REN ESAS User Guide

ZSSC3240

Calibration Sequence and DLL

Introduction

The calibration DLL file described in this document is created to expedite the calibration process for the
ZSSC3240. Section 2 gives a short overview for the main steps of calibration using the file. Section 3 covers
how to implement a DLL (CalibrationL6.DLL) in customer-specific software.

Contents

2.2.1.1 Definition of Reference Values for Raw MeaSUremMENLScciiiiiiiiiiiiiiieae it a e sieree e e e 8
2.2.1.2 Raw Measurement COMMEANAS.oiuuuiiiiiiaaieiiiieeie e e e e e ettt ie e e e e e e e asbabeeeaaaeaasanbeeeeeaaaeaesnnbsseeaaeesaannnes 9
2.2.1.3 RAW D@8 OULPULutttttittiittiiiateiaeebaieeateteeeteestsbses st s s bs s s s s s st s s s 5552555555555 5555 555555555555 5555 s e s e sesnsennnnn 9
3.3.1.1 COEFFICIENT _COUNT ...itiiittite ettt ettt e e sttt e e s sttt e e e skttt e e s sbb e e e atbe e e e abbeeesanbbeeesanbbeeeeanres 12
IR N I O 1 1o - o I 1Y o 1= PR 12
3.3.1.3 INdeXES fOr COBTIICIENTSeiiiiiiiie ittt e et e e et e e s et e e e enres 13
3.3.1.4 Sign Flags of the COEICIENTScoiiee et e e e e e anes 13
3.3.2.1 Bridge CONVEIrSION ROULINESccoiiiiiiiiiiiiiii ettt e e e ettt e e e e e e st bbe e e e e e e e e snnbebeeeaaeeaaannes 14
3.3.2.2 Temperature CONVErsioN ROULINESiiiiiiiiiiiiiiiie ettt e et e e e e e et e e e e e e e snbbreeeaaeeaaannes 14
3.3.2.3 RAW VAIUES CONVEISION ...eiiiiiiiieeitiiee ittt e e sttt e st e e e sttt e e e sttt e e s sttt e e e s sbbee e e abbeeesanbbeeesanbbeeesanbbeeeennres 15
R N R €= (@0 (=11 (=T 1= 1 1 o PR 18
R N €1 (@0] (= To1 (=10 | =4 o o = PSSR 18
3.3.4.3 BACKCAICRAWT M ..cciiiiiiiiitiiit e e e ettt e e e e e ettt e et e e e e e s s bete e e e e e e e s aan b beeeeaaeeesannbbbeeeeaaeaesnnbeseeaaaesaannnes 19
R A o - (o O 1o w -\l =] o [0 = 2T PP UOPUUPPPTT 19

List of Figures

Figure 1. Calibration FIOW CRart.........coui ettt e e e e e e st e e e e e e s s bbb be e e e e e e e e annbeneeas 4
Figure 2. Calibration Point Locations for Selected Calibration Methods ... 7
Figure 3. Assignment Input Resistive Range t0 SSC-0ULPUL..........uuiiiiiiiiiiiiiiei e 8
Figure 4. Raw Data Handling for Coefficient Calculation (DLL)cccooiiiiiiiiiiiiaiiiiiieeee e 9
Apr.15.20 Page 1 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

List of Tables

I Lo] Lo I 0= 1 o] = 11T g T I8 1= S TPP PP 6
Table 2. Commands for Programming Coefficients and Final Settings of ZSSC3240..........cccccceeevvvicvvnnennnn. 10
Table 3. Overview 0f the ROULINEScoviiiiiiiie ettt e e nnneennnee s 14
Table 4. Parameter Bridge ROULINESuviiiiiiiiiiiiieie e e e sesiie e e e e e e s st e e e e e e s s snstaae e e e e e e s s snstnaeeeeeessansnnrnneeeeees 14
Table 5. Overview 0f the ROULINESooviiiiiiiiie et e e e e 14
Table 6. Parameter TEMPErature ROULINESccuvviiiiieeeiicciiieie e e e e e ssete e e e e e s s ssntare e e e e e e s s sasteaeeeaeeesannntrnneeeeees 15
Table 7. Overview 0Of the ROULINEooiiiiiii et sne e e 15
Table 8. Parameter CalculateCoeffiCientS FUNCLIONoiiiiiiiiiiiiiee et 17
Table 9. Parameter BackClacRawTemp/BackCalcRawBridge FUNCLONScc.ueeeiieiiiiiiiiiiieieee e 20
Apr.15.20 Page 2 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

2. Calibration Sequence

A typical calibration flow for the ZSSC3240 devices contains five steps in the following order:

1.

2
3
4.
5

Set-up and initialization
Data collection
Coefficient calculation
Memory programming

Verification

There are two approaches for data collection with the ZSSC3240:

Using the raw measurement commands described in section 2.2.1 which requires a simpler initialization
of the IC’'s memory (customer ID and AFE setup). This is the recommended approach.

Using the IC-internal signal-correction math core. Thereby, the memory page must be utilized to feed the
math core with proper initialization coefficients, and the IC-internal saturation mechanisms can
significantly limit the dynamic range of the digital output.

See Figure 1 for a more detailed calibration flow graph.

