Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

μ**PD78F8014A**, **78F8015A**, **78F8016A**

8-Bit Single-Chip Microcontroller With LIN Transceiver & Power Supply

μPD78F8014A(A) μPD78F8015A(A) μPD78F8016A(A)

Document No. U18867EJ4V0UD00 (4th edition) Date Published May 2009 NS © NEC Electronics Corporation 2007 Printed in Japan [MEMO]

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

EEPROM is a trademark of NEC Electronics Corporation.

Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, inc.

- The information in this document is current as of May, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC
 Electronics products are not taken measures to prevent radioactive rays in the product design. When customers
 use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate
 sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in
 order to avoid risks of the damages to property (including public or social property) or injury (including death) to
 persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

INTRODUCTION

Readers	This manual is intended for user engineers who wish to understand the functions of the
	$\mu\text{PD78F8014A},\ \text{78F8015A},\ \text{and}\ \text{78F8016A},\ \text{and}\ \text{to}\ \text{design}\ \text{and}\ \text{develop}\ \text{application}$
	systems and programs for these devices.

 Purpose
 This manual is intended to give users an understanding of the functions described in the

 Organization below.

OrganizationThe μ PD78F8014A, 78F8015A, and 78F8016A's manuals are separated into three
manuals: this manual, 78K0/Kx2 User's Manual, and the Instructions edition (common
to the 78K0 Series).

μ PD78F8014A, 78F8015A, 78F8016A User's Manual (This Manual)	78K0/Kx2 User's Manual	78K/0 Series User's Manual Instructions	
 Pin functions Internal block functions On-chip peripheral functions Electrical specifications (target) 	 Pin functions Internal block functions Interrupts Other on-chip peripheral functions Electrical specifications 	 CPU functions Instruction set Explanation of each instruction	
	w to Read This Manual It is assumed that the readers of this manual have general knowledge of electric engineering, logic circuits, and microcontrollers.		

- To gain a general understanding of functions:
 - → Read this manual in the order of the CONTENTS. The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
- The notation of the product name
 - → Description of (A) is omitted in this manual. "(A)" product names should be read as follows
 - μPD78F8014A→ μPD78F8014A(A)
 - *μ*PD78F8015A→ *μ*PD78F8015A(A)
 - μPD78F8016A→ μPD78F8016A(A)
- To know details of the microcontroller part:
 - → Refer to the separate document **78K0/Kx2 User's Manual (U18598E)**.

78K0/KC2 microcontroller products	The products corresponding to the 78K0/KC2 microcontroller products	
μPD78F0511A	μPD78F8014A	
μPD78F0512A	μPD78F8015A	
μPD78F0513A	μPD78F8016A	

- To know details of the 78K0 microcontroller instructions:
 - \rightarrow Refer to the separate document **78K/0 Series Instructions User's Manual** (U12326E).

Conventions	Data significance: Active low representations: Note :	 Higher digits on the left and lower digits on the righ ××× (overscore over pin and signal name) Footnote for item marked with Note in the text 	
	Caution:	Information requiring particular attention Supplementary information	
	Remark:		
	Numerical representations:	Binary xxx	× or ××××B
		Decimal xxx	×
		Hexadecimal xxx	×H
Related Documents	The related documents ind	cated in this publicati	on may include preliminary versi

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μPD78F8014A, 78F8015A, 78F8016A User's Manual	This Manual
78K0/Kx2 User's Manual	U18598E
78K/0 Series Instructions User's Manual	U12326E
78K0/Kx2 Flash Memory Programming (Programmer) Application Note	U17739E
78K0 Microcontrollers Self Programming Library Type01 User's Manual	U18274E
78K0 Microcontrollers EEPROM [™] Emulation Library Type01 User's Manual	U18275E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
QB-78K0KX2 In-Circuit Emulator	U17341E
QB-MINI2 On-Chip Debug Emulator with Programming Function	U18371E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual	U18865E
PG-FP4 Flash Memory Programmer User's Manual	U15260E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Documents Related to Development Tools (Software) (User's Manuals)

Document Name	Document No.	
RA78K0 Ver.3.80 Assembler Package	Operation	U17199E
User's Manual ^{Note 1}	Language	U17198E
	Structured Assembly Language	U17197E
78K0 Assembler Package RA78K0 Ver.4.01 Operating Precauti	ons (Notification Document)	ZUD-CD-07-0181-E
CC78K0 Ver.3.70 C Compiler	Operation	U17201E
User's Manual Note 2	Language	U17200E
78K0 C Compiler CC78K0 Ver. 4.00 Operating Precautions (Notification Document) Note 2		ZUD-CD-07-0103-E
ID78K0-QB Ver.2.94 Integrated Debugger User's Manual Operation		U18330E
ID78K0-QB Ver.3.00 Integrated Debugger User's Manual Operation		U18492E
PM plus Ver.5.20 ^{Note 3} User's Manual	U16934E	
PM+ Ver.6.30 ^{Note 4} User's Manual	U18416E	

Notes 1. This document is installed into the PC together with the tool when installing RA78K0 Ver. 4.01. For descriptions not included in "78K0 Assembler Package RA78K0 Ver. 4.01 Operating Precautions", refer to the user's manual of RA78K0 Ver. 3.80.

- 2. This document is installed into the PC together with the tool when installing CC78K0 Ver. 4.00. For descriptions not included in "78K0 C Compiler CC78K0 Ver. 4.00 Operating Precautions", refer to the user's manual of CC78K0 Ver. 3.70.
- 3. PM plus Ver. 5.20 is the integrated development environment included with RA78K0 Ver. 3.80.
- **4.** PM+ Ver. 6.30 is the integrated development environment included with RA78K0 Ver. 4.01. Software tool (assembler, C compiler, debugger, and simulator) products of different versions can be managed.

Other Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE – Product and Packages –	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E
Review of Quality and Reliability Handbook Information	C12769E

Note See the "Semiconductor Device Mount Manual" website (http://www.necel.com/pkg/en/mount/index.html)

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

CONTENTS

CHAPTER 1 OUTLINE	11
1.1 Features	11
1.2 Applications	13
1.3 Ordering Information	
1.4 Pin Configuration (Top View)	14
1.5 Block Diagram	
1.5.1 Microcontroller block diagram	17
1.5.2 Analog block diagram	18
1.6 Outline of Functions	19
CHAPTER 2 PIN FUNCTIONS	
2.1 Microcontroller Part Pin Functions	
2.2 Analog Part Pins	
2.3 Description of Pin Functions	
2.3.1 P00, P01 (port 0)	
2.3.2 P10 to P17 (port 1)	26
2.3.3 P20 to P24 (port 2)	27
2.3.4 P30 to P33 (port 3)	27
2.3.5 P60 to P61 (port 6)	
2.3.6 P70 (port 7)	
2.3.7 P120 to P122 (port 12)	29
2.3.8 AVREF	29
2.3.9 AVss	29
2.3.10 RESET	29
2.3.11 REGC	30
2.3.12 VDD	
2.3.13 Vss	30
2.3.14 FLMD0	
2.3.15 Dr1, Dr21, Dr22, Dr3, Dr4	
2.3.16 Dr1_I, Dr21_I, Dr22_I, Dr3_I, Dr4_I	
2.3.17 GND1, GND2, GND3	
2.3.18 HDS	
2.3.19 LIN	
2.3.20 MSLP	
2.3.21 SUP	-
2.3.22 UMODE	
2.3.23 VIC	-
2.3.24 VRO	
2.4 Pin I/O Circuits and Recommended Connection of Unused Pins	33
CHAPTER 3 MICROCONTROLLER FUNCTIONS	
3.1 Differences between This Micro's Functions and 78K0/KC2	
3.2 Differences between the Special Function Registers and 78K0/KC2	
3.3 Differences in Register Bit Setting from 78K0/KC2 (44-pin)	
3.3.1 Port mode register	
3.3.2 Port register	42

3.3.3 Pull-up resistor option register	42
3.3.4 Analog input channel specification register	43
3.3.5 A/D port configuration register	44
3.3.6 Key return mode register	45
3.3.7 Watch timer operation mode register	45
3.3.8 Clock operation mode select register	46
3.3.9 Processor clock control register	46
3.3.10 IIC clock selection register 0	47
CHAPTER 4 WRITING WITH FLASH PROGRAMMER	48
CHAPTER 5 POWER SUPPLY CIRCUIT	49
5.1 Power Supply Function	
5.2 Power Supply Overcurrent Protection Function	
5.3 Power Supply Thermal Shutdown Function	
CHAPTER 6 LIN TRANSCEIVER FUNCTION	
6.1 LIN Transceiver Function	
6.2 Operation Mode	
6.3 Overcurrent Limiter	
6.4 Thermal Shutdown Circuit	
	55
CHAPTER 7 DRIVER CIRCUIT	54
7.1 Low Side Driver	54
7.2 High Side Driver	54
	57
CHAPTER 8 ELECTRICAL SPECIFICATIONS (A) GRADE PRODUCTS 8.1 Absolute Maximum Ratings	
-	
8.2 Microcontroller Block Characteristics 8.3 Analog Block Characteristics	
6.5 Analog Block Characteristics	
CHAPTER 9 PACKAGE DRAWING	81
APPENDIX A DEVELOPMENT TOOLS	82
A.1 Software Package	
A.2 Language Processing Software	
A.3 Flash Memory Writing Tools	
A.3.1 When using flash memory programmer FG-FP5, FL-PR5, FG-FP4, and FL-PR4	86
A.3.2 When using on-chip debug emulator with programming function QB-MINI2	
A.4 Debugging Tools (Hardware)	87
A.4.1 When using in-circuit emulator QB-78K0KX2	87
A.4.2 When using on-chip debug emulator with programming function QB-MINI2	87
A.6 Debugging Tools (Software)	88
APPENDIX B PACKAGE THERMAL RESISTANCE	89
APPENDIX C CALCULATION EXAMPLE OF POWER DISSIPATION AND JUNCTION TEMPERATURE	90
APPENDIX D REVISION HISTORY	91
D.1 Main Revisions in this Edition	
D.2 Revision History of Preceding Editions	

CHAPTER 1 OUTLINE

μPD78F8014A, 78F8015A, and 78F8016A are MCP (Multi-Chip Package) which combined 2 chips in 1 package: an analog chip (including LIN transceiver, power supply, and several drivers) and a microcontroller chip. 8-bit microcontroller block is 78K0/KC2.

1.1 Features

O ROM, RAM capacities

	Part Number	Program Memory		Data Memory
Item		(ROM)		Internal High-Speed RAM ^{Note}
μPD78F8014A		Flash memory Note	16 KB	768 bytes
μPD78F8015A			24 KB	1 KB
μPD78F8016A			31 KB	

Note The internal flash memory, internal high-speed RAM capacities, can be changed using the internal memory size switching register (IMS).

- O On-chip single-power-supply flash memory
- O Self-programming (with boot swap function)
- O On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
- O On-chip watchdog timer (operable with the on-chip internal low speed oscillation clock)
- O On-chip key interrupt function
- O I/O ports: 25 (N-ch open drain: 2)
- O Timer: 7 channels
 - 16-bit timer/event counters: 1 channel
 - 8-bit timer/event counters: 2 channels
 - 8-bit timer: 2 channels
 - Watch timer: 1 channel
 - Watch dog timer: 1 channel
- O Serial interface: 3 channels

 UART (LIN (Local Interconnect Network)-bus supported): 	1 channel
- CSI/UART ^{Note} :	1 channel
- IIC:	1 channel
O 10-bit resolution A/D converter: 5 channels	

Note Select either of the functions of these alternate-function pins.

O On-chip power supply circuit Output voltage: 5 V \pm 3% On-chip overcurrent protection circuit On-chip thermal shutdown circuit O LIN transceiver

The LIN transceiver complies with LIN Specifications Rev.2.0 Low power consumption achieved with on-chip sleep function On-chip pull-up resistors for slave applications On-chip LIN driver overcurrent protection circuit On-chip LIN driver thermal shutdown circuit

O Driver

Low side driver:	3 channels
Low side pre driver:	1 channel
High side driver:	1 channel

O Package: 52-pin plastic LQFP (10×10)

O Operation ambient temperature: TA = -40 to +85 °C

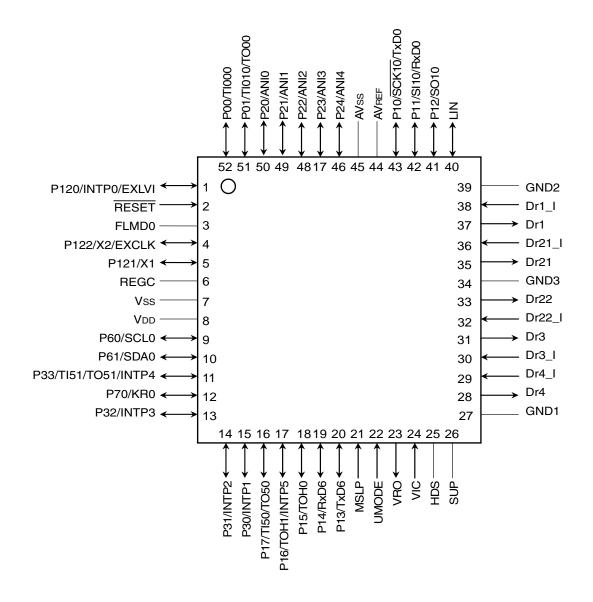
1.2 Applications

O Automotive equipment

System control for body electronic control units

- Power windows
- Power slide door
- Mirror control, etc.

1.3 Ordering Information

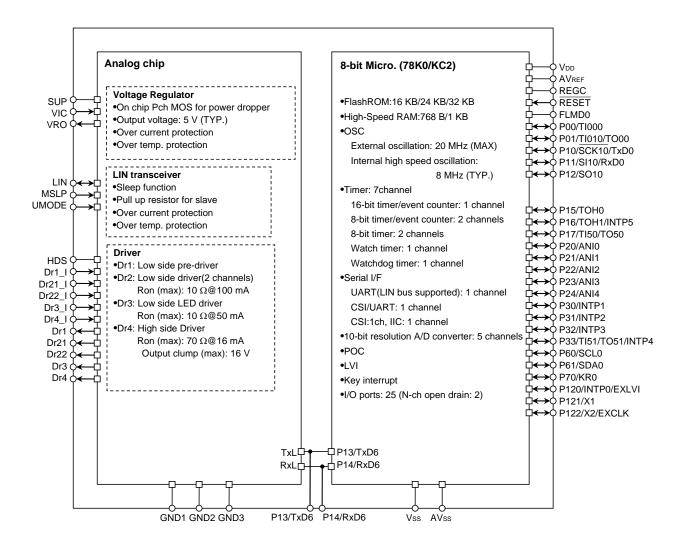

	Part Number	Package	Quality Grade
<r></r>	μPD78F8014AGBA-GAG-G ^{Note}	52-pin plastic LQFP (10×10)	Special
<r></r>	μ PD78F8015AGBA-GAG-G ^{Note}	52-pin plastic LQFP (10×10)	Special
<r></r>	μPD78F8016AGBA-GAG-G ^{Note}	52-pin plastic LQFP (10×10)	Special

Note (A) grade product

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of quality grade on the devices and its recommended applications.

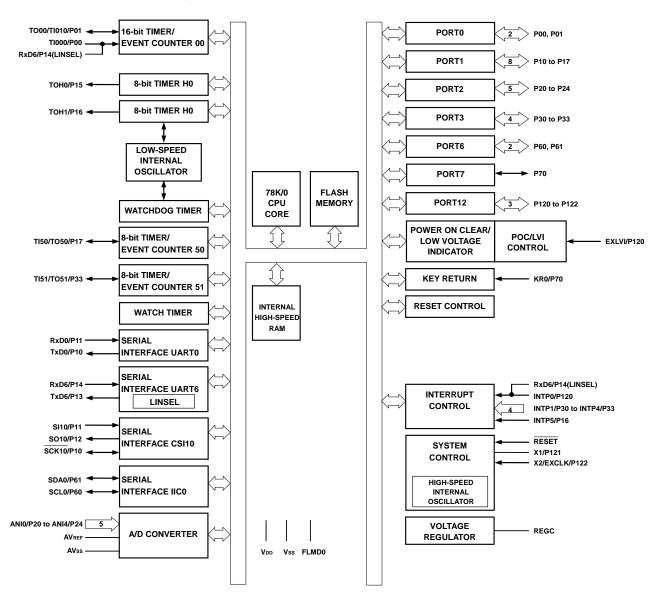
1.4 Pin Configuration (Top View)

• 52-pin plastic LQFP (10×10)

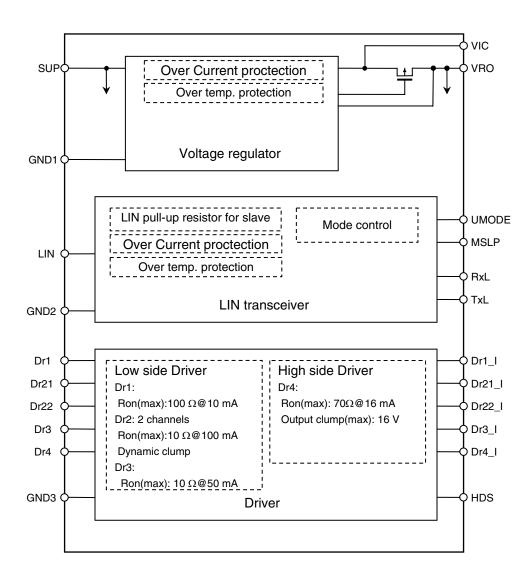

Cautions 1. Make AVss the same potential as Vss.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 μ F to 1 μ F: recommended).
- 3. ANI0/P20 to ANI4/P24 are in the analog input mode after reset release.
- 4. Make Vss the same potential as GND1 to GND3.
- 5. Make SUP the same potential as HDS.
- 6. Make VRO the same potential as VDD.

