Output
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IKEv2 Internet Key Exchange version 2
IPSec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MAC Media Access Control

MLD Multicast Listener Discovery

MTU Maximum Transmission Unit

LAN Local Area Network

MCU Micro Controller Unit

MODP Modular Exponential

NA Neighbor Advertisement

NAT Network AddressTranslation

NetMA Network Monitoring and Administration
NDP Neighbor Discovery Protocol

NS Neighbor Solicitation

NVIC Nested Vectored Interrupt Controller
oSl Open Systems Interconnection

© 2019 Renesas Electronics Corporation

103

April 12, 2016

RRENESANS

Term Description

PAN Personal Area Network

PLL Phase-Locked Loop

PSK Pre Shared Key

QPSK Quadrature Phase Shift Keying
RA Router Advertisement

RC Resistive Capacitive

RFC Request for Comments (a type of technical document maintained by the Internet Engineering Task Force)
RS Router Solicitation

RSSI Receive Signal Strength Indicator
RTC Real-Time Clock

SA Security Association

SAD Security Association Database
SP Security Policy

SPD Security Policy Database

SWD Serial Wire Debug

TFC Traffic Flow Confidentiality

TRX Transceiver

UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol

WAN Wide Area Network

WPAN Wireless Personal Area Network

© 2019 Renesas Electronics Corporation

104

April 12, 2016

RRENESANS

15 Document Revision History

Revision Date Description
1.00 October 1, 2010 Initial Version
1.10 December 13, 2010 | Added I/O pin descriptions for SAM3S based modules (e.g. ZWIR4522-]).

Added interrupt vector table for ZWIR452x-1 modules (e.g. ZWIR4511-I).
Corrected declaration of ZWIR_DiscoveryCallback_t.

Replaced invalid declaration ZWIR_GetPacketRSSI with ZWIR_GetLastRSSI.
Minor edits.

1.20 March 27, 2011 Renamed document to ZWIR451x Programming Guide.

Removed parts of documentation dedicated to SAM3S-based modules.
Adapted documentation to library release 1.2.

Cross-linked all symbols.

1.30 July 5, 2011 Minor revisions for clarity.

1.40 November 17, 2011 | Added libGPIO documentation.
Minor revisions for clarity.

1.60 June 18, 2012 Added documentation of new functionality provided with API version 1.6.
Many text improvements for clarity.

Fixed error in Table 2.1.

Added documentation for NetMA functions and types.

1.61 July 27, 2012 Minor edits.

1.62 August 31, 2012 Added documentation of FCC-ID readout command.
Added R&TTE & FCC conformity statements.

1.90 August 24, 2014 Added documentation of new functionality provided with API version 1.9.
Added UART error codes
Multiple text improvements for clarity.

April 12, 2016 Changed to IDT branding.

http://www.idt.com/
http://www.idt.com/go/sales
http://www.idt.com/go/support
http://www.idt.com/go/glossary

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1 Introduction
	1.1. IPv6
	1.2. 6LoWPAN
	1.3. Organization of this Document

	2 Functional Description
	2.1. Requirements Notation
	2.2. Terms
	2.3. Naming Conventions
	2.4. Library Architecture
	2.5. Operating Modes
	2.5.1. Device Mode
	2.5.2. Gateway Mode
	2.5.3. Sniffer Mode

	2.6. Operating System
	2.6.1. Initialization
	2.6.2. Normal Operation
	2.6.3. Power Modes
	2.6.4. Error Handling

	2.7. Firmware Version Information
	2.7.1. Vendor ID
	2.7.2. Product ID
	2.7.3. Major Firmware Version
	2.7.4. Minor Firmware Version
	2.7.5. Firmware Version Extension
	2.7.6. Library Version

	2.8. Addressing
	2.8.1. Address Types
	2.8.2. IPv6 Addresses
	2.8.3. IPv6 Address Auto-configuration
	2.8.4. Validation of Address Uniqueness

	2.9. Data Transmission and Reception
	2.9.1. User Datagram Protocol
	2.9.2. Data Transmission and Reception
	2.9.2.1. Unicast
	2.9.2.2. Multicast

	2.9.3. Address Resolution
	2.9.4. Recommendations

	2.10. Mesh Routing
	2.10.1. Multicast Traffic
	2.10.2. Unicast Traffic
	2.10.3. Mesh Routing Parameter Configuration Recommendations
	ZWIR_spMaxHopCount
	ZWIR_spRoutingTableSize
	ZWIR_spRouteTimeout
	ZWIR_spRouteMaxFailCount
	ZWIR_spRouteRequestAttempts
	ZWIR_spRouteRequestMinLinkRSSI and ZWIR_spRouteRequestMinLinkRSSIReduction

	2.11. Network and Device Status
	2.12. Security
	2.12.1. Internet Protocol Security (IPSec)
	2.12.2. Internet Key Exchange Version 2 (IKEv2)
	2.12.3. Recommendations

	2.13. Firmware Over-the-Air Updates
	2.13.1. Functional Description
	2.13.2. Firmware Constraints

	2.14. Memory Considerations
	2.14.1. Call Stack
	2.14.2. IDT Network Stack Dynamic RAM Requirements
	2.14.3. Using Dynamic Memory Allocation

	2.15. Supported Network Standards

	3 Core-Library Reference
	3.1. Initialization
	3.2. Program Control
	3.3. Networking
	3.3.1. Address Management
	3.3.1.1. PAN Identifier
	3.3.1.2. Link-Layer Address
	3.3.1.3. IPv6 Addresses

	3.3.2. Socket and Datagram Handling
	3.3.3. Radio Parameters
	3.3.4. Gateway Mode Functions
	3.3.5. Miscellaneous

	3.4. Power Management
	3.5. Firmware Version Information
	3.6. Properties and Parameters
	3.7. Error Codes

	4 UART Library Reference
	4.1. Symbol Reference
	4.2. Custom UART I/O Configuration
	4.3. Error Codes

	5 GPIO Library Reference
	5.1. Symbol Reference

	6 IPSec Library Reference
	6.1. Symbol Reference
	6.2. Error Codes

	7 IKEv2 Library Reference
	7.1. Symbol Reference
	7.2. Library Parameters

	8 Over-the-Air Update Library
	8.1. Library Reference
	8.2. Inclusion of the OTAU Library
	8.3. Error Codes

	9 NetMA Libraries
	9.1. NetMA1 Library
	9.1.1. NetMA1 Library Symbol Reference
	9.1.2. Inclusion of the NetMA1 library

	9.2. NetMA2 Libraries
	9.2.1. NetMA2 Library Symbol Reference
	9.2.2. Inclusion of the NetMA2 Libraries

	10 Accessing Microcontroller Resources
	10.1. Internal Microcontroller Configuration
	10.2. Backup Data Registers
	10.3. Interrupt Handlers
	10.4. Default I/O Configuration

	11 Certification
	11.1. European R&TTE Directive Statements
	11.2. Federal Communication Commission Certification Statements
	11.2.1. Statements
	11.2.2. Requirements
	11.2.3. Accessing the FCC ID

	11.3. Supported Antennas

	12 Alphabetical Lists of Symbols
	12.1. Functions and Function-Like Macros
	12.2. Data Types
	12.3. Variables and Constants

	13 Related Documents
	14 Glossary
	15 Document Revision History

