

User Manual

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 1
© 2025 Renesas Electronics

This document provides instructions on how to implement and use the Security Tool of DA16200 and DA16600.

Contents

Contents ... 1

Figures .. 2

Tables .. 2

1. Terms and Definitions .. 3

2. References .. 3

3. DA16200/DA16600 Security ... 4

3.1 Security Engine ... 4

3.2 Hardware Components ... 4

3.3 Software Architecture .. 5

4. Security Features ... 6

4.1 Security Services ... 6

4.1.1 Secure Boot ... 6

4.1.2 Secure Debug .. 6

4.1.3 Secure Asset .. 6

4.2 Secret Keys ... 6

4.2.1 HUK .. 6

4.2.2 Platform Key .. 6

4.2.3 Chip Master Key .. 6

4.2.4 Device Master Key ... 7

4.2.5 RoT .. 7

4.3 OTP Memory ... 7

4.4 Life Cycle States ... 9

4.4.1 CM LCS.. 9

4.4.2 DM LCS.. 9

4.4.3 Secure LCS .. 10

4.4.4 RMA LCS ... 10

4.5 Boot Services .. 10

4.5.1 Secure Boot ... 11

4.5.1.1 Secure Boot Flow ... 12

4.5.2 Secure Debug .. 15

4.6 Device Provisioning ... 17

4.7 Secure Asset ... 17

4.7.1 API for Secure Assets .. 17

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 2

4.7.2 Secure Storage .. 19

4.7.3 Secure NVRAM .. 23

4.7.3.1 Cryptographic Acceleration .. 23

5. Security Tool ... 25

5.1 Role Selection ... 25

5.2 Secure Production ... 27

5.3 Key Renewal ... 30

5.4 Secure Boot ... 31

5.5 Secure Debug ... 32

5.6 Secure RMA .. 33

5.7 Remove Secrets .. 34

6. Revision History ... 36

Figures

Figure 1. Block diagram of DA16200/DA16600 security engine .. 4
Figure 2. DA16200/DA16600 security software architecture ... 5
Figure 3. LCS transitions .. 9
Figure 4. General structure of a certification ..11
Figure 5. Three-certificate chain ...11
Figure 6. Secure boot flow ..12
Figure 7. Overall certificate-verification process...13
Figure 8. Certification contents in software images ..14
Figure 9. Certification contents in DA16200/DA16600 ...15
Figure 10. Three-level SD certificate scheme ..16
Figure 11. Encryption process of secure asset ..18
Figure 12. Top window of the security tool ...25
Figure 13. Secure boot and secure debug ...26
Figure 14. Request Soc-ID in secure debug ..27
Figure 15. Prevent accidental removal of secret keys in secure production ..28
Figure 16. Prevent accidental removal of secret keys in key renewal ...31
Figure 17. Debug certificate of secure debug ...31
Figure 18. Window to enter SoC-ID in secure debug ...32
Figure 19. Window to enter SoC-ID in RMA ...33
Figure 20. Prevent accidental removal of secret keys in secure RMA ...34
Figure 21. Remove secret keys in secure RMA ...35

Tables

Table 1. Configuration data and key in OTP memory .. 7
Table 2. CM programmed flags .. 8
Table 3. DM programmed flags .. 8
Table 4. Items in enabler certificate ..16
Table 5. Items in developer certificate ..16
Table 6. CM keys and assets in CM LCS ...17
Table 7. DM keys and assets in DM LCS ...17
Table 8. Secure asset runtime APIs ...17
Table 9. Secure asset decryption process ...18
Table 10. Secure asset runtime APIs ...19
Table 11. Encryption process ...21
Table 12. Decryption process ...21
Table 13. Hardware acceleration crypto algorithms ...23
Table 14. Secret keys for secure production ..27

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 3

Table 15. CMPU/DMPU download address in SFlash ...28
Table 16. UEboot binary definition of secure boot, non-secure boot and RMA ...28
Table 17. UEboot binary setting for secure boot, non-secure boot and RMA ..29
Table 18. Success message to change from DM to secure LCS ...30
Table 19. Directory definition for secure production ...30
Table 20. Directory definition for key renewal ..31
Table 21. Directory definition for secure debug ..32
Table 22. Directory definition for secure RMA ..34
Table 23. Directory definition to remove secret keys in secure RMA ...35

1. Terms and Definitions

AHB AMBA High-performance Bus

CM Chip Master

CMPU Chip Master Process Unit

DCU Debug Control Unit

DM Device Master

DMPU Device Master Process Unit

HUK Hardware Unique Key

LCS Life Cycle State

OEM Original Equipment Manufacturer

OS Operating System

OTP One Time Programmable

PoR Power on Reset

RMA Return Merchandise Authorization

RoT Root of Trust

SB Secure Boot

SD Secure Debug

2. References

[1] DA16200, Datasheet, Renesas Electronics.

[2] UM-WI-056, DA16200 DA16600 FreeRTOS Getting Started Guide, User Manual, Renesas Electronics.

[3] UM-WI-003, DA16200 DA16600 Host Interface and AT Command, User Manual, Renesas Electronics.

[4] UM-WI-046, DA16200 DA16600 FreeRTOS SDK Programmer Guide, User Manual, Renesas Electronics.

Note 1 References are for the latest published version, unless otherwise indicated.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 4

3. DA16200/DA16600 Security

3.1 Security Engine

The DA16200/DA16600 uses the Arm® CryptoCell-312 as its security engine that provides security services for
the platform such as Secure Boot and Key Management with acceleration for cryptographic operations. Many of
the security services are implemented in the ROM code, for example, the Secure Boot process. The
cryptography and management service are integrated into the Operating System (OS) and are used with
mbedTLS for the TLS and SSL protocols.

3.2 Hardware Components

Figure 1 shows a block diagram of the DA16200 and DA16600 security engine.

TRNG RAM

PKA RAM
ARM Cryptocell-312

AHB2APB

AO Model

AHB2APB
Env.

Registers

APB4 slave
interface

APB4 slave
(code) interface

AHB Bus Matrix

M

SSS

AHB Slave Mux

Persistent State

Cold

Reset

Warm

Reset

APB2OTP OTP Memory

DA16200

Security Engine

Figure 1. Block diagram of DA16200/DA16600 security engine

The host processor is able to access CC312's SRAM and registers, as well as the One Time Programmable
(OTP) memory in the DA16200 and DA16600. The CC312 security engine can initialize transactions with the
system memory or other DMA slaves through the AMBA High-performance Bus (AHB) Master (marked as M,
see Figure 1).

The CC312 security engine is connected to the external OTP memory through the Advanced Peripheral Bus
(APB4) Master interface, and OTP memory holds the device root key (HUK) and life cycle state (LCS).The
specific area of OTP memory that is controlled by the CC312 security engine is only accessible by the CC312
and therefore, acts as the Root-of-Trust for the DA16200 and DA16600.

The Always On (AO) module must survive power downs of the CC312 to keep the critical state of the embedded
system. The AO module includes the following components:

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 5

▪ Security Life Cycle States

▪ Debug Control Unit (DCU) and DCU Lock Registers

▪ Lock-Bits Register.

3.3 Software Architecture

Secure Boot services run from the ROM in the DA16200/DA16600. The crypto services, which are accelerated
by CC312 hardware, can be used with mbedTLS APIs. See Ref. [4] for the mbedTLS APIs. Figure 2 shows the
security software architecture in the DA16200/DA16600.

Certificate
Creation

Provisioning

Boot Services

Management API AES Driver

Certificate
processing
and image
verification

Reduced-function
SHA and PKA

drivers

Embedded Cryptographic APIs

mbedTLS APIs

RNG API
Symmetric

Cryptographic API
Asymmetric

Cryptographic API

Provisioning API

PKA Driver
Register Engine

Driver
TRNG Driver

RTOS

ARM CryptoCell-312 Hardware

Figure 2. DA16200/DA16600 security software architecture

The DA16200/DA16600 supports a FreeRTOS based SDK. See Ref. [4] for Serial Flash Memory Map of
FreeRTOS images.

▪ Images in FreeRTOS SDK

• UEboot image (XXUEBOOTXX.img) built from SDK contains a bootloader (UEboot) binary

• RTOS image (XXRTOSXX.img) built from SDK contains the RTOS binaries.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 6

4. Security Features

4.1 Security Services

4.1.1 Secure Boot

The DA16200/DA16600 provides a secure boot function that allows trusted images signed with a key matching
the registration information in the system during the boot process to ensure the system’s platform integrity. In the
production step, it is necessary to register the key information for authentication in the OTP memory, which is
protected by CC312.

4.1.2 Secure Debug

The DA16200/DA16600 supports a Secure Debug function that provides hardware protection of the debug port
to prevent an external security attack. When you need to enable this port for system debugging, Secure Debug
uses the authenticated key with the signed debug certificate to remove the hardware protection, to allow
debugging tasks.