Pin identificatio	n		
ANI0 to ANI4	: Analog Input	P60, P61	: Port 6
AVREF	: Analog Reference Voltage	P70	: Port 7
AVss	: Analog Ground	P120 to P122	: Port 12
Dr1, Dr21, Dr22,		REGC	: Regulator Capacitance
Dr3, Dr4	: Driver Output	RESET	: Reset
Dr1_I, Dr21_I,		RxD0, RxD6	: Receive Data
Dr22_I, Dr3_I,		SCK10, SCL0	: Serial Clock Input/Output
Dr4_I	: Driver Control	SDA0	: Serial Data Input/Output
EXCLK	: External Clock Input (Main System	SI10	: Serial Data Input
	Clock)	SO10	: Serial Data Output
EXLVI	: External potential Input for Low-	SUP	: Power Supply
	voltage detector	TI000, TI010,	
FLMD0	: Flash Programming Mode	TI50, TI51	: Timer Input
GND1 to GND3	: Ground	ТО00,	
HDS	: High-side Driver Power Supply	TO50, TO51,	
INTP0 to INTP5	: External Interrupt Input	TOH0, TOH1	: Timer Output
KR0	: Key Return	TxD0, TxD6	: Transmit Data
LIN	: LIN Bus	UMODE	: LIN Mode
MSLP	: Sleep Mode	Vdd	: Power Supply
P00, P01	: Port 0	VIC	: Power Supply and Current Monitor
P10 to P17	: Port 1	VRO	: Voltage Regulator Output
P20 to P24	: Port 2	Vss	: Ground
P30 to P33	: Port 3	X1, X2	: Crystal Oscillator (Main System Clock)


Pin Identification

1.5 Block Diagram



- Cautions 1. μ PD78F8014A, 78F8015A, and 78F8016A are developed as MCP (Multi-Chip Package) which includes 2 chips in the package, a microcontroller and an analog chip.
 - 2. The P13/TxD6 and P14/RxD6 terminals are connected with the LIN transceiver inside the package.

1.5.1 Microcontroller block diagram

1.5.2 Analog block diagram

1.6 Outline of Functions

	Item	μPD78F8014A	μPD78F8015A	(1/2) µPD78F8016A	
Fla	sh memory (KB)	16	24	32	
	h-Speed RAM (KB)	0.75		1	
Po	wer supply voltage		V _{DD} = 1.8 to 5.5 V		
Re	gulator		Provided		
	imum instruction	0.1 μs (20 MHz: \	0.1 μ s (20 MHz: V _{DD} = 2.7 to 5.5 V)/0.4 μ s (5 MHz: V _{DD} = 1.8 to 5.5 V)		
Clock	High-speed system	20 MHz:	VDD = 2.7 to 5.5 V/5 MHz: VDD = 1.	8 to 5.5 V	
ō	Internal high-speed oscillation		8 MHz (TYP.): V _{DD} = 1.8 to 5.5 V		
	Internal low-speed oscillation		240 kHz (TYP.): VDD = 1.8 to 5.5 V	1	
Port	Total		25		
_	N-ch O.D. (6 V tolerance)		2		
Timer	16 bits (TM0)		1 ch		
iΞ	8 bits (TM5)	2 ch			
	8 bits (TMH)	2 ch			
	Watch		1 ch		
	WDT		1 ch		
erface	UART/3-wire CSI ^{Note}		1 ch		
Serial interface	UART supporting LIN-bus		1 ch		
Ser	l²C bus		1 ch		
10-	bit A/D		5 ch		
rupt	External		7		
Interrupt	Internal		16		
Ke	/ interrupt		1 ch		
Reset	RESET pin		Provided		
щ	POC		1.59 V ±0.15 V		
	LVI	The detec	ction level of the supply voltage is a	selectable.	
	WDT		Provided		
Mu	ltiplier/divider		Provided		
On	-chip debug function		_		
Ope	erating ambient temperature		TA = -40 to +85°C		

Note Select either of the functions of these alternate-function pins.

			(2/2)	
Item	μPD78F8014A	µPD78F8015A	μPD78F8016A	
Power Supply	• Input voltage : Vsup = 7 to	9 19 V		
	• Output voltage: 5 V \pm 3%			
	Include P-ch MOS for drop	oper		
	On-chip overcurrent prote	ction circuit		
	On-chip thermal shutdow	n circuit		
LIN transceiver	The LIN transceiver comp	lies with LIN Specifications Rev.	2.0	
	Low power consumption a	chieved with on-chip sleep funct	lion	
	On-chip pull-up resistors for slave applications			
	On-chip LIN driver current protection circuit			
	On-chip LIN driver therma	l shutdown circuit		
Driver	Low side driver[4 channels]			
	Pre-driver :1 channel			
	Relay-driver :2 channels (Include dynamic clamp)			
	LED driver :1 channel			
	High side driver :1 channel (Includes 16 V clamp circuit)			

An outline of the timer is shown below.

		16-Bit Timer/ Event Counters 00 and 01	Event Counters Event Counters		8-Bit Timers H0 and H1		Watch Timer	Watchdog Timer
		TM00	TM50 TM51		TMH0 TMH1			
Function	Interval timer	1 channel	1 channel	1 channel	1 channel	1 channel	1 channel Note 1	_
	External event counter	1 channel	1 channel	1 channel	_	_	_	_
	PPG output	1 output	-	-	-	-	-	-
	PWM output	_	1 output	1 output	1 output	1 output	-	-
	Pulse width measurement	2 inputs	-	-	-	-	-	-
	Square-wave output	1 output	1 output	1 output	1 output	1 output	-	-
	Carrier generator	-	_	-	_	1 output Note 2	_	_
	Watch Timer	-	-	_	_	_	1 channel Note 1	_
	Watchdog timer	-	-	-	_	-	_	1 channel
Interrupt	source	2	1	1	1	1	1	_

Notes 1. The watch timer function and interval timer function of the watch timer can be used simultaneously.

2. TM51 and TMH1 can be used in combination as a carrier generator mode.

CHAPTER 2 PIN FUNCTIONS

The differences in microcontroller pin functions between the μ PD78F8014A, 78F8015A, 78F8016A and the 78K0/KC2 are as follows.

•	14A, 78F8015A, F8016A	μPD78F05	78K0/KC2 µPD78F0511A, 78F0512A, 78F0513A		μΡD78F8014A, 78F8015A, 78F8016A		3
Pin name	Alternate function	Pin name	Alternate function	Pin name	Alternate function	Pin name	
P00	T1000	P00	TI000	P32	INTP3	P32	
P01	TI010/TO00	P01	TI010/TO00	P33	INTP4/TI51/ TO51	P33	
P10	SCK10/TxD0	P10	SCK10/TxD0	-	-	P40 to P41	
P11	SI10/RxD0	P11	SI10/RxD0	P60	SCL0	P60	
P12	SO10	P12	SO10	P61	SDA0	P61	
P13	TxD6	P13	TxD6	-	_	P62	
P14	RxD6	P14	RxD6	_	-	P63	
P15	ТОН0	P15	ТОН0	P70	KR0	P70 to P73	
P16	TOH1/INTP5	P16	TOH1/INTP5	P120	INTP0/EXLVI	P120	
P17	TI50/TO50	P17	TI50/TO50	P121	X1	P121	
P20 to P24	ANI0 to ANI4	P20 to P27	ANI0 to ANI7	P122	X2/EXCLK	P122	
P30	INTP1	P30	INTP1	-	_	P123	
P31	INTP2	P31	INTP2	_	_	P124	

(1) Port and alternate function pins

(2) Non-port pins

µPD78F8014A, 78F8015A, 78F8016A	78K0/KC2		
	μPD78F0511A, 78F0512A, 78F0513A		
Pin name	Pin name		
V _{DD}	Vdd		
Vss	Vss		
RESET	RESET		

<i>µ</i> РD78F8014А, 78F8015А, 78F8016А	78K0/KC2 μPD78F0511A, 78F0512A, 78F0513A
Pin name	Pin name
FLMD0	FLMD0
AVREF	AVREF
AVss	AVss
REGC	REGC

2.1 Microcontroller Part Pin Functions

There are two types of pin I/O buffer power supplies: AV_{REF} , and V_{DD} . The relationship between these power supplies and the pins are shown below.

Power Supply	Corresponding Pins
AVREF	P20 to P24
V _{DD}	Pins other than P20 to P24

Table 2-1. Pin I/O Buffer Power Supplies

(1) Port pins

Function Name	I/O	Function	After Reset	Alternate Function
P00	I/O	Port 0. 2-bit I/O port.	Input port	T1000
P01	_	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.		TI010/TO00
P10	I/O	Port 1.	Input port	SCK10/TxD0
P11		8-bit I/O port.		SI10/RxD0
P12		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a		SO10
P13		software setting.		TxD6
P14				RxD6
P15	_			ТОН0
P16	_			TOH1/INTP5
P17				TI50/TO50
P20 to P24	I/O	Port 2. 5-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANI0 to ANI4
P30 to P32	I/O	Port 3. 4-bit I/O port. Input/output can be specified in 1-bit units.	Input port	INTP1 to INTP3
P33]	Use of an on-chip pull-up resistor can be specified by a software setting.		INTP4/TI51/TO51
P60	I/O	Port 6.	Input port	SCL0
P61		2-bit I/O port. Output of P60 to P61 is N-ch open-drain output Input/output can be specified in 1-bit units.		SDA0
P70	I/O	Port 7. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	KR0
P120	I/O	Port 12.	Input port	INTP0/EXLVI
P121		3-bit I/O port.		X1
P122		Input/output can be specified in 1-bit units. Only for P120, use of an on-chip pull-up resistor can be specified by a software setting.		X2/EXCLK

Function Name	I/O	Function	After Reset	Alternate Function
ANI0 to ANI4	Input	A/D converter analog input	Analog input	P20 to P24
EXLVI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
FLMD0	-	Flash memory programming mode setting	-	-
INTP0	Input	External interrupt request input for which the valid edge	Input port	P120/EXLVI
INTP1 to INTP3 INTP4		(rising edge, falling edge, or both rising and falling edges)		P30 to P32
		can be specified		P33/TI51/TO51
INTP5				P16/TOH1
KR0	Input	Key interrupt input	Input port	P70
REGC	_	Connecting regulator output stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 μ F to 1 μ F: recommended).	-	_
RESET	Input	System reset input	_	_
RxD0	Input	Serial data input to asynchronous serial interface (UART0)	Input port	P11/SI10
RxD6	Input	Serial data input to asynchronous serial interface (UART6)	Input port	P14
SCK10	I/O	Clock input/output for CSI10	Input port	P10/TxD0
SCL0	1/0	Clock input/output for IIC	Input port	P60
SDA0	I/O	Serial data input/output for IIC	Input port	P61
SO10	Output	Serial data output for CSI10	Input port	P12
TI000 Input		External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
TI010		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
TI50	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50
TI51		External count clock input to 8-bit timer/event counter 51		P33/TO51/INTP4
ТО00	Output	16-bit timer/event counter 00 output	Input port	P01/TI010
TO50	Output	8-bit timer/event counter 50 output	Input port	P17/TI50
TO51		8-bit timer/event counter 51 output		P33/TI51/INTP4
ТОН0		8-bit timer H0 output		P15
TOH1		8-bit timer H1 output		P16/INTP5
TxD0	Output	Serial data output for UART0	Input port	P10/SCK10
TxD6	Output	Serial data output for UART6	Input port	P13
X1	Input	Connecting resonator for main system clock	Input port	P121
X2	_			P122/EXCLK
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
Vdd	-			_
AVREF	Input	A/D converter reference voltage input and positive power supply for P20 to P24 and A/D converter	-	-
Vss	_	Ground potential (P121 to P124 and except for ports) –		-
AVss	_	A/D converter ground potential. Make the same potential as EVss or Vss.	-	_

(2) Non-port functions

2.2 Analog Part Pins

Function Name	I/O	Function			
Dr1	Output	Driver 1 output			
Dr21	Output	Driver 21 output			
Dr22	Output	Driver 22 output			
Dr3	Output	Driver 3 output			
Dr4	Output	Driver 4 output			
Dr1_I	Input	Driver 1 control signal input			
Dr21_I	Input	Driver 21 control signal input			
Dr22_I	Input	Driver 22 control signal input			
Dr3_I	Input	Driver 3 control signal input			
Dr4_I	Input	Driver 4 control signal input			
GND1	-	Power supply circuit GND			
GND2	-	LIN transceiver circuit GND			
GND3	-	Driver circuit GND			
HDS	-	High side driver power supply			
LIN	I/O	LIN Bus connection pin			
MSLP	Input	Sleep / Normal mode select for LIN			
SUP	-	Power supply connection pin			
UMODE	Input	LIN transceiver function enable / disable selection pin			
		Low: Enable LIN transceiver			
		High: Disable LIN transceiver			
VIC	Input	Power supply and current monitor			
VRO	Output	Voltage regulator output and monitor			

Cautions 1. Make GND1, GND2, GND3 the same potential as Vss and AVss

- 2. Make SUP the same potential as HDS.
- 3. Make VRO the same potential as VDD.

2.3 Description of Pin Functions

2.3.1 P00, P01 (port 0)

2-bit I/O port. These pins also function as timer I/O. The following operation modes can be specified in 1-bit units.

(1) Port mode

2-bit I/O port. P00, P01can be set to input or output port in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00, P01 function as timer I/O.

(a) TI000

This is the pins for inputting an external count clock to 16-bit timer/event counter 00 and is also for inputting a capture trigger signal to the capture registers (CR000, CR010) of 16-bit timer/event counter 00.

(b) TI010

This is the pin for inputting a capture trigger signal to the capture register (CR000) of 16-bit timer/event counter 00.

(c) TO00

This is a timer output pin of 16-bit timer/event counters 00.

2.3.2 P10 to P17 (port 1)

P10 to P17 function as an 8-bit I/O port. These pins also function as pins for external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P10 to P17 function as an 8-bit I/O port. P10 to P17 can be set to input or output port in 1-bit units using port mode register 1 (PM1). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as external interrupt request input, serial interface data I/O, clock I/O, and timer I/O.

(a) SI10

This is a serial data input pin of serial interface CSI10.

(b) SO10

This is a serial data output pin of serial interface CSI10.

(c) SCK10

This is a serial clock I/O pin of serial interface CSI10.

(d) RxD0

This is a serial data input pin of serial interface UART0.

(e) RxD6

This is a serial data input pin of serial interface UART6.

(f) TxD0

This is a serial data output pin of serial interface UART0.

(g) TxD6

This is a serial data output pin of serial interface UART6.

(h) TI50

This is the pin for inputting an external count clock to 8-bit timer/event counter 50.

(i) TO50

This is a timer output pin of 8-bit timer/event counter 50.

(j) TOH0, TOH1

These are the timer output pins of 8-bit timers H0 and H1.

(k) INTP5

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

2.3.3 P20 to P24 (port 2)

P20 to P24 function as a 5-bit I/O port. These pins also function as pins for A/D converter analog input. The following operation modes can be specified in 1-bit units.

(1) Port mode

P20 to P24 function as a 5-bit I/O port. P20 to P24 can be set to input or output port in 1-bit units using port mode register 2 (PM2).

(2) Control mode

P20 to P24 function as A/D converter analog input pins (ANI0 to ANI4). When using these pins as analog input pins, see **13.6 Cautions for A/D Converter in 78K0/Kx2 User's Manual (U18598E)**.

Caution ANI0/P20 to ANI4/P24 are set to analog input mode after reset release.

2.3.4 P30 to P33 (port 3)

P30 to P33 function as a 4-bit I/O port. These pins also function as pins for external interrupt request input and timer I/O.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as a 4-bit I/O port. P30 to P33 can be set to input or output port in 1-bit units using port mode register 3 (PM3). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as external interrupt request input and timer I/O.

(a) INTP1 to INTP4

These are the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) TI51

This is an external count clock input pin to 8-bit timer/event counter 51.

(c) TO51

This is a timer output pin from 8-bit timer/event counter 51.

2.3.5 P60 to P61 (port 6)

P60 to P61 function as a 2-bit I/O port. These pins also function as pins for serial interface data I/O, clock I/O. The following operation modes can be specified in 1-bit units.

(1) Port mode

P60 to P61 function as a 2-bit I/O port. P60 to P61 can be set to input port or output port in 1-bit units using port mode register 6 (PM6).

Output of P60 to P61 is N-ch open-drain output (6V tolerance).

(2) Control mode

P60 to P61 function as serial interface data I/O, clock I/O.

(a) SDA0

This is a serial data I/O pin for serial interface IIC0.

(b) SCL0

This is a serial clock I/O pin for serial interface IIC0.