Apr.15.20 Page 3 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

Initialization

Initialized? 7No—¢

Enter in NVM:
- Chip ID
- Interface Configuration
- SM_Configl/2 Setup

Yes ¢

Power-On Reset

~ A

Data Collection

Enough Points? No—i

Set temperature and external —
sensor values at calibration
reference machine

Add Point Get Raw value: Temperature
B Calculate
Coefficients

Get raw value: Bridge

Yes

Convert IC output (Bridge/Temp
Calculate coefficients values) into linear characteristic ...
mapping of ,negative” bridge values

v

Call CalculateCoefficients()

A NVM
‘ Write Values to NVM ‘ Programming

v

\ Write CheckSumC (CRC) \

v

‘ Power-On reset ‘ Verification
¢ Take further data points, calculate
‘ Verify Calibration % error at existing points, etc.

v
DONE

Figure 1. Calibration Flow Chart

Apr.15.20 Page 4 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

2.1 Set-up and Initialization

2.1.1 Assigning a Unique ldentification Number to the IC

This identification is programmed in ICs memory and can be used as an index in the database stored on the
calibration PC. Such a database could contain all the raw values of external sensor readings (and
temperature readings if applied or vice versa) for that part, as well as the according reference values for the
calibration. See the ZSSC3240 Datasheet, for detailed description of the registers 0x00 (Cust_ID0) and 0x01
(Cust_ID1) dedicated to the customer for his product identification.

2.1.2 Analog Front End Configuration

Before useful raw data can be collected from the IC, the circuitry must be initialized. The initialization step
involves setting the AFE (Analog Front End) configuration bits for the end application and optionally
programming the math coefficients to their default value. See the ZSSC3240 Datasheet for detailed
description for the single parameters of the AFE, and for the default settings of the AFE-parameters and
coefficients, which have been already programmed during the wafer test.

2.1.3 Temperature Configuration

For a possible temperature measurement with the IC-internal temperature sensor, the default configuration is
programmed into the temperature configuration registers. These default settings allow the full temperature
range of -40°C to +125°C to be used.

2.2 Data Collection

The minimum number of calibration points used depends on the precision required and the behavior of the
resistive bridge in use (it is normally between two and seven). There is no maximum number of calibration
points that can be used; in general, taking more calibration points results in a better calibration.

Description of the standard set of calibration points are displayed in Figure 2.

. 2-point calibration is used to obtain only a gain and offset terms for bridge compensation with no
temperature compensation for either term.

. 3-point calibration could be used either to

o oObtain the additional term SOT for 2" order correction for the bridge (SOT_sens), but no temperature
compensation of the bridge output.

temperature only is compensated, without using any external sensor

o]

. 4-point calibration could be used to obtain bridge offset and gain, and both the Tco term and the Tcg
term, which provides 1st order temperature compensation of the bridge offset and gain term. Additionally,
the temperature sensor’s offset and gain can be compensated based on the same calibration points.

. 5-point calibration could be used to obtain bridge sensor’s gain, offset and 2"-order term, Tco (bridge
sensor related temperature offset term) and 2"-order term that provides correction applied to the
bridge’s temperature coefficient’s offset. Additionally, the temperature sensor’s offset, gain and 2"-order
nonlinearity can be compensated based on the same calibration points.

. 6-point calibration could be used to obtain bridge sensor’s gain, offset, Tcg, Tco, SOT_tco and SOT _tcg.
Additionally, the temperature sensor’s offset, gain and 2"-order nonlinearity can be compensated based
on the same calibration points.

. 7-point calibration could be used to obtain the complete set off supported signal correction coefficients
for sensor bridge and IC-internal temperature sensor.

Apr.15.20 Page 5 of 20
RENESAS

ZSSC3240

Calibration Sequence and DLL

Table 1.

Calibration Types

Type

Calculated Coefficients®

Required number of data points

Bridge

Temp

2 Points

OFFSET_S, GAIN_S

2

0

3 Points

OFFSET_S,GAIN_S, SOT_S

3 Points

OFFSET_T,GAIN_T, SOT_T

4 Points

OFFSET_S, GAIN_S, TCO, TCG, OFFSET_T, GAIN_T

5 Points

OFFSET_S, GAIN_S, TCO, OFFSET_T, GAIN_T, SOT_TCO, SOT_S, SOT_T

w | N | O

6 Points

OFFSET_S,GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO, SOT_TCG, SOT_T

W |lWwW [N | W

7 Points

OFFSET_S,GAIN_S, TCO, TCG, OFFSET_T, GAIN_T,SOT_TCO, SOT_TCG,SOT_T,

SOT_S

[a] Coefficients notation as used in the Calibration.dll / Calibration.h.

. Gain_S: External Sensor/Bridge gain term;

. Offset_ S: External Sensor/Bridge offset term;

. Tcg:
. Tco:

Temperature coefficient gain term;

Temperature coefficient offset term;

. SOT tcg: Second-order term for Tcg non-linearity;

. SOT tco: Second-order term for Tco non-linearity;

. SOT_sens: Second-order term for bridge non-linearity;

. Gain_T: Gain coefficient for temperature;

. Offset T: Offset coefficient for temperature;

. SOT_T: Second-order term for temperature source non-linearity.

Apr.15.20

RENESAS

Page 6 of 20

ZSSC3240 Calibration Sequence and DLL

2-Point Calibrations

A A
@
) &
S °
& | © d
(&)
Temperature Temperature
3-Point Calibrations
A A
(]
))
k=) il
3] 5 @) @
(&)
Temperature Temperature
4-Point Calibration 5-Point Calibration
A A
(€] (¢] (&)
S)
g 2
5 3 (S)) e
(] @ @
Temperature Temperature
6-Point Calibration 7-Point Calibration
A A
(6] @ @ (6} (6] @
[0} [0}
(2] (=)
b} 2
@ @ (©)
(9] (%] (] @ (9] (&)
Temperature Temperature

Figure 2. Calibration Point Locations for Selected Calibration Methods

Figure 2 shows the expected, recommended placement of calibration points for the different calibration
options. The order of the points taken is not important; however, the number of points per temperature must
be followed or the calibration might fail. It is important to keep the calibration points as orthogonal as possible

to maximize calibration accuracy.

Further, the provided calibration DLL can also generate other subsets and combinations of calibration
coefficients based on calibration points at different locations than described in Figure 2.