4.1.3 Secure Asset

Secure Asset is a cryptographic service provided to protect data stored in external storage (Serial Flash
memory). Data can be encrypted or decrypted with the provisioning key stored in the chip. Production-Line
Provisioning is used to protect the data used in the mass production process, and Asset Provisioning is used to
protect the data used during system operation.

4.2 Secret Keys

This chapter describes the required security keys in the DA16200/DA16600. For the security feature in the
DA16200/DA16600, several security keys are required and should be stored in OTP memory before production.
All secret keys are burned with the Security Tool. All hardware keys are accessed only by CryptoCell-312 and
cannot be read by the CPU depending on the security LCS.

4.2.1 HUK

Hardware Unique Key (HUK) is called device key and a secret value that is burned into OTP memory, and is
read by hardware as part of the secure boot sequence and is no longer accessible for reading. HUK can only be
used by the AES engine, and only for the derivation of other keys. It must be unique per device. For this
uniqueness, it is generated as the seed value derived from TRNG in CC312. The SoC-ID is derived from this
key. A SoC-ID is required in Secure Debug and is only valid in the Secure LCS state. HUK is generated by the
Security Tool.

4.2.2 Platform Key

The Platform key (Krtl) is placed in the DA16200/DA16600 and used for provisioning during the production life
cycle (CM and DM LCS). The Platform key is provided by Renesas Electronics when requested. It is a 128-bit
AES class key and a random 128-bit value. A key derived from this key is used to encrypt the provisioning
assets such as Chip Master keys and Device Master keys, which are described in the following section. This key
is only for use in CM (Chip Master) and DM (Device Master) LCS and is locked by hardware in all other LCS. Krtl
should not be exposed to others for any reason. Our Security Tool uses this key in Secure Production and
removes the key after use.

4.2.3 Chip Master Key

Chip Master (CM) keys are burned in OTP memory at production time and used as a back-up key for DM keys.
The CM keys are generated in the Security Tool. There are two types of CM keys:

▪ CM Provisioning Key (Kpicv): The Kpicv is a 128-bit AES key used for an asset provisioning flow.

▪ CM Encryption Key (Kceicv): The Kceicv is a 128-bit AES key used to encrypt or decrypt software images as
part of the Secure Boot process.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 7

4.2.4 Device Master Key

Device Master (DM) keys are burned in OTP memory at production time. They are generated in the Security
Tool. There are two types of DM keys:

▪ DM Provisioning Key (Kcp): This is a 128-bit AES key that is used for asset provisioning.

▪ DM Encryption Key (Kce): This 128-bit AES key is used to encrypt or decrypt software images as part of the
Secure Boot process.

4.2.5 RoT

The Root of Trust (RoT) is a hash of the public key. Every public key has a corresponding private key that must
be preserved and not exposed for security reasons. These public and private key pairs are generated in the
Security Tool.

There are two RoT keys: Hbk0 and Hbk1. Hbk0 is a hash of the CM public key generated by the Security Tool
and is a back-up RoT for Hbk1 (a hash of the DM public key), which is normally used for Secure Boot and
Secure Debug. Both Hbk0 and Hbk1 should be burned to the OTP memory as RoT. Hbk0 and Hbk1 are used in
order to validate the authentication of an image with certificate data.

Here are the summary of Hbk0 and Hbk1:

▪ Hbk0:

A 128-bit truncated SHA-256 digest of a CM public key. Used as a back-up key for Hbk1, mainly used for
Secure Boot and Secure Debug

▪ Hbk1:

A 128-bit truncated SHA-256 digest of a DM public key. Used as a main RoT key

4.3 OTP Memory

OTP memory is used to store keys and configure data. The DA16200/DA16600 has 2 kB of OTP memory.
Mandatory configuration data must be burned at the offsets shown in Table 1.

Table 1. Configuration data and key in OTP memory

32-bit word (Note 1) Description Read Write

0x00-0x07 HUK Readable in CM LCS Writable in CM or RMA LCS

0x0B Kpicv Readable in CM LCS Writable in CM or RMA LCS

0x0C-0x0F Kceicv Readable in CM LCS Writable in CM or RMA LCS

0x10 CM programmed flags. See the following table Writable in CM or RMA LCS

0x11-0x18 RoT pubkey

If split into CM and DM keys:

▪ CM key(Hbk0): 0x11-0x14

▪ DM key(Hbk1): 0x15-0x18.

Readable in all LCS Writable in CM or DM LCS

0x19-0x1C Kcp Readable in CM LCS or DM

LCS

Writable in DM or RMA LCS

0x1D-0x20 Kce Readable in CM or DM LCS Writable in DM or RMA LCS

0x21 DM programmed flags See the following table Writable in all LCS

0x27 General purpose configuration

flags

 Writable in CM LCS

0x28-0x2B DCU 128 bits lock mask that

allows software to lock the

required debug bits

Readable in all LCS Writable in CM or DM LCS

0x40-0x1FE Code and data section that a

developer can use

Readable in all LCS

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 8

Note 1 The word area from 0x00 ~ 0x2B is not accessible by the CPU and is accessible only by the hardware security
engine in the DA16200/DA16600.

The word area from 0x00 ~ 0x2B should be burned into OTP memory at production time. For this purpose,
special binary images called CMPU and DMPU are required. CMPU is a binary image containing the HUK,
Hbk0, and CM keys. DMPU is a binary image containing the Hbk1 and DM keys. The CMPU and DMPU binary
images are generated by the Security Tool during the Secure Production process. See Section 5.

Table 2 shows the CM programmed flags that are located at address 0x10 in the OTP memory.

Table 2. CM programmed flags

Bits Usage Read access Write access

[7:0] Number of zero bits in HUK. Readable only in CM LCS;

masked for reading in any

other LCS.

Writeable in CM LCS and

RMA LCS.

[14:8] Number of zero bits in Kpicv

(128 bits).

Readable only in CM LCS. Writeable in CM LCS and

RMA LCS.

[15] Kpicv "not in use" bit.

If Kpicv is not in use, this bit is

set by the IFT.

Readable in all security life-

cycle states.

Writeable in CM LCS and

RMA LCS.

[22:16] Number of zero bits in Kceicv. Readable only in CM LCS. Writeable in CM LCS and

RMA LCS.

[23] Kceicv "not in use" bit.

If Kceicv is not in use, this bit

should be set by the IFT.

Readable in all security life-

cycle states.

Writeable in CM LCS and

RMA LCS.

[30:24] Number of zero bits in Hbk0. Readable in all security life-

cycle states.

Writeable in CM LCS and

RMA LCS.

[31] Hbk0 "not in use" bit.

If Hbk0 is not in use, this bit

should be set by the IFT.

Readable in all security life-

cycle states.

Writeable in CM LCS and

RMA LCS.

Table 3 shows the DM programmed flags that are located at address 0x21 in OTP memory.

Table 3. DM programmed flags

Bits Usage Read access Write access

[7:0] Number of zero bits in Hbk1 or

Hbk.

Readable in all security life-

cycle states.

Writeable in DM LCS and

RMA LCS.

[14:8] Number of zero bits in Kcp

(128 bits).

Readable only in CM LCS and

DM LCS.

Writeable in DM LCS and

RMA LCS.

[15] Kcp "not in use" bit.

If Kcp is not in use, this bit

should be set by the OFT.

Readable in all security life-

cycle states.

Writeable in DM LCS and

RMA LCS.

[22:16] Number of zero bits in Kce. Readable only in CM LCS and

DM LCS.

Writeable in DM LCS and

RMA LCS.

[23:23] Kce "not in use" bit.

If Kce is not in use, this bit

should be set by the OFT.

Readable in all security life-

cycle states.

Writeable in DM LCS and

RMA LCS.

[29:24] Reserved. Always readable. Always writeable.

[30] DM RMA LCS flag. Readable in all security life-

cycle states.

Writeable in CM LCS, DM

LCS and

Secure LCS.

[31] CM RMA LCS flag. Readable in all security life-

cycle states.

Writeable in CM LCS, DM

LCS, and Secure LCS, only if

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 9

the CM RMA locking bit in the

AO module is not set.

4.4 Life Cycle States

Life cycle states have CM, DM, Secure, and RMA. Figure 3 shows the transitions of Life Cycle States (LCS) of
the DA16200/DA16600. This enables the device to behave differently in each LCS, protecting any security
assets when they are introduced into the device and reducing the risk of IP theft and reverse engineering.

Figure 3 shows the LCS transitions:

R
e
tu

rn
 M

e
rc

h
a
n

d
is

e
 A

u
th

o
ri
z
a

ti
o

n
 (

R
M

A
)

Chip Master State (CM)

Device Master State (DM)

Deployed (Secure)

Trusted Environment

Untrusted Environment

Figure 3. LCS transitions

4.4.1 CM LCS

The device is in CM LCS if the following is true:

▪ CM programmed flags: OTP word 0x10 = 0

▪ DM programmed flags: OTP word 0x21 = 0.