2.3.6 P70 (port 7)

P70 function as a 1-bit I/O port. These pins also function as key interrupt input pins. The following operation modes can be specified.

(1) Port mode

P70 function as a 1-bit I/O port. P70 can be set to input or output port using port mode register 7 (PM7). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 7 (PU7).

(2) Control mode

P70 function as key interrupt input pins.

(a) KR0

This is a key interrupt input pins

2.3.7 P120 to P122 (port 12)

P120 to P122 function as a 3-bit I/O port. These pins also function as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, external clock input for main system clock. The following operation modes can be specified in 1-bit units.

(1) Port mode

P120 to P122 function as a 3-bit I/O port. P120 to P122 can be set to input or output port using port mode register 12 (PM12). Only for P120, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

(2) Control mode

P120 to P122 function as pins for external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, external clock input for main system clock.

(a) INTP0

This functions as an external interrupt request input (INTP0) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) EXLVI

This is a potential input pin for external low-voltage detection.

(c) X1, X2

These are the pins for connecting a resonator for main system clock.

(d) EXCLK

This is an external clock input pin for main system clock.

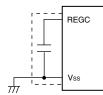
2.3.8 AVREF

This is the A/D converter reference voltage input pin and the positive power supply pin of P20 to P24 and A/D converter.

When the A/D converter is not used, connect this pin directly to VDD^{Note}.

Note Make the AVREF pin the same potential as the VDD pin when port 2 is used as a digital port.

2.3.9 AVss


This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the VSS pin.

2.3.10 RESET

This is the active-low system reset input pin.

2.3.11 REGC

This is the pin for connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F: recommended).

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.3.12 VDD

VDD is the positive power supply pin for Micro.

2.3.13 Vss

Vss is the ground potential pin.

2.3.14 FLMD0

This is a pin for setting flash memory programming mode. Connect FLMD0 to Vss in the normal operation mode. In flash memory programming mode, connect this pin to the flash programmer.

2.3.15 Dr1, Dr21, Dr22, Dr3, Dr4

These are high voltage driver output pin. Each driver output can control with the Dr1_I, Dr21_I, Dr22_I, Dr3_I, Dr4_I input signal.

(a) Dr1

This is a Low side driver output pin.

(b) Dr21, Dr22

This is a Low side driver output pin. These pin has dynamic clump function for high voltage protection.

(c) Dr3

This is a Low side driver output pin.

(d) Dr4

This is a High side driver output pin.

This pin has output voltage clump function, overcurrent protection and thermal shutdown function.

2.3.16 Dr1_l, Dr21_l, Dr22_l, Dr3_l, Dr4_l

These are input pins for high voltage driver control. These pin have a pull-down resistor inside the IC.

Input		Dr1	Dr21	Dr22	Dr3	Dr4
Dr1_I	High	ON	-	-	-	_
	Low	OFF	-	-	I	-
Dr21_I	High	_	ON	_	-	_
	Low	-	OFF	-	-	-
Dr22_I	High	-	_	ON	1	_
	Low	-	-	OFF	-	_
Dr3_I	High	-	-	-	ON	_
	Low	-	_	_	OFF	_
Dr4_I	High	_	_	_	_	ON
	Low	_	_	_	_	OFF

Table 2-2. Truth table

2.3.17 GND1, GND2, GND3

GND1 is a power supply circuit GND. GND2 is an LIN transceiver circuit GND. GND3 is a driver circuit GND.

Connect GND1, GND2, and GND3 to the same potential as Vss and AVss.

2.3.18 HDS

This is a power supply pin for high side driver. Connect HDS to the same potential as SUP.

2.3.19 LIN

This is a LIN Bus connection pin.

2.3.20 MSLP

This pin is used to switch the LIN transceiver between normal and sleep mode. In the normal mode the LIN transceiver goes into sleep mode when MSLP is set to low and in the sleep mode the LIN transceiver goes into normal mode when MSLP is set to high.

Moreover, this pin has a pull-down resistor inside the IC.

2.3.21 SUP

SUP is the positive power supply pin.

2.3.22 UMODE

This pin is used as mode pin to enable/disable the LIN transceiver function. This pin is pulled-down inside the IC.

UMODE	LIN Transceiver Circuit Status	P13/TxD6 Pin Status	P14/RxD6 Pin Status	
Low	Active	Output ^{Note} (TxL: Pull up input)	Input ^{Note} (RxL: Output)	
High	Non active (Driver OFF)	Input /Output (TxL: Hi-Z)	Input /Output (RxL: Hi-Z)	

Note When the LIN transceiver function is enabled, leave the P13/TxD6 and P14/RxD6 pins open. Clear PM13 to 0 (P13/TxD6 output setting) and set PM14 to 1 (P14/RxD6 input setting).

2.3.23 VIC

VIC is the supply voltage and current monitor pin for voltage regulator.

2.3.24 VRO

VRO is voltage regulator output and monitor.

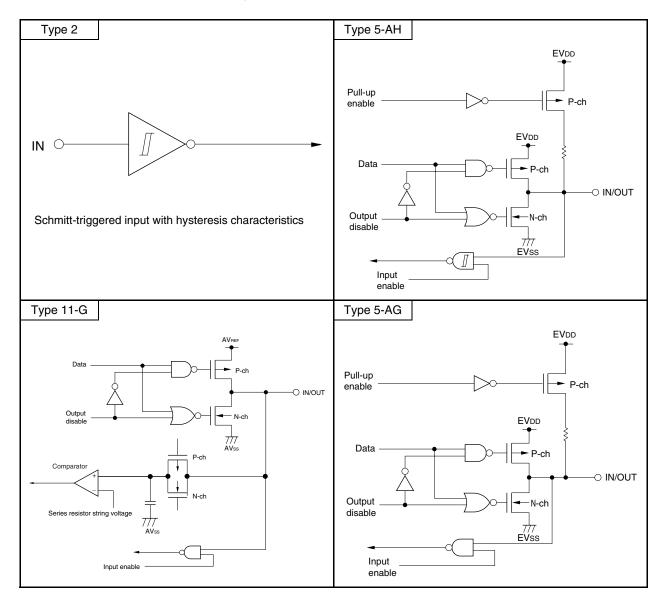
2.4 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-3 shows the types of pin I/O circuit and the recommended connections of unused pins. Refer to Figure 2-1 for the configuration of the I/O circuits of each type.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/TI000	5-AH	I/O	Input: Connect independently to VDD or VSS via a resistor.
P01/TI010/TO00			Output: Leave open.
P10/SCK10/TxD0			
P11/SI10/RxD0			
P12/SO10	5-AG]	
P13/TxD6 ^{Note 1}			
P14/RxD6 ^{Note 1}	5-AH		
P15/TOH0	5-AG		
P16/TOH1/INTP5	5-AH		
P17/TI50/TO50/FLMD1			
P20/ANI0 to P24/ANI4 ^{Note 2}	11-G		<pre><analog setting=""> Connect to AVREF or AVss. <digital setting=""> Input: Connect independently to VDD or Vss via a resistor. Output: Leave open.</digital></analog></pre>
P30/INTP1 to P32/INTP3	5-AH		Input: Connect independently to VDD or Vss via a resistor. Output: Leave open.
P33/TI51/TO51/INTP4 P60/SCL0 P61/SDA0	13-AD	_	Input: Connect to Vss. Output: Leave this pin open at low-level output after clearing the output latch of the port to 0.
P70/KR0	5-AH	_	Input: Connect independently to V _{DD} or V _{SS} via a resistor.
P120/INTP0/EXLVI	1		Output: Leave open.
P121/X1 ^{Note 3}	37	-	Input: Connect independently to VDD or Vss via a resistor.
P122/X2/EXCLK ^{Note 3}			Output: Leave open.
RESET	2	Input	_
FLMD0	38	_	Connect to Vss.
AVREF	_	-	Connect directly to V _{DD} ^{Note 4} .
AVss	_	_	Connect directly to Vss.

Table 2-3. Pin I/O Circuit Types (1/2)

Notes 1. This pin has alternate functions as UART pin of the microcontroller or as LIN transceiver function pin. When this pin is used as the LIN transceiver function pin, leave it open. When it is used as microcontroller function pin, the UMODE pin must be externally pulled to V_{DD} with a resistor.


- 2. P20/ANI0 to P24/ANI4 are in the analog input mode after reset release.
- **3.** Use the recommended connection method described above in I/O port mode when these pins are not used.
- 4. Use the same potential as the V_{DD} pin when port 2 is used as a digital port.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
Dr1	LIN1	Output	Leave open
Dr21	LIN2		
Dr22			
Dr3	LIN1		
Dr4	LIN3		
Dr1_I	LIN4	Input	Leave open
Dr21_I	LIN5		
Dr22_I			
Dr3_I	LIN4		
Dr4_I			
LIN	LIN6	I/O	Leave open
MSLP	LIN4	Input	Leave open
UMODE	LIN4	Input	Leave open.
VIC	LIN7	Input	Connect directly to SUP
VRO		Output	Connect directly to V_{DD}
RxL	LIN8	Output	_Note 1
TxL	LIN9	Input	Note 2

Table 2-3. Pin I/O Circuit Types (2/2)

Notes 1. RxL terminal is connected with P14/RxD6 in package.

2. TxL terminal is connected with P13/TxD6 in package.

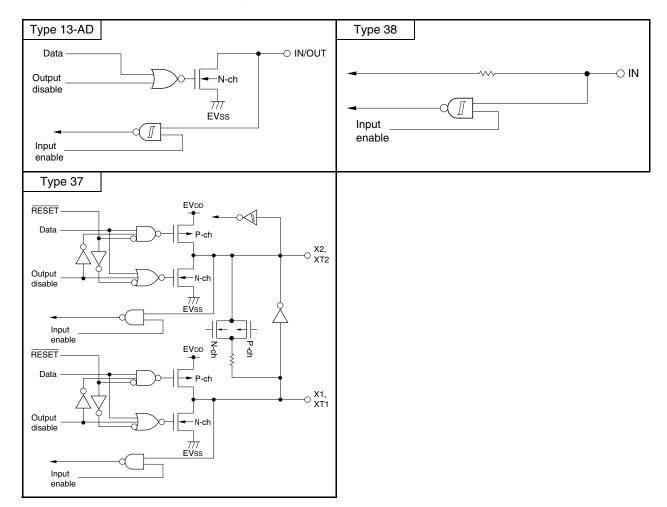


Figure 2-1. Pin I/O Circuit List (2/4)

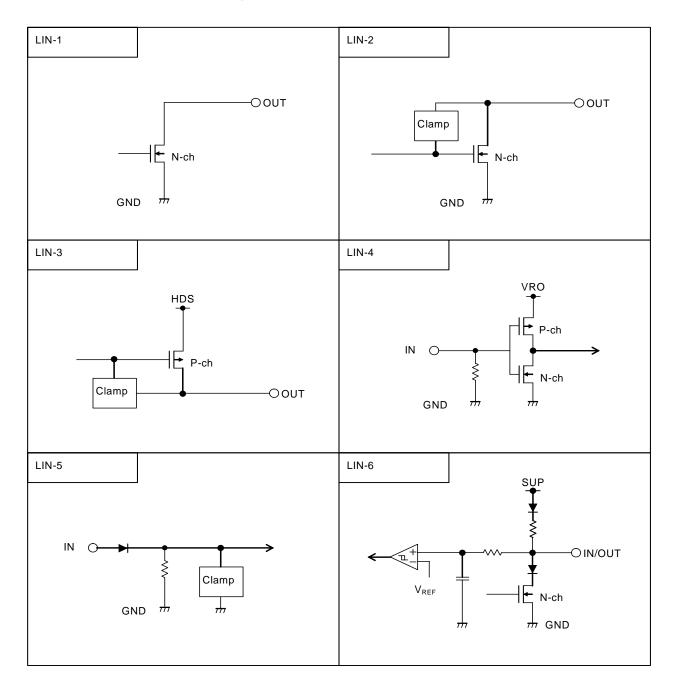


Figure 2-1. Pin I/O Circuit List (3/4)

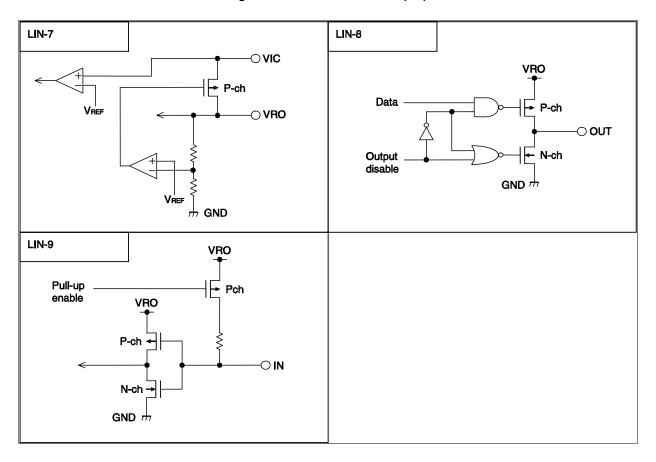


Figure 2-1. Pin I/O Circuit List (4/4)

CHAPTER 3 MICROCONTROLLER FUNCTIONS

The 8-bit microcontroller is the same as 78K0/KC2. The supported functions of the μ PD78F8014A, 78F8015A and 78F8016A are different from 78K0/KC2, because the μ PD78F8014A, 78F8015A, and 78F8016A do not support 78K0/KC2 all function pins.

This manual describes the differences between this micro's functions and 78K0/KC2. See each function of microcontroller parts in **78K0/Kx2 User's Manual (U18598E)**.

3.1 Differences between This Micro's Functions and 78K0/KC2

The differences between the μ PD78F8014A, 78F8015A and 78F8016A's functions and 78K0/KC2 are as follows.

Item	μ PD78F8014A, 78F8015A, 78F8016A	78K0/KC2 (44-pin)
		μPD78F0511A, 78F0512A, 78F0513A
Subsystem clock	_	XT1 (crystal) oscillation External subsystem clock input (EXCLK) 32.768 kHz (TYP.) : V₀₀ = 1.8 to 5.5 V
I/O port	<u>Total: 25</u> CMOS I/O: 23 N-ch open-drain I/O(tolerance): 2	<u>Total: 37</u> CMOS I/O: 33 N-ch open-drain I/O(tolerance): 4
Clock out	-	 156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (peripheral hardware clock: fPRS = 20 MHz operation) 32.768 kHz (subsystem clock: fSUB = 32.768 kHz operation)
A/D converter	10 bit resolution x 5 channels (AVREF = 2.3 to 5.5 V)	10 bit resolution x 8 channels (AV _{REF} = 2.3 to 5.5 V)
Key interrupt	Key interrupt (INTKR) occurs by detecting falling edge of key input pins (KR0).	Key interrupt (INTKR) occurs by detecting falling edge of key input pins (KR0 to KR3).

3.2 Differences between the Special Function Registers and 78K0/KC2

The differences between the μ PD78F8014A, 78F8015A and 78F8016A's special function registers and 78K0/KC2 (44pin) are as follows.

	μ PD78F8014A, 78F8015A, 78F8016	4	78K0/KC2			
			μPD78F0511A 78F0512A, 78F0513A			
Address	Special function register (SFR) name	Symbol	Special function register (SFR) name	Symbol		
FF02H	Port register 2 ^{Note 1}	P2	Port register 2	P2		
FF04H	Note 2	-	Port register 4	P4		
FF06H	Port register 6 ^{Note 1}	P6	Port register 6	P6		
FF07H	Port register 7 ^{Note 1}	P7	Port register 7	P7		
FF0CH	Port register 12 ^{Note 1}	P12	Port register 12	P12		
FF22H	Port mode register 2 ^{Note 1}	PM2	Port mode register 2	PM2		
FF24H	Note 2	-	Port mode register 4	PM4		
FF26H	Port mode register 6 ^{Note 1}	PM6	Port mode register 6	PM6		
FF27H	Port mode register 7 ^{Note 1}	PM7	Port mode register 7	PM7		
FF29H	Analog input channel specification register ^{Note 1}	ADS	Analog input channel specification register	ADS		
FF2CH	Port mode register 12 ^{Note 1}	PM12	Port mode register12	PM12		
FF2FH	A/D port configuration register ^{Note 1}	ADPC	A/D port configuration register	ADPC		
FF34H	Note 2	-	Pull-up resistor option register4	PU4		
FF37H	Pull-up resistor option register7 ^{Note 1}	PU7	Pull-up resistor option register7	PU7		
FF6EH	Key return mode register ^{Note 1}	KRM	Key return mode register	KRM		
FF6FH	Watch timer operation mode register ^{Note 1}	WTM	Watch timer operation mode register	WTM		
FF9FH	Clock operation mode select register Note 1	OSCCTL	Clock operation mode select register	OSCCTL		
FFA8H	IIC clock selection register ^{Note 1}	IICCL0	IIC clock selection register	IICCL0		
FFFBH	Processor clock control register ^{Note 1}	PCC	Processor clock control register	PCC		

Notes 1. Different in bit setting.