2.2.1 Data Collection by Raw Measurement Requests

The number of unique points (external sensor and/or temperature) at which calibration must be performed
generally depends on the requirements of the application and the behavior of the resistive bridge in use. The
minimum number of points required is equal to the number of bridge/temperature coefficients to be
calculated. For a full calibration resulting in values for all seven possible bridge coefficients and three
possible temperature coefficients, a minimum of seven pairs of bridge with temperature measurements must

be collected.

Apr.15.20 Page 7 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

2.2.1.1 Definition of Reference Values for Raw Measurements

The reference points for the resistive sensor calibration are usually defined in percent in relation to the full
target application range. After that, they have to be converted into digital value relative to the full scale (FS)
output of 24-bit, by a given function in the DLL.

The reference values for the raw temperature measurements are defined in degree Celsius (°C). In
combination with user defined temperature limits (also in °C), the reference input for each point is then
converted into the according digital reference value for the DLL.

For example, defining pressure reference points for calibration dependent on customers target range can be
the following:

. Customer's target application range: 0 to 16bar
. Customer's pressure reference points: 2bar/6bar/14bar.
. Exact assignment would be:
o Obar -> 0% of the range
o 16bar -> 100% of the range
. The defined reference points have the following assignment:
o 2bar -> 12.5% of the range
o 6bar -> 37.5% of the range
o ldbar -> 87.5% of the range

. To add buffers for parasitic impact and to have integer percentage values for the calibration, it is
recommended to change the points slightly as follows:

o 2bar -> 15% of the range
o 6bar -> 35% of the range
o l4bar -> 85% of the range

Pressure Sensor Range
100
90

80

60

50

Full Scale Output[%]

30
20

10

0 2 4 6 8 10 12 14 16 18

Pressure Sensor Output [bar]

Figure 3. Assignment Input Resistive Range to SSC-output

To obtain the potentially best and most robust coefficients, it is recommended that measurement pairs
(temperature vs. pressure) are collected near the outer corners of the intended operation range or at points
which are located far from each other. It is essential to provide highly precise reference values as nominal,
expected values. The measurement precision of the external calibration-measurement equipment must be
ten times more accurate than the expected ZSSC3240 output precision after calibration in order to avoid

Apr.15.20 Page 8 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

precision losses caused by the nominal reference values (that is resistive sensor signal and temperature
deviations).

Note: There is an inherent redundancy in the seven resistive sensor-related and three temperature-related
coefficients. Since the temperature is a necessary output (which also needs correction), the temperature-
related information is mathematically separated, which supports faster and more efficient DSP calculations
during the normal usage of the sensor-IC system.

2.2.1.2 Raw Measurement Commands

Prior to the data collection, it is recommended to find the optimal AFE-configuration for the applied sensor
and the target voltage input range, and then program it to the NVM configuration registers SM_configl and
SM_config2 (ZSSC3240). After AFE-configuration, raw data can be acquired. For it, the following two
commands have to be used:

. for external sensor values:
A2HEex: Single raw data resistive sensor measurement for which the configuration is loaded from the
SM_configl / SM_config2 registers

. for temperature values:
ABHEX: Single raw data temperature measurement for which the configuration register is loaded
from an internal temperature configuration register (preprogrammed by Renesas in NVM prior to IC
delivery). If an external temperature sensor is configured, the configuration is loaded from the
extTemp_configl / extTemp_config2 registers.

2.2.1.3 Raw Data Output

The raw data measurement results are always MSB (Most Significant Bit)-aligned. The internal temperature
sensor has a preconfigured setup with an ADC resolution of 13-bit. Figure 4 summarizes the recommended
raw data process before passing it to the CalculateCoefficients function of the DLL.

In order to adapt both resistive and temperature raw values to the expected format (integer representation,
24-bit, MSB-aligned in the range of -2/23..2"23 in), they have to be converted from the two's complement
representation to integer values in a range from -2/23..2"23.

ZSSC3240
Output range: _ Output range:
Resistive Sensor Braw wss [-223,.2231) DLL Function [-228.223.1]
Raw-CMD: A2+ex »(Braw oL = TwosComplementToDecimal »>
ADC resolution: N-bit Two’s Complement, (Braw_ws) Integer, 24-bit DLL Function
MSB aligned MSB aligned CalculateCoefficients
(-..Braw_oLt’
Output range: _ Output range: Traw pLL'...)
Temperature Sensor Traw mss [-228, 223-1) DLL Function [-228.223.1)
Raw-CMD: ABrex » Traw_piL = TwosComplementToDecimal —>
ADC resolution: 13-hit Two’s Complement, (Traw_vise) Integer, 24-bit
MSB aligned MSB aligned

Figure 4. Raw Data Handling for Coefficient Calculation (DLL)

2.3 Coefficient Calculations

The coefficients are calculated after all calibration data points are collected. The DLL exposes a C code
interface and can be used directly from code (see section 3 for details). Features of the DLL are:

. Coefficient calculation
. Verification at calibration points

. Extended range verification

Apr.15.20 Page 9 of 20
RENESAS

ZSSC3240

Calibration Sequence and DLL

2.4 Programming NVM

After the coefficients have been calculated, they must be written to the NVM. The following table lists the
commands necessary to program the coefficients to the according registers. Every coefficient is saved in the
NVM in two different 16-bit registers, since each coefficient is a 24-bit wide value.