Therefore, the default hardware state is CM LCS. In this LCS, all debug interfaces (UART and JTAG) are
enabled.

A CMPU package binary image that is generated with the Security Tool includes the following assets and should
be burned into OTP in CM LCS:

▪ HUK: OTP word 0x00-0x07

The number of zero bits in HUK: Bits[7:0] of OTP word 0x10.

▪ Hbk0: OTP word 0x11-0x14

The number of zero bits in Hbk0: Bits[30:24] of OTP word 0x10.

▪ General purpose configuration (GPPC) flags, OTP word 0x27.

▪ CM DCU locking if Hbk0 is used.

When these assets are burned, the device does a Power on Reset (PoR) to transition to DM LCS.

4.4.2 DM LCS

The device is in DM LCS if the following is true:

▪ CM programmed flags: OTP word 0x10 ≠ 0

▪ DM programmed flags: Bits[7:0] of OTP word 0x21 = 0.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 10

In this LCS, all debug interfaces (UART and JTAG) are still enabled.

A DMPU package binary image that is generated with Security Tool includes the following assets and it should
be burned into OTP in DM LCS:

▪ Hbk1: OTP word 0x15-0x18

The number of zero bits in Hbk1: Bits[7:0] of OTP word 0x21.

▪ Optional: DM DCU locking if Hbk1 is used.

When these assets are burned, the device does a PoR to transition to Secure LCS.

4.4.3 Secure LCS

The Deployed (Secure) LCS is used for devices out of the manufacturing line and in the field. It permits the
execution of security functions but blocks all debugging and testing capabilities. Using Secure Boot is mandatory
in this LCS. The device is in Secure LCS if the following is true:

▪ CM programmed flags: OTP word 0x10 ≠ 0

▪ DM programmed flags: Bits[7:0] of OTP word 0x21 ≠ 0.

Secure LCS is the state changed with the DMPU process, and see Section 5.2 for more information. This is the
state that should be applied at mass production when secure boot is required. When it is in this state, the debug
interface such as JTAG, cannot be used anymore for security reasons. To enable the disabled debug interface,
a firmware image with a Debug certificate must be used as described in Section 5.5.

4.4.4 RMA LCS

The Return Merchandise Authorization (RMA) LCS is a terminal state for devices that are returned to a Chip
maker (for example, Renesas Electronics) for analysis of fatal failures. When a device is put into RMA LCS, it
loses its existing secret keys, but regains full access to all debugging and testing capabilities. All cryptographic
engines are usable for test purposes, but the root keys change for each boot phase.

▪ HUK is replaced with a different random value with each boot cycle. Therefore, any previously-saved data that
is protected by a key derived from HUK is lost.

▪ Kce and Kceicv are invalidated so that Secure Boot can be used only in non-encrypted mode.

▪ Kcp and Kpicv are invalidated so that provisioning can no longer be done based on the previous values.

There are two separate certificates needed to enter a device into RMA LCS – CM RMA and DM RMA. CM RMA
is a certificate image with CM RoT (Hbk0) chain and removes CM keys in OTP.

DM RMA is a certificate image with DM RoT (Hbk1) chain and removes DM keys. For the detailed information
about the process, see Section 5.6.

4.5 Boot Services

The boot services in the DA16200/DA16600 include the Secure Boot and Secure Debug certificate-based
mechanisms that use an RSA private-public key scheme. Secure Boot and Secure Debug are based on the
following elements:

▪ OTP secrets

Provisioning to the device during the device manufacturing stage (CM LCS or DM LCS).

▪ ROM code

A code library linked into the ROM of the device.

▪ RSA scheme verification

Verification of Secure Boot and Secure Debug is done over a certificate chain that is two or three certificate-long.
Each certificate is signed and verified with an RSA PSS scheme (RSA 3072 Private-Public Key scheme and
compliant to PKCS#1 Ver. 2.1, RSA-PSS).

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 11

4.5.1 Secure Boot

Secure Boot guarantees that only authenticated software images (optionally encrypted) are loaded on a target
system. A certificate is a message used to prove ownership of a public key. The certificate contains information
about the public key, the authentication hash of the next key, and the signature that verifies contents.

Figure 4 shows the general structure of a certificate.

Header

Certificate data

(Includes Public Key)

Signature

Figure 4. General structure of a certification

A signature is generated by encrypting a hash of the Certificate Data using a private key. Signature verification is
done using a public key to decrypt a hash of the same Certificate Data. If the Certificate Data is compromised for
any reason, then the decrypted hash of the Certificate Data should be different from the original signature and
certificate verification fails.

The DA16200/DA16600 uses a Certificate Chain for secure certificate verification. A three-level "self-signed"
certificates chain is used, which are a series of certificates that contain the public keys and are signed with a
corresponding private key. The Secure Boot certificate chain is composed of key certificates and content
certificates.

▪ Key certificates

Mainly the 1st or 2nd certificate in the certificates chain.

▪ Content certificates

The last certificate in a certificates chain, which is used to load and validate software components.

Figure 5 shows a three-certificate chain.

Header

Certificate data:

PubKey A

Hash of

PubKeyB

Signature

(PrivKeyA)

Key Certificate

Header

Certificate data:

PubKey B

Hash of

PubKeyC

Signature

(PrivKeyB)

Key Certificate

Header

Certificate data:

PubKey C

Hash of Images

Signature

(PrivKeyC)

Content

Certificate

Figure 5. Three-certificate chain

▪ Three-level SB certificate scheme

The order of three-level SB certificate chain is master key certificate > key certificate > content certificate.

Even when a key used in a 3rd or 2nd certificate is leaked, it can be replaced with another key if the private key
used in the first certificate is not compromised.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 12

4.5.1.1 Secure Boot Flow

To verify a certificate, complete the following steps:

▪ Get the public key from the certificate and calculate its hash (HBK1 or HBK0)

▪ Verify the calculated hash:

• If it is the first certificate in the chain, compare it with the hash value stored in the OTP.

• Otherwise, compare it with the saved hash from the previous certificate in the chain.

▪ Verify the RSA signature with the public key of the certificate.

▪ Save the public key hash of the next certificate, unless it is the last certificate in the chain.

Hash of
PubKeyA

Header

Certificate data:
PubKey B
Hash of

PubKeyC
Signature
(PrivKeyB)

Key Certificate

Header

Certificate data:

PubKey C

Hash of Images

Signature
(PrivKeyC)

Content
Certificate

OTP

Memory

Header

Certificate data:
PubKey A
Hash of

PubKeyB
Signature
(PrivKeyA)

Key Certificate

Figure 6. Secure boot flow

The entire certificate chain is included in the built Image of the DA16200/DA16600. And it is impossible for an
unauthorized image to boot because of the verification process with this certificates chain.

Figure 7 shows the overall certificate-verification process.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 13

Process certificate

Is it the first

certificate ?

Calculate Hbk and compare it to

the saved hash of the public key
No

Calculate Hbk and compare it to

the value stored in OTP memory
Yes

Are they equal ? Verify the RSA signatureYes

Verification

Passed ?

Is it the first

certificate ?

Yes

Compare the SW version in the

certificate with the one stored in

OTP memory

Compare the SW version in

the certificate with the one

stored the previous certificate

YesNo

Is it equal or

bigger ?
Continue with certificate processYes

Exit with error

No

No

No

Figure 7. Overall certificate-verification process

Figure 8 shows how the content-certificate process is done in a loop to process every software image that is
signed in the certificate.

The content certificate contains the following information for every image that must be verified:

▪ The address that the software image is loaded to [load address].

▪ The flash address that the software image is stored in [storage address].

▪ The size of the software image.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 14

Get the hash of the SW

image form the certificate

Verify the hash

of the image ?

Load the image

to memory

Yes

Load SW image

to memory

Temporarily load

SW image to RAM

NoYes

Calculate hash

Compare the calculated hash to the

certificate hash

Are the hashes

the same ?
Exit

Exit with error

No

LCS = Secure ? No

Load SW image

to memory

No

Yes

Yes

Figure 8. Certification contents in software images

Figure 9 shows the structure of the built image of the DA16200/DA16600. The key and content certificate chain
are included in the image.

Besides certificates, the following contents are included in the image of the DA16200/DA16600:

▪ Serial Flash Discoverable Parameters (SFDP) information to control serial flash memory.

▪ Debug certificate (optional).

▪ Software component (maximum of 3 components available).

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 15

Image Header

SFDP

Cert Info

Length CRC

Length CRC

Length CRC

Length CRC

Content

Cert Chain

Cert A

Cert B

Cert C

3 level Debug Certificate

Reserved or Pad

Content

Comp 0

Comp 1

Comp 2

Figure 9. Certification contents in DA16200/DA16600

CertA and CertB are key certificates, and CertC is a content certificate as shown in Figure 9. Content can be a
UEboot image or an RTOS built from SDK.

