
 

 

  

 Company Confidential 

   

   

User Manual 

DA14585 IoT Multi Sensor 
Development Kit Developer's 

Guide 

UM-B-101 

Abstract 

The IoT Multi Sensor Development Kit (MSK) based on DA14585 supports 15 Degrees of Freedom 
and includes five reference applications: IoT Sensors, IoT Smart Tag, and three different types of 
beacons. The corresponding apps run on iOS/Android devices and the cloud services offers great 
flexibility to customers in product design. This document provides a detailed guide for developers on 
using these reference applications for their own projects. 

 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 2 of 110 © 2022 Renesas Electronics 

Contents 

Abstract ................................................................................................................................................ 1 

Contents ............................................................................................................................................... 2 

Figures .................................................................................................................................................. 6 

Tables ................................................................................................................................................... 7 

1 Terms and Definitions ................................................................................................................... 9 

2 References ................................................................................................................................... 10 

3 Introduction .................................................................................................................................. 11 

3.1 DA14585 IoT MSK Hardware Features .............................................................................. 11 

3.2 DA14585 IoT MSK Hardware Architecture ......................................................................... 12 

4 DA14585 IoT MSK Reference Application ................................................................................. 12 

4.1 Software Features ............................................................................................................... 12 

4.2 Software Architecture .......................................................................................................... 13 

4.2.1 Project Files ......................................................................................................... 13 

4.2.2 Source Files ......................................................................................................... 14 

4.2.3 Application Configuration ..................................................................................... 16 

4.2.4 Configure for Air Quality Index ............................................................................ 17 

4.3 Operation Overview ............................................................................................................ 17 

4.3.1 General Description ............................................................................................. 17 

4.3.2 Application Initialization ....................................................................................... 18 

4.3.3 Advertise .............................................................................................................. 18 

4.3.4 Connected/Sensors Idle ...................................................................................... 19 

4.3.5 Connected/Sensors Active .................................................................................. 19 

4.3.6 Connected/Sensors Stopped ............................................................................... 20 

4.3.7 Disconnect ........................................................................................................... 20 

4.4 Wkup_adapter ..................................................................................................................... 20 

4.5 Sensor Interface .................................................................................................................. 21 

4.5.1 General Description ............................................................................................. 21 

4.5.1.1 Timer ................................................................................................ 22 

4.5.1.2 INTERRUPT .................................................................................... 23 

4.5.1.3 FORCED .......................................................................................... 23 

4.5.1.4 FORCED_INTER_SNGL_SHOT ..................................................... 23 

4.5.2 Sensor Interface API ............................................................................................ 24 

4.5.3 Driver Adaptation Layer ....................................................................................... 25 

4.6 Device Drivers ..................................................................................................................... 25 

4.6.1 Environmental Sensor ......................................................................................... 25 

4.6.2 Motion Sensor ...................................................................................................... 26 

4.6.2.1 TDK ICM-42605 ............................................................................... 26 

4.6.2.2 BOSCH BMI160 ............................................................................... 26 

4.6.3 Magneto Sensor .................................................................................................. 27 

4.6.4 Optical Sensor ..................................................................................................... 27 

4.6.5 GPIO Expander ................................................................................................... 27 

4.6.6 Power Amplifier .................................................................................................... 28 

4.7 Adding a New Sensor ......................................................................................................... 28 

4.8 Sequence Diagrams ............................................................................................................ 28 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 3 of 110 © 2022 Renesas Electronics 

4.8.1 Sensor Fusion Data Reporting ............................................................................ 29 

4.8.2 Environmental Data Reporting ............................................................................ 30 

4.9 Dialog Wearable Service V2 ............................................................................................... 31 

4.9.1 Feature Report Structure ..................................................................................... 32 

4.9.2 Multi Sensor Report and Sensor Report .............................................................. 33 

4.9.2.1 Sensor Report for Accelerometer, Gyroscope, and 
Magnetometer .................................................................................. 34 

4.9.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric 
Pressure .......................................................................................... 34 

4.9.2.3 Sensor Report for Indoor Air Quality (IAQ) ...................................... 34 

4.9.2.4 Sensor Report for Ambient Light and Proximity .............................. 35 

4.9.2.5 Sensor Report for Button ................................................................. 35 

4.9.2.6 Sensor Report for Sensor Fusion .................................................... 35 

4.9.2.7 Sensor Report for Velocity Delta ..................................................... 36 

4.9.2.8 Sensor Report for Euler Angle Delta ............................................... 36 

4.9.2.9 Sensor Report for Quaternion Delta ................................................ 36 

4.9.3 Report Structures for Configuration and Control ................................................. 36 

4.9.3.1 Start Command ................................................................................ 37 

4.9.3.2 Stop Command ................................................................................ 37 

4.9.3.3 Read Parameters from Flash Memory ............................................ 37 

4.9.3.4 Reset to Factory Defaults ................................................................ 37 

4.9.3.5 Store Basic Configuration in Flash Memory .................................... 37 

4.9.3.6 Store Calibration Coefficients and Control Configuration in Flash 
Memory ............................................................................................ 38 

4.9.3.7 Return Running Status .................................................................... 38 

4.9.3.8 Reset Sensor Fusion and Calibration Configuration ....................... 38 

4.9.3.9 Basic Configuration ......................................................................... 38 

4.9.3.10 Read Basic Configuration ................................................................ 40 

4.9.3.11 Set Sensor Fusion Coefficients Command ..................................... 41 

4.9.3.12 Read Sensor Fusion Coefficients .................................................... 42 

4.9.3.13 Set Calibration Coefficients ............................................................. 42 

4.9.3.14 Read Calibration Coefficients .......................................................... 42 

4.9.3.15 Set Calibration Control Flags ........................................................... 43 

4.9.3.16 Read Calibration Control ................................................................. 44 

4.9.3.17 Fast Accelerometer Calibration ....................................................... 44 

4.9.3.18 Set Calibration Modes ..................................................................... 44 

4.9.3.19 Read Calibration Modes .................................................................. 45 

4.9.3.20 Read Device Sensors ...................................................................... 45 

4.9.3.21 Read Software Version .................................................................... 46 

4.9.3.22 Start LED Blink ................................................................................ 46 

4.9.3.23 Stop LED Blink ................................................................................. 46 

4.9.3.24 Set Proximity Hysteresis Limits ....................................................... 47 

4.9.3.25 Read Proximity Hysteresis Limits .................................................... 47 

4.9.3.26 Calibration Complete ....................................................................... 47 

4.9.3.27 Proximity Calibration Command ...................................................... 47 

4.10 Sensor Calibration Library .................................................................................................. 48 

4.10.1 Overview .............................................................................................................. 48 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 4 of 110 © 2022 Renesas Electronics 

4.10.1.1 Modes of Operation ......................................................................... 48 

4.10.1.2 Calibration Routines ........................................................................ 48 

4.10.1.3 Calibration Procedure ...................................................................... 49 

4.10.2 API Usage ............................................................................................................ 50 

4.10.2.1 Allocation ......................................................................................... 50 

4.10.2.2 Initialization ...................................................................................... 50 

4.10.2.3 Processing ....................................................................................... 52 

4.11 Sensor Fusion Library ......................................................................................................... 53 

4.11.1 Overview .............................................................................................................. 53 

4.11.2 SmartFusion Integration Engine .......................................................................... 53 

4.11.2.1 Modes of Operation ......................................................................... 53 

4.11.2.2 API Usage ........................................................................................ 54 

4.11.3 SmartFusion Attitude and Heading Reference System ....................................... 55 

4.11.3.1 Modes of Operation ......................................................................... 55 

4.11.3.2 API Usage ........................................................................................ 56 

5 Smart Tag Reference Application .............................................................................................. 57 

5.1 Introduction ......................................................................................................................... 57 

5.2 Software Features ............................................................................................................... 58 

5.2.1 Profiles and Services ........................................................................................... 58 

5.2.2 Alerts .................................................................................................................... 58 

5.2.3 Advertising and Sleep Phases ............................................................................. 58 

5.2.4 Push-Button Interface .......................................................................................... 59 

5.2.5 Security ................................................................................................................ 59 

5.2.6 Battery Level ........................................................................................................ 59 

5.3 Software Architecture .......................................................................................................... 60 

5.4 Operation Overview and State Machines ........................................................................... 60 

5.4.1 Application Configuration Parameters ................................................................. 60 

5.4.2 Application Task State Machine .......................................................................... 60 

5.4.3 Callback Functions .............................................................................................. 62 

5.4.4 Advertising ........................................................................................................... 62 