2. Be sure not to write this register.

3.3 Differences in Register Bit Setting from 78K0/KC2 (44-pin)

3.3.1 Port mode register

μ**PD78F8014A, 78F8015A, 78F8016A**

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM2	1	1	1	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM6	1	1	1	1	1	1	PM61	PM60	FF26H	FFH	R/W
PM7	1	1	1	1	1	1	1	PM70	FF27H	FFH	R/W
PM12	1	1	1	1	1	PM122	PM121	PM120	FF2CH	FFH	R/W

Cautions 1. Be sure to set '1' on PM2 bit 5 to 7.

- 2. Be sure to set '1' on PM6 bit 2 and 3.
- 3. Be sure to set '1' on PM7 bit 1 to 3.
- 4. Be sure to set '1' on PM12 bit 3 and 4.

78K0/KC2

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	1	1	1	1	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W

3.3.2 Port register

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P2	0	0	0	P24	P23	P22	P21	P20	FF02H	00H (output latch) R/W
P6	0	0	0	0	0	0	P61	P60	FF06H	00H (output latch) R/W
P7	0	0	0	0	0	0	0	P70	FF07H	00H (output latch) R/W
P12	0	0	0	0	0	P122	P121	P120	FF0CH	00H (output latch) R/W
78K0/KC2	2										
Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch) R/W
P6	0	0	0	0	P63	P62	P61	P60	FF06H	00H (output latch) R/W
P7	0	0	0	0	P73	P72	P71	P70	FF07H	00H (output latch) R/W
P12	0	0	0	P124	P123	P122	P121	P120	FF0CH	00H (output latch) R/W
3.3.3 Pul	I-up resi	stor optio	on regist	er							
				_							
μ PD78F8					_	_		_			
Symbol	7	6	5	4	3	2	1	0	Address		/W
PU7	0	0	0	0	0	0	0	PU70	FF37H	00H F	/W
Caution	Be sure	to clear '	0' on PU	7 bit 3 to	7.						
70//0///0/											
78K0/KC2		6	F	4	0	0		0	A alalua a -	After reset	
Symbol	7	6	5	4	3	2	1	0	Address	After reset F	/W

PU73

0

PU72

PU71

PU70

FF37H

00H

R/W

μ**PD78F8014A, 78F8015A, 78F8016A**

0

0

0

PU7

3.3.4 Analog input channel specification register

μ**PD78F8014A, 78F8015A, 78F8016A**

Address: FF29H After reset: 00H R/W Symbol 6 7 5 4 3 2 1 0 ADS 0 0 0 0 0 ADS2 ADS1 ADS0 ADS2 ADS1 ADS0 Analog input channel specification 0 0 0 ANI0 0 0 ANI1 1 0 ANI2 1 0 ٥ 1 ANI3 1

0	-	l.	ANIS
1	0	0	ANI4
1	0	1	Setting prohibited
1	1	0	Setting prohibited
1	1	1	Setting prohibited

Caution Be sure to clear '0' on bit 3 to 7.

78K0/KC2

Address: FF29H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADS	0	0	0	0	0	ADS2	ADS1	ADS0

ADS2	ADS1	ADS0	Analog input channel specification
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

Caution Be sure to clear '0' on bit 3 to 7.

3.3.5 A/D port configuration register

μ**PD78F8014A, 78F8015A, 78F8016A**

Address:	FF2FH	After reset: 00H	R/W	

Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	0	ADPC2	ADPC1	ADPC0

ADPC2	ADPC1	ADPC0	Analog Input(A)/Digital I/O(D)switching					
			ANI4/P24	ANI3/P23	ANI2/P22	ANI1/P21	ANI0/P20	
0	0	0	А	А	А	А	А	
0	0	1	А	А	А	А	D	
0	1	0	А	А	А	D	D	
0	1	1	А	А	D	D	D	
1	0	0	А	D	D	D	D	
1	0	1	D	D	D	D	D	
(Other than abov	e	Setting prohibit					

Caution Be sure to clear '0' on bit 3.

78K0/KC2

Address: FF2FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	ADPC3	ADPC2	ADPC1	ADPC0

ADPC3	ADPC2	ADPC1	ADPC0		Analog input(A) / Digital I/O (D) switching						
				ANI7/	ANI6/	ANI5/	ANI4/	ANI3/	ANI2/	ANI1/	ANI0/
				P27	P26	P25	P24	P23	P22	P21	P20
0	0	0	0	А	Α	А	А	А	А	А	А
0	0	0	1	А	А	А	А	А	А	А	D
0	0	1	0	А	Α	А	А	А	А	D	D
0	0	1	1	А	А	А	А	А	D	D	D
0	1	0	0	А	А	А	А	D	D	D	D
0	1	0	1	А	А	А	D	D	D	D	D
0	1	1	0	А	Α	D	D	D	D	D	D
0	1	1	1	А	D	D	D	D	D	D	D
1	0	0	0	D	D	D	D	D	D	D	D
	Other than above						Setting prohibited				

3.3.6 Key return mode register

μ**PD78F8014A, 78F8015A, 78F8016A** Address: FE6EH, After reset: 00H, B/W

Address: FF6EH After reset: 00H H/W											
Symbol	7	6	5	4	3	2	1	0			
KRM	0	0	0	0	0	0	0	KRM0			

Caution Be sure clear '0' on bit 1 to 7.

78K0/KC2

Address: FF6EH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRM	0	0	0	0	KRM3	KRM2	KRM1	KRM0

3.3.7 Watch timer operation mode register

μPD78F8014A, 78F8015A, 78F8016A

Address: FF6FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
WTM	0	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

Caution Bit 7 must always be set to '0'. It is read-only.

78K0/KC2

Address: FF6FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

WTM7		Watch timer count clock selection (fw)									
		fsub= 32.768 kHz	fprs = 2 MHz	fprs = 5 MHz	fprs = 10 MHz	fprs = 20 MHz					
0	fprs/27	-	15.625 kHz	39.062 kHz	78.125 kHz	156.25 kHz					
1	fsuв	3 32.768 kHz –									

Remarks 1. fw: Watch timer clock frequency (fprs/2⁷ or fsub)

2. fprs: Peripheral hardware clock frequency

3. fsub: Subsystem clock frequency

3.3.8 Clock operation mode select register

μΡD78F8014A, 78F8015A, 78F8016A												
Address: FF	9FH After re	eset: 00H R/V	V									
Symbol	7	6	5	4	3	2	1	0				
OSCCTL	EXCLK	OSCSEL	0	0	0	0	0	AMPH				
Caution B	le sure to c	lear '0' on l	oit 4 to 5.									
78K0/KC2												
Address: FF9FH After reset: 00H R/W												
Symbol 7 6 5 4 3 2 1 0												
OSCCTL	EXCLK	OSCSEL	EXCLKS	OSCSELS	0	0	0	AMPH				
		l .										
3.3.9 Proc	essor clocl	k control re	gister									
μ PD78F80 1	14A, 78F80 ⁻	15A, 78F80 ⁻	16A									
Address: FF	FBH After re	eset: 01H R/V	V									
Symbol	7	6	5	4	3	2	1	0				
PCC	0	0	0	0	0	PCC2	PCC1	PCC0				
Cautions 1	. Bit 5 is	read-only.										
2	. Be sure	to clear '0'	on bit 4 ar	nd bit 6.								
78K0/KC2												
Address: FFFBH After reset: 01H R/W												
Symbol	7	6	5	4	3	2	1	0				
PCC	0	XTSTART	CLS	CSS	0	PCC2	PCC1	PCC0				
Caution B	Caution Bit 5 is read-only.											

3.3.10 IIC clock selection register 0

μ PD78F8014A, 78F8015A, 78F8016A

Address: FFA8H After reset: 00H R/W

S	Symbol	7		6	5	4		3	2	1	0	
IIC	CL0	0		0	CLD0	CLD0 DAD0		SMC0	DFC0	CL01	CL00	
_						Selection Clock Setting						
	IICX0		IICCL0		Selection	Selection Clock Transfer Clock Settable Selection Clock						Mode
	Bit 0	Bit 3	Bit 1	Bit 0	(fw)		(fw/m)	(fw) F	Range		
	CLX0	SMC0	CL01	CL00								
	0	0	0	0	fprs/2		fw/4	4	2.00 MHz to	94.19 MHz	Normal mod	le
	0	0	0	1	fprs/2		fw/8	6	4.19 MHz to	8.38 MHz	(SMC0 bit =	0)
	0	0	1	0	fprs/4		fw/8	6				
	0	0	1	1	Setting pro	ohibited	_					
	0	1	0	×	fprs/2		fw/2	24	4.00 MHz to	8.38 MHz	High-speed	mode
	0	1	1	0	fprs/4		fw/2	24			(SMC0 bit =	1)
	0	1	1	1	Setting pro	ohibited						
	1	0	×	×	Setting pro	ohibited						
	1	1	0	×	fprs/2		fw/1	2	4.00 MHz to	4.19 MHz	High-speed	mode
	1	1	1	0	fprs/4		fw/1	2			(SMC0 bit =	1)
	1	1	1	1	Setting pro	ohibited						

78K0/KC2

Address: FFA8H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0	
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00	

Selection Clock Setting

	1							
IICX0		IICCL0		Selection Clock	Transfer Clock	Settable Selection Clock	Operation Mode	
Bit 0	Bit 3	Bit 1	Bit 0	Bit 0 (fw) (fw/m) (fw) Range		(fw) Range		
CLX0	SMC0	CL01	CL00					
0	0	0	0	fprs/2	fw/44	2.00 to 4.19 MHz	Normal mode	
0	0	0 0 1		fprs/2	fw/86	4.19 to 8.38 MHz	(SMC0 bit = 0)	
0	0	1	0	fprs/4	fw/86			
0	0	1	1	fexscl0	fw/66	6.4 MHz		
0	1	0	×	fprs/2	fw/24	4.00 to 8.38 MHz	High-speed mode	
0	1	1	0	fprs/4	fw/24		(SMC0 bit = 1)	
0	1	1	1	fexscl0	fw/18	6.4 MHz		
1	0	×	×	Setting prohibited				
1	1	0	×	fprs/2	fw/12	4.00 to 4.19 MHz	High-speed mode	
1	1	1	0	fprs/4	fw/12		(SMC0 bit = 1)	
1	1	1	1	Setting prohibited				

Remarks 1. X: Don't care

2. fprs: Peripheral hardware clock frequency

3. fEXSCL0: External clock frequency from EXSCL0 pin

CHAPTER 4 WRITING WITH FLASH PROGRAMMER

Data can be written to the flash memory on-board or off-board, by using a dedicated flash programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the device has been mounted on the target system. The connectors that connect the dedicated flash programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the device is mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

Pin Configura	ation of Dedi	cated Flash Programmer	With CSI1	0	With UART	6
Signal Name	I/O	Pin Function	Pin name	Pin No.	Pin Name.	Pin No.
SI/RxD	Input	Receive signal	SO10/P12	41	TxD6/P13	20
SO/TxD	Output	Transmit signal	SI10/RxD0/P11	42	RxD6/P14	19
SCK	Output	Transfer clock	SCK10/TxD0/P10	43	-	-
CLK	Output	Clock to Micro	_Note 1	-	Note 2	Note 2
/RESET	Output	Reset signal	RESET	2	RESET	2
FLMD0	Output	Mode signal	FLMD0	3	FLMD0	3
VDD	I/O	VDD voltage	Vdd	8	Vdd	8
		generation/	AVREF	44	AVREF	44
		power monitoring	SUP	26	SUP	26
			HDS	25	HDS	25
			VIC	24	VIC	24
			VRO	23	VRO	23
			-	-	UMODE	22
Vss	-	GND	Vss	7	Vss	7
			AVss	45	AVss	45
			GND1	27	GND1	27
			GND2	39	GND2	39
			GND3	34	GND3	34

Table 4-1. Wiring Dedicated Flash Programmer

Notes 1. Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used.

2. Only the X1 clock (fx) or external main system clock (fEXCLK) can be used when UART6 is used. When using the clock out of the flash programmer, connect CLK and EXCLK of the programmer.

• PG-FP5, FL-PR5, PG-FP4, FL-PR4: Please connect the programmer's CLK to EXCLK/X2/P122

(pin 4)

CHAPTER 5 POWER SUPPLY CIRCUIT

5.1 Power Supply Function

The power supply circuit is a stabilization power supply circuit that generates 5 V (typ.) output voltage from 12 V battery supply voltage.

The power supply circuit has the following function.

- Overcurrent protection function
- Thermal shutdown function

5.2 Power Supply Overcurrent Protection Function

This circuit protects the dropper by limiting the current when an overcurrent occurs in the power supply line due to a cause such as a load short.

The overcurrent is detected by using the potential difference on a register connected between the SUP and VIC pins.

The resistor needs to be connected so that the maximum current between the SUP and VIC pins, is kept less than 65 mA.

Current limit = Overcurrent detect voltage (VsuPlim) / RocD Overcurrent detect voltage (VsuPlim) = VsuP - VIC VsuPlim = 150 mV (typ.)

5.3 Power Supply Thermal Shutdown Function

This is a protection circuit for preventing destruction because of over temperature.

The temperature of the internal circuit is monitored and when the temperature exceeds the maximum limit the overheating detection temperature is detected and the internal P-ch MOS is forcibly switched off. After the dropper is forcibly switched off, it automatically switches back on after the temperature declines.

Caution The purpose of the built-in protection functions is to protect the device from abnormal operation. Try to avoid the use of these functions by designing the system properly.

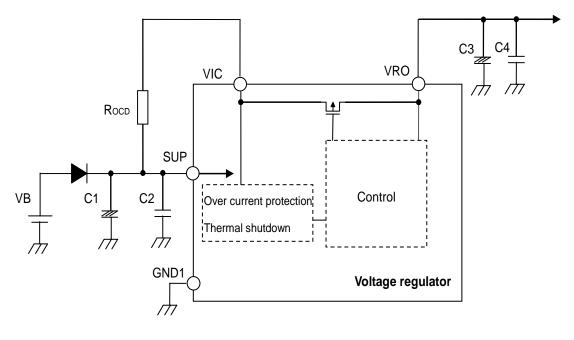


Figure 5-1. Voltage regulator circuit application example

External parts target $C1 \ge 33 \ \mu F$ $C2 \ge 0.01 \ \mu F$ $4.7 \ \mu F \le C3 \le 100 \ \mu F$ $C4 \ge 0.01 \ \mu F$

Caution Place the ceramic capacitor (C2, C4) between the SUP and GND pin, the VRO and GND pins adjacent to the SUP, VRO pin and use the shortest possible wiring.

CHAPTER 6 LIN TRANSCEIVER FUNCTION

6.1 LIN Transceiver Function

The LIN transceiver and external specifications comply with LIN Specifications Rev.2.0. The LIN transceiver has the following functions.

- Sleep function
- Overcurrent protection function
- Thermal shutdown function

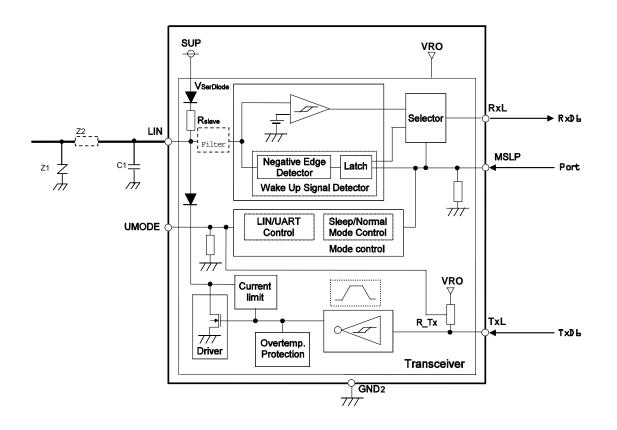
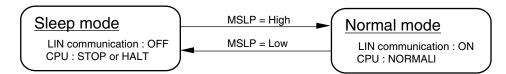


Figure 6-1. LIN Transceiver Block Diagram

Remarks 1. RxL terminal is connected to P14/RxD6.


- 2. TxL terminal is connected to P13/TxD6.
- 3. LIN terminal includes slave pull-up register and diode.

6.2 Operation Mode

(1) UMODE = Low (LIN transceiver in operation mode)

The LIN transceiver has the following two modes.

Figure 6-2. Mode Transition Diagram

Sleep mode

When MSLP becomes low, the sleep mode is entered.

In the sleep mode, the LIN driver output becomes OFF (recessive) regardless of the Tx pin input state. To reduce the current consumption, set the microcontroller's operation mode either to HALT or STOP mode.

Normal mode

When MSLP becomes high, the normal mode is entered. In the normal mode, the Tx input data can be output to the LIN bus.

Cautions 1. When using the LIN transceiver function, leave the UMODE pin open. (The UMODE pin is pulled down within the IC.)

- 2. When not using the LIN transceiver function, directly connect the UMODE pin to V_{DD} and set it to high level. When the UMODE pin is set to high level, the pull-up resistor of the LIN transceiver circuit (R_Tx) becomes unconnected.
- 3. The MSLP pin is pulled down within the IC.

(2) UMODE = High (LIN transceiver not in operation mode)

Unconditionally, LIN communication is OFF. TxL and RxL are High impedance.

LIN terminal (N-ch open drain output) is OFF.

6.3 Overcurrent Limiter

The overcurrent limiter prevents the destruction of the device caused by overcurrent during a load short.

When a current occurs that exceeds the overcurrent detection value flows to the LIN driver due to a load short, etc., the output current is limited by inhibiting the gate voltage of the LIN driver.