▪ UEboot image (XXUEBOOTXX.img) built from our SDK contains a bootloader (UEboot) binary as software
component (Comp0).

▪ RTOS image (XXRTOSXX.img) built from our SDK includes an RTOS binary as a software component
(Comp0).

All CertA, CertB, and CertC are generated with the Security Tool and attached to each binary (UEboot and
RTOS) to make a bootable image for the DA16200/DA16600.

▪ CertA and CertB are the same for all images while CertC is different for each image.

▪ CertA with a Hbk1 (DM RoT) chain is generated with the name of sboot_hbk1_3lvl_key_chain_ issuer.bin

in the dmpublic directory in the Security Tool.

▪ CertB with Hbk1 is generated with the name sboot_hbk1_3lvl_key_chain_publisher.bin in the dmpublic

directory.

▪ CertC is different from each image because CertC contains the information of each image such as content
and size as described before.

▪ CertC for the UEboot binary is generated with the name sboot_hbk1_ueboot_cert.bin in the dmpublic

directory.

▪ CertC for the RTOS binary has the name sboot_hbk1_cache_cert.bin.

4.5.2 Secure Debug

Secure Debug is a certificate-based mechanism that uses an RSA private-public key scheme. It enables secure
debugging of the device.

Secure Debug supports the following operations:

▪ Perform boot-time verification of debug certificates that enable authenticated debugging of secure domains.
The secure domains are controlled by the Debug Control Unit (DCU) registers on the SoC.

▪ Allow an authorizing party to shift the device into RMA LCS by using the same certificate mechanism (This is
called "Secure RMA").

There are two certificate chains in the debug certificate: enabler certificate and developer certificate. An enabler
debug certificate can enable certain debug interfaces for you to debug a certain device. You can enter SoC-ID of
the target device to extend this to an actual debug certificate.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 16

Figure 10 shows a three-level SD certificate scheme.

Header

PubKey A
Hash of PubKeyB

Signature
(PrivKeyA)

Key Certificate

Header

PubKey B
Hash of PubKeyC

OEM Mask RMA Flag
OEM Lock MASK

Signature
(PrivKeyB)

Enabler Certificate

Header

PubKey C
Debug Value

SoC Id
Debug Data

Signature
(PrivKeyC)

Developer Certificate

Figure 10. Three-level SD certificate scheme

The developer certificate can be generated with a SoC-ID. If this does not match the target device, then the
debug interfaces (JTAG and UART) should not be enabled. When a debug certificate is verified during the boot
sequence of the device, the permitted debug interfaces in the DCU mask of the enabler certificate should be
enabled (UART0 and JTAG for the DA16200/DA16600) for the designated device of the SoC-ID in the developer
certificate.

An enabler certificate has the following fields.

Table 4. Items in enabler certificate

Items Condition Description

RMA-mode Mandatory if debug-mask is not

defined. Cannot be defined together

with debug-mask.

▪ Define whether to use this certificate for entry into RMA

LCS, by setting to a non-zero value.

▪ Set when "Secure RMA" is run in the Security Tool.

debug-mask Mandatory if RMA-mode is not defined.

Cannot be defined together with RMA-

mode.

▪ The DCU mask allowed by the enabler. A 128-bit mask.

▪ Set when "Secure Debug" is run in the Security Tool.

debug-lock Mandatory if RMA-mode is not defined. An additional DCU lock mask required by the enabler and

is a 128-bit mask. These bits are added to the OTP-based

mask.

A developer certificate has the following fields:

Table 5. Items in developer certificate

Items Condition Description

SoC-ID Mandatory. ▪ SoC-ID of the device. You can enable debug interfaces

of the device with this SoC-ID.

▪ If try to enable the debug interface of the device with a

different SoC-ID, it fails.

debug-mask Mandatory if RMA-mode is not defined.

Cannot be defined together with RMA-

mode.

The DCU mask allowed by the developer. A 128-bit mask.

A debug certificate is generated at Secure Debug in the Security Tool, which includes a debug-mask
configuration in the enabler certificate and a SoC-ID for the developer certificate. An RMA certificate is
generated at Secure RMA in the Security Tool, which includes an RMA-mode configuration in the enabler
certificate and a SoC-ID for the developer certificate.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 17

4.6 Device Provisioning

Device provisioning refers to burning secret keys and assets in the OTP memory of a device in a secure manner.
The CM keys and assets in Table 6 should be burned in the OTP in CM LCS, and the DM keys and assets in
Table 7 should be burned in the OTP in DM LCS.

Table 6. CM keys and assets in CM LCS

Key names or assets Functions

Kpicv and Kceicv CM key

Hbk0 Root of Trust

Asset CM DCU lock bits

Asset Configuration bits (General Purpose Flag)

A CM Provisioning Utility (CMPU) package binary contains all of the items and is generated when "Secure
Production" is run in the Secure Tool.

Table 7. DM keys and assets in DM LCS

Key names or assets Functions

Kcp and Kce DM key

Hbk1 Root of Trust

Asset DM DCU lock bits

After the secrets and asset are burned in the OTP memory, LCS automatically changes to Secure LCS, and the
JTAG debug interface in the DA16200/DA16600 is disabled. In order to enable the JTAG debug interface again,
the debug certificate scheme should be applied. The platform key (Krtl) is required to generate a CMPU and
DMPU package binary to encrypt all assets as described in Section 4.2.2.

4.7 Secure Asset

After device provisioning, secret keys in the OTP memory can be used to encrypt or decrypt user data in the
flash memory. It provides APIs and procedures to encrypt and manage data to be stored in Flash with the AES
CCM method.

4.7.1 API for Secure Assets

Secure assets are encrypted data stored in Flash. Data decryption is done with the key derived from the
provisioning key Kpicv or Kcp that is stored in the OTP memory. Therefore, there is no risk of key disclosure.
The Security Tool supports the creation of the secure asset, encrypted with a key derived from the provisioning
key. The DA16200/DA16600 SDK provides an API to decrypt assets with the key derived from the OTP memory
keys by the hardware crypto engine.

The Secure Asset Service uses a CMAC algorithm based on AES encryption and has a file size restriction:

▪ The valid size of unencrypted data must be multiplied of 16 bytes.

▪ The maximum size of unencrypted data cannot exceed 512 bytes.

▪ The maximum size of the secure asset is 560 bytes including the header size.

The decryption API provided by the SDK is FC9K_Secure_Asset(). See Table 8.

Table 8. Secure asset runtime APIs

extern UINT32 FC9K_Secure_Asset(

 UINT32 Owner

 , UINT32 AssetID

 , UINT32 *InAssetData

 , UINT32 AssetSize

 , UINT8 *OutAssetData

);

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 18

▪ Owner

Key type number. Use 1 for Kpicv, or 2 for Kcp.

▪ AssetID

ID information used in the encryption process.

▪ InAssetData

Secure Asset Data. This data must be loaded into SRAM since this function does not access Flash.

▪ AssetSize

Size of Secure Asset Data.

▪ OutAssetData

Decrypted Asset Data. This data must be allocated in SRFAM since this function does not run a memory
allocation.

The Secure Asset is generated with CM.4.secuasset.bat in the folder SBOOT.

Figure 11. Encryption process of secure asset

Table 9 shows example code for decrypting a Secure Asset in Flash.

Table 9. Secure asset decryption process

UINT32 status;

UINT32 assetsiz, encassetsiz;

UINT8 *asset;

UINT8 *dump_encasset_hex = NULL;

UINT32 address ;

dump_encasset_hex = APP_MALLOC((512+48)); // header + asset

address = htoi(argv[1]);

encassetsiz = htoi(argv[2]);

status = sbrom_sflash_read(address, dump_encasset_hex, encassetsiz);

if(status == TRUE){

 asset = CRYPTO_MALLOC(512);

 assetsiz = FC9K_Secure_Asset(2 // 1 : Kpicv, 2 : Kcp

 , 0x00112233 // Asset ID

 , (UINT32 *)dump_encasset_hex // secure asset

 , encassetsiz // size of secure asset

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 19

 , asset); // decrypted asset

 if(assetsiz > 0){

 CRYPTO_DBG_DUMP(0, asset, assetsiz);

 }

 CRYPTO_FREE(asset);

}

PP_FREE(dump_encasset_hex);

4.7.2 Secure Storage

The Secure Storage is a concept similar to the Secure Asset, but some features are different. Secure Storage is
encrypted with a key derived from one of the followings: user key, root key, Kcp or Kpicv. It also supports full
services to encrypt raw data and decrypt secure data, but the Secure Asset only supports one-way function used
to decrypt assets.

Table 10 shows the functions and related definition items for Secure Asset.