Table 2. Commands for Programming Coefficients and Final Settings of ZSSC3240

Co[ﬂgnx?nd Data from Coefficients for the According Register Description Provided by
45 coefficients[INDEX_OFFSET_S] & Ox@OFFFF Offset_S[15:0] DLL
46 coefficients[INDEX_GAIN_S] & ©Ox0QOFFFF Gain_S[15:0] DLL
47 coefficients[INDEX_TCG] & ©OxOOFFFF Tcg[15:0] DLL
48 coefficients[INDEX_TCO] & ©OxOQOFFFF Tco[15:0] DLL
49 coefficients[INDEX_SOT_TCO] & Ox@OFFFF SOT_tco[15:0] DLL
4A coefficients[INDEX_SOT_TCG] & Ox@OFFFF SOT_tcg[15:0] DLL
4B coefficients[INDEX_SOT_S] & Ox@OFFFF SOT_sens[15:0] DLL
4C coefficients[INDEX_OFFSET_T] & Ox@OFFFF Offset_T[15:0] DLL
4D coefficients[INDEX_GAIN_T] & ©OxOOFFFF Gain_T[15:0] DLL
4E coefficients[INDEX_SOT_T] & Ox@OFFFF SOT_T[15:0] DLL

(coefficients[INDEX_OFFSET_S] & Ox7F0000) >> 8 Offset_S[22:16] DLL
(coefficients[INDEX_GAIN_S] & Ox7F0000) >> 16 Gain_S[22:16] DLL
4F (coefficients[INDEX_OFFSET_S] & 0x800000) » 1 : @ Offset_S[23] DLL
(coefficients[INDEX_GAIN_S] & ©x800000) ? 1 : © Gain_S[23] DLL
Data stream composition for MSB/SIGN register bits by the example of the offset and gain coefficients of the
external sensor:
offset_s_msb = (coefficients[INDEX_OFFSET_S] & ©x7F0000) >> 8;
gain_s_msb = (coefficients[INDEX_GAIN_S] & ©x7F0000) >> 16;
if (coefficients[INDEX_OFFSET_S]<@) sign_offset_s = 1;
else sign_offset_s = 0;
//the same if-else condition can be written as
// sign_offset_s = (coefficients[INDEX_OFFSET_S]<@) ? 1 : ©;
//this notation is used in the table below
if (coefficients[INDEX_GAIN_S]<@) sign_gain_s = 1;
else sign_gain_s = 0;
//define command and the register content
cmd = Ox4F;
//register data combination
data_@Fhex = sign_offset_s << 15 | offset_s_msb | sign_gain_s << 7| gain_s_msb;
//pseudo code for writing data to a specific (here ©x@D) register
//with the according command
write_mtp(cmd, data);
Numerical example:
// results from coefficients calculation
coefficients[INDEX_OFFSET_S] = -520831 // = 0x87F27F (24 bit sign-magnitude
//representation)
coefficients[INDEX_GAIN_S] = 5880722 // = ©x59BB92 (24 bit sign-magnitude
//representation)
offset_s_msb = 0x07
sign_offset_s =1
gain_s_msb = 0x59
sign_gain_s = ©
data_@Fhex = 34649 = 0x8759
Note: The composition is equivalent for all further SIGN/MSB-registers.
Apr.15.20 Page 10 of 20

RENESAS

ZSSC3240 Calibration Sequence and DLL

Co[r|r_1|emxa]md Data from Coefficients for the According Register Description Provided by
(coefficients[INDEX_TCG] & ©x7F0000) >> 8 Tcg[22:16] DLL
(coefficients[INDEX_TCO] & ©x7F0000) >> 16 Tco[22:16] DLL

50 (coefficients[INDEX_TCG]<@) ? 1 : © Tcg[23] DLL
(coefficients[INDEX_TCO] <@) ? 1 : © Tco[23] DLL
data_10hex = register data combination as described in the example above in the example
(coefficients[INDEX_SOT_TCO] & Ox7F0000) >> 8 SOT_tco[22:16] DLL
(coefficients[INDEX_SOT_TCG] & Ox7F0000) >> 16 SOT_tcg[22:16] DLL

51 (coefficients[INDEX_SOT_TCO] <@) ?» 1 : @ SOT_tco[23] DLL
(coefficients[INDEX_SOT_TCG] <@) ?» 1 : @ SOT_tcg[23] DLL
data_11lhex = register data combination as described in the example above in the example
(coefficients[INDEX_SOT_S] & ©x7F0000) >> 8 SOT_sense[22:16] DLL
(coefficients[INDEX_OFFSET_T] & 0x7F0000) >> 16 Offset_T[22:16] DLL

52 (coefficients[INDEX_SOT_S] <@) ? 1 : @ SOT_sens[23] DLL
(coefficients[INDEX_OFFSET_T] <@) ? 1 : © Offset_T[23] DLL
data_12hex = register data combination as described in the example above in the example
(coefficients[INDEX_GAIN_T] & ©x7F0000) >> 8 Gain_T[22:16] DLL
(coefficients[INDEX_SOT_T] & ©x7F0000) >> 16 SOT_T[22:16] DLL

53 (coefficients[INDEX_GAIN_T] <@) ? 1 : © Gain_T[23] DLL
(coefficients[INDEX_SOT_T] <@) ? 1 : © SOT_T[23] DLL
data_13hex = register data combination as described in the example above in the example

2.5 Verification

The DLL interface provides verification at calibration time (see section 0). To verify if results are consistent
with expected results, also perform an online verification at a different bridge measurand / temperature
combination than was used for calibration.

3. CalibrationL6.DLL

The CalibrationL6.DLL’s properties, interfacing and variable declaration, and the available routines with the
respective returns of the available methods are characterized in detail. The main focus in this document is to
enable the reader to integrate the DLL in a customer software environment for production purposes.

3.1 DLL Setup

Take the following setup steps to use the CalibrationL6.DLL in a user program:
1. Declare all functions to be used from the DLL:
a. In C/C++, link CalibrationL6.lib into the final executable.
b. In VB (Visual Basic), add CalibrationL6.DLL as a reference and verify that it is in the path.