6.4 Thermal Shutdown Circuit

This is a protection circuit for preventing destruction of the device due to over temperature.

The temperature of the LIN driver is monitored and when a temperature that exceeds the overheating detection temperature (MIN: 150°C) is detected, the LIN driver is forcibly switched off. After the LIN driver is forcibly switched off, it automatically switches back on after the temperature declines.

Caution The purpose of the built-in protection functions is to protect the device from abnormal operation.

Try to avoid the use of these functions by designing the system properly.

CHAPTER 7 DRIVER CIRCUIT

The driver circuit has 4 channels of a low side driver and 1 channel of a high side driver circuit.

7.1 Low Side Driver

(a) Dr1: 1 ch

Application: Pre driver for high side driver The driver control input signal pin is Dr1_I. This pin has a pull-down resistor within the IC.

(b) Dr2: 2 ch

Application: Relay driver

The driver control input signal pins are Dr21_I and Dr22_I. This pin has a pull-down resistor and clamp circuit within the IC.

As driver input of Dr21_I and Dr22_I can either the 5V signal or the battery voltage signal either be used. When the battery voltage is input to Dr21_I and Dr22_I the system needs an external resistor. For details, please refer to the application example.

The drivers Dr21 and Dr22 have a dynamic clamp circuit for high voltage protection. The dynamic clamp circuit does not operate when the supply voltage V_{SUP} is more than 28V.

(c) Dr3: 1 ch

Application: LED driver

The driver control input signal pin is Dr3_I. This pin has a pull-down resistor within the IC.

7.2 High Side Driver

(a) Dr4: 1 ch

Application: Hall sensor power supply driver

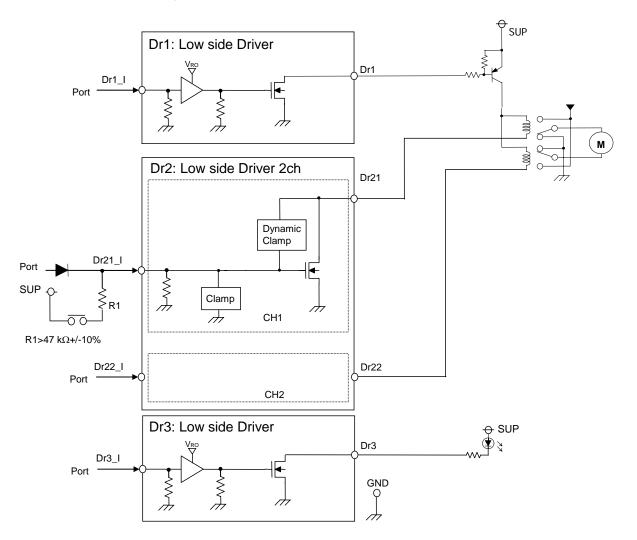
The driver control input signal pin is Dr4_I. This pin has a pull-down resistor within the IC.

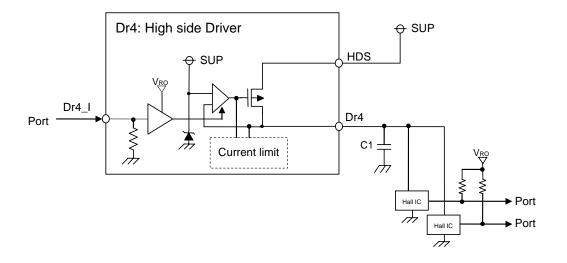
The driver Dr4 has an output voltage clump function, an overcurrent protection and a thermal shutdown function.

The overcurrent limiter prevents destruction of the driver caused by an overcurrent during a load short. When a current that exceeds the overcurrent detection value flows to the Dr4 due to a load short, etc. the output current is limited by inhibiting the gate voltage of Dr4.

The temperature of the Dr4 is monitored and when a temperature that exceeds the overheating detection temperature (MIN: 150°C) is detected, the Dr4 is forcibly switched off.

After the Dr4 is forcibly switched off, it automatically switches back on after the temperature declines.


Caution The purpose of the built-in protection functions is to protect the device from abnormal operation.


Try to avoid the use of these functions by designing the system properly.

Inp	out	Dr1	Dr21	Dr22	Dr3	Dr4
Dr1_I	High	ON	-	-	-	-
	Low	OFF	-	-	-	-
Dr21_I	High	_	ON	_	-	ļ
	Low	_	OFF	_	-	_
Dr22_I	High	-	-	ON	-	-
	Low	_	-	OFF	-	_
Dr3_I	High	_	-	_	ON	_
	Low	_	-	_	OFF	_
Dr4_I	High	-	_	-	_	ON
	Low	-	_	-	_	OFF

Table 7-1. Truth Table

Figure 7-1. Low Side Driver Circuit Application Example

Figure 7-2. High Side Driver Circuit Application Example

CHAPTER 8 ELECTRICAL SPECIFICATIONS (A) GRADE PRODUCTS

8.1 Absolute Maximum Ratings

Absolute Maximum Ratings for Microcontroller block (T_A = 25°C)

Parameter	Symbol	Conditions		Ratings	Unit	
Supply voltage	VDD			-0.5 to +6.5	V	
	Vss			-0.5 to +0.3	V	
	AVREF			-0.5 to VDD+0.3 ^{Note}	V	
	AVss			-0.5 to +0.3	V	
Input voltage	VII	P00, P01, P10 to P30 to P33, P70 RESET, FLMD0		-0.3 to V _{DD} +0.3	V	
	VI2	P60, P61 (N-ch c	ppen drain)	-0.3 to +6.5	v	
REGC pin input voltage	VIREGC			-0.5 to +3.6 and -0.5 to V_{DD}	v	
Output voltage	Vo			-0.3 to VDD+0.3 ^{Note}	V	
Analog input voltage	VAN	Van ANI0 to ANI4		-0.3 to AV _{REF} +0.3 ^{Note}	V	
				and -0.3 to VDD+0.3 ^{Note}		
Output current, high	Іон1	Per pin		-10	mA	
		Total of all pins –80 mA	P00, P01, P120	-25	mA	
			P10 to P17, P30 to P33, P70	-55		
	Іон2	Per pin	P20 to P24	-0.5	mA	
		Total of all pins		-2		
	Іонз	Per pin	P121, P122	-1	mA	
		Total of all pins		-4		
Output current, low	IOL1	Per pin		30	mA	
		Total of all pins	P00, P01, P120	60	mA	
		200 mA	P10 to P17, P30 to P33, P60, P61, P70	140		
	IOL2	Per pin	P20 to P24	1	mA	
		Total of all pins		5		
	Іоіз	Per pin	P121, P122	4	mA	
	Total of all pin			10	1	

Note Must be 6.5 V or lower.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VSUP1	VSUP, HDS, 400 ms	–0.3 to +60	V
	VSUP2	VSUP, HDS, 2 min	-0.3 to +28	V
	VSUP3	VSUP, HDS	–0.3 to +20	V
	VRO	VRO	-0.3 to +6.5	V
Input voltage	VIA1	VIC, LIN, Dr21_I, Dr22_I, 400 ms, Dr21_I and Dr22_I are input pin potentials with external 47 $k\Omega$ resistors.	-0.3 to +60	V
	VIA2	VIC, LIN, Dr21_I, Dr22_I, 2 min, Dr21_I and Dr22_I are input pin potentials with external 47 $k\Omega$ resistors.	-0.3 to +28	V
	VIA3	VIC, LIN	–0.3 to +20	V
	VIA4	MSLP, UMODE, Dr1_I, Dr3_I, Dr4_I	-0.3 to VRO+0.3 ^{Note}	V
Input current	IDRin	Dr21_l, Dr22_l	1.5	mA
LIN negative voltage	VILlin	LIN, 7 V≤VSUP≤19 V, 1 s	VSUP-60	V
Output voltage	VOA1	LIN, Dr1, Dr21, Dr22, Dr3, Dr4, 400 ms	–0.3 to +60	V
	VOA2	LIN, Dr1, Dr21, Dr22, Dr3, Dr4, 2 min	–0.3 to +28	V
	VOA3	LIN, Dr1, Dr21, Dr22, Dr3, Dr4	–0.3 to +20	V
Output current	ICM1	VRO	25	mA
	ICM2	VRO 1 s	65	mA
	ILIN	LIN	200	mA
	IDr1	Dr1	10	mA
	IDr2	Dr21, Dr22	150	mA
	IDr3	Dr3	50	mA
	IDr4	Dr4	-40	mA

Note Must be 6.5 V or lower.

Absolute Maximum Ratings for Common Item (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Operation ambient temparatuer	Та		-40 to +85	°C
Storage temperature	Tstg		–65 to +150	°C
Junction temperature	Tjmaxv		140	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

8.2 Microcontroller Block Characteristics

X1 Oscillator Characteristics

 $(TA = -40 \text{ to } +85 \text{ °C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	Vss X1 X2	X1 Clock	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0 ^{Note 2}		20.0	MHz
resonator, Crystal resonator		Oscillation frequency (fx) ^{Note 1}	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	1.0		5.0	

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Since the CPU is started by the Internal oscillator after reset is released, check the oscillation stabilization time of the X1 oscillation clock using the oscillation stabilization time status register (OSTC). Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Internal Oscillator Characteristics

Resonator	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
8 MHz	Internal high-speed oscillation	RSTS = 1	2.7 V≤V _{DD} ≤5.5 V	7.6	8.0	8.4	MHz
Internal oscillator	Clock frequency (fRH) ^{Note}		1.8 V≤V _{DD} <2.7 V	7.6	8.0	10.4	MHz
	RSTS			2.48	5.6	9.86	MHz
240 kHz	Internal low-speed oscillation		2.7 V≤V _{DD} ≤5.5 V	216	240	264	kHz
Internal oscillator	Clock frequency (fRL)		1.8 V≤V _{DD} <2.7 V	192	240	264	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark RSTS: internal oscillator mode resister (RCM) bit7

DC Characteristics (1/5)

(TA = -40 to +85°C, 1.8 V≤VDD≤5.5 V, AVREF≤VDD, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01,	4.0 V≤V _{DD} ≤5.5 V			-3.0	mA
		P10 to P17, P30 to P33,	2.7 V≤V _{DD} <4.0 V			-2.5	mA
		P70, P120	1.8 V≤V _{DD} <2.7 V			-1.0	mA
		Total of pins Note 2 P00, P01,	4.0 V≤V _{DD} ≤5.5 V			-12.0	mA
		P120	2.7 V≤V _{DD} <4.0 V			-7.0	mA
			1.8 V≤V _{DD} <2.7 V			-5.0	mA
		Total of pins Note 2	4.0 V≤V _{DD} ≤5.5 V			-18.0	mA
		P10 to P17, P30 to P33,	2.7 V≤V _{DD} <4.0 V			-15.0	mA
		P70	1.8 V≤V _{DD} <2.7 V			-10.0	mA
		Total of pins Note 2	4.0 V≤V _{DD} ≤5.5 V			-23.0	mA
			2.7 V≤V _{DD} <4.0 V			-20.0	mA
			1.8 V≤V _{DD} <2.7 V			-15.0	mA
	Іон2	Per pin for P20 to P24	r pin for P20 to P24 AV _{REF} = V _{DD}			-0.1	mA
		Per pin for P121, P122				-0.1	mA
Output current, low Note 3	IOL1	Per pin for P00, P01, P10 to P17, P30 to P33, P70, P120	4.0 V≤V _{DD} ≤5.5 V			8.5	mA
			2.7 V≤V _{DD} <4.0 V			5.0	mA
			1.8 V≤V _{DD} <2.7 V			2.0	mA
		Per pin for P60, P61 Total of pins ^{Note 2} P00, P01,	4.0 V≤V _{DD} ≤5.5 V			15.0	mA
			2.7 V≤V _{DD} <4.0 V			5.0	mA
			1.8 V≤V _{DD} <2.7 V			2.0	mA
			4.0 V≤V _{DD} ≤5.5 V			20.0	mA
		P120	2.7 V≤V _{DD} <4.0 V			15.0	mA
			1.8 V≤V _{DD} <2.7 V			9.0	mA
		Total of pins Note 2	4.0 V≤V _{DD} ≤5.5 V			45.0	mA
		P10 to P17, P30 to P33,	2.7 V≤V _{DD} <4.0 V			35.0	mA
		P60, P61, P70	1.8 V≤V _{DD} <2.7 V			20.0	mA
		Total of pins Note 2	4.0 V≤V _{DD} ≤5.5 V			65.0	mA
			2.7 V≤V _{DD} <4.0 V			50.0	mA
			1.8 V≤V _{DD} <2.7 V			29.0	mA
	IOL2	Per pin for P20 to P24	AVREF = VDD			0.4	mA
		Per pin for P121, P122				0.4	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from V_{DD} to an output pin.

2. Specification under conditions where the duty factor is 70% (time for which current is output is $0.7 \times t$ and time for which current is not output is $0.3 \times t$, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

• Where the duty factor of IoH is n%: Total output current of pins = $(IoH \times 0.7) / (n \times 0.01)$ <Example> Where the duty factor is 50%, IoH = 20.0 mA Total output current of pins = $(20.0 \times 0.7) / (50 \times 0.01) = 28.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **3.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (2/5)

(TA = -40 to +85°C, 1.8 V≤VDD≤5.5 V, AVREF≤VDD, Vss = AVss = 0 V)

Parameter Symbol Conditions			ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P12, P13, P15, P121, P122	2	0.7 VDD		VDD	V
	VIH2	P00, P01, P10, P11, P14, F P33, P70, P120, RESET	P00, P01, P10, P <u>11, P14, P16, P17, P30 to</u> P33, P70, P120, RESET			Vdd	V
	VIH3	P20 to P24 AV _{REF} = V _{DD}		0.7 AVREF		AVREF	V
	VIH4	P60, P61		0.7 V _{DD}		6.0	V
Input voltage, low	VIL1	P12, P13, P15, P60 to P61	P121, P122	0		0.3 VDD	V
	V _{IL2}	P00, P01, P10, P11, P14, F P33, P70, P120, RESET	P16, P17, P30 to	0		0.2 V _{DD}	V
	VIL3	P20 to P24	AVREF = VDD	0		0.3 AVREF	V
Output voltage, high	V _{OH1}	P00, P01, P10 to P17, P30 to P33, P70, P120	4.0 V≤V _{DD} ≤5.5 V, Іон1 = −3.0 mA	VDD-0.7			V
			2.7 V≤V _{DD} <5.5 V, Іон1 = −2.5 mA	VDD-0.5			V
			1.8 V≤V _{DD} <5.5 V, Іон1 = −1.0 mA	VDD-0.5			V
	V _{OH2}	P20 to P24	AVREF = VDD, IOH2 = $-100 \ \mu$ A	V _{DD} -0.5			V
		P121, P122	Іон2 = -100 <i>µ</i> А	V _{DD} -0.5			V
Output voltage, low	P3 Vol2 P2 P1	P00, P01, P10 to P17, P30 to P33, P120	4.0 V≤V _{DD} ≤5.5 V, Io∟1 = 8.5 mA			0.7	V
			2.7 V≤V _{DD} <5.5 V, Io∟1 = 5.0 mA			0.7	V
			IoL1 = 2.0 mA			0.5	V
			Iol1 = 0.5 mA			0.4	V
		P20 to P24	$AV_{REF} = V_{DD},$ $I_{OL2} = 0.4 \text{ mA}$			0.4	V
		P121, P122	Iol2 = 0.4 mA				
		P60, P61	4.0 V≤V _{DD} ≤5.5 V, Io∟1 = 15.0 mA			2.0	V
			4.0 V≤V _{DD} ≤5.5 V, IoL1 = 5.0 mA			0.4	V
			2.7 V≤V _{DD} <4.0 V, Iol1 = 5.0 mA			0.6	V
			2.7 V≤V _{DD} <5.5 V, Iol1 = 3.0 mA			0.4	V
			IoL1 = 2.0 mA			0.4	v

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (3/5)

($T_{A} = -40$ to +85°C	1.8 V <vnn<5.5 \<="" th=""><th></th><th>, Vss = AVss = 0 V)</th></vnn<5.5>		, Vss = AVss = 0 V)
•	1 = -40 10 + 00 0	,	, AVALESV00	, v 33 – r v 33 – v v <i>j</i>

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ilihi	P00, P01, P10 to P17, P30 to P33, P60, P61, P70, P120	$V_{I} = V_{DD}$				1	μA
	ILIH2	P20 to P24	$V_{I} = AV_{R}$	ef, $AV_{REF} = V_{DD}$			1	μA
	Ілнз	P121, P122 (X1, X2)	$V_{\text{I}} = V_{\text{DD}}$	VI = VDD I/O port mode			1	μA
				OSC mode			20	μA
Input leakage current , low	ILIL1	P00, P01, P10 to P17, P30 to P33, P60, P61, P70, P120	VI = VSS				-1	μA
		P20 to P24	VI = Vss,	$AV_{REF} = V_{DD}$			-1	μA
	ILIL3	P121, P122 (X1, X2)	$V_{I} = V_{SS}$	I/O port mode			-1	μA
				OSC mode			-20	μA
Pull-up resister	Rυ	VI = VDD			10	20	100	kΩ
FLMD0 supply voltage	VIL	In normal operation m	ode		0		0.2 V _{DD}	V
	VIH	In self-programming mode			0.8 VDD		VDD	V
External clock input voltage	VIL	P122 in external clock	mode		0		0.2 VDD	V
	VIH	P122 in external clock	mode		0.8 VDD		VDD	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (4/5)