Table 10. Secure asset runtime APIs

typedef enum {

 ASSET_USER_KEY = 0,

 ASSET_ROOT_KEY = 1,

 ASSET_KCP_KEY = 2,

ASSET_KPICV_KEY = 4,

} AssetKeyType_t;

typedef struct {

 UINT8 *pKey;

 size_t keySize;

} AssetUserKeyData_t;

typedef struct {

 uint32_t token;

 uint32_t version;

 uint32_t assetSize;

} AssetInfoData_t;

#define CC_RUNASSET_PROV_TOKEN 0x416E7572UL

#define CC_RUNASSET_PROV_VERSION 0x10000UL

extern INT32 FC9K_Secure_Asset_RuntimePack(

 AssetKeyType_t KeyType

 , UINT32 noncetype

 , AssetUserKeyData_t *KeyData

 , UINT32 AssetID

 , char *title

 , UINT8 *InAssetData

 , UINT32 AssetSize

 , UINT8 *OutAssetPkgData

);

extern INT32 FC9K_Secure_Asset_RuntimeUnpack(

 AssetKeyType_t KeyType

 , AssetUserKeyData_t *KeyData

 , UINT32 AssetID

 , UINT8 *InAssetPkgData

 , UINT32 AssetPkgSize

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 20

 , UINT8 *OutAssetData

);

▪ AssetKeyType_t

This defines the type of the derived key stored in the OTP to be applied to the key derivation function CMAC
to be used for encryption. ASSET_ROOT_KEY means HUK, ASSET_KCP_KEY means Kcp, and
ASSET_KPICV_KEY means Kpicv. If the user-defined key is used in addition to the key stored in OTP, it
should be defined as ASSET_USER_KEY and KeyData are set as input value.

▪ AssetUserKeyData_t

This is a structure to define a user-defined key when ASSET_USER_KEY is used. The user-defined key
defines 128/192/256 bits, pKey defines the buffer pointer of Key Data, and keySize defines 16/24/32 bytes,
which means key length.

▪ FC9K_Secure_Asset_RuntimePack()

This function encrypts raw input data with an AES CCM method and has the following parameters:

• KeyType

Define the type of decryption key to use for encryption.

• Noncetype

Define how to generate the nonce information used in the encryption process. '0' is the Nonce generated by
TRNG, and '0xFFFFFFFF' is the Nonce generated by PRNG.

• KeyData

This means the parameter to input User Key when KeyType is defined as ASSET_USER_KEY.

• AssetID

This is the ID information used in the encryption process.

• Title

This is a parameter to enter the title information of the Runtime Asset Package.

• InAssetData

This is the data pointer of the raw data to be encrypted.

• AssetSize

This is the size of the raw data and must be defined as 16 bytes multiple for AES, which is a block cipher.

• OutAssetPkgData

This is the data pointer of the encrypted Runtime Asset Package. Since the function does not perform
internal memory allocation, the data buffer for the output data should be pre-allocated and allocated to Raw
Data Size + 48 bytes, considering 48 bytes of information field to be additionally tagged.

• If the Return Value is less than 0, it means error. If the Return Value is larger than 0, it means size
information of output data OutAssetPkgData.

▪ FC9K_Secure_Asset_RuntimeUnpack()

This is a function to decrypt the encrypted input Runtime Asset Package, and the input parameter needs to
input the encryption parameter applied to function FC9K_Secure_Asset_RuntimePack().

• KeyType

This should match the type of decryption key used in encryption.

• KeyData

If KeyType is defined as ASSET_USER_KEY, it should match key information used as User Key.

• AssetID

This should match the ID information used for encryption.

• InAssetPkgData

This is the data pointer of the Runtime Asset Package to be decoded.

• AssetPkgSize

This is the size of the Runtime Asset Package, which means Raw Data Size + 48 bytes.

• OutAssetData

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 21

This is the data pointer of the decoded raw data, and the size is the raw data size.

• If the Return Value is less than 0, it means an error. If the Return Value is larger than 0, it means size
information of output data OutAssetData.

Table 11 and Table 12 show example code to implement Secure Storage in Flash that use the Runtime
Pack/Unpack function.

Table 11. Encryption process

{

 UINT32 status;

 UINT32 assetid, assetoff;

 INT32 assetsiz, pkgsiz;

 UINT8 *assetbuf, *pkgbuf;

 assetid = htoi(argv[2]); // Asset ID

 assetoff = htoi(argv[3]); // Flash Offset

 assetsiz = htoi(argv[4]); // plaintext, InAssetPkgData size

 assetsiz = (((assetsiz + 15) >> 4)<< 4); // 16B aligned

 PRINTF(" Aligned Asset Size:%d\n", pkgsiz);

 assetbuf = APP_MALLOC(assetsiz);

 pkgbuf = APP_MALLOC(assetsiz + 48);

 if(assetbuf == NULL){

 return;

 }

 if(pkgbuf == NULL){

 APP_FREE(assetbuf);

 return;

 }

 // Step 1. Read Raw Data from Flash

 pkgsiz = 0;

 status = sbrom_sflash_read(assetoff, assetbuf, assetsiz);

 // Step 2. AES Encryption

 if(status > 0){

 pkgsiz = FC9K_Secure_Asset_RuntimePack(ASSET_ROOT_KEY

 , 0

 , NULL, assetid, "RunPack"

 , assetbuf, assetsiz, pkgbuf);

 }

 // Step 3. Write Runtime Package Data to Flash

 if(pkgsiz > 0){

 PRINTF("PKG Size:%d\n", pkgsiz);

 sbrom_sflash_write(assetoff, pkgbuf, pkgsiz);

 }

 APP_FREE(pkgbuf);

 APP_FREE(assetbuf);

 }

Table 12. Decryption process

 {

 UINT32 status;

 AssetInfoData_t AssetInfoData;

 UINT32 assetid, assetoff, flagwrite;

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 22

 INT32 assetsiz, pkgsiz;

 UINT8 *assetbuf, *pkgbuf;

 assetid = htoi(argv[2]); // Asset ID

 assetoff = htoi(argv[3]); // Flash Offset

 flagwrite = htoi(argv[4]); // Test only. Flash write option flag

 // Step 1. Read Info Block of Runtime Asset Package

 status = sbrom_sflash_read(assetoff

 , (UINT8 *)(&AssetInfoData), sizeof(AssetInfoData_t));

 if(status == 0){

 PRINTF("SFLASH Read Error:%x\n", assetoff);

 return;

 }

 if((AssetInfoData.token == CC_RUNASSET_PROV_TOKEN)

 && (AssetInfoData.version == CC_RUNASSET_PROV_VERSION)){

 assetsiz = AssetInfoData.assetSize;

 PRINTF("Stored PKG Size:%d\n", assetsiz);

 pkgsiz = assetsiz + 48;

 }else{

 PRINTF("Illegal Asset Package:%X.%X\n"

 , AssetInfoData.token, AssetInfoData.version);

 return;

 }

 assetbuf = APP_MALLOC(assetsiz);

 pkgbuf = APP_MALLOC(pkgsiz);

 if(assetbuf == NULL){

 return;

 }

 if(pkgbuf == NULL){

 APP_FREE(assetbuf);

 return;

 }

 // Step 2. Read Runtime Asset Package form Flash

 assetsiz = 0;

 status = sbrom_sflash_read(assetoff, pkgbuf, pkgsiz);

 // Step 3. AES Decryption

 if(status > 0){

 assetsiz = FC9K_Secure_Asset_RuntimeUnpack(ASSET_ROOT_KEY

 , NULL, assetid, pkgbuf, pkgsiz, assetbuf);

 }

 if(assetsiz > 0){

 PRINTF("ASSET:%d\n", assetsiz);

 CRYPTO_DBG_DUMP(0, assetbuf, assetsiz);

 // Step 4. Test only. Write Raw Data to Flash

 if(flagwrite == 1){

 sbrom_sflash_write(assetoff, assetbuf, assetsiz);

 }

 }else{

 PRINTF("ASSET:decryption error (%x)\n", assetsiz);

 }

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 23

 APP_FREE(pkgbuf);

 APP_FREE(assetbuf);

 }

4.7.3 Secure NVRAM

The contents in NVRAM can be encrypted with the runtime APIs for security. HUK, Kpicv, and Kcp in the OTP
are used in Secure NVRAM. When the NVRAM APIs are used, you can read and write certain items in the
NVRAM area on the flash memory. See Ref.[4]. for more information.

When Secure NVRAM is enabled by the following commands, the items written to the flash are encrypted before
writing, and the items to read are decrypted when reading from the flash internally.

[DA16200] nvram.nvedit secure 1 // Key selection: 1 HUK, 2 Kpicv, 4 Kcp

[DA16200] nvram.nvedit save sflash // Activates Secure NVRAM. Henceforth, encryption and

decryption are performed internally whenever read or write to the NVRAM occurs.