2. Create CalibrationL6.h that must contain the same declarations for the functions used in
CalibrationL6.DLL. The user’s program must be setup to use Windows™ calling conventions (stdcall),
not “C” style calling conventions (cdecl).

All functions listed in section 3 can be called as if they were local functions.
3.2 DLL Use
CalibrationL6.DLL typically is used for the following calibration steps:

1. Data Conversion: all raw and target data input for both bridge and temperature (if applicable) must be
converted into the correct format, see section O.

2. Coefficient Calculation: The converted data along with control information is passed to the
CalculateCoefficients method which generates all necessary coefficients, see section 3.3.3.

3. Verification: The coefficients are verified both for accuracy and proper operation across the entire region
of operation. The CalibrationL6.DLL provides methods to do this verification offline, see section 0.

Apr.15.20 Page 11 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

3.2.1 Using Customer Default Values as Coefficients

The CalibrationL6.DLL library supports calibration using customer-calculated default values; these values
can be applied to all calibrations without recalculating each time allowing one less calibration point for every
used default value. The pre-condition for using customer default values is a known, repeatable sensor
characteristic. The result of a calibration using default values is always less accurate than a complete
calibration. To use a default value during calibration, do not select coefficient for calculation.

3.3 CalibrationL6.DLL Application Programming Interface (API)

3.3.1 Constants used with CalibrationL6.DLL
Within CalibrationL6.DLL many different enumerations are used to clarify the control and separation of data
going to and from the DLL.

3.3.1.1 COEFFICIENT_COUNT

COEFFICIENT_COUNT is a constant that represents the number of coefficients. All coefficient arrays
passed to CalibrationL6.DLL are expected to be of size COEFFICIENT_COUNT.

Example: Declaration of an array of integers for the coefficients and initialize the array to 0.

int coefficients[COEFFICIENT_COUNT] = {@}; //c compiler will © fill remaining entries

3.3.1.2 Calibration Type

The programmable coefficients have the listed flag values (see the following C code declaration) in the DLL.
The most common combinations of coefficients are shown in the source code Example of this section. The
type of calibration desired is indicated through the coefficients selected for calibration. For best results, use
the pre-defined combinations. The coefficients can be individually OR’ed together in order to form other
calibration types.

C code declaration:

#tdefine CO_OFFSET_S ox1
#tdefine CO_GAIN_S ox2
#define CO_TCG ox4
#define CO_TCO ox8
#define CO_SOT_TCO ex10
#define CO_SOT_TCG 0x20
#tdefine CO_SOT_S ox40
#define CO_OFFSET_T 2x80
#define CO_GAIN_T 2x100
#tdefine CO_SOT_T 0x200

Example: The following C code lines show applicable combinations of coefficients and a possible definition of
a variable which passes this information validly to the CalculateCoefficients method.

int errorcode;
int negCoeffs;

// Variable definition for required coefficients

int P2_S = (CO_OFFSET_S|CO_GAIN_S);

int P3_S = (CO_OFFSET_S|CO_GAIN_S|CO_SOT_S);

int P3_T = (CO_OFFSET_T|CO_GAIN_T|CO_SOT_T);

int P4_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T);

int P5_S = (CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_S|CO_SOT_T);
int P6_S =
(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T);
int P7_S =

(CO_OFFSET_S|CO_GAIN_S|CO_TCO|CO_TCG|CO_OFFSET_T|CO_GAIN_T|CO_SOT_TCO|CO_SOT_TCG|CO_SOT_T|CO_SOT_S);

// calculate just bridge coefficients -> P3_S
// possible function call

Apr.15.20 Page 12 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

errorcode = CalculateCoefficients(coefficients,
&negCoeffs
2)
P3_S,
0,
rawBridge,
desiredBridge,
rawDummy,
desiredDummy, /* Not calibrating anything with temp */

):
3.3.1.3 Indexes for Coefficients

After calculating coefficients, the CalibrationL6.DLL provides them in a certain order in the coefficients array.
The access with these indexes returns the signed value of each coefficient.

C code declaration:

//INDEXES for coefficients array

#define INDEX_OFFSET_S 2
#define INDEX_GAIN_S 1
#tdefine INDEX_TCG 2
#tdefine INDEX_TCO 3

#define INDEX_SOT_TCO
#define INDEX_SOT_TCG
#define INDEX_SOT_S
#define INDEX_OFFSET T
#define INDEX_GAIN_T
#define INDEX_SOT_T

W 00 N O UV b

Example: Accessing the OFFSET _S coefficient value after calculation with CalculateCoefficients method:

//assuming int coefficients[COEFFICIENT_COUNT]; has been previously declared
int offset_s = coefficients[INDEX_OFFSET_S];

3.3.1.4 Sign Flags of the Coefficients

The sign flags allow excluding a certain sign from the representative ‘sign number’, which contains the sign
information for all coefficients. The coefficients themselves are signed, too. This ‘sign number’ makes data
processing more comfortable. Gain coefficients do not have a flag for negative presentation, the results are
always positive.

C code declaration:

//FLAGS for negCoeffs

#define NEG_SOT_S ox1
#define NEG_SOT_TCO ox2
#tdefine NEG_SOT_TCG ox4
#tdefine NEG_SOT_T ox8
#tdefine NEG_TCO ox10
#tdefine NEG_TCG 0x20
#tdefine NEG_OFFSET_S 0x40
#define NEG_OFFSET_T 0x80
Example:

int negSOT_S =90;

//negSOT_S=0 when the coefficient is positive, = 1 when it’s negative.
negSOT_S = negCoeffs & NEG_SOT_S;

Apr.15.20 Page 13 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

3.3.2 Conversion Routines
The following conversion routines are used for translation of an input value into the necessary format to
complete the calculations.