(TA = -40 to +85°C, 1.8 V≤VDD≤5.5 V, AVREF≤VDD, VSS = AVSS = 0 V)	
(

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD1	Operation mode	fxH = 20 MHz ^{Note 2} ,	Square-wave input		3.2	5.5	mA
Note 1			$V_{DD} = 5.0 V$	Connect resonator		4.5	6.9	mA
			$f_{XH} = 10 \text{ MHz}^{\text{Notes 2, 3}},$	Square-wave input		1.6	2.8	mA
			$V_{DD} = 5.0 V$	Connect resonator		2.3	3.9	mA
			fxH = 10 MHz ^{Notes 2, 3} ,	Square-wave input		1.5	2.7	mA
			$V_{DD} = 3.0 V$	Connect resonator		2.2	3.2	mA
			$f_{XH} = 5 \text{ MHz}^{\text{Notes 2, 3}},$	Square-wave input		0.9	1.6	mA
fxH =			$V_{DD} = 3.0 V$	Connect resonator		1.3	2.0	mA
		$f_{XH} = 5 \text{ MHz}^{\text{Notes 2, 3}},$	Square-wave input		0.7	1.4	mA	
	$V_{DD} = 2.0 V$	Connect resonator		1.0	1.6	mA		
			fвн = 8 MHz, Vdd = 5.0	○ V ^{Note 4}		1.4	2.5	mA
	IDD2	HALT mode	fxH = 20 MHz ^{Note 2} ,	Square-wave input		0.8	2.6	mA
			$V_{DD} = 5.0 V$	Connect resonator		2.0	4.4	mA
			$f_{XH} = 10 \text{ MHz}^{\text{Notes 2, 3}},$	Square-wave input		0.4	1.3	mA
			$V_{DD} = 5.0 V$	Connect resonator		1.0	2.4	mA
	fхн = 5	$f_{XH} = 5 \text{ MHz}^{\text{Notes 2, 3}},$	Square-wave input		0.2	0.65	mA	
			$V_{DD} = 3.0 V$	Connect resonator		0.5	1.1	mA
			fвн = 8 MHz, Vdd = 5.0) V ^{Note 4}		0.4	1.2	mA
	IDD3	STOP mode Note 5	V _{DD} = 5.0 V			1	20	μA
			$V_{DD} = 5.0 \text{ V}, \text{ T}_{A} = -40$	to +70 °C		1	10	μA

- **Notes 1.** Total current flowing into the internal power supply (VDD), including the peripheral operation current. Port output current and current flowing through on-chip pull-up resistor are not included. Input leakage current with input pin fixed to VDD or Vss is included.
 - Operational current of the 8 MHz internal oscillator and 240 kHz internal oscillator is not included. TYP. value indicates current when only the CPU is operating. MAX. value includes peripheral operating current. However, WDT, LVI, and ADC stop (ADCE = 0).
 - 3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) = 0
 - 4. Operational current of the X1 oscillator and 240 kHz internal oscillator is not included. TYP. value indicates current when only the CPU is operating. MAX. value includes peripheral operating current. However, WDT, LVI, and ADC stop (ADCE = 0).
 - Operational current of the 240 kHz internal oscillator is not included. MAX. value includes peripheral operating current. However, WDT, LVI, and ADC stop (ADCE = 0).
- **Remarks 1.** fxH: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) .
 - 2. free: Internal high-speed oscillation clock frequency.

DC Characteristics (5/5)

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V} \text{dD} \le 5.5 \text{ V}, \text{AV} \text{Ref} \le \text{V} \text{dD}, \text{V} \text{ss} = \text{AV} \text{ss} = 0 \text{ V})$

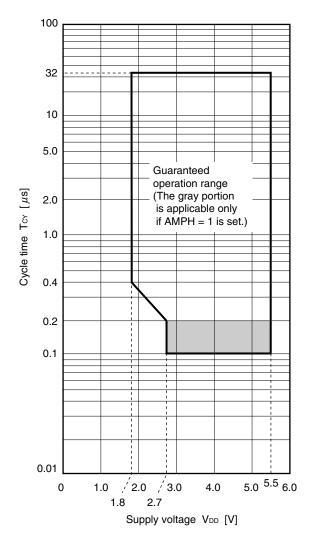
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
A/D converter operation current	Note 1 IADC			0.86	1.9	mA
Watchdog timer operating current	Note 2	During 240 kHz internal low-speed oscillation clock operation		5	10	μA
LVI operating Current	Note 3 ILVI			9	18	μA

Notes 1. Current flowing only to the A/D converter. The current value of the microcontroller is the sum of IDD or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

- 2. Current flowing only to the watchdog timer. The current value of the, microcontroller is the sum of IDD2 or IDD3 and IWDT when the watchdog timer operates in the HAT or STOP mode.
- **3.** Current flowing only to the LVI circuit. The current value of the microcontroller is the sum of IDD2 or IDD3 and ILVI when the LVI circuit operates in the HALT or STOP mode.

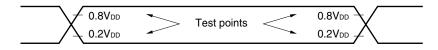
AC Characteristics

(1) Basic operation

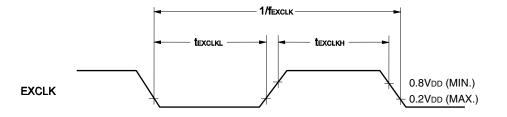

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V} \text{dd} \le 5.5 \text{ V}, \text{AV} \text{Ref} \le \text{V} \text{dd}, \text{V} \text{ss} = \text{AV} \text{ss} = 0 \text{ V})$

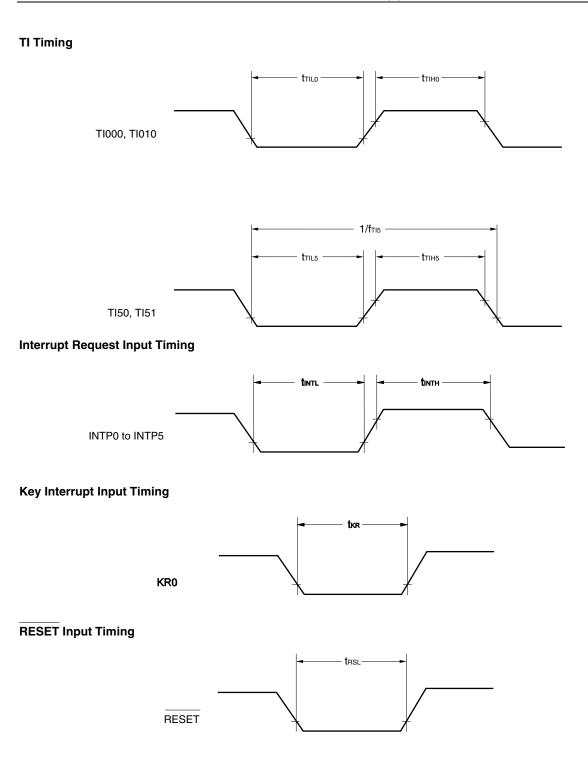
Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	UNIT
Instruction cycle (minimum	Тсү	Main system clock	2.7 V≤V _{DD} ≤5.5 V	0.1		32	μs
instruction execution time		operation (fxp)	1.8 V≤V _{DD} <2.7 V	0.4 ^{Note 1}		32	μs
Peripheral hardware clock	fprs	XSEL = 1	2.7 V≤Vdd≤5.5 V			20	MHz
frequency			1.8 V≤V _{DD} <2.7 V			5	MHz
		XSEL = 0	2.7 V≤V _{DD} <4.0 V	7.6		8.4	MHz
			1.8 V≤V _{DD} <2.7 V Note 2	7.6		10.4	MHz
External main system	fexclk	2.7 V≤V _{DD} ≤5.5 V	l	1.0 ^{Note 3}		20.0	MHz
clock frequency		1.8 V≤V _{DD} <2.7 V		1.0		5.0	MHz
External main system	texclkh,	2.7 V≤V _{DD} ≤5.5 V		24			ns
clock input high-level width, low-level width	t exclkl	1.8 V≤V _{DD} <2.7 V		96			ns
TI000, TI010 input high-	t⊤i⊣o, t⊤i∟o	$4.0~V{\leq}V_{\text{DD}}{\leq}5.5~V$		2/fsam+0.1 Note 4			μs
level width, low-level width		2.7 V≤V _{DD} <4.0 V		$2/f_{sam}+0.2^{Note 4}$			μS
		1.8 V≤V _{DD} <2.7 V		$2/f_{sam}+0.5^{Note 4}$			μS
TI50, TI51 input frequency	fтıs	$4.0~V{\leq}V_{\text{DD}}{\leq}5.5~V$				10	MHz
		2.7 V≤V _{DD} <4.0 V				10	MHz
		1.8 V≤V _{DD} <2.7 V				5	MHz
TI50, TI51 input high-level	t⊤iH5, t⊤iL5	$4.0~V{\leq}V_{\text{DD}}{\leq}5.5~V$		50			ns
width, low-level width		2.7 V≤V _{DD} <4.0 V		50			ns
		1.8 V≤V _{DD} <2.7 V		100			ns
Interrupt input high-level width, low-level width	tın⊤ı, tın⊤∟			1			μs
Key interrupt input low- level width	tkr.			250			ns
RESET low-level width	trsl			10			μs

Notes 1. 0.38 μ s when operating with the 8 MHz internal oscillator.


2. This specification defines the selection clock primary frequency. Therefore, select the division clock that sets the peripheral hardware clock frequency to 5.2 MHz (MAX.).

- 3. It is 2.0 MHz (MIN.) when programming on the board via UART6.
- **4.** Selection of f_{sam} = f_{PRS}/4, f_{PRS}/256 is possible using bits 0 and 1 (PRM000, PRM001) of Prescaler mode register 00 (PRM00). Note that when selecting the TI00 valid edge asthe clock, f_{sam} = f_{PRS}.




TCY VS VDD (Main System Clock Operation)

AC Timing Test Points (Excluding External Main System Clock)

External Main System Clock Timing

(2) Serial Interface

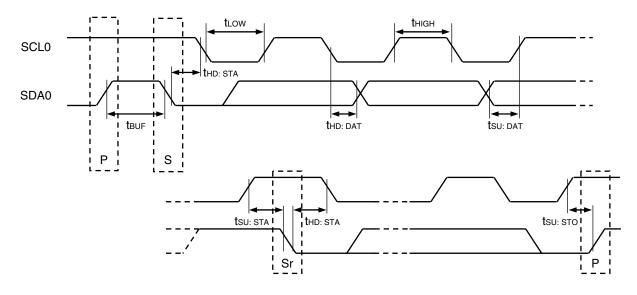
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V} \text{dd} \le 5.5 \text{ V}, \text{ AV}_{\text{REF}} \le \text{V} \text{dd}, \text{ V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V})$

(a) UART6 (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	Kbps

(b) UART0 (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps


(c) IIC0

Parameter	Symbol	Conditions	Standard Mode		High-Speed Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock frequency	fclĸ		0	100	0	400	kHz
Reset condition setup time	tsu: sta		4.7		0.6		μS
Hold time Note 1	thd: STA		4.0		0.6		μS
Hold tome when SCL0 = "L"	t∟ow	Internal clock operation	4.7		1.3		μS
Hold time when SCL0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat	When $f_W = f_{XH}/2^N$ is selected Note 3	0	3.45	0	0.9 ^{Note 4}	μS
						1.0 Note 5	μS
		When $f_W = f_{RH}/2^N$ is selected Note 3	0	3.45	0	1.05	μS
Stop condition setup time	tsu: sto		4.0		0.6		μS
Bus free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/reset condition is detected.

- 2. The maximum value (MAX.) of the determinant transfer and a wait state is inserted in the ACK (acknowledge) timing.
- 3. fw indicates the IIC0 transfer clock selected by the IICCL0 and IICX0 registers.
- 4. When $f_w \ge 4.4$ MHz is selected
- **5.** When fw < 4.4 MHz is selected

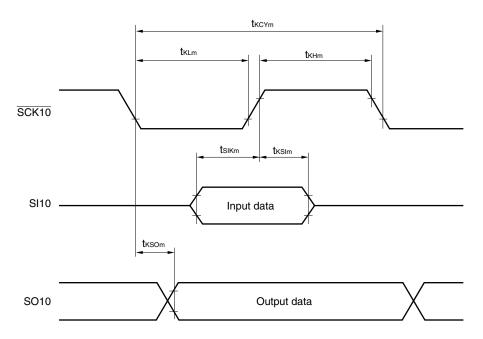
IIC0 Transfer Timing

- P : Stop condition
- S : Start condition
- Sr : Restart condition

(d) CSI10 (master mode, SCK10...internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkCY1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	200			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	400			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	600			ns
SCK10 high/low level width	tĸнı, tĸ∟ı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tkcy1/2-20 ^{Note 1}			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	tkcy1/2-30 ^{Note 1}			ns
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	tkcy1/2-60 ^{Note 1}			ns
SI10 setup time (to $\overline{\text{SCK10}}$)	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	70			ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	100			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	190			ns
SI10 hold time (to SCK10↑)	tksi1		30			ns
Delay time from $\overline{SCK10} \downarrow \rightarrow$ (to SO10 output)	tkso1	$C = 50 \text{ pF}^{\text{Note 2}}$			40	ns

Notes 1. This value is when high-speed system clcok (fxH) is used.


2. C is the load capacitance of the $\overline{\text{SCK10}}$ and SO10 output lines.

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkCY2			400			ns
SCK10 high/low level width	tkh2, tkl2			tксү2/2			ns
SI10 setup time (to SCK10 [↑])	tsik2			80			ns
SI10 hold time (to $\overline{\text{SCK10}}$)	tKSI2			50			ns
Delay time from $\overline{\text{SCK10}} \downarrow \rightarrow$	tkso2	C = 50 pF ^{Note}	$4.0~V{\leq}V_{\text{DD}}{\leq}5.5~V$			120	ns
to SO10		$2.7 V \le V_{DD} < 4.0 V$			120	ns	
			1.8 V≤V _{DD} <2.7 V			180	ns

(e) CSI10 (slave mode, SCK10...extenel clcok input)

Note C is the load capacitance of the SO10 output line.

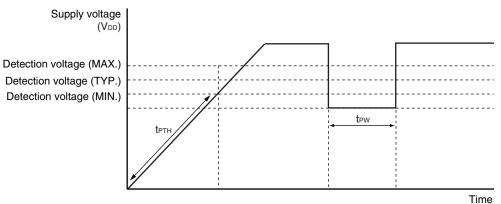
CSI10 Transfer Timing

Remark m = 1, 2

A/D Converter Characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V} \text{dD} \le 5.5 \text{ V}, 2.3 \text{ V} \le \text{AV} \text{Ref} \le \text{V} \text{dD}, \text{V} \text{ss} = \text{AV} \text{ss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				10	bit
Overall error Notes 1, 2	AINL	4.0 V≤AV _{REF} ≤5.5 V			±0.4	%FSR
		2.7 V≤AV _{REF} <4.0 V			±0.6	%FSR
		2.3 V≤AV _{REF} <2.7 V			±1.2	%FSR
Conversion time	tconv	4.0 V≤AV _{REF} ≤5.5 V	6.1		66.6	μs
		2.7 V≤AV _{REF} <4.0 V	12.2		66.6	μs
		2.3 V≤AV _{REF} <2.7 V	27		66.6	μs
Zero-scale error	Ezs	4.0 V≤AV _{REF} ≤5.5 V			±0.4	%FSR
		2.7 V≤AV _{REF} <4.0 V			±0.6	%FSR
		2.3 V≤AV _{REF} <2.7 V			±0.6	%FSR
Full-scale error Notes 1, 2	Efs	4.0 V≤AV _{REF} ≤5.5 V			±0.4	%FSR
		2.7 V≤AV _{REF} <4.0 V			±0.6	%FSR
		2.3 V≤AV _{REF} <2.7 V			±0.6	%FSR
Integral non-linearity error Note 1	ILE	4.0 V≤AV _{REF} ≤5.5 V			±2.5	LSB
		2.7 V≤AV _{REF} <4.0 V			±4.5	LSB
		2.3 V≤AV _{REF} <2.7 V			±6.5	LSB
Differential non-linearity	DLE	4.0 V≤AV _{REF} ≤5.5 V			±1.5	LSB
error ^{Note 1}		2.7 V≤AV _{REF} <4.0 V			±2.0	LSB
		2.3 V≤AV _{REF} <2.7 V			±2.0	LSB
Analog input voltage	VAIN		AVss		AVREF	V

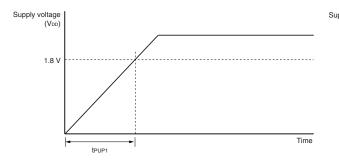

Notes 1. Excludes quantization error (±1/2 LSB).

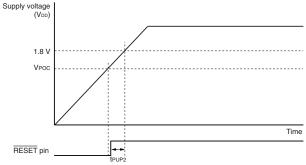
2. This value is indicated as a ratio (%FSR) to the full-scale value.