4.7.3.1 Cryptographic Acceleration

MbedTLS APIs are used for cryptographic functions in the DA16200/DA16600. MbedTLS is an open source SSL
library that enables you to include cryptographic and SSL/TLS capabilities in their embedded products, with a
minimal coding footprint.

You can select between hardware-accelerated cryptographic operations and the software cryptographic
implementation of Mbed TLS for each feature supported by both Mbed TLS and CryptoCell-312:

▪ The Mbed TLS cryptographic implementation provides an interface to the standard cryptographic operations.
For example, AES, RSA or ECC.

▪ The dedicated CryptoCell-312 APIs provide an interface to the non-standard or specific CryptoCell-312
operations. For example, key derivation using HUK.

Mbed TLS and CryptoCell-312 are flexible in terms of which features are compiled in each. To control which
components are Mbed TLS-based or CryptoCell-312-based, you must edit the config-cc312.h configuration file.
This file is located in crypto/inc/mbedtls/config.h. It includes all the flags that are supported by Mbed TLS, with
the additional XXX_ALT definitions. These XXX_ALT definitions are for the components that are accelerated by
the hardware.

By default, Renesas Electronics SDK comes with the minimum required features that CryptoCell-312
accelerates. See Ref. [4] on how to use mbedTLS APIs. Table 13 shows the supported hardware acceleration
crypto algorithms in the DA16200/DA16600.

Table 13. Hardware acceleration crypto algorithms

Algorithm Mode Key sizes

AES

ECB, CBC, CTR, OFB,CMAC,

CBC-MAC, AES-CCM, AES-CCM*,

AES-GCM

128 bits, 192 bits, and 256 bits

AES key wrapping N/A All

Chacha and Chacha-Poly1305 N/A N/A

Diffie-hellman

▪ ANSI X9.42-2003: Public Key

Cryptography for the Financial Services

Industry: Agreement of Symmetric Keys

Using Discrete Logarithm Cryptography.

▪ Public-Key Cryptography Standards

(PKCS) #3: DiffieHellman Key Agreement

Standard.

N/A 1024 bits, 2048 bits, and 3072 bits

ECC key generation N/A NIST curves and 25519 curves

ECIES N/A NIST curves and 25519 curves

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 24

ECDSA N/A NIST curves and ED25519

ECDH N/A NIST curves and 25519 curves

Hash SHA1, SHA224, and SHA256 N/A

HKDF N/A N/A

HMAC SHA1, SHA224, and SHA256 N/A

KDF

NIST SP 800-108: Recommendation for Key

Derivation Using Pseudorandom Functions

CMAC or HMAC N/A

RSA PKCS#1 operations

• Public-Key Cryptography Standards

(PKCS) #1 v2.1: RSA Cryptography

Specifications.

• Public-Key Cryptography Standards

(PKCS) #1 v1.5: RSA Encryption.

Encryption and signature schemes 2048 bits, 3072 bits, and 4096 bits

RSA key generation N/A 2048 bits and 3072 bits

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 25

5. Security Tool

The Security Tool is provided to generate secret keys, certificates, and secure binary images for the
DA16200/DA16600. There are four major things that you can do with the Security Tool:

▪ Generate RoT (Hbk0 and Hbk1) and CM/DM secret keys (Kpicv, Kceicv, Kcp, and Kce). It also generates
CMPU and DMPU binary which contain all keys to be burned into OTP memory.

▪ Build Secure Boot images (secure bootloader and RTOS Images) that run on the DA16200/DA16600.

▪ Generate Secure Debug certificates and images.

▪ Generate RMA certificates and image.

Figure 12 shows the top window of the Security Tool when running CM.1.secuman.bat at SBOOT directory in our

SDK.

Figure 12. Top window of the security tool

5.1 Role Selection

Three roles are available:

▪ Single Manager

"Single" is a top manager who is responsible to generate and manage all secret keys of the product. Only the
Single Manager has the authority to generate, renew or remove the secret keys. Most importantly, the private
key that corresponds to the RoT (Hbk0 and Hbk1) in the OTP memory should be kept and maintained by the
Single Manager.

The Single Manager has the responsibility to keep the private key to itself and not expose the private key for
any reason. If exposed, there is no guarantee of security so that products that have the corresponding RoT in
the OTP should be recalled. For this reason, pay extra attention when you take on the role of "Single"
manager.

▪ SB Publisher

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 26

The "SB Publisher" role has to generate the third certificate, for example, the content certificate, which is
needed for Secure Boot in a three-level certificate scheme and to rebuild Secure bootable images with it (all
UEboot, RTOS, and images).

Only the Secure Boot menu is enabled for this role. The main responsibility of this role is to remove the debug
certificate in the image after Secure Debug. A debug certificate is in place in the images after running Secure
Debug. An image with a debug certificate enables debug interfaces. Use this role to remove the debug
certificate and build only Secure Boot images that disable debug interfaces for security.

▪ SB/SD Publisher

The "SB/SD Publisher" role has to generate the third certificate, for example, the content certificate, which is
needed for Secure Boot in a three-level certificate scheme and to rebuild Secure Boot images with it (all
UEboot, RTOS, and images).

In addition, the "SB/SD Publisher" role has to generate the Debug certificate for Secure Debug with the SoC-
ID of the target device enabling the debug interface (JTAG port) of the target device and to rebuild Secure
bootable images (only the UEboot image is rebuilt).

Only Secure Boot and Secure Debug menus are enabled for the SB/SD Publisher role. See Figure 13.

Figure 13. Secure boot and secure debug

When Secure Debug is selected, a popup window appears requesting the Soc-ID of the target device. See
Figure 14.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 27

Figure 14. Request Soc-ID in secure debug

The SoC-ID of the target device can be checked with the following console command:

 [/DA16200] sys.socid

Copy the SOC-ID with the sys.socid command to the SoC-ID field in the Security Tool window. Note that SoC-

ID is only valid when the target device is in Secure LCS. The SB/SD Publisher role is useful when you want to
make their third party debugging the end-product in the field and not expose secrets. The third party can make a
secure bootable image with this role and debug the product.

5.2 Secure Production

Secure Production generates all the secret keys such as CM keys, DM keys, and keys for the 2nd certificate and
3rd certificate. And the certificate chains that use the generated keys are generated to create Secure Boot and
Secure Debug images. Note that SDK should be built before executing the Secure Production process.

Table 14 shows which files are generated when Secure Production is used.

Table 14. Secret keys for secure production

Items CM/DM keys Directory Generated files

CM keys CM keys cmsecret OTP keys: cmkey_pair.pem, kceicv.bin, kpicv.bin

Private keys for Secure Boot: cmissuer_keypair.pem,

cmpublisher_keypair.pem

Private keys for Secure Debug: cmenabler_keypair.pem,

cmdeveloper_keypair.pem

DM keys DM keys dmsecret OTP keys: dmkey_pair.pem, kce.bin, Kcp.bin

Private keys for Secure Boot: dmissuer_keypair.pem,

dmpublisher_keypair.pem

Private keys for Seucre Debug: dmenabler_keypair.pem,

dmdeveloper_keypair.pem

certificates for

Secure Boot

with CM keys cmpublic sboot_hbk0_3lvl_key_chain_issuer.bin,

sboot_hbk0_3lvl_key_chain_publisher.bin

with DM keys dmpublic sboot_hbk1_3lvl_key_chain_issuer.bin,

sboot_hbk1_3lvl_key_chain_publisher.bin,

and content certificates for UEboot and RTOS images

with CM keys cmpublic sdebug_hbk0_3lvl_key_chain_enabler.bin,

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 28

certificates for

Secure Debug

sdebug_hbk0_3lvl_key_chain_developer.bin

with DM keys dmpublic sdebug_hbk1_3lvl_key_chain_enabler.bin,

sdebug_hbk1_developer_pkg.bin

To enter CM and DM secret keys into OTP memory, special binaries called CMPU package and DMPU package
are also generated after Secure Production.

▪ CMPU and DMPU package binary contains the items in Table 14.

"Krtl.key" (the platform key) should be in the cmsecret directory to run Secure Production. If there is no proper
platform key in the cmsecret directory, it cannot run Secure Production. The platform key is provided by
Renesas Electronics upon request.

After successful Secure Production, the platform key is deleted by the Security Tool for security concerns. The
platform key should not be exposed for any reason.

When the Secure Production button is clicked on the Security Tool, a popup window appears preventing
accidental removal of the files.

Figure 15. Prevent accidental removal of secret keys in secure production

When the Security Tool is used for the first time, select Yes to All. The Secure Production process starts logging
on both the console window and the log file in the example directory.

The log messages for Secure Production are saved in secure_production.txt file in the example directory. The
file allows you to check procedure or error messages.

Pay extra attention when it is not the first time using the Security Tool and selected Yes to All. If using the
Security Tool again, the previously generated secret keys and certificates are lost and generate keys and
certificates again.