3.3.2.1 Bridge Conversion Routines

Table 3. Overview of the Routines

Name Description
Converts a percentage value [0,100] into the proper domain for use by CalibrationL6.DLL.
ConvertBridgeFromPercent 100 percent correspond to the full scale output (16777215 = 2724-1) of the 24-bit wide IC
output

Converts result from the IC (corrected measurement) or DLL’s calculation domain into a

ConvertBridgeToPercent . ; -
percentage reading for use in error calculations.

The percentage declarations for the bridge input are useful for defining the common range of the measured
item, for example, pressure. For calculation or verification routines listed in sections 3.3.3 and 0, the sensor
inputs must be processed through ConvertBridgeFromPercent routine which maps the bridge sensor
precentral values (0% to 100%) to the full scale range of 24-bit.

C code declaration:

double ConvertBridgeFromPercent(double percent);

Returns: The desired (reference) sensor value in counts according to the input in percent.

Example: One calibration input represents the desired and reference value of 10%. To convert this sensor
value for valid use in further process of coefficients calculation, this function has to be applied:

double desired_s1 = ConvertBridgeFromPercent(10.0);

ConvertBridgeToPercent can be used to convert any output from CalibrationL6.DLL back into the percentage
domain for error analysis. This routine should be used for the external sensor output after calibration.
Otherwise the percentage numbers is meaningless.

C code declaration:
double ConvertBridgeToPercent(double codes);
Returns: The sensor value in percent according to the input in code is provided.

Table 4. Parameter Bridge Routines

Parameter Description
codes 24-bit digital result value from the IC or DLL’s calculation (corrected measurement).
percent Bridge value in percent, referring to the applied measurement range.

3.3.2.2 Temperature Conversion Routines

Table 5. Overview of the Routines

Name Description
Converts a Celsius value [-45,150] into the proper domain for use by CalibrationL6.DLL.
ConvertTempFromDegrees User entered limit for the maximum temperature corresponds to the full scale output

(16777215 = 2"24-1) of the 24-bit wide I1C output.
Converts result from the IC (corrected measurement) or DLLs domain back into Celsius to
use in error calculations or to display values in Celsius.

ConvertTempToDegrees

All *°C* temperature inputs must be run through the ConvertTempFromDegrees function before coefficients
calculation. It expects a value between [-45, +150°C]. The result in code is saved to the variable, which is
passed on first place as a reference.

C code declaration:

__int32 ConvertTempFromDegrees(double *tempInCodes,
double tempInDegrees,

Apr.15.20 Page 14 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

double minTemp,
double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned if the input parameters are out of the expected ranges.

Example: During calibration, an environmental temperature of 50°C is applied as a calibration point. It needs
to be converted for further coefficient determination. The limits for minimum and maximum temperature have
to be provided to the function.

double desiredTemp;
int errorcode = 0;

errorcode = ConvertTempFromDegrees(&desiredTemp, 50.0, -40.0, 125.0);

ConvertTempToDegrees can be used to convert a 24-bit temperature as returned by GetCorrectedTemp into
degrees Celsius.

C code declaration:

__int32 ConvertTempToDegrees(double *tempInDegrees,
__int32 tempInCodes,
double minTemp,
double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned, if the input parameters are out of expected ranges.

Example: It is assumed that calibration is performed successfully. The coefficients are calculated and stored
in coefficients [COEFFICIENT_COUNT].

double tempCorrectedCodes;
double tempDegreesC;
int errorcode = 0;

tempCorrectedCodes = GetCorrectedTemp(coefficients, 320000);
errorcode += ConvertTempToDegrees(&tempDegreesC, tempCorrectedCodes, -40, 85);

Table 6. Parameter Temperature Routines

Parameter Description
*templnCodes Pointer to the variable where the calculated raw temperature value is stored.
templnDegrees Temperature in Celsius to be converted to codes.

minTemp The lower temperature limit of the calibration range, in Celsius.

maxTemp The upper temperature limit for of the calibration range, in Celsius.

3.3.2.3 Raw Values Conversion

Table 7. Overview of the Routine

Name Description
Converts a raw measurement value into a signed integer number in the range
[-2723..2723-1].

TwosComplementToDecimal

Raw bridge measurement results are provided from the ZSSC3240 as N-bit two’'s complement numbers,
where N is the customer configured ADC-resolution. For a proper input to the CalculateCoefficients function
or for common display in as a signed integer values, they have to be converted accordingly. Further details
are described in section 0.

For the conversion from a 24-bit two’'s complement value to a 24-bit decimal value, the
TwosComplementToDecimal function can be used.

C code declaration:

__int32 TwosComplementToDecimal (__int32 input);

Apr.15.20 Page 15 of 20
RENESAS

ZSSC3240

Calibration Sequence and DLL

Returns: Digital value in signed magnitude representation.

Example:

__int32 testTwosComp = 9;
__int32 signMagn = 9;

testTwosComp = Oxfffff6;

signMagn = TwosComplementToDecimal(testTwosComp);

// signMagn = -10

testTwosComp = Ox7000A3;

signMagn = TwosComplementToDecimal(testTwosComp);

// signMagn = 7340195

testTwosComp = Ox5;

signMagn = TwosComplementToDecimal(testTwosComp);

// signMagn = 5

testTwosComp = 0x800005;

signMagn = TwosComplementToDecimal(testTwosComp);

// signMagn = -8388603
3.3.3 Coefficients Calculation

CalculateCoefficients is the main function for doing the actual calibration calculations. It determines a set of
coefficients that provides calibrated output based on the provided set of data points. This function provides
the calibrated coefficients, which can be used in all of the verification methods listed in section 0.