5.4.5 Connection ........................................................................................................... 63 

5.4.6 Security ................................................................................................................ 63 

5.4.7 Push button .......................................................................................................... 63 

5.4.8 Proximity Reporter and Alerts .............................................................................. 64 

5.4.9 PWM Engine ........................................................................................................ 65 

5.4.10 SmartTag Sequence Diagram ............................................................................. 66 

6 Beacon Reference Applications ................................................................................................ 66 

6.1 Introduction ......................................................................................................................... 66 

6.2 What is a Beacon? .............................................................................................................. 67 

6.3 Beacon Example ................................................................................................................. 67 

6.4 Beacon Formats .................................................................................................................. 68 

6.4.1 iBeacon ................................................................................................................ 68 

6.4.2 AltBeacon ............................................................................................................ 69 

6.4.3 Eddystone ............................................................................................................ 70 

6.4.3.1 Eddystone-UID ................................................................................ 71 

6.4.3.2 Eddystone-URL ............................................................................... 72 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 5 of 110 © 2022 Renesas Electronics 

6.4.3.3 Unencrypted Eddystone-TLM .......................................................... 73 

6.5 Software Features ............................................................................................................... 74 

6.6 Beacon Parameters ............................................................................................................ 74 

6.6.1 Advertising Data .................................................................................................. 74 

6.6.1.1 Using the user_default_beacon_config Struct ............................. 75 

6.6.1.2 Reading Advertising Data from Flash .............................................. 76 

6.6.2 Advertising Interval .............................................................................................. 77 

6.7 Software Architecture .......................................................................................................... 77 

6.8 Operation Overview ............................................................................................................ 78 

6.8.1 Configuration Switches ........................................................................................ 79 

6.9 User Advertise SW Module ................................................................................................. 80 

6.9.1 Style ..................................................................................................................... 80 

6.9.2 Pattern ................................................................................................................. 80 

6.9.3 User Advertise SW Module Callbacks ................................................................. 82 

6.10 Device Configuration Service .............................................................................................. 82 

6.10.1 Device Configuration Service Specification ......................................................... 82 

6.11 Environmental Data Notifications Service ........................................................................... 83 

6.11.1 Environmental Data Notifications Service Specification ...................................... 83 

6.12 Beacon Configuration .......................................................................................................... 84 

6.12.1 Beacon Configuration Memory Map .................................................................... 84 

6.13 Battery Level Sampling ....................................................................................................... 86 

6.14 Beacon Examples for DA14585 IoT MSK ........................................................................... 86 

6.14.1 AltBeacon ............................................................................................................ 86 

6.14.1.1 AltBeacon Example Sequence Diagram ......................................... 87 

6.14.2 Eddystone ............................................................................................................ 88 

6.14.2.1 Eddystone Example Sequence Diagram ......................................... 89 

6.14.3 iBeacon ................................................................................................................ 89 

6.14.3.1 iBeacon Example Sequence Diagram ............................................. 91 

7 Memory Footprint and Power Measurements .......................................................................... 91 

7.1 Memory Footprint ................................................................................................................ 91 

7.2 Power consumption ............................................................................................................. 92 

Appendix A MSK Boot Sequence .................................................................................................... 93 

Appendix B Memory Map .................................................................................................................. 93 

Appendix C Using the mkimage Application .................................................................................... 95 

C.1 mkimage Scripts ................................................................................................................... 95 

C.2 mkimage Modes ................................................................................................................... 96 

C.2.1 mkimage single .................................................................................................... 96 

C.2.2 mkimage multi ...................................................................................................... 96 

C.2.3 mkimage whole_img ............................................................................................ 97 

C.2.4 mkimage multi_no_suota ..................................................................................... 97 

C.2.5 mkimage cfg ........................................................................................................ 97 

Appendix D Flash Programming in MSK Applications .................................................................. 97 

D.1 Basic Information About the MSK Applications .................................................................. 97 

D.1.1 Product Header .................................................................................................... 97 

D.1.2 Image Header ...................................................................................................... 98 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 6 of 110 © 2022 Renesas Electronics 

D.1.3 Beacon Configuration Struct and Configuration Struct Header ........................... 98 

D.1.4 Smart Tag Bonding Data, IoT Flash Base, IoT Flash Base Cal .......................... 99 

D.2 Flash Programming ............................................................................................................. 99 

D.2.1 Burning the Whole Image in Flash Memory ........................................................ 99 

D.2.2 Preparing the Various .img and .bin Files Manually ........................................ 101 

Appendix E Using the SUOTA Application for Android .............................................................. 103 

Revision History .............................................................................................................................. 109 

Figures 

Figure 1: Internet of Things (IoT) ......................................................................................................... 11 
Figure 2: Hardware Architecture of DA14585 IoT MSK ...................................................................... 12 
Figure 3: DA14585 IoT MSK Software Architecture ............................................................................ 13 
Figure 4: General Application Flow of DA14585 IoT MSK .................................................................. 18 
Figure 5: DA14585 IoT MSK in Advertise State .................................................................................. 18 
Figure 6: Overview of Sensors Data Path ........................................................................................... 20 
Figure 7: Sensor Interface Overview ................................................................................................... 22 
Figure 8: Timer Sensors Timeline ....................................................................................................... 22 
Figure 9: INTERRUPT Sensor Access Sequence .............................................................................. 23 
Figure 10: Forced Read Sequence ..................................................................................................... 23 
Figure 11: FORCED_INTER_SNGL_SHOT Functionality .................................................................. 23 
Figure 12: SI Registration Path ........................................................................................................... 24 
Figure 13: Sequence Diagram of Sensor Fusion Reporting ............................................................... 30 
Figure 14: Sequence Diagram of Environmental Sensor Reporting ................................................... 31 
Figure 15: Smart Tag Application Task FSM ...................................................................................... 61 
Figure 16: Smart Tag Reference Application Sequence Diagram ...................................................... 66 
Figure 17: Beacon Protocol Logos ...................................................................................................... 67 
Figure 18: Bluetooth Low Energy Beacon ........................................................................................... 67 
Figure 19: Description of the Exhibit on a Smartphone ....................................................................... 68 
Figure 20: iBeacon Frame ................................................................................................................... 68 
Figure 21: AltBeacon Frame................................................................................................................ 69 
Figure 22: Eddystone Modes Supported by Dialog's Beacon Reference Design ............................... 70 
Figure 23: Eddystone Different Mode Frames Analyzed .................................................................... 70 
Figure 24: Example of a Device Configuration Struct in Flash Memory ............................................. 76 
Figure 25: Beacon SW System Overview ........................................................................................... 77 
Figure 26: Operation Overview ........................................................................................................... 79 
Figure 27: User Advertise Usage Example ......................................................................................... 81 
Figure 28: Data Format in Write Configuration.................................................................................... 82 
Figure 29: Indication Data Format in Read Response ........................................................................ 83 
Figure 30: AltBeacon Example Transition Diagram ............................................................................ 87 
Figure 31: Altbeacon Sequence Diagram ........................................................................................... 87 
Figure 32: Eddystone UID/URL/TLM Example Transition Diagram .................................................... 88 
Figure 33: Eddystone Sequence Diagram .......................................................................................... 89 
Figure 34: iBeacon Example Transition Diagram ................................................................................ 90 
Figure 35: iBeacon Sequence Diagram .............................................................................................. 91 
Figure 36: Application Programmed in OTP Flags .............................................................................. 93 
Figure 37: Analyzing a Flash Memory Image ...................................................................................... 94 
Figure 38: Initial Window to Choose Device and Connection Type .................................................... 99 
Figure 39: Opening SmartSnippets Board Setup .............................................................................. 100 
Figure 40: Smart Snippets Board Setup Window .............................................................................. 100 
Figure 41: SPI Flash Programmer ..................................................................................................... 100 
Figure 42: Device Config Struct Format in .txt File ........................................................................... 102 
Figure 43: Programming the Various Fields of the Device Configuration Struct ............................... 102 
Figure 44: Creating a Custom Dev_Conf_Struct .bin File .............................................................. 103 
Figure 45: SUOTA App Icon .............................................................................................................. 104 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 7 of 110 © 2022 Renesas Electronics 

Figure 46: Device Selection Menu .................................................................................................... 104 
Figure 47: DIS Screen ....................................................................................................................... 105 
Figure 48: File Selection Screen ....................................................................................................... 105 
Figure 49: SUOTA Parameter Settings ............................................................................................. 106 
Figure 50: SUOTA Uploading Screen ............................................................................................... 107 
Figure 51: Successful Update Screen ............................................................................................... 108 