After successful Secure Production, cmpu.pkg.bin and dmpu.pkg.bin files are in the public directory. At the
production stage, these package binaries should be downloaded to SFlash memory at the address shown in
Table 15.

Table 15. CMPU/DMPU download address in SFlash

Binary Start address

Cmpu.pkg.bin 0x001F_2000

Dmpu.pkg.bin 0x001F_3000

Note that the addresses in Table 15 are the default address in our SDK and can be changed under the
circumstances. And UEboot binary for the production version should be used for mass production.

When the pre-built binary is used, there are UEboot binaries provided in the image directory and you must set
them for the respective purposes.

Table 16. UEboot binary definition of secure boot, non-secure boot and RMA

UEboot binary name Purpose

DA16xxx_ueboot.bin.SecureBoot Production version UEboot

DA16xxx_ueboot.bin.NoneSecure Normal version UEboot

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 29

DA16xxx_ueboot.bin.RMA RMA version UEboot

Before the SDK is built, UEboot binaries should be renamed to build a bootable UEboot image
(DA16xxx_ueboot_xxx.img). After the SDK is built, a bootable UEboot image is available in the public directory.

Table 17. UEboot binary setting for secure boot, non-secure boot and RMA

SDK Secure type UEboot binaries setting

FreeRTOS Secure Boot DA16xxx_ueboot.bin.Secure > DA16xxx_ueboot.bin

▪ Non-Secure

▪ Secure Debug

DA16xxx_ueboot.bin. NonSecure > DA16xxx_ueboot.bin

RMA DA16xxx_ueboot.bin. RMA > DA16xxx_ueboot.bin

When the UEboot binary is built from DA16x00 UEboot Project:

▪ UEboot binary should be built according to the Secure Production process described in the Table 17.

▪ For building UEboot according to its purpose, following definitions in the UEboot_initialize.c should be defined
or undefined beforehand.

Table 10. Proper definitions for secure production

Definition SUPPORT_SECURE_REGION_LOCK SUPPORT_DA16X_RMA_OTP_ERASE

Secure Boot undef undef

Non Secure/Secure Debug define undef

RMA undef define

UEboot image should be generated in apps/da16x00/get_started/image folder.

For the CMPU and DMPU process, all UEboot and RTOS images should be downloaded to SFlash beforehand.

To download the UEboot image, run the following command at the MROM prompt and select the production
version UEboot image.

• [MROM] loady boot

In case of FreeRTOS SDK, download the RTOS image.

• [MROM] loady 23000 // for RTOS image

• Power OFF and ON

• [DA16200] reset // to enter into MROM

To download the CMPU binary, run the next command at the MROM prompt and select cmpu.pkg.bin.

• [MROM] loady 1f2000 1000 bin

To download the DMPU binary, run the next command at the MROM prompt and select dmpu.pkg.bin.

• [MROM] loady 1f3000 1000 bin

The command(sys.sprod) in the RTOS image is used to write secrets into the OTP memory. Therefore, an
RTOS image should be run to provision the secrets in the CMPU and DMPU binaries. You need to boot with
RTOS. To do so, press the power off/on button, or use the boot command at the MROM prompt. hbk0 and CM
keys can be burned into the OTP memory with the following command on the [DA16200] prompt in RTOS.

• [DA16200] sys.sprod

When successful, the following message is output:

▪ Product.CMPU: 0

After the power off/on is pressed, the LCS of the DA16200 changes from CM LCS to DM LCS.

hbk1 and DM keys can be burned into the OTP memory with command:

• [DA16200] sys.sprod

When successful, the following message is output:

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 30

▪ Product.DMPU: 0

After the power off/on button is pressed, the LCS of the DA16200 changes from DM LCS to Secure LCS, in
which JTAG is disabled and only enabled again with a Debug Certificate. When completed, the CMPU and
DMPU binary in the Flash should be deleted for security reasons. Command sys.sprod erases the binaries

on the Flash.

• [DA16200] sys.sprod

Command sys.sprod outputs some messages similar to that shown in Table 18.

Table 18. Success message to change from DM to secure LCS

CC_BsvSocIDCompute return SocID

 7D D2 00 E0 F1 06 43 F5 AF 5A 17 3F BF A6 8E 3D

 03 4C B7 DA AA 6D DB 39 51 0B F5 D5 62 7E 2C 8F

Product.CMPU: Erased

Product.DMPU: Erased

Product.SLock: 1

Product.State: Secure Boot Scenario - Good

The example shows the SoC-ID of the device (it is different from your device) and the status of the CMPU and
DMPU binary (whether they are erased or not). Command Product SLock shows the status of a control bit in the

OTP. If the value is 1, then the DA16200 performs a secure boot.

After all the procedures are completed, the production version of UEboot should be replaced with a normal
version of UEboot (rename "DA16xxx_ueboot.bin.NoneSecure" to "DA16xxx_ueboot.bin" in the "image" directory
and build the SDK) with the following command at the MROM prompt to download the image.

▪ [MROM] loady boot

The following table summarizes which directories are the most important ones after Secure Production and that
should not be exposed for any reason because of security.

Table 19. Directory definition for secure production

Directory Contents

cmsecret CM private keys and encryption keys (private/public key pair, Kceicv, and

Kpicv).

cmpublic 1st and 2nd certificate for Secure Boot and Secure Debug that use Hbk0 (CM

root key).

dmsecret DM private keys and encryption keys (private/public key pair, Kcp, and Kce).

dmpublic 1st, 2nd, and 3rd certificate for Secure Boot and Secure Debug that use Hbk1

(DM root key).

Secure Boot images with the certificate chain based on the keys are generated in the public directory.

▪ Secure Boot images in FreeRTOS SDK:

• UEboot image (XXUEBOOTXX.img) built from our SDK contains a bootloader (UEboot) binary.

• RTOS image (XXRTOSXX.img) built from our SDK contains the RTOS binaries.

If the target device goes through the CMPU and DMPU process, and the images are downloaded to the SFlash
at the proper address, it boots correctly.

5.3 Key Renewal

When one of the 2nd and 3rd private keys is exposed for any reason, those private keys need to be changed
with the Key Renewal menu. When you click the button, previously generated 2nd, 3rd private keys, and
certificates are deleted and regenerated from the start. RoT (1st private key) cannot be changed.

If you click the Key Renewal button in the Security Tool, the confirmation popup window shown in Figure 16
displays to warn users preventing accidental deletions.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 31

Figure 16. Prevent accidental removal of secret keys in key renewal

To renew the key, select Yes to All. The previously generated 2nd, 3rd private keys, and the certificates are
deleted and regenerated.

The following table summarizes which directories are updated after key renewal.

Table 20. Directory definition for key renewal

Directory Contents

dmsecret 2nd/3rd private keys for Secure Boot and Secure Debug.

dmpublic 1st/2nd/3rd certificates for Secure Boot and Secure Debug that use Hbk1 (DM

root key).

dmpubkey 2nd/3rd public keys.

dmtpmcfg Configurations.

public Images with the certificate chain for Secure Boot.

Secure Boot images with the certificate chain based on the renewed keys are generated in the public directory.

The key_renewal.txt file in the example directory is a log file for the Key Renewal process. The file can be used
to check the log or read error messages that occurred.

5.4 Secure Boot

After running the Secure Debug menu, the generated image contains a Debug Certificate but no Content
Certificate chain. See Figure 17.

Image Header

SFDP

Cert Info

Length CRC
Length CRC
Length CRC
Length CRC

Content
Cert Chain

Cert A

Cert B

Cert C

3 level Debug Certificate

Reserved or Pad

Content

Comp 0

Comp 1

Comp 2

Figure 17. Debug certificate of secure debug

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 32

For Secure Boot, an image with a Content Certificate chain is required without a Debug certificate. To generate
images for Secure Boot, run the Secure Boot. Secure Boot images with the certificate chain are generated in
the public directory.

▪ Secure Boot images in FreeRTOS SDK:

• UEboot image (XXUEBOOTXX.img) contains a bootloader (UEboot) binary.

• RTOS image (XXRTOSXX.img) contains RTOS binaries.

The secure_debug.txt in the example directory is a log file for Secure Boot process. The file can be used to
check the log and read error messages that occurred.

5.5 Secure Debug

The debug port in the DA16200/DA16600 JTAG is disabled by default when enteres into Secure LCS. When this
debug port needs to be re-enabled for debug purposes, then a Secure Debug image should be used. There is an
optional Debug certificate field in an image.

At the boot sequence, a check is done to see whether the Debug certificate exists in the image. If a Debug
certificate exists, then the SoC-ID in the Debug certificate is checked to see if it matches with the target device.
When it does match, the debug port is enabled and boot.

When Secure Debug is running in the Security Tool, the window appears entering the SoC-ID of the target
device, see Figure 18. Use sys.socid command in the console to check the SoC-ID of the target device.