C code declaration:

__int32 CalculateCoefficients(__int32 coefficients[COEFFICIENT_COUNT],

__int32 *negCoeffs
__int32 numPoints,
__int32 selCoeffs,
__int32 calType,

double
double
double
double

*bridgeRaw,
*bridgeDesired,
*tempRaw,
*tempDesired);

Returns: an error code denoting the status of the calculations. ‘0’ is passed if the method was passed

completely.

Before using the CalculateCoefficients function, the collected raw data must be converted to the expected

format. For further details on the IC-provided measurement data, see section 2.2.

Example:

int errorcode = 0;

int numPoints = 2;
int negCoeffs=0;

double rawBridge[2], desiredBridge[2];
// temperature input not relevant
double rawDummy[2] = = {NULL,NULL};
double desiredDummy[2] = {NULL,NULL};

int selCoeffs = CO_OFFSET_S | CO_GAIN_S;

// set coefficient array to zero
int coefficients[COEFFICIENT_COUNT] = {0};

Apr.15.20

RENESAS

Page 16 of 20

ZSSC3240 Calibration Sequence and DLL

// calibration type, default value
int calType = 9;

// raw data as double values
rawBridge[@] = -10000.0;
rawBridge[1] = 8236410.0;

// convert percentage reference values into the digital representative

desiredBridge [0]
desiredBridge [1]

ConvertBridgeFromPercent(10.0);
ConvertBridgeFromPercent(90.0);

// run coefficients calculation

errorcode = CalculateCoefficients(coefficients,
&negCoeffs,
numPoints,
selCoeffs,
calType,
rawBridge,
desiredBridge,

rawDummy , /* Not calibrating anything with temp */
desiredDummy /* Not calibrating anything with temp */

)
[FFFIEFAAFAIA X pasulting coefficientsHkxkkx
coefficients[@] = coefficients[INDEX_OFFSET_S] = -1028301
coefficients[1] = coefficients[INDEX_GAIN_S] = 3413303

errorcode = ©
***/

Table 8. Parameter CalculateCoefficients Function

Parameter

Description

coefficientsCOEFFICIENT_COUNT]

This array contains the calculated coefficients (functions’ return). The array must be zero-
filled prior to calling CalculateCoefficients unless using default values.

*negCoeffs Pointer to the representative sign parameter, with bitwise negative coefficient flags.
numPoints Number of calibration points used.
selCoeffs In binary representation, this parameter indicates which coefficient is to be calculated.
calType The type of calibration desired. A default value of 0 is recommended, which represents the

parabolic correction function and provides the best calculation approach.

*bridgeRaw [

Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints.

If not calibrating for bridge correction, the array elements can be NULL.

*bridgeDesired (@

Array of target sensor values. Must be converted for DLL input and have the length of
numPoints

If not calibrating for bridge correction, the array elements can be NULL.

*tempRaw (@l

Array of raw temperature values. Must be converted for DLL input and have the length of
numPoints.

If not calibrating for temperature correction, the array elements can be NULL.

*tempDesired [

Array of target temperature values. Must be converted for DLL input and have the length of
numPoints.

If not calibrating for temperature correction, the array elements can be NULL.

[a] The array must have matching indices to the according calibration points.

3.3.4 Verification Routine

The function checks whether the DLL calculation produced coefficients, or has a size exceeding the destined
dimensions. It is recommended to apply this function after each calculation of coefficients.

C code declaration:

__int32 VerifyCoefficients(const __int32 coefficients[COEFFICIENT_COUNT]);

Returns: An __int32 error code denoting the status of the calculations: ‘1’ on failure, ‘0’ on success.

Apr.15.20

Re Page 17 of 20
KENESAS

ZSSC3240 Calibration Sequence and DLL

Example:

int errorcode = 0;
errorcode = VerifyCoefficients(coefficients);

if (errorcode != @) // coefficients out of range

3.3.4.1 GetCorrectedTemp

GetCorrectedTemp calculates the calibrated temperature output based on the given calculated coefficients
and a raw temperature value.

C code declaration:

double GetCorrectedTemp(const __ int32 coefficients[COEFFICIENT_COUNT], double rawTemp);

Returns: The calibrated temperature in double-precision floating-point format is provided. It can be converted
to Celsius using the ConvertTempToDegree function, see section 0.

3.3.4.2 GetCorrectedBridge

GetCorrectedBridge calculates the calibrated bridge output based on the given calculated coefficients and
raw sensor and raw temperature values.

C code declaration:

double GetCorrectedBridge(const _ int32 coefficients[COEFFICIENT_COUNT],
double rawBridge, double rawTemp);

Returns: The calibrated output in double-precision floating-point format is provided. It can be converted to
percentage using Bridge Conversion Routines, see section 3.3.2.1.

Example: Assuming a seven point bridge/temperature calibration has been accomplished with raw data
(rawBridge[], rawTemp[]) and the result of a set of valid coefficients. Then a possible verification of the target
accuracy (here: 1.5% for the external bridge sensor and 3°C for temperature) at the calibration points could
be done as the below source code shows. Such verification does not include the inaccuracies caused by the
sensor and measurement, but the deviations caused by correction calculation.