Tables 

Table 1: Source Files for DA14585 IoT MSK: Overview ..................................................................... 14 
Table 2: Source Files Specific to DA14585 IoT MSK .......................................................................... 15 
Table 3: Header Files for the Configuration of DA14585 IoT MSK ..................................................... 15 
Table 4: Configuration Parameters ..................................................................................................... 16 
Table 5: DWSv2 Characteristics ......................................................................................................... 31 
Table 6: Features Report Structure ..................................................................................................... 32 
Table 7: Multi Sensor Report ............................................................................................................... 33 
Table 8: Sensor Report ....................................................................................................................... 33 
Table 9: Report Types/Report ID's ...................................................................................................... 33 
Table 10: Report Structure for Accelerometer, Gyroscope, and Magnetometer ................................. 34 
Table 11: Bitfield Structure for snsr_state ......................................................................................... 34 
Table 12: Environmental Sensor Report ............................................................................................. 34 
Table 13: Indoor Air Quality (IAQ) Report ........................................................................................... 34 
Table 14: Sensor Report for Ambient Light and Proximity .................................................................. 35 
Table 15: Sensor Report for Button ..................................................................................................... 35 
Table 16: Sensor Report for Sensor Fusion ........................................................................................ 35 
Table 17:Sensor Report for Velocity Delta .......................................................................................... 36 
Table 18: Sensor Report for Euler Angle Delta ................................................................................... 36 
Table 19: Sensor Report for Quaternion Delta .................................................................................... 36 
Table 20: Report Structure for Commands ......................................................................................... 37 
Table 21: Start Command ................................................................................................................... 37 
Table 22: Start Command Reply ......................................................................................................... 37 
Table 23: Stop Command .................................................................................................................... 37 
Table 24: Stop Command Reply ......................................................................................................... 37 
Table 25: Read Flash Command ........................................................................................................ 37 
Table 26: Reset to Defaults (RtD) Command ...................................................................................... 37 
Table 27: Store Basic Configuration Command .................................................................................. 37 
Table 28: Store Calibration and Control Command ............................................................................ 38 
Table 29: Return Running Status Command ...................................................................................... 38 
Table 30: Return Running Status Reply .............................................................................................. 38 
Table 31: Reset Sensor Fusion and Calibration Configuration command .......................................... 38 
Table 32: Basic Configuration Command ............................................................................................ 38 
Table 33: Read Basic Configuration Command .................................................................................. 40 
Table 34: Read Basic Configuration Command Reply ........................................................................ 40 
Table 35: Set Sensor Fusion Coefficients Command ......................................................................... 41 
Table 36: Read Sensor Fusion Coefficients Command ...................................................................... 42 
Table 37: Read Sensor Fusion Coefficients Command Reply ............................................................ 42 
Table 38: Set Calibration Coefficients Command ............................................................................... 42 
Table 39: Read Calibration Coefficients Command ............................................................................ 42 
Table 40: Read Calibration Coefficients Command Reply .................................................................. 42 
Table 41: Set Calibration Control Flags Command ............................................................................. 43 
Table 42: Calibration Control Flags #1 ................................................................................................ 43 
Table 43: Calibration Control Flags #2 ................................................................................................ 43 
Table 44: Calibration Parameters ........................................................................................................ 43 
Table 45: Read Calibration Control Flags Command ......................................................................... 44 
Table 46: Read Calibration Control Flags Command Reply ............................................................... 44 
Table 47: Fast Accelerometer Calibration Command ......................................................................... 44 
Table 48: Fast Accelerometer Calibration Reply ................................................................................. 44 
Table 49: Set Calibration Modes Command ....................................................................................... 44 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 8 of 110 © 2022 Renesas Electronics 

Table 50: Read Calibration Modes Command .................................................................................... 45 
Table 51: Read Calibration Modes Command Reply .......................................................................... 45 
Table 52: Read Device Sensors Command ........................................................................................ 45 
Table 53: Read Device Sensors Command Reply .............................................................................. 45 
Table 54: Read Application Software Version Command ................................................................... 46 
Table 55: Read Application Software Version Command Reply ......................................................... 46 
Table 56: Start LED Blink Command .................................................................................................. 46 
Table 57: Stop LED Blink Command ................................................................................................... 46 
Table 58: Set Proximity Hysteresis Limits Command ......................................................................... 47 
Table 59: Read Proximity Hysteresis Limits Command ...................................................................... 47 
Table 60: Read Proximity Hysteresis Limits Command Reply ............................................................ 47 
Table 61: Calibration Complete Notification ........................................................................................ 47 
Table 62: Proximity Calibration Command .......................................................................................... 47 
Table 63: Proximity Calibration Command Reply ............................................................................... 47 
Table 64: Alert Types .......................................................................................................................... 58 
Table 65: Push-Button Interface .......................................................................................................... 59 
Table 66: Smart Tag Application Configurable Parameters ................................................................ 60 
Table 67: Application Task: FSM States ............................................................................................. 60 
Table 68: State Transitions of the Application Task FSM ................................................................... 61 
Table 69: Example of Advertising Data from a Museum Beacon........................................................ 68 
Table 70: AltBeacon Protocol Fields ................................................................................................... 69 
Table 71: Eddystone Frame Types ..................................................................................................... 71 
Table 72: Eddystone UID Frame ......................................................................................................... 71 
Table 73: Frame Specification ............................................................................................................. 72 
Table 74 URL Scheme Prefix .............................................................................................................. 72 
Table 75: Eddystone-URL HTTP URL Encoding ................................................................................ 72 
Table 76: Eddystone-TLM Frame Specification .................................................................................. 73 
Table 77: Format of Struct user_beacon_config_tag ........................................................................ 74 
Table 78: Advertising Interval Location ............................................................................................... 77 
Table 79: Source Files of Beacon Reference Applications ................................................................. 77 
Table 80: List of Software Configuration Switches .............................................................................. 79 
Table 81: List of Profile Configuration Switches .................................................................................. 79 
Table 82: Characteristics of the Device Configuration Service ........................................................... 82 
Table 83: Characteristics of the Environmental Data Notifications Service ........................................ 83 
Table 84: Configuration Data Format .................................................................................................. 84 
Table 85: Memory Footprint ................................................................................................................ 91 
Table 86: Power Consumption ............................................................................................................ 92 
Table 87: Parts of the Image Depending on the Application ............................................................... 94 
Table 88 Available mkimage Scripts ..................................................................................................... 95 
Table 89: Product Header Format ....................................................................................................... 97 
Table 90: Image Header Format ......................................................................................................... 98 
Table 91: Beacon Configuration Header ............................................................................................. 98 
Table 92: Beacon Configuration Struct Format ................................................................................... 99 
Table 93: Files Needed or Created During Flash Programming ....................................................... 101 

  



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 9 of 110 © 2022 Renesas Electronics 

1 Terms and Definitions 

ADC Analog to Digital Converter 

AHRS Attitude and Heading Reference System 

API Application Programming Interface 

BASS Battery Service Server 

BD Address Bluetooth Device Address 

BLE Bluetooth Low Energy 

CIB Communication Interface Board 

DAL Driver Adaptation Layer 

DISS Device Information Service Server 

DWS Dialog Wearable Service 

FEM Front End Module 

FIFO First In First Out buffer 

FSM Finite State Machine 

GAP Generic Access Profile 

GAPC Generic Access Profile Controller 

GAPM Generic Access Profile Manager 

GATT Generic Attribute Profile 

IAQ Indoor Air Quality 

IE Integration Engine 

IMU Inertial Measurement Unit 

IoT Internet of Things 

IRQ Interrupt Request 

LSB Least Significant Bit 

MEMS Microelectromechanical Systems 

MSB Most Significant Bit 

MSK Multi Sensor Development Kit 

MTU Maximum Transmission Unit 

NTF Notifications are Allowed 

NVDS Non-Volatile Data Storage 

ODR Output Data Rate 

PWM Pulse Width Modulation 

RAM Random Access Memory 

Report Notification of Sensor Data and Control 

RSSI Received Signal Strength Indicator 

SCL Sensor Calibration Library 

SF Sensor Fusion 

SFL Sensor Fusion Library 

SI Sensors Interface 

SUOTA Software Update over the Air 

UART Universal Asynchronous Receiver/Transmitter 

UUID Universal Unique Identifier 

WR Write Enabled 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 10 of 110 © 2022 Renesas Electronics 

2 References 

[1] UM-B-080, DA14585/586 SDK 6 Software Developer’s Guide, User Manual, Dialog 
Semiconductor. 