▪ [DA16200] sys.socid

Figure 18. Window to enter SoC-ID in secure debug

You can copy the SoC-ID from the console command to the window shown in Figure 18 and then click UPDATE.
Table 21 summarizes which directories are updated from Secure Debug.

Table 21. Directory definition for secure debug

Directory Contents

dmpublic Developer certificate with the SoC-ID.

public Images with Debug certificate.

Secure Debug images with the Debug certificate are generated in the public directory.

▪ Secure Debug images in FreeRTOS SDK.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 33

• UEboot image (XXUEBOOTXX.img) includes a bootloader (UEboot) binary.

• RTOS image (XXRTOSXX.img) includes the RTOS binaries.

The secure_debug.txt in the example directory is a log file for the Secure Debug process. The file can be used
to check the log and read error messages that occurr.

5.6 Secure RMA

The LCS of the chip should be changed to RMA LCS before the chip is sent to the chip maker (for example,
Renesas Electronics) for analysis.

A Debug certificate that has an RMA flag enabled (RMA certificate) is required to enter a device into RMA LCS.
In addition, to erase secret keys in the OTP memory, a specific UEBoot binary for RMA is required. This UEboot
binary for RMA is provided in the SDK with the name UEbootXXRMAXX.bin. Like Secure Debug, Secure RMA is
allowed for a specific device and a SoC-ID is required for the RMA certificate.

When changing to RMA LCS, secret keys in the OTP memory such as Kpicv, Kceicv, Kcp, and Kce are erased
preventing your secret keys are exposed and the debug port (JTAG) is re-enabled for debugging purposes.

When running Secure RMA, Figure 19 shows entering the SoC-ID in the RMA certificate for the target device.
Copy and paste the SoC-ID from console command sys.socid to the Security Tool window and then click

UPDATE.

Figure 19. Window to enter SoC-ID in RMA

There are two images with an RMA certificate generated in the public directory: DA16xxx_rma.img and
DA16xxx_rma_icv.img. Image DA16xxx_rma.img is for the RMA image with DM keys and erases the DM keys in
the OTP. Image DA16xxx_rma_icv.img is for the RMA image with CM keys and erases the CM keys in the OTP.

After UEboot for RMA to the SFlash is updated, do the following for the RMA process.

• [MROM] loady boot [RMA version of UEboot]

To run an RMA image with DM keys, run the following command at the MROM prompt and download
DA16xxx_rma.img.

• [MROM] loady 1f2000 1000 bin

After downloading, you need to reboot the system and set the DM RMA flag using the following command at the
[DA16200] prompt:

• [DA16200] sys.sbrom sflash 1f2000

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 34

• Power OFF and ON // for POR

To run an RMA image with CM keys, run the following command at the MROM prompt and download
DA16xxx_rma_icv.img.

• [MROM] loady 1f2000 1000 bin

After downloading, you need to reboot the system and set the CM RMA flag using the following command at the
[DA16200] prompt:

• [DA16200] sys.sbrom sflash 1f2000

• Power OFF and ON // for POR

All HUK, CM and DM keys are erased from OTP in the UEBoot initialization phase during PoR boot.

To check if the device entered properly into RMA, use command sys.socid.

After completing the steps, the Non-Secure UEBoot image should be in place again on the SFlash.

• [MROM] loady boot [Non-Secure of UEboot]

Table 22 summarizes which directories are updated from Secure RMA.

Table 22. Directory definition for secure RMA

Directory Contents

cmpublic Debug certificate with RMA enabled (RMA certificate) with CM key chain (Hbk0).

dmpublic Debug certificate with RMA enabled (RMA certificate) with DM key chain (Hbk1).

public Images with RMA certificate with both DM key chain and CM key chain

(DA16xxx_rma.img and DA16xxx_rma_icv.img).

The secure_rma.txt in the example directory is a log file for the Secure RMA process. The file can be used to
check the log and read error messages that occurred.

5.7 Remove Secrets

When you want to have a third party to debug the end-product in the field, you need to run Remove Secrets
before the SBOOT directory is delivered to the third party, to remove all important secret keys and certificates.
Before running this menu, the original SBOOT directory should be already backed-up in a safe location because
all secret keys are removed. Then, the third party can make its own debug images with the SBOOT and IAR
environment.

After debugging is complete by the 3rd party, you should apply the resolving patch codes from the third party to
the SDK and build the SDK, which makes UEboot, RTOS binaries in SDK that are copied to the image directory.

When clicking the Remove Secrets, a confirmation window shows. See Figure 20.

Figure 20. Prevent accidental removal of secret keys in secure RMA

Select Yes to All to remove all secrets. Next, the window appears, see Figure 21.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 35

Figure 21. Remove secret keys in secure RMA

This is to determine to who to send SBOOT and what files should be removed accordingly. Table 23 shows the
files that should be removed according to the selected target.

Table 23. Directory definition to remove secret keys in secure RMA

Target Directory Removed files

SB Publisher cmsecret All files

cmpublic All files

dmsecret All files except dmpublisher_keypair.pem

dmpublic enc.kce.bin, enc.kcp.bin,

and all sdebug_* files

SB/SD Publisher cmsecret All files

cmpublic All files

dmsecret All files except

dmpublisher_keypair.pem,

dmdeveloper_keypair.pem

dmpublic enc.kce.bin, enc.kcp.bin,

sdebug_hbk1_enabler_rma_pkg.bin,

sdebug_hbk1_developer_rma_pkg.bin

After this, SBOOT can be sent to the third party for debugging or development purposes.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 36

6. Revision History

Revision Date Description

2.2 Apr 22, 2025 ▪ Updated Table 17.

2.1 Jul 31, 2023
▪ Updated the reference section.

▪ Updated Section 5.2.

2.0 Nov 16, 2022
▪ Changed company name from Dialog to Renesas.

▪ Updated Table 1: change user area range in OTP memory.

1.9 Mar 28, 2022 ▪ Updated logo, disclaimer, and copyright.

1.8 Dec 9, 2021 Added Table 17: UEboot Binary Setting for Secure Boot, Non-Secure Boot

and RMA.

1.7 Nov 23, 2021 ▪ Updated RMA procedure.

▪ Add the guide of security tool in FreeRTOS SDK.

▪ Change title and file name from DA16200 to the DA16200 DA16600.

1.6 May 15, 2020 Updated User Manual for Security Tool v2.0.

1.5 Apr 21, 2020 Added: Remove CMPU and DMPU Binary.

1.4 Dec 16, 2019 ▪ Added Write CM and DM package at SFlash.

▪ Added Change Life Cycle Status (LCS).

▪ Added Change to secure boot mode.

1.3 Dec 16, 2019 Editorial review.

1.1 Sept 11, 2019 Updated: How to generate and burn secret keys.

1.0 Jul 3, 2019 Preliminary DRAFT Release.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 37

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

ROHS COMPLIANCE

Renesas Electronics’ suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of
the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
RoHS certificates from our suppliers are available on request.

DA16200 DA16600 Security Tool

UM-WI-015 Rev.2.2
Apr 22, 2025

CFR0012

Page 38

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources
are subject to change without notice. Renesas grants you permission to use these resources only to develop an application
that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any
other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you
will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from
your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other
applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable
warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales

office, please visit www.renesas.com/contact-us/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered

trademarks are the property of their respective owners.

(Disclaimer Rev.1.1 Jan 2024)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
http://www.renesas.com/contact-us/

	Contents
	Figures
	Tables
	1. Terms and Definitions
	2. References
	3. DA16200/DA16600 Security
	3.1 Security Engine
	3.2 Hardware Components
	3.3 Software Architecture

	4. Security Features
	4.1 Security Services
	4.1.1 Secure Boot
	4.1.2 Secure Debug
	4.1.3 Secure Asset

	4.2 Secret Keys
	4.2.1 HUK
	4.2.2 Platform Key
	4.2.3 Chip Master Key
	4.2.4 Device Master Key
	4.2.5 RoT

	4.3 OTP Memory
	4.4 Life Cycle States
	4.4.1 CM LCS
	4.4.2 DM LCS
	4.4.3 Secure LCS
	4.4.4 RMA LCS

	4.5 Boot Services
	4.5.1 Secure Boot
	4.5.1.1 Secure Boot Flow

	4.5.2 Secure Debug

	4.6 Device Provisioning
	4.7 Secure Asset
	4.7.1 API for Secure Assets
	4.7.2 Secure Storage
	4.7.3 Secure NVRAM
	4.7.3.1 Cryptographic Acceleration

	5. Security Tool
	5.1 Role Selection
	5.2 Secure Production
	5.3 Key Renewal
	5.4 Secure Boot
	5.5 Secure Debug
	5.6 Secure RMA
	5.7 Remove Secrets

	6. Revision History