// rawBridge[], rawTemp[] -> contain raw bridge/temperature data

// coefficients[] -> contain a set of valid coefficients

// refTempDeg[] -> contain reference temperature values in degree Celsius
// rawBridgePerc[] -> contain reference pressure values in percent

int errorcode = 9;
double outBridgeCodes, outBridgePerc, outTempCodes, outTempDeg;

// loop over calibration points
for(int i=0; i<3; i++) {

//Verify Temperature accuracy
outTempCodes = GetCorrectedTemp(coefficients, rawTemp[i]);
errorcode += ConvertTempToDegrees(&outTempDeg, outTempCodes, -40.0, 125.0);

// check ambient temperature accuracy comparing degC values
// between measured and reference values
if(fabs(refTempDeg[i]-outTempDeg) > 3.0) //ERROR

outBridgeCodes = GetCorrectedBridge(coefficients, rawBridge[i], rawTemp[i]);
outBridgePerc = ConvertBridgeToPercent(outBridgeCodes);

Apr.15.20 Page 18 of 20
RENESAS

ZSSC3240 Calibration Sequence and DLL

// check external sensor accuracy comparing percentage values
// between measured and reference values
if(fabs(outBridgePerc-rawBridgePerc[i]) > 1.5){..} //ERROR

3

3.3.4.3 BackCalcRawTemp

BackCalcRawTemp is the inverse function of GetCorrectedTemp. It calculates the raw temperature value
based on the given calculated coefficients and a corrected temperature value.

C code declaration:

__int32 BackCalcRawTemp(const _ int32 coefficents[COEFFICIENT_COUNT],
double *rawTemp, double correctedTempInDeg,
double minTemp, double maxTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully.'1’ is returned, if the input parameters are out of expected ranges.

3.3.4.4 BackCalcRawBridge

BackCalcRawBridge is the inverse function of GetCorrectedBridge. It calculates the raw bridge value based
on the given calculated coefficients and a corrected temperature value. Since the correction of bridge values
is processing also raw temperature values for specific calibration types, BackCalcRawBridge expects also
the passing of it.

C code declaration:

__int32 BackCalcRawBridge(const __int32 coefficents[COEFFICIENT_COUNT],
double * rawBridge,
double correctedBridgeInPerc,
double rawTemp);

Returns: an error code denoting the status of the calculations. ‘0’ is returned if the method was passed
successfully. ‘1’ is returned, if the input parameters are out of expected ranges.

Example:

// rawBridge[], rawTemp[] -> contain raw bridge/temperature data
// coefficients[] -> contain a set of valid coefficients

// caliPoints -> number of calibration points

// T_min,T_max -> temperature calibration limits

double correctedTempInCodes[caliPoints], correctedTempInDegC[caliPoints];
double correctedBridgeInCodes[caliPoints], correctedBridgeInPerc[caliPoints];
double rawT = 0, rawB = 0;

// correction functions applied in this loop calculating corrected output
for (i = @;i<caliPoints;i++){

correctedTempInCodes[i] = GetCorrectedTemp(coefficients, rawTemp[i]);
// convert corrected codes into degree celsius
ConvertTempToDegrees (&correctedTempInDegC[i], (int)correctedTempInCodes[i], T_min, T_max);

correctedBridgeInCodes[i] = GetCorrectedBridge (coefficients, rawBridge[i] , rawTemp[i]);
// convert corrected codes into percent
correctedBridgeInPerc[i] = ConvertBridgeToPercent(correctedBridgeInCodes[i]);

}

// back calculation functions applied in this loop calculating raw values
// from corrected degree celsius/percentage values
for (i = @;i<cali_points;i++){

BackCalcRawTemp(coefficients, &rawT, CorrectedTempInDegC[i], T_min, T_max);
BackCalcRawBridge(coefficients, &rawB, correctedBridgeInPerc[i], rawT);

// origin and recalculated raw values should be the same
// rawTemp[i] == rawT -> True

Apr.15.20 Page 19 of 20
RENESAS

ZSSC3240

Calibration Sequence and DLL

// rawBridge[i] == rawB -> True

}

Table 9. Parameter BackClacRawTemp/BackCalcRawBridge Functions

Parameter

Description

coefficients] COEFFICIENT_COUNT]

This array contains the applied coefficients.

*rawTemp @

Array of raw temperature values (functions’ return).

correctedTemplinDeg

The corrected temperature measurement output, should be provided in degree Celsius

*rawBridge (2]

Array of raw sensor values. Must be converted for DLL input and have the length of
numPoints.
If not calibrating for bridge correction, the array elements can be NULL.

correctedBridgelnPerc

The corrected bridge measurement output, should be provided in percent

minTemp

The lower temperature limit of the calibration range, in Celsius.

maxTemp

The upper temperature limit for of the calibration range, in Celsius.

[b] The array must have matching indices to the according calibration points.

4. Glossary
Term Description
AFE lAnalog Front End
API IApplication Programming Interface
CMD Command
CRC Cyclic Redundancy Check
DLL Dynamic-Link Library: an executable file that enables programs to share code and resources for completing
specific tasks
FS Full Scale
GUI Graphical User Interface
IC Integrated Circuit
ID Identifier
LSB Least Significant Bit
MSB Most Significant Bit
NVM Non Volatile Memory
PC Personal Computer
SSC Sensor Signal Conditioner
T Temperature
VB \Visual Basic
5. Revision History
Description
Rev. Date Page Summary
1.0 Apr.15.20 Initial release
Apr.15.20 Page 20 of 20

RENESAS

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Disclaimer Rev.5.0-1)

Contact Information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

© 2026 Renesas Electronics Corporation. All rights reserved.

	2. Calibration Sequence
	2.1 Set-up and Initialization
	2.1.1 Assigning a Unique Identification Number to the IC
	2.1.2 Analog Front End Configuration
	2.1.3 Temperature Configuration

	2.2 Data Collection
	2.2.1 Data Collection by Raw Measurement Requests

	2.3 Coefficient Calculations
	2.4 Programming NVM
	2.5 Verification

	3. CalibrationL6.DLL
	3.1 DLL Setup
	3.2 DLL Use
	3.2.1 Using Customer Default Values as Coefficients

	3.3 CalibrationL6.DLL Application Programming Interface (API)
	3.3.1 Constants used with CalibrationL6.DLL
	3.3.2 Conversion Routines
	3.3.3 Coefficients Calculation
	3.3.4 Verification Routine

	4. Glossary
	5. Revision History