[2] UM-B-079, DA14585/586 SDK 6 Software Platform Reference, User Manual, Dialog 
Semiconductor. 

[3] RW-BLE-GAP-IS, GAP Interface Specification, Riviera Waves. 

[4] UM-B-048, DA14585/DA14586 Getting Started Guide with the Basic Development Kit V2.0, 
User Manual, Dialog Semiconductor. 

[5] DA14585, Datasheet v3.2, Dialog Semiconductor. 

[6] UM-B-089, DA14585 Range Extender Reference Application, User Manual, Dialog 
Semiconductor. 

[7] https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers 

[8] UM-B-065, Bluetooth® Smart Communication Interface Board, User Manual, Dialog 
Semiconductor. 

[9] https://github.com/google/eddystone 

[10] https://github.com/google/eddystone/tree/master/eddystone-uid 

[11] https://github.com/google/eddystone/tree/master/eddystone-url 

[12] https://github.com/google/eddystone/blob/master/eddystone-tlm/tlm-plain.md 

[13] https://github.com/AltBeacon/spec 

[14] UM-B-095, DA14585 IoT Multi Sensor Development Kit Hardware Design, User Manual, Dialog 
Semiconductor. 

[15] https://www.bluetooth.com/specifications/gatt. 

[16] AN-B-001, DA14580/581/583 Booting from Serial Interfaces, Application Note, Dialog 
Semiconductor 

[17] UM-B-102, DA14585 Getting Started Guide with the IoT Multi Sensor Development Kit, User 
Manual, Dialog Semiconductor 

  

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers
https://github.com/google/eddystone
https://github.com/google/eddystone/tree/master/eddystone-uid
https://github.com/google/eddystone/tree/master/eddystone-url
https://github.com/google/eddystone/blob/master/eddystone-tlm/tlm-plain.md
https://github.com/AltBeacon/spec
https://www.bluetooth.com/specifications/gatt


 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 11 of 110 © 2022 Renesas Electronics 

3 Introduction 

This document allows users to develop their own applications based on the DA14585 IoT Multi 
Sensor Development Kit (MSK) reference design. The following chapters present detailed features of 
each project and the software configuration of the reference design. 

 

Figure 1: Internet of Things (IoT) 

3.1 DA14585 IoT MSK Hardware Features 

■ Highly integrated Dialog Semiconductor DA14585 Bluetooth® Smart SoC 

■ Stand-alone module 

■ Low cost due to printed antenna 

■ Low cost PCB 

■ Combined accelerometer/gyroscope sensor unit 

■ Combined sensors: 

□ Accelerometer and gyroscope sensor unit 

□ Indoor Air Quality, Temperature, Humidity and Pressure 

□ Ambient Light Sensor and Proximity 

■ Access to processor via JTAG and UART from the enclosure 

■ Programmable RF power up to +9.3dBm 

■ Three Led indicators 

■ General purpose push button 

■ Expansion slots 

■ Powered by two low cost AAA alkaline batteries 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 12 of 110 © 2022 Renesas Electronics 

3.2 DA14585 IoT MSK Hardware Architecture 

 

Figure 2: Hardware Architecture of DA14585 IoT MSK 

4 DA14585 IoT MSK Reference Application 

4.1 Software Features 

This section explains the advanced software features of Dialog's DA14585 IoT MSK reference 
applications: 

■ GAP peripheral role. 

■ GATT-based bidirectional data and control transfers. 

■ Sensor fusion library (SFL) with updated rates from 10 Hz to 100 Hz and selection among three 
different sensors: accelerometer, gyroscope, and magnetometer. 

■ Three environmental sensors: pressure, humidity, and temperature. 

■ Ambient light and proximity sensor. 

■ Indoor Air Quality (IAQ) feature. 

■ Switch between Sensor Fusion (SF) data mode and raw data mode. 

■ Notifications for sensor data streaming. 

■ Sensor range and updated rate control. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 13 of 110 © 2022 Renesas Electronics 

■ Save and restore operation settings. 

■ Three calibration modes for magnetometer. 

■ Gyroscope drifting elimination algorithm. 

■ iOS and Android central Apps. 

■ Auto sleep and motion wakeup. 

4.2 Software Architecture 

4.2.1 Project Files 

The project resides in "projects\target_apps\iot\iot_585\Keil_5\iot585.uvprojx". The same 

project supports both raw and SF operation. The mode of operation can be switched from the central 
device application. 

Project specific folders are: 

● Sensor Fusion library files: iot\common_iot_files\lib 

● Sensor Calibration files: target_apps\iot\common_iot_files\src\calibration 

● IoT Profile files: target_apps\iot\common_iot_files\src\profiles 

The project shares the following common folders: 

● Driver Adaptation Layer files: projects\target_apps\common\src\Driver_Adaptation_Layer 

● Drivers folders: projects\target_apps\common\src\drivers 

● Sensor Interface folder: projects\target_apps\common\src\Sensors_Interface 

● Common SDK folder: SDK_585\sdk\ 

 

Figure 3: DA14585 IoT MSK Software Architecture 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 14 of 110 © 2022 Renesas Electronics 

4.2.2 Source Files 

The reference applications of DA14585 IoT MSK are developed based on the DA14585 SDK 
software. For more information on the SDK, please refer to [1] and [2]. 

The source code files of the reference applications are briefly described in Table 1. 

Table 1: Source Files for DA14585 IoT MSK: Overview 

Group Files Description 

User Platform Files (IoT DK) user_periph_setup.c 

i2c_gpio_extender.c 

user_iot_dk_utils.c 

sensors_periph_interface.c 

Peripheral setup, Range extender, 
LED control functions, Sensors 
i2c-spi communication helper 

functions.  

User Application (IoT DK) user_dws.c 

user_dws_task.c 

user_iot.c 

Main application files. 

File user_iot.c contains the 

connect/disconnect/advertise 

handlers. 

Files user_dws.c and 

user_iot_task.c contain the user 

interface to the DWS. 

User Profiles (IoT DK) dws.c 

dws_task.c 
Service functions and FSM 

handlers. 

Sensor Calibration (IoT DK) basic_acc_cal.c 

basic_autocal.c 

static_calibration.c 

sensor_calibration.c 

smartfusion_autocal.lib 

Accelerometer calibration 

functions. 

Magnetometer calibration 
functions, specific to each 

calibration mode. 

User Sensors (IoT DK) user_sensor_config.c 

user_sensors.c 

user_sensor_reports.c 

user_sensor_raw.c 

user_sensor_sfl.c 

Sensor initialization. 

Sensor state machine. 

Main application callback 

functions. 

User SFL user_sfl_util.c 

sensor_fusion.lib 
Files to process sensor data  

Sensor interface (IoT DK) sensors_interface_api.c 

sensors_interface.c 
New interface to simplify sensor 

integration to project. 

Driver Adaptation Layer (IoT DK) magneto_ak099.c 

motion_icm4X6.c (or 

motion_bmi160.c) 

optical_vcnl4010.c 

environmental_bme680.c 

This layer defines a common 
instruction set for the "Sensor 

interface" to access the sensors. 

bsec_lib (IoT DK) user_iaq.c 

libalgobsec_full.lib 
Functions that estimate the air 

quality output. 

wkup_adapter (IoT DK) wkup_adapter.c A wrapper to the "wkupct_quadec" 

to further extend the possibilities of 

the module. 

Drivers (IoT DK) bme680 folder 

icm426xx (or bmi160) folder 

ak09915 folder 

vcnl4010 folder 

These folders contain the factory 

drivers of the sensors. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 15 of 110 © 2022 Renesas Electronics 

Table 2: Source Files Specific to DA14585 IoT MSK 

File Name Description 

user_iot.c Contains all top level BLE callback functions for connection, disconnection, 

and advertising. 

user_dws.c 

user_dws_task.c 
Provide users space access to the DWS custom service. 

user_sensors.c Contains sensor initialization functions. 

Handles sensor data on application level. 

user_sensor_reports.c The user space functions that are specific for sending reports (sensor and 

sensor fusion data) to the central device. 

user_sensor_sfl.c 

user_space_raw.c 
User space sensor data processing. 

basic_acc_cal.c Accelerometer calibration functions. 

static_calibration.c 

basic_autocal.c 

sensor_calibration.c 

smartfusion_autocal.lib 

The calibration functions for the three modes, that is, static, basic auto, and 

SmartFusion auto. 

user_sfl_util.c 

sensor_fusion.lib 
Sensor fusion library API. 

sensors_interface_api.c 

sensors_interface.c 
Expose the Sensor Interface API to the application user. 

Core methods to implement the Sensor Interface module functionality. 

icm426xx_impl.c (or 

bmi160_impl.c) 

bme680_imp.c 

ak09915_impl.c 

vcnl4010_impl.c 

Driver functions for each sensor that act as middleware for the "driver 

adaptation layer". These drivers make use of the actual manufactured 

drivers and use only the functions that are really needed for this 

implementation instead of all available features. 

The project contains a header file for each source file that contains function prototypes and 
definitions. Some header files contain information that is essential for the operation and configuration 
of the IoT project. The header files reside in the folder 
projects\target_apps\iot\iot_585\src\config. The header files are listed in Table 3. 

Table 3: Header Files for the Configuration of DA14585 IoT MSK 

File Name Description 

da1458x_config_basic.h (SDK) Basic configuration of DA14585 for security, watchdog, and print 
functions. Furthermore, in this file users can control the sensors that 

are included in the project. 

da1458x_config_advanced.h (SDK) Advanced features of DA14585, such as low power clock source. 

user_config.h (SDK) Configure data related to sleep modes, advertise, and parameter 

update. 

user_app_iot_config.h (IoT DK) Application specific definitions: sensor calibration parameters, 

motion wakeup, advertising time, and LED signaling. 

user_callback_config.h (SDK) Application callback functions. 

user_modules_config.h (IoT DK) User-related module activation/deactivation. 

user_periph_setup.h (IoT DK) Peripheral related definitions (GPIO). 

user_profiles_config.h (IoT DK) Included profiles. 

user_dws_config.h (IoT DK) Definition of Dialog Wearable Service. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 16 of 110 © 2022 Renesas Electronics 

4.2.3 Application Configuration 

A group of compilation switches allows to control the application’s behavior. The most important 
switches are listed in Table 4. 

Table 4: Configuration Parameters 

Name Default value Description 

user_config.h 

app_default_sleep_mode ARCH_EXT_SLEEP_ON This controls whether the 
processor to enter sleep mode 
or not. Use ARCH_SLEEP_OFF 

when connected to a debugger. 

USER_DEVICE_NAME "IoT-585" The advertising name string. 

connection_param_configuration ● Min-Max connection 

interval: 20 ms to 40 ms, 

● Latency: 4 (events 

missed), 

● Supervision timeout: 2 s. 

Recommended settings. 

da1458x_config_basic.h 

CFG_PRINTF DISABLED Enables/disables the use of 

UART debug messages. 

CFG_WDOG ENABLED Enables the Watchdog timer. 

VCNL4010_OPTO_SENSOR_AVAILABLE ENABLED Enables/disables the opto 

sensor. 

AK099XX_MAGNETO_SENSOR_AVAILABLE ENABLED Enables/disables the 

magnetometer sensor. 

ICM4XX_ACCEL_SENSOR_AVAILABLE ENABLED Enables/disables the ICM4xx 
accelerometer-gyroscope 

sensor. 

BMI160_ACCEL_SENSOR_AVAILABLE DISABLED Enables/disables the BMI160 
accelerometer-gyroscope 

sensor. 

BME680_ENVIRONM_SENSOR_AVAILABLE ENABLED Enables/disables the 

environmental sensor. 

IAQ_ENABLED ENABLED Enables/disables the IAQ 

algorithm. 

IAQ_RESTORE_STATUS_ENABLE ENABLED Enables/disables saving the IAQ 

algorithm state 

CFG_RANGE_EXT BYPASS Configures the range extender's 
power value. For more 

information please refer to [6]. 

da1458x_config_advanced.h 

CFG_LP_CLK LP_CLK_XTAL32 LP_CLK_XTAL32: Use external 

XTAL32 as a low power clock 

(recommended). 

LP_CLK_RCX20: Use internal 

RCX20 as a low power clock. 

CFG_NVDS_TAG_BD_ADDRESS {0x99, 0x00, 0x00, 

0xCA, 0xEA, 0x80} 
Defines the BD address if it is 

not programmed in OTP. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 17 of 110 © 2022 Renesas Electronics 

Name Default value Description 

user_app_iot_config.h 

FAST_ADV_INTERVAL 160 (= 100 ms) The advertising interval. Unit: 

0.625 ms. 

ADV_TIME_OUT 6000 (= 60 s) The time that the device 
advertises before it goes to 

sleep. Unit: 10 ms. 

ALWAYS_ADVERTISE DISABLED If enabled, the system will 
remain in advertising state and 

never go to sleep mode. 

USE_FAST_ACC_CAL ENABLED If enabled, the accelerometer 

calibration becomes available. 

GYRO_SDC_ENABLED ENABLED If enabled, the gyroscope drift 

compensation is applied. 

USE_SPI_FLASH_CONFIG ENABLED If enabled, external flash will be 
active to read and store 

configuration parameters. 

MAGNETO_CAL_ENABLED ENABLED Enables the calibration function 
of magnetometer. For more 

information see section 4.11.1. 

4.2.4 Configure for Air Quality Index 

The Bosch BSEC Library that computes the Air Quality Index (AQI) is not included in the default 
configuration (IAQ_ENABLED is undefined). If users would like to compile an image that includes this 

library, other features should be removed to gain the required memory space. For example, this 
could be accomplished with the following steps: 

1. Remove the VCNL4010 proximity sensor and undefine VCNL4010_OPTO_SENSOR_AVAILABLE from 

da1458x_config_basic.h. 

2. Disable "wake on motion" feature by defining ALWAYS_ADVERTISE in user_app_iot_config.h. 

This also removes the low power configuration parts of ICM426xx driver. 

3. Disable the fast accelerometer calibration and undefine ALWAYS_ USE_FAST_ACC_CAL in 

user_app_iot_config.h. 

4. Build. 

5. Define IAQ_ENABLED from da1458x_config_basic.h 

6. Build again. The produced iot585.hex now includes the AQI feature. 

4.3 Operation Overview 

4.3.1 General Description 

A general view of the application flow is presented in Figure 4. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 18 of 110 © 2022 Renesas Electronics 

 

Figure 4: General Application Flow of DA14585 IoT MSK 

4.3.2 Application Initialization 

The function user_iot_app_on_init() located in "user_iot.c" file handles: 

● Initialize processor peripherals, periph_init(). 

● Initialize radio extender GPIOs, init_ext_gpio(). 

● Disable all external sensors and turn off all LEDs to reduce power consumption, 
clr_led(ALL_LED). 

● Explicitly for the accelerometer sensor inside this routine, certain registers will be set to avoid 
overconsumption. 

● Clear sensor interface variables, wkup_ad_init(). 

● Load sensor configuration from flash if available, user_periph_sensors_initialize(). 

● Start BLE parameter updating. 

4.3.3 Advertise 

In this state, DA14585 IoT MSK will be visible to client applications. 

 

Figure 5: DA14585 IoT MSK in Advertise State 

This block has the following operations: 

● "Advertise start" block calls the user_adv_start() function. The following actions take place: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 19 of 110 © 2022 Renesas Electronics 

○ Start a timer to produce a LED blink using start_advertise_blink(). While the system 

remains in advertising state, the LED will blink periodically according to the 
ADVERTISE_LED_ON_TIME and ADVERTISE_LED_OFF_TIME. 

○ Actual advertisement begins by sending a gapm_start_advertise_cmd to the GAP layer 

using the user_easy_gap_undirected_advertise_start() function. 

● "Advertising complete": Advertisement time period is determined by the value set on 
ADV_TIME_OUT. 

○ When the timer expires, user_app_on_adv_undirect_complete() is executed to terminate 

advertising. 

○ Routine user_adv_start() will be executed again if sleep mode is set to ARCH_SLEEP_OFF. 

○ If sleep mode is set to ARCH_EXT_SLEEP_ON, the system will attempt to power off and enable 

wake-on-motion interrupt. This action will not apply if: 

– The user has explicitly set the system to stay "awake" by setting the ALWAYS_ADVERTISE 

switch. 

– The motion sensor is excluded from this project and therefore there are no means to wake 
the processor. 

● "Setup WakeOnMotion". The accelerometer for this purpose is configured for low power 
operation with the “anymotion” interrupt function set. The processor can go to Extended Sleep 

mode and wakes up only when it receives an interrupt from the accelerometer. Then the interrupt 

handler wkup_intr_non_connected_cb() is executed and advertising is initiated. 

4.3.4 Connected/Sensors Idle 

On connected state, the user_on_connection() function will execute all the necessary procedures in 

order to set up the system for run-time operation: 

● Stops the advertising timer, user_stop_adv_timer(). 

● Starts the blink timer to indicate connection event, start_connection_blink(). 

● Sets the sensors to the default parameters, user_periph_sensors_initialize(). 

● Suspend the sensors, user_periph_sensors_suspend(). 

● Starts the BLE parameter update procedure, app_easy_gap_param_update_start(). 

4.3.5 Connected/Sensors Active 

The sensors will enter active state when a "Start" command is sent from the application. In this state 

the following actions will take place: 

● Initialize sensors control variable. 

● Initialize gyro static drift compensation, if enabled. 

● Initialize magneto calibration, if enabled. 

● Initialize sensor fusion algorithm. 

● Initialize all external sensors, if enabled. 

Now the system will begin retrieving data from all active sensors and forward these to the client 
application. During this process, if one_shot_cal_active is enabled, magnetometer calibration will 

take place. This is a separate operation and will be discussed in section 4.9.3.27. 

A general description for the data path in the "run" state is presented in Figure 6. Note that "Sensor 

Interface" has a significant role in this operation and will be described in detail in section 4.5. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 20 of 110 © 2022 Renesas Electronics 

 

Figure 6: Overview of Sensors Data Path 

"Data ready" indication for each sensor is triggered either from timer events or from interrupt events. 
In both cases this indication is forwarded to the "Sensor Interface" to handle. This entity is 
responsible for discovering which sensor has created the event. This information will be used to 
select the correct sensor driver to retrieve data. The "Sensor Interface" is also aware of which 
application’s callback function is bound to this sensor and will forward the data. The callback function 
is defined by users and from that point on users will decide how to handle this information. In this 
project, the information is sent to client application using the reporting mechanism. 

This path differentiates if the SFL is used. Data from these devices (accelerometer, gyroscope, and 
magnetometer) will be processed in the SFL and the outcome will be fed to the reporting mechanism. 

4.3.6 Connected/Sensors Stopped 

A "Stop" command terminates sensor operations. If calibration takes place during the "run" state, 

stopping the sensors will initiate the following: 

● Save magnetometer or accelerometer calibration results in flash memory 

● Inform the client application that calibration has finished 

Note that sensor calibration will be described extensively in section 4.10. 

4.3.7 Disconnect 

On this state, function user_on_disconnect will execute the following: 

● Clear all LEDs and suspend sensors to minimize power consumption 

● Reinitiate the advertising procedure 

4.4 Wkup_adapter 

This module is an extension to the "WakeUP Capture Timer" to further extend the possibilities of 

interrupt handling. The need for such an adapter emerges with the IoT project development where it 
requires to support multiple interrupts as well as a simplified method to decode and handle these 
events. 

NOTE 

Currently this module supports interrupts in port 1 and 2. This hardware configuration does not support other 

ports. 

This module provides users the following functions: 

● wkup_ad_register_gpio: This function adds a new entry to the wkup_ad_entry table. Available 

parameters are: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 21 of 110 © 2022 Renesas Electronics 

○ sel_port, sel_pins, pol_pins: Register the port, pin, and polarity of the interrupt, 

respectively. 

○ cb. is the callback function that is called when the interrupt is activated. 

○ cb_inv. is the callback function that that is called when the interrupt with reverse polarity is 

activated. 

Some variables initialized by wkup_ad_register_gpio are used internally by the wakeup adapter and 

are members of struct wkup_ad_entry: 

○ active. The cb function only examines pins that are set as interrupt sources, thus speeding 

up the lookup process. 

○ Triggered. This variable will point out whether an interrupt is already served. 

● wkup_ad_init: This function will initialize the wkup_ad_entry table. The size of this table and the 

number of available interrupts is declared in MAX_IRQ_ENTRIES definition. 

● wkup_ad_remove_gpio: This function will remove a specific entry from the table that matches the 

pin and port conditions. 

● wkup_ad_clear_all_gpio: This function will clear all entries on the wkup_ad_entry table and 

further disable all active interrupts. 

● wkup_ad_cb: This is the main callback function of the module. When an interrupt is triggered: 

○ All registered interrupts are checked for their active flag. 

○ Inspect matching port and pin. 

○ Look for the polarity settings of this interrupt. 

○ Check triggered status 

○ Eventually the appropriate callback function is executed, returning the port and pin that cause 
the interrupt. The sensors_interface module uses this information to locate the sensor that 

performs the read function. 

4.5 Sensor Interface 

4.5.1 General Description 

The purpose of this module is to simplify the integration and operation of any sensors. Users who 
follows the described methods should ignore the sensor complexity and treat new sensors or the 
currently installed sensors with the same approach. With the Sensor Interface (SI) software module, 
users do not have to program complex implementations that directly use timers and the 
wkup_adapter module. An overview of this module is presented in Figure 7. 

The SI isolates the application code from the drivers and use the Driver Adaptation Layer which will 
be discussed in 4.5.3. 

Two different lists of sensors are created: 

● Timed-based sensors 

● Event driven (GPIO) sensors 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 22 of 110 © 2022 Renesas Electronics 

 

Figure 7: Sensor Interface Overview 

Users can configure a sensor using the si_config_t structure and set the operation mode using the 

si_sensor_operation_mode_t parameter. The available values for this parameter are described in 

the following sections in detail. 

4.5.1.1 Timer 

Setting a sensor as "TIMER" falls in the "Timed-based sensors" category. This approach is used 
when users would like to access the sensor in periodic intervals appointed in the 
periodic_read_interval variable. When the periodic_read_interval expires, the callback 

function set in read_fn member is executed to retrieve the actual sensor data. 

Most sensors need to perform sampling before the data are actually available for retrieval. For this 
reason, a second timer and a callback function are made available in the si_config_t configuration 

structure to handle this scenario: 

● force_read_fn: Holds the callback function that initializes the measurement procedure at 

read_delay time before the actual read. 

● read_delay: Specify the time period that force_read_fn is executed before the actual read is 

scheduled. Users shall give enough time for sampling to take place before actual data are read. 

Implementing both timers and their functionality is illustrated in Figure 8. 

 

Figure 8: Timer Sensors Timeline 

As an example, the VCNL4010 optical sensor is setup as a "TIMED" sensor. A callback function set 
in force_read_fn and read_delay is used to initiate measurements of ambient light and proximity 

values. A read callback function and periodic_read_interval timer is used to read the actual data 

collected from the sampling mode. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 23 of 110 © 2022 Renesas Electronics 

4.5.1.2 INTERRUPT 

This operation mode falls in the Event-driven (GPIO) sensors category. It is a quite straightforward 
mode for INTERRUPT based sensors, as the sensor in question is only accessed when an interrupt 
event occurs. The interrupt hardware parameters (pin, port, and polarity), as well as an interrupt 
callback, must be registered in the si_config structure during the registration of the sensor. 

 

Figure 9: INTERRUPT Sensor Access Sequence 

In this reference design, this mode is used with the ICM42605 accelerometer sensor. 

4.5.1.3 FORCED 

This mode does not fall into the categories above. A sensor of this type is usually "free running", 
taking samples at a rate previously set during the sensor configuration. Users can freely issue an 
SI_READ_CMD command (through the SI API) to retrieve the sensor data. 

 

Figure 10: Forced Read Sequence 

In this reference design, this mode is used with the AK099XX magnetometer sensor. 

4.5.1.4 FORCED_INTER_SNGL_SHOT 

"Forced Interrupt Single Shot" is a hybrid of FORCED and INTERRUPT mode. When registering a sensor 

with an operation mode of FORCED_INTER_SNGL_SHOT, an interrupt is registered (the same way as in 

section 4.5.1.2). 

Initially, the sensor will be set in sampling mode. The registered interrupt will signal that data are 
available. To repeat the process, issue an SI_FORCE_TO_READ_CMD to reassign the device to the 

sampling mode. 

 

Figure 11: FORCED_INTER_SNGL_SHOT Functionality 

In this reference design, this mode is used with the AK099XX magnetometer sensor. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 24 of 110 © 2022 Renesas Electronics 

4.5.2 Sensor Interface API 

The "Sensor Interface API" is part of the "Sensor Interface" module shown in Figure 7 and provides 
the following functionalities to users: 

● si_reset() 

○ The reset operation clears all information in both TIMED and GPIO sensors table in the "SI" 
module. 

○ This action takes place when all sensors are suspended to avoid unintentional operation of 
any devices. On system startup this information is already initialized. 

● si_register_sensor() 

○ This command registers a new sensor in the module. 

○ The sensor registration procedure in SI module is shown in Figure 12. 