1.59 V POC Circuit Characteristics (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power voltage rise inclination	tртн	VDD: 0 V VPOC change inclination of VPOC	0.5			V/ms
Minimum pulse width	tew		200			μs

POC Circuit timing




Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to 1.8 V (VDD (MIN.)) (VDD: 0 V→1.8 V)	tpup1	POCM <u>ODE (option byte)</u> = 0, When RESET input is not used			3.6	ms
Maximum time to rise to 1.8 V (VDD (MIN.)) (releasing RESET input →VDD: 1.8 V)	tpup2	POCM <u>ODE (option byte)</u> = 0, When RESET input is used.			1.9	ms

Supply Voltage Rise Time ($T_A = -40$ to $+85^{\circ}C$, Vss = 0 V)

Supply voltage Rise Time Timing

• When $\overline{\text{RESET}}$ pin input is not used.

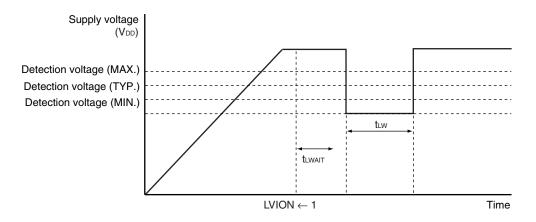
• When RESET pin input is used.

2.7 V POC Circuit Characteristics (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on	VDDPOC	POCMODE (option byte) = 1	2.50	2.70	2.90	V
application of supply voltage						

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting.

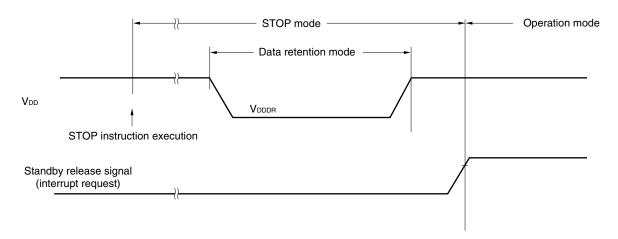
Option Byte Setting	POC Mode	Operation
POCMODE = 0	1.59 V mode operation	A reset state is retained until V _{POC} = 1.59 V (TYP.) is reached after the power is turned on, and the reset is released when V _{POC} is exceeded. After that, POC detection is performed at V _{POC} , similarly as when the power was turned on. The power supply voltage must be raised at a time of t _{PUP1} or t _{PUP2} when POCMODE is 0.
POCMODE = 1	2.7 V/1.59 V mode operation	A reset state is retained until VDDPOC = 2.7 V (TYP.) is reached after the power is turned on, and the reset is released when VDDPOC is exceeded. After that, POC detection is performed at VPOC = 1.59 V (TYP.) and not at VDDPOC. The use of the 2.7 V/1.59 V POC mode is recommended when the rise of the voltage, after the power is turned on and until the voltage reaches 1.8 V, is more relaxed than tPTH.


	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.14	4.24	4.34	V
voltage	age	VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLVI5		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLVI8		2.91	3.01	3.11	V
		VLVI9		2.75	2.85	2.95	V
		VLVI10		2.60	2.70	2.80	V
		VLVI11		2.45	2.55	2.65	V
		VLVI12		2.29	2.39	2.49	V
		VLVI13		2.14	2.24	2.34	V
		VLVI14		1.98	2.08	2.18	V
		VLVI15		1.83	1.93	2.03	V
	External input pin Note 1	EXLVI	EXLVI <vdd, 1.8="" td="" v<="" v≤vdd≤5.5=""><td>1.11</td><td>1.21</td><td>1.31</td><td>V</td></vdd,>	1.11	1.21	1.31	V
	oulse width	t∟w		200			μS
Operation	stabilization wait time ^{Note 2}	t lwait		10			μs

Notes 1. The EXLVI/P120/INTP0 Pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization.

Remark $V_{LVI (n-1)} > V_{LVIn}$: n = 1 to 15


LVI Circuit Timing

Data Memory STOP mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POC detection voltage. When the voltage drops, the data is retained until a POCreset is effected, but data is not retained when a POC reset is effected.

Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}\text{dd} \le 5.5 \text{ V}, \text{ AV}\text{Ref} \le \text{V}\text{dd}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Basic characteristics

Paramete	er	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
VDD supply current		ldd	f _{XP} = 10 MHz	f _{XP} = 10 MHz (TYP.), 20 MHz (MAX.)			4.5	11.0	mA
Erase time ^{Notes 1, 2}	All block	Teraca					20	200	ms
	Block unit	Terasa				20	200	ms	
Write time (in 8-bit	units) ^{Note 1}	Twrwa					10	100	μS
Number of rewrites	per chip	Cerwr	1 erase + 1 write after erase = 1 rewrite ^{Note 3}	 When a flash memory programmer is used, and the libraries^{Note 4} provided by NEC Electronics are used For program update When the EEPROM emulation libraries^{Note 5} provided by NEC Electronics are used The rewritable ROM size: 4 KB 	15 years 5 years	1000			Times
				For data update Conditions other than the above ^{Note 6}	10 years	100			Times

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP4 or PG-FP5, is used and the rewrite time during self programming, see refer to CHAPTER 27 FLASH MEMORY on 78K0/Kx2 User's Manual (U18598E).

- 2. The prewrite time before erasure and the erase verify time (writeback time) are not included.
- When a product is first written after shipment, "erase → write" and "write only" are both taken as one rewrite.
- The sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (U17516E) is excluded.
- The sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (U17517E) is excluded.
- 6. These include when the sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (U17517E) are used.
- **Remarks 1.** fxp: Main system clock oscillation frequency
 - 2. For serial write operation characteristics, refer to 78K0/Kx2 Flash Memory Programming (Programmer) Application Note (U17739E).

8.3 Analog Block Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	VCCOUT1	7 V≤Vsup≤19 V Vccout = Vro, Iro = 15 mA	4.85	5	5.15	V
	VCCOUT2	19 V <vsup≤ 60="" v<br="">Vccout = Vro, Iro = 1 mA</vsup≤>	(4.5)	(5)	(5.5)	V
Overcurrent detect voltage	VSUPlim		100	150	230	mV
Load regulation	REG∟	1 mA <i<sub>RO≤15 mA, V_{SUP} = 14 V</i<sub>			60	mV
Input regulation	REGIN1	Iccout = 15 mA			60	mV
Thermal shutdown	V _{Rth}		(150)			°C

Voltage regulator circuit characteristics (T_A = -40 to $+85^{\circ}$ C, 4.85 V \leq V_{RO} \leq 5.15 V, I_{RO} \leq 15 mA)

Remark The values in parentheses are based on design for which no outgoing inspection has been performed.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current ^{Note}	Іват1	DR4: OFF T _A = 25°C, V _{SUP} = 14V, LIN: Sleep			35	μA
	Іват2	DR4: OFF LIN: Sleep			60	μA
	Іватз	DR4: OFF LIN: Normal (LIN bus :Recessive)			3	mA

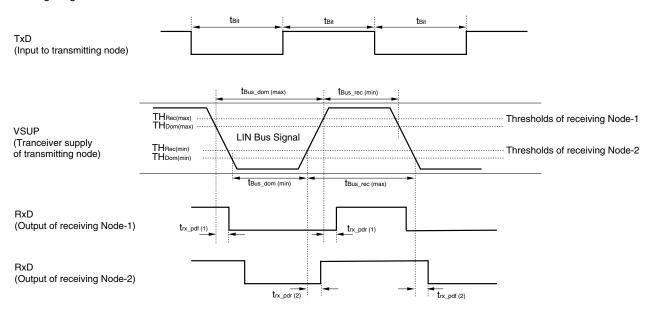
Note This is the total current flowing to the SUP, VRO internal power supply. The peripheral operating current is included. However, the current flow through the port pull-up resistor is not included. Not included VDD current. For microcontroller supply current, refer to **78K0/Kx2 User's Manual (U18598E)**.

LIN Transceiver circuit Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LIN Bus dominant leak current	BUS_PAS_dom		-1			mA
LIN Bus recessive leak current	BUS_PAS_rec	$\label{eq:constraint} \begin{array}{l} \text{Driver off (V}_{\text{TxD}} = V_{\text{RO}}), \\ 8 \ V < V_{\text{SUP}} < 18 \ V, \ 8 \ V < V_{\text{BUS}} < 18 \ V, \\ V_{\text{BUS}} \geq V_{\text{SUP}} \end{array}$			20	μA
LIN Bus current 1	IBUS_NO_GND		(–1)		(+1)	mA
LIN Bus current 2	IBUS	$V_{SUP_Device} = GND, 0 V < V_{BUS} < 18 V$		(1)	(10)	μA
Receive dominant-level input voltage	VBUSdom				0.4 Vsup	V
Receive recessive-level Input voltage	VBUSrec		0.6 VSUP			V
Receive centre-level threshold	VBUS_CNT	(Vth_dom + Vth_rec)/2	0.475 Vsup	0.5 VSUP	0.525 VSUP	V
Receive hysteresis	VHYS				0.175 VSUP	V
LIN dominant-level output voltage 1	VBUSdom_DRV _LoSUP	$V_{SUP} = 7.3V$, $I_{lin} = 15 \text{ mA}$			1.2	V
LIN dominant-level output voltage 2	VBUSdom_DRV _HiSUP	Vsup = 18V, Iiin = 36 mA			2	V
LIN serial diode drop voltage	VSerDiode	$V_{\text{TxD}} = V_{\text{RO}}$, $I_{\text{lin}} = -10 \ \mu\text{A}$	0.4	0.7	1.0	V
LIN pull-up resistance	Rslave		20	30	60	kΩ
MSLP high level input voltage	Vslph		3.5			V
MSLP low level input voltage	VslpL				1.5	V
MSLP pull-down resistance	Rmslp		50		200	kΩ
UMODE high level input voltage	Vumh		0.7 Vro			V
UMODE low level input voltage	Vuml				0.3 VRO	V
UMODE pull-down resistance	Rumode		50		200	kΩ
LIN thermal shutdown	LINth		(150)			°C
LIN overcurrent limitation	Ісолят	LIN pin inflow current limited value	40	80	200	mA

DC Characteristics (TA = -40 to +85°C, 7 V \leq Vsup \leq 18 V, 4.85 V \leq VRO \leq 5.15 V, IRO \leq 15 mA)

Remark The values in parentheses are based on design for which no outgoing inspection has been performed


AC	Characteristics	

(TA = -40 to +85°C, 7 V \leq Vsup \leq 18 V, 4.85 V \leq Vro \leq 5.15 V, Iro \leq 15 mA)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Duty_Cycle1	D1	$ C_{\text{bus}}; \text{Rbus} = 1 \text{ nF}; 1 \text{ k}\Omega/6.8 \text{ nF}; 660 \Omega/ \\ 10 \text{ nF}; 500 \Omega \\ \text{tsr} = 50 \mu\text{s} \\ \text{TH}_{\text{Rec}(\text{max})} = 0.744 \times \text{V}_{\text{SUP}}, \\ \text{TH}_{\text{Dom}(\text{max})} = 0.581 \times \text{V}_{\text{SUP}} \\ \text{D}_1 = \text{t}_{\text{BUS}_\text{rec}(\text{min})}/(2 \times \text{tsr}) $	0.396			_
Duty_Cycle2	D2	$\begin{array}{l} C_{\text{bus}}; R_{\text{bus}} = 1 \text{ nF}; 1 \text{ k}\Omega/6.8 \text{ nF}; 660 \ \Omega/\\ 10 \text{ nF}; 500 \ \Omega\\ t_{\text{BIT}} = 50 \ \mu\text{s}\\ TH_{\text{Rec}(\text{min})} = 0.422 \times V_{\text{SUP}},\\ TH_{\text{Dom}(\text{min})} = 0.284 \times V_{\text{SUP}}\\ D_2 = t_{\text{BUS}_\text{rec}(\text{max})}/(2 \times t_{\text{BIT}})\\ 7.6 \ V \leq V \text{SUP} \leq 18 \ V \end{array}$			0.581	_
Duty_Cycle3	D3	$\begin{array}{l} C_{\text{bus}}; \ \text{Rbus} = 1 \ \text{nF}; \ 1 \ \text{k}\Omega/6.8 \ \text{nF}; \ 660 \ \Omega/\\ 10 \ \text{nF}; \ 500 \ \Omega\\ t_{\text{BIT}} = 96 \ \mu\text{s}\\ TH_{\text{Rec}(\text{max})} = 0.778 \times V_{\text{SUP}},\\ TH_{\text{Dom}(\text{max})} = 0.616 \times V_{\text{SUP}}\\ D_3 = t_{\text{BUS}_\text{rec}(\text{min})/(2 \times t_{\text{BIT}}) \end{array}$	0.417			_
Duty_Cycle4	D4	$\begin{array}{l} C_{\text{bus}}; \ R_{\text{bus}} = 1 \ nF; \ 1 \ k\Omega/6.8 \ nF; \ 660 \ \Omega/ \\ 10 \ nF; \ 500 \ \Omega \\ t_{\text{BIT}} = 96 \ \mu\text{s} \\ TH_{\text{Rec}(\text{min})} = 0.389 \times V_{\text{SUP}}, \\ TH_{\text{Dom}(\text{min})} = 0.251 \times V_{\text{SUP}} \\ D_3 = t_{\text{BUS}_\text{rec}(\text{max})}/(2 \times t_{\text{BIT}}) \\ 7.6 \ V \leq V_{\text{SUP}} \leq 18 \ V \end{array}$			0.590	_
Propagation delay	trx_pd	trx_pdf (1), trx_pdf (2), trx_pdr (1), trx_pdr (2)			6	μS
LIN rising and falling transmitter delay symmetry	trx_sym	$\begin{split} t_{rx_sym} &= t_{rx_pdf(1)} - t_{rx_pdr(1)}, \\ t_{rx_sym} &= t_{rx_pdf(2)} - t_{rx_pdr(2)}, \end{split}$	-2		+2	μS

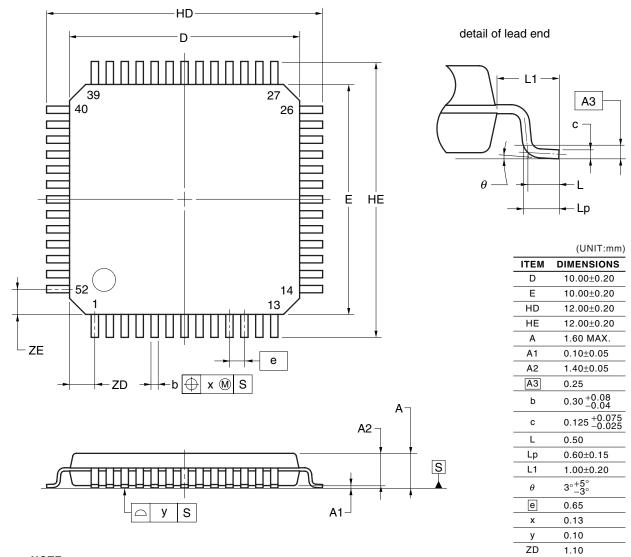
Definition of Bus Timing Parameters

Timing diagram:

Driver circuit Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	UNit
Ron	Dr _{1_RON}	lo = 10 mA, Dr1_l = Vво			100	Ω
	Dr _{2_RON}	lo = 100 mA, Dr2n_l ≥ 4 V			10	Ω
	Dr _{3_RON}	lo = 50 mA, Dr3_l = Vво			10	Ω
	Dr _{4_RON}	lo = 16 mA, 7 V ≤ VsuP ≤ 14 V,			70	Ω
		Dr4_I = V _{RO}				
Dr2 dynamic clamp voltage	CLV1	Note 1			32	V
Dr4 output voltage	CLV2	Dr4, lo = 16 mA			16	V
Dr4 limited current	CLI4	Peak Current when Io increase	(40)			mA
Dr2 input clamp voltage	CLV3	In ≤ 400 <i>µ</i> A	5		8	V
Pull down resistance	Dr_Rdown	Dr1_l, Dr3_l, Dr4_l	50	100	200	kΩ
High level input voltage	VIH_Dr1	Dr1_l, Dr3_l, Dr4_l	0.7 V _{RO}		VRO	V
	VIH_Dr2	Dr2n_l	4		CLV3	V
Low level input voltage	VIL_Dr1	Dr1_I, Dr3_I, Dr4_I	0		0.3 VRO	V
	VIL_Dr2	Dr2n_I, lo≤2 mA	0		1.5	V
High level input leak		Dr1_I, Dr3_I, Dr4_I, V _I = 5 V			105	μA
current Note 2	ILIHD2	Dr2n_I, Vi = 5 V			300	μA
Low level input leak current	Ilild	Dr1_I, Dr2n_I, Dr3_I, Dr4_I, Vı = 0 V	-3			μA
Output off leak current	Іонд1	Dr1, Dr2n, Dr3, Vo = 19 V			10	μA
	Іонд2	Dr4, Vo = 0 V	-10			μA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 7 \text{ V} \le \text{V}\text{SUP} \le 19 \text{ V}, 4.85 \text{ V} \le \text{V}\text{RO} \le 5.15 \text{ V}, \text{Iro} \le 15 \text{ mA})$


Notes 1. When V_{SUP} is more than 28V, turn on or turn off the operation of Dr21 and Dr22 are prohibited, because the dynamic clamp circuit does not operate under this condition.