 

Figure 12: SI Registration Path 

In the SI registration path, the first thing to inspect is the mode of operation. After this, each device 
will be registered in the corresponding database (DB). TIMED based sensors will further use the 
"app_easy_timer" library. INTERRURT based sensors will register necessary data to the 

"wkup_adapter" module that keeps track of all HW interrupts. 

● si_send_command(): 

Provided that a sensor is already registered, the following commands are available: 

○ SI_FORCE_TO_READ_CMD immediately executes the user-defined callback function 

force_read_fn. This operation applies to TIMED based sensors. 

○ SI_READ_CMD immediately executes the user-defined callback function read_fn. This 

operation applies to INTERRUPT based sensors. 

● SI_STOP_SENSOR_CMD disables the sensor. 

Each device type has separate and common configuration parameters, all of which are members of 
the si_config struct. 

● Available settings for TIMED devices include: 

○ operation_mode: This value will define the sensor as a TIMED device and should be set as 

TIMER. 

○ read_delay: The amount of time when users apply a forced mode to the device prior to 

reading the actual data. 

○ periodic_read_interval: The amount of time that users expect to read data from the 

device. 

○ force_read_fn: A callback function defined by users to setup the device in forced mode. 

● Available settings for INTERRUPT devices: 

○ operation_mode: This value will define the sensor as an INTERRUPT device and should be 

set as INTERRUPT. 

○ sensors_pin_conf: Users should provide the pin, port, and polarity settings for the 

"wkup_adapter" to enable the interrupt. 

● Common settings: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 25 of 110 © 2022 Renesas Electronics 

○ "Driver specific settings": Users are required to pass all necessary device specific 

information to the driver layer using this variable. 

○ sensor_id: Each sensor should have a unique ID. 

○ set_sensor_config: A user-defined callback function to setup the device in driver space. 

This function uses the previously defined driver specific settings. 

○ data_size: The actual size of the data that are expected during a read operation. 

○ read_fn: A user defined callback function to read the actual data from the device. 

○ pre_data_read_fn: A user defined callback function that is executed before the normal read. 

4.5.3 Driver Adaptation Layer 

"Driver Adaptation Layer (DAL)" is a middleware for the SI to interconnect directly to the device 
drivers. The DAL shall provide certain hook functions that are common in the SI for all device types. 
These functions are described below: 

● <device>_setup: This function uses the "driver specific settings" to configure the desirable 

operation of the device. 

● <device>_force_read: this function puts the device in forced mode. 

● <device>_read: this function retrieves data from the device. 

● <device>_disable: this function stops the device operation and put it in minimum consumption 

mode. This is currently not supported by the SI module and should be called from 
user_periph_sensors_suspend() function. 

4.6 Device Drivers 

4.6.1 Environmental Sensor 

BOSCH BME 680 is an environmental sensor capable of: 

● Measuring pressure 

● Measuring humidity 

● Measuring temperature 

● Detecting volatile organic compounds 

DA14585 IoT MSK reference application also includes the "Bosch Software Environmental Cluster" 
library that provides IAQ output. 

Used functions: 

● bme680_init performs software reset as well as reads the chip-ID and calibration data from the 

sensor. 

● bme680_set_sensor_settings is used to set the oversampling, filter and temperature, pressure, 

humidity, and gas selection settings in the sensor. 

● bme680_get_profile_dur retrieves the profile duration of the sensor. 

● bme680_set_sensor_mode sets the power mode of the sensor. In this implementation, two modes, 

forced and sleep, are used. 

● bme680_get_sensor_data returns the sensor data with compensated values. 

These driver files are located in "projects\target_apps\common\src\drivers\bme680". 

Communication interface: I2C 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 26 of 110 © 2022 Renesas Electronics 

4.6.2 Motion Sensor 

4.6.2.1 TDK ICM-42605 

The TDK ICM-42605 motion sensor, used in this reference design, is a 6-axis motion tracking device 
with the following features: 

■ 3-axis gyroscope 

■ 3-axis accelerometer 

■ User-programmable interrupts 

■ Wake-on-motion interrupt for low power operation of applications processor 

Used functions: 

● SetupInvDevice426 sets up the communication interface of the device, FIFO size, and callback 

functions to handle data read. 

● ConfigureInvDevice is used to configure the sampling rate and sensitivity of each sensor. 

● HandleInvDeviceFifoPacket426 is the callback function that retrieves available data from the 

sensor. 

● wom_acc_setup pauses sensor operations and puts ICM-42605 in "Wake-on-Motion" state with 

minimum power consumption. 

● icm426xxInterrupt_wom_cb is the callback function that is executed right after a motion event. 

● DisableBothModules set both sensors (accelerometer and gyroscope) in low power mode to 

reduce consumption. 

These driver files are located in "projects\target_apps\common\src\drivers\icm426xx". 

Communication interface: SPI 

4.6.2.2 BOSCH BMI160 

This reference design also provides support for the BOSCH BMI160 motion sensor. To enable the 
BMI160 sensor, users should un-define ICM4XX_ACCEL_SENSOR_AVAILABLE and define 

BMI160_ACCEL_SENSOR_AVAILABLE in da1458x_basic.h. 

Among others the BMI160 has the following features: 

■ 16-bit digital, triaxial accelerometer 

■ 16-bit digital, triaxial gyroscope 

■ Integrated interrupts for enhanced autonomous motion detection 

Used functions: 

● setup_bmi160() setups the communication interface of the device, FIFO size, and callback 

functions to handle data read. It calls the following: 

○ set_bmi160_init() is a helper function used to set up the serial interface, SPI read/write 

functions, and delay functions of the module. 

○ set_bmi160_operating_mode() is a helper function used to set up rate, range, and power 

mode of the sensors. 

○ set_bmi160_fifo_watermark_interrupt() sets up the sensor watermark level. 

● handle_bmi_fifo_packet160() is the callback function that retrieves available data from the 

sensor via SPI. 

● wom_acc_setup pauses sensor operations and puts BMI160 in "Wake-on-Motion" state with 

minimum power consumption. 

● bmi160_interrupt_wom_cb() is the callback function that is executed right after a motion event. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 27 of 110 © 2022 Renesas Electronics 

● DisableBothModules() sets both sensors (accelerometer and gyroscope) in low power mode to 

reduce consumption. 

These driver files are located in "projects\target_apps\common\src\drivers\bmi160". 

Communication interface: SPI. 

4.6.3 Magneto Sensor 

Asahi Kasei AK09915 is 3-axis electronic compass sensor with highly sensitive Hall-sensor 
technology. 

Used functions: 

● ak09915_init configures operation modes of the sensor: single measurement, continuous, and 

power down. 

● ak09915_single_measurement_mode retrieves data from the sensor. 

● ak09915_power_down_and_stop stops all activities and sets the sensor to low power mode to 

reduce consumption. 

These driver files are located in "projects\target_apps\common\src\drivers\ak09915". 

Communication interface: SPI. 

4.6.4 Optical Sensor 

VISHAY VCNL4010 is an optical sensor with the following features: 

■ Proximity sensor 

■ Ambient light sensor 

■ Built-in infrared emitter 

■ Programmable LED drive current 

Used functions: 

● vcnl4010_config determines which sensor is enabled (proximity, ambient, or both) and set the 

power level of the infrared emitter. 

● vcnl4010_set_force_mode_fn puts the sensor into forced mode. 

● vcnl4010_read_after_force_fn retrieves data from the sensor. 

● vcnl4010_disable_sensor sets the sensor to low power mode to reduce consumption. 

These driver files are located in "projects\target_apps\common\src\drivers\vcnl4010". 

Communication interface: I2C. 

4.6.5 GPIO Expander 

ON Semiconductor FXL6408UMX is a low power GPIO expander with the following features: 

■ Eight independently configurable I/O ports. 

■ Low-power quiescent current of 1.5 µA. 

This device handles the three LEDs as well as the power output of the power amplifier. 

Used functions: 

● set_ctrl_pwm_bp sets range extender PWM bypass. For more information please refer to [6]. 

● clr_ctrl_pwm_bp clears range extender PWM bypass. For more information please refer to [6]. 

● init_ext_gpio initializes the driver. 

● set_led turns on one single LED or all LEDs. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 28 of 110 © 2022 Renesas Electronics 

● clr_led turns off one single LED or all LEDs. 

These driver files are located in "projects\target_apps\common\src\drivers\gpio_extender". 

User functions are located in the "user_iot_dk_utils.c" file. 

Communication interface: I2C. 

4.6.6 Power Amplifier 

Skyworks SKY66111-11 is a fully integrated radio frequency Front End Module (FEM) designed for 
Smart Energy applications. 

Used functions: 

● No user API is available for this device. Power settings can be changed in 
"da1458x_config_basic.h" from RANGE_EXT_MODE to act as bypass or full power. 

The driver files are located in "SDK_585\sdk\platform\driver\range_ext\sky66111". 

4.7 Adding a New Sensor 

To add a new sensor to the DA14585 IoT MSK, it is recommended for developers to follow the 
following steps: 

1. Create a new folder in the common\src\drivers directory with the device name. Place all files 

needed to drive the new sensor in the new folder. Use a file with the name <xxx>_impl to 

summarize all actions that are relevant to the DAL calls. In the Driver_Adaptation_Layer folder, 

place a file related to this sensor to provide the specific functionality described in section 4.5.3. 

2. Edit the user_periph_setup source and header files to support the hardware connection 

parameters for the new device. Most common parameters are the ports and pins connections to 
the DA14585. 

3. In the user_sensors.c file, add various routines to handle the device in user space: 

a. Initialization function: it shall contain all necessary information related to the driver space and 
SI on how the new device is setup for operation. The format of this routine is similar to 
user_sensor_<xxx>_init(). 

b. Data callback function: include a routine with the following format void 

user_<xxx>_data_cb(uint8_t *data_ptr, uint16_t *data_size) to handle data retrieval 

from the driver layer. Preserve the parameters format where *data_ptr points to the memory 

location of the data and *data_size indicates the size of the data. 

c. Disable function: user_periph_sensors_suspend() contains the callback functions to disable 

all available sensors. 

d. Translation functions: these are for compatibility reasons and are entirely up to the user. 

4. In user_sensors.h add the new sensor to obtain a different ID needed by the sensor_interface 

to distinguish the sensor entities. 

5. The sensors_periph_interface.c file contains routines to access both SPI and I2C interface 

peripherals. If the new sensor requires a different approach, users can add their own routines in 
this file for this purpose. 

6. In the user_dws_reports.h file, declare a report and sensor type ID for the new device. To 

complete this action, in the user_sensors.c file the user_prepare_<xxx>_data functions must 

include the data related to sensor. 

4.8 Sequence Diagrams 

This section outlines the sequence of events and processes when data is transferred from the 
sensors to the GATT in Dialog’s wearable devices. The sequence diagrams also describe the data 
reporting from sensor fusion and environmental sensors. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 29 of 110 © 2022 Renesas Electronics 

4.8.1 Sensor Fusion Data Reporting 

Generation of sensor fusion data is triggered by the "Data ready" IRQ signal of an inertial sensor 

(accelerometer or gyroscope). An inertial sensor is registered in the SI as an interrupt driven device, 
hence the SI calls the read function of the DAL for sampling the sensor data and the application 
callback function to deliver sampled data to the application. 

The application parses the obtained inertial sensor data and stores them in a dynamically allocated 
area. It combines the first accelerometer/gyro sample with the stored magneto sensor sample and 
starts subsequent executions of SF algorithm in user_sensor_fusion_process function. 

Then it adds the latest raw data samples of accelerometer/gyro/magneto sample and the SF result in 
a DWS report notification and passes it to GATT layer to be transmitted over to the BLE interface. 

Finally, it initiates the magneto data sampling by issuing a FORCE_TO_READ command to SI through 

the si_send_command API function of the SI. SI sets the magneto sensor in single shot mode and 

waits for the "data ready" IRQ of the magneto sensor. When the interrupt is asserted, the SI will 

fetch the data and call the application callback, which then stores the magneto sample and combine 
it with the next bunch of inertial sensor samples. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 30 of 110 © 2022 Renesas Electronics 

 

Figure 13: Sequence Diagram of Sensor Fusion Reporting 

4.8.2 Environmental Data Reporting 

An environmental sensor is registered in SI in TIMER mode. The initialization of measurement 
procedure and the read of the measured values are done in different time instances. Two functions of 
the adaptation layer of the environmental sensor are registered for this purpose: 
environmental_force_read() to force read operation on the sensor and environmental_read() for 

reading sampled data. 

The SI initiates two timer instances: environmental_force_read() is called on the expiration of the 

first timer to initiate the measurement procedure, and environmental_read() on the expiration of 

the second timer to read the measured data. When sensor data are available, the SI will call the 
application callback function. 

If "volatile organic compounds" sample is available, the application will run the air quality algorithm 
and add reports for temperature/humidity/pressure sensors. The Air Quality classification results in a 
DWS notification message and sends it to GATT. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 31 of 110 © 2022 Renesas Electronics 

 

Figure 14: Sequence Diagram of Environmental Sensor Reporting 

4.9 Dialog Wearable Service V2 

The DA14585 IoT MSK reference application contains the Dialog Wearable Service version 2 
(DWSv2) in order to transfer and control sensor data. This service includes several characteristics 
that are listed in Table 5. 

The DWSv2 provides a means to: 

● Transfer raw and calibrated sensor data. 

● Transfer sensor fusion data. 

● Configure the device, such as setting the operating parameters. 

● Control the device, such as start/stop sensor operation and load/store data to non-volatile 
memory. 

Table 5: DWSv2 Characteristics 

Service/Characteristic UUID Properties 
(Note 1) 

Size (B) Description 

wrbl_dws_svc 2EA7-8970-7D44-4BB-
B097-2618-3F40-2400 

RD 16 Service attribute 

wrbl_dws_accel_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2401 

NTF 25 Accelerometer Report. 
Legacy DWS 
compatibility, not used. 

wrbl_dws_gyro_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2402 

NTF 25 Gyroscope Report. 

Legacy DWS 
compatibility, not used. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 32 of 110 © 2022 Renesas Electronics 

Service/Characteristic UUID Properties 
(Note 1) 

Size (B) Description 

wrbl_dws_mag_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2403 

NTF 25 Magnetometer Report. 

Legacy DWS 
compatibility, not used. 

wrbl_dws_baro_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2404 

NTF 25 Barometer Report. 

Legacy DWS 
compatibility, not used. 

wrbl_dws_hum_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2405 

NTF 25 Humidity Report. 

Legacy DWS 
compatibility, not used. 

wrbl_dws_temp_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2406 

NTF 25 Temperature Report. 

Legacy DWS 
compatibility, not used. 

wrbl_dws_sensf_char 2EA7-8970-7D4444BB-
B097-2618-3F40-2407 

NTF 25 Sensor Fusion Report. 

Legacy DWS 
compatibility, not used. 

wrbl_dws_feat_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2408 

RD 25 Device Features 

wrbl_dws_control_char 2EA7-8970-7D44-4BB-
B097-2618-3F40-2409 

WR 32 Control Point 

wrbl_dws_control_reply_char 2EA7-8970-7D44-4BB-
B097-26183F40-240A 

NTF 32 Command Reply 

wrbl_dws_multi_sens_char 2EA7-8970-7D44-4BB-
B097-26183F40-2410 

NTF 109 Sensors Report 

Note 1 RD: read, WR: write, NTF: notify, IND: indicate. 

4.9.1 Feature Report Structure 

Upon connection, the central device reads the feature characteristic (wrbl_dws_feat_char) in order 

to determine the capabilities and the firmware version of the connected device. 

Table 6: Features Report Structure 

Offset (B) Name Description 

0 accelerometer_en 0: Accelerometer not present 

1: Accelerometer present 

1 gyro_en 0: Gyroscope not present 

1: Gyroscope present 

2 magn_en 0: Magnetometer not present 

1: Magnetometer present 

3 pressure_en 0: Barometer not present 

1: Barometer present 

4 humidity_en 0: Humidity sensor not present 

1: Humidity sensor present 

5 temp_en 0: Temperature sensor not present 

1: Temperature sensor present 

6 s_fusion_en 0: Sensor fusion capability not present 

1: Sensor fusion capability present 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 33 of 110 © 2022 Renesas Electronics 

Offset (B) Name Description 

7 to 22 version[] Version number, ASCII 

23 device_type Device version: 

0: DA14580 IoT 

2: DA14585 IoT MSK 

4.9.2 Multi Sensor Report and Sensor Report 

All sensor data are encapsulated in reports named "sensor reports" specific for each sensor type. 
The sensor reports are concatenated into a multi sensor report using wrbl_dws_multi_sens_char 

and the multi sensor report is transferred as a BLE notification to the central device. 

Table 7: Multi Sensor Report 

Preamble (1 Byte) Timestamp (1 Byte) Sensor Reports (Up to 107 bytes) 

Always