2. Including the current flowing into the Pull down resistance.

Remarks 1. The values in parentheses are design guaranteed values for which no shipping test has been performed.

2. Dr2n_I: n = 1, 2

52-PIN PLASTIC LQFP (10x10)

NOTE

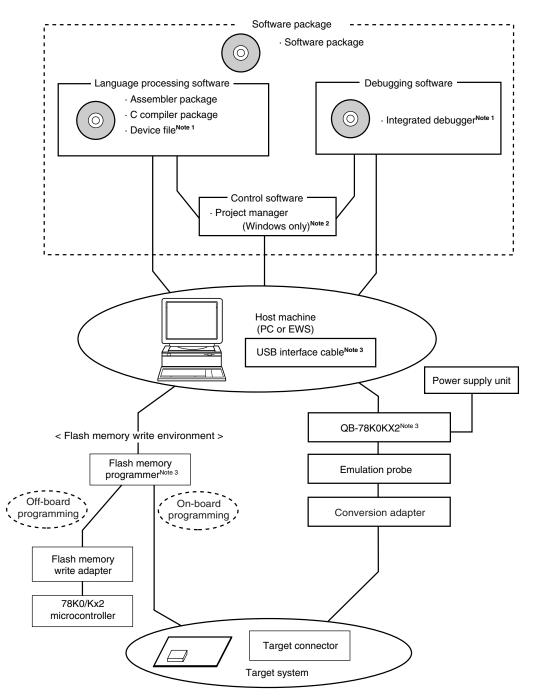
Each lead centerline is located within 0.13mm of its true position at maximum material condition.

© NEC Electronics Corporation 2005

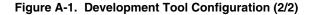
ΖE

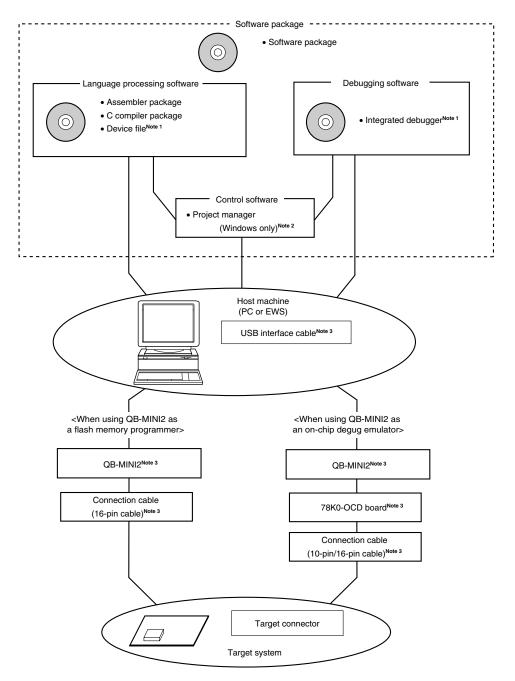
1.10

P52GB-65-GAG


APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the μ PD78F8014A, 78F8015A, 78F8016A.


Figure A-1 shows the development tool configuration.


(1) When using the in-circuit emulator QB-78K0KX2

- **Notes 1.** Download the device file for µPD78F8014A, 78F8015A, 78F8016A (DF788016) and the integrated debugger ID78K0-QB from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).
 - The project manager PM+ is included in the assembler package. PM+ cannot be used other than with Windows[™].
 - **3.** QB-78K0KX2 is supplied with the integrated debugger ID78K0-QB, a USB interface cable, the onchip debug emulator with programming function QB-MINI2, connection cables (10-pin and 16-pin cables), and the 78K0-OCD board. Any other products are sold separately.

(2) When using the on-chip debug emulator with programming function QB-MINI2

- Notes 1. Download the device file for μPD78F8014A, 78F8015A, 78F8016A (DF788016) and the integrated debugger ID78K0-QB from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).
 - The project manager PM+ is included in the assembler package. PM+ cannot be used other than with Windows.
 - QB-MINI2 is supplied with USB interface cable, connection cables (10-pin cable and 16-pin cable), and 78K0-OCD board. Any other products are sold separately. In addition, download the software for operating the QB-MINI2 from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).

A.1 Software Package

SP78K0	Development tools (software) common to the 78K/0 microcontroller are combined in this
78K/0 microcontroller software	package.
package	

A.2 Language Processing Software

RA78K0 ^{Note 1}	This assembler converts programs written in mnemonics into object codes executable
Assembler package	with a microcontroller.
Assembler package	This assembler is also provided with functions capable of automatically creating symbol tables and branch instruction optimization. This assembler should be used in combination with a device file (DF788016). <precaution environment="" in="" pc="" ra78k0="" using="" when=""> This assembler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (PM+) on Windows. PM+ is included in assembler package.</precaution>
CC78K0 ^{Note 1} C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler should be used in combination with an assembler package and device file. < Precaution when using CC78K0 in PC environment> This C compiler package is a DOS-based application. It can also be used in Windows, however, by using the Project Manager (PM+) on Windows. PM+ is included in assembler package.
DF788016 ^{Note 2} Device file	This file contains information peculiar to the device. This device file should be used in combination with a tool (RA78K0, CC78K0, ID78K0-
	QB, and the system simulator). The corresponding OS and host machine differ depending on the tool to be used.

- **Notes 1.** If the versions of RA78K0 and CC78K0 are Ver.4.00 or later, different versions of RA78K0 and CC78K0 can be installed on the same machine.
 - The DF788016 can be used in common with the RA78K0, CC78K0, ID78K0-QB, and. and the system simulator. Download the DF788016 from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).

A.3 Flash Memory Writing Tools

A.3.1 When using flash memory programmer FG-FP5, FL-PR5, FG-FP4, and FL-PR4

FG-FP5, FL-PR5, PG-FP4, FL-PR4 Note Flash memory programmer	Flash memory programmer dedicated to microcontrollers with on-chip flash memory.
FA-78F8016GB-GAG-MX Flash memory writing adapter	Flash memory programming adapter used connected to the flash memory programmer for use.
	FA-78F8016GB-GAG-MX: For 52-pin plastic LQFP

Note Phase-out

- **Remarks 1.** FL-PR5, FL-PR4, and FA-78F8016GB-GAG-MX are products of Naito Densei Machida Mfg. Co., Ltd. (http://www.ndk-m.co.jp/, TEL: +81-42-750-4172).
 - 2. Use the latest version of the flash memory programming adapter.

A.3.2 When using on-chip debug emulator with programming function QB-MINI2

QB-MINI2 On-chip debug emulator with programming function	This is a flash memory programmer dedicated to microcontrollers with on-chip flash memory. It is available also as on-chip debug emulator which serves to debug hardware and software when developing application systems using the 78K0/Kx2 microcontrollers. When using this as flash memory programmer, it should be used in combination with a connection cable (16-pin cable) and a USB interface cable that is used to connect the host machine.
Target connector specifications	16-pin general-purpose connector (2.54 mm pitch)

Remarks 1. The QB-MINI2 is supplied with a USB interface cable and connection cables (10-pin cable and 16-pin cable), and the 78K0-OCD board. A connection cable (10-pin cable) and the 78K0-OCD board are used only when using the on-chip debug function.

2. Download the software for operating the QB-MINI2 from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).

A.4 Debugging Tools (Hardware)

A.4.1 When using in-circuit emulator QB-78K0KX2

QB-78K0KX2 In-circuit emulator	This in-circuit emulator serves to debug hardware and software when developing application systems using the 78K0/Kx2 microcontrollers. It supports to the integrated debugger (ID78K0-QB). This emulator should be used in combination with a power supply unit and emulation probe, and the USB is used to connect this emulator to the host machine.
QB-80-EP-01T Emulation probe	This emulation probe is flexible type and used to connect the in-circuit emulator and target system.
QB-788016-EA-01T,	This exchange adapter is used to perform pin conversion from the in-circuit emulator to target connector.
Exchange adapter	Exchange adapter has the LIN transceiver, voltage regulator and driver functions.
QB-52GB-YS-01T, Space adapter	This space adapter is used to adjust the height between the target system and in-circuit emulator. QB-52GB-YS-01T: 52-pin plastic LQFP
QB-52GB-YQ-01T,	This YQ connector is used to connect the target connector and exchange adapter.
YQ connector	QB-52GB-YQ-01T: 52-pin plastic LQFP
QB-52GB-HQ-01T,	This mount adapter is used to mount the target device with socket.
Mount adapter	QB-52GB-HQ-01T: 52-pin plastic LQFP
QB-52GB-NQ-01T,	This target connector is used to mount on the target system.
Target connector	QB-52GB-NQ-01T: 52-pin plastic LQFP

Remark The QB-78K0KX2 is supplied with the integrated debugger ID78K0-QB, a USB interface cable, a power supply unit, the on-chip debug emulator QB-MINI2, connection cables (10-pin and 16-pin cables), and the 78K0-OCD board.

Download the software for operating the QB-MINI2 from the download site for development tools (http://www.necel.com/micro/en/ods/index.html) when using the QB-MINI2.

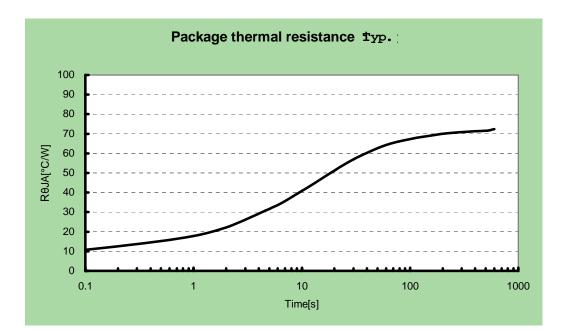
A.4.2 When using on-chip debug emulator with programming function QB-MINI2

QB-MINI2 On-chip debug emulator with programming function	This on-chip debug emulator serves to debug hardware and software when developing application systems using the 78K0/Kx2. It is available also as flash memory programmer dedicated to microcontrollers with on-chip flash memory. When using this as on-chip debug emulator, it should be used in combination with a connection cable (10-pin cable or 16-pin cable), a USB interface cable that is used to connect the host machine, and the 78K0-OCD board.
Target connector specifications	10-pin general-purpose connector (2.54 mm pitch) or 16-pin general-purpose connector (2.54 mm pitch)

Remarks 1. The QB-MINI2 is supplied with a USB interface cable and connection cables (10-pin cable and 16-pin cable), and the 78K0-OCD board. A connection cable (10-pin cable) and the 78K0-OCD board are used only when using the on-chip debug function.

2. Download the software for operating the QB-MINI2 from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).

A.5 Debugging Tools (Software)


ID78K0-QB ^{Note} Integrated debugger	This debugger supports the in-circuit emulators for the 78K0 microcontrollers. The ID78K0-QB is Windows-based software.
	It has improved C-compatible debugging functions and can display the results of tracing with the source program using an integrating window function that associates the source program, disassemble display, and memory display with the trace result. It should be used in combination with the device file (DF788016).

Note Download the ID78K0-QB from the download site for development tools (http://www.necel.com/micro/en/ods/index.html).

APPENDIX B PACKAGE THERMAL RESISTANCE

Conditions

Board size	: $100 \times 100 \text{ mm}$ 1.6 mm thickness
Wiring	: 2 layers (0.033 mm thickness)
Wiring density	: 50%
Material	: FR4

APPENDIX C CALCULATION EXAMPLE OF POWER DISSIPATION AND JUNCTION TEMPERATURE

Calculation Example of Total Power Dissipation

Conditions

$$\label{eq:VSUP} \begin{split} V_{\text{SUP}} &= 12V\\ I_{\text{RO}} &= 15 \text{mA}\\ L\text{IN} &= \text{Normal mode}\\ T_{\text{A}} &= 85^{\circ}\text{C} \end{split}$$

 $\begin{array}{l} P1 = V_{SUP} \times I_{BAT3} = 36 \ mW \\ P2 = (V_{SUP} - V_{RO}) \times I_{RO} = 105 \ mW \\ P3 = V_{RO} \times I_{DD} = 75 \ mW \end{array}$

 $RON \times Io^2$ does the dissipation of one driver. If only 1 ch is on for Dr2, P4 will be as the following

 $P4 = RON \times I^{2}$ = Dr1_ RON × I0² + Dr2_ RON × I0² + Dr3_ RON × I0² + Dr4_ RON × I0² = 10 mW + 100 mW + 25 mW + 18 mW = 153 mW PD = P1 + P2 + P3 + P4 = 369 mW

Calculation Example of Junction Temperature

$$Tj = PD \times R_{\Theta JA}^{Note} + T_A$$
$$= 113^{\circ}C$$

Note $R_{\Theta JA}$ uses the value of Package thermal resistance (Appendix B T is more than 400 sec)

Caution Please make sure not to go beyond 140°C.

APPENDIX D REVISION HISTORY

D.1 Main Revisions in this Edition

Page	Description
p.13	Change of Part Number

D.2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

Edition	Description	Chapter	
2nd	Change of item	Throughout	
	μPD78F0511, 78F0512, 78F0513→μPD78F0511A, 78F0512A, 78F0513A		
	Addition of Flash Memory Programmer PG-FP5		
	Change of To know details of the microcontroller part	INTRODUCTION	
	Change of Documents Related to Devices		
	Change of Documents Related to Development Tools (Hardware) (User's Manuals)		
	Change of Documents Related to Flash Memory Programming		
	Change of the explanation in 1.1 Features	CHAPTER 1	
	Change of 1.6 Outline of Functions	OUTLINE CHAPTER 2 PIN FUNCTIONS	
	Change of 2.3.3 (2) Control mode		
	Change of the explanation in CHAPTER 3 MICROCONTROLLER FUNCTIONS	CHAPTER 3 MICROCONTROLLER FUNCTIONS CHAPTER 5 POWER SUPPLY CIRCUIT	
	Change of 3.3.2 Port register		
	Change of the explanation 5.2 Power Supply Overcurrent Protection Function		
	8.1 Absolute Maximum Ratings	CHAPTER 8 ELECTRICAL SPECIFICATIONS (A) GRADE PRODUCTS (TARGET)	
	Change of Absolute Maximum Ratings for Microcontroller Block (T _A = 25°C)		
-	 8.2 Microcontroller Block Characteristics Change of A/D Converter Characteristics Addition of Remark in 2.7 V POC Circuit Characteristics (T_A = • 40 to +85°C, Vss = 0 V) Change of table and Note 1, addition of Note 4 to 6 in Flash Memory Programming Characteristics 		
	8.3 Analog Block Characteristics Change of Voltage regulator circuit characteristics		
	Change of Note in Supply current Characteristics		
	Change of Note 3 in Figure A-1. Development Tool Configuration (1/3) (1) When using the in-circuit emulator QB-78K0KX2	APPENDIX A DEVELOPMENT TOOLS	
	Addition of Figure A-1. Development Tool Configuration (2/3) (2) When using the on-chip debug emulator QB-78K0MINI		
	Addition of Figure A-1. Development Tool Configuration (3/3) (3) When using the on-chip debug emulator with programming function QB-MINI2		
	Addition of A.4.1 When using flash memory programmer FG-FP5, FL-PR5, FG-FP4, FL- PR4, PG-FPL3, and FP-LITE3		

Edition	Description	Chapter
2nd	Addition of A.4.2 When using on-chip debug emulator with programming function QB- MINI2	APPENDIX A DEVELOPMENT TOOLS
	Change of Note in A.5.1 When using in-circuit emulator QB-78K0KX2	
	Addition of A.5.2 When using on-chip debug emulator QB-78K0MINI	
	Addition of A.5.3 When using on-chip debug emulator with programming function QB- MINI2	
	Addition of APPENDIX D REVISION HISTORY	APPENDIX D REVISION HISTORY
3rd	Deletion of QB-78K0MINI, PG-FPL3, and FP-LITE3 (because of discontinued products)	Throughout
	Change of How to Read This Manual	INTRODUCTION
	Change of Related Documents	1
	Change of 1.6 Outline of Functions	CHAPTER 1 OUTLINE CHAPTER 4 WRITING WITH FLASH PROGRAMMER
	Change of Note 2 in Table 4-1. Wiring Dedicated Flash Programmer	
	Change of Absolute Maximum Ratings for Microcontroller block	CHAPTER 8 ELECTRICAL SPECIFICATIONS (A) GRADE PRODUCTS
	Change of Absolute Maximum Ratings for Common Item	
	Change of table and Note 2 in X1 Oscillator Characteristics	
	Change of (1) Basic operation and Note 3 in AC Characteristics	
	Change of (c) IIC0 in (2) Serial interface in AC Characteristics	
	Change of LVI Circuit Characteristics	
	Change of Basic characteristics	
	Change of Voltage regulator circuit characteristics and Supply current Characteristics	
	Change of DC Characteristics	
	Change of AC Characteristics	
	Change of Driver circuit Characteristics	
	Change of APPENDIX A DEVELOPMENT TOOLS	APPENDIX A DEVELOPMENT TOOLS
	Addition of D.2 Revision History of Preceding Editions	APPENDIX D REVISION HISTORY

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd. Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH Arcadiastrasse 10

40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française 9, rue Paul Dautier, B.P. 52

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana Via Fabio Filzi, 25/A

20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd 7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/

G0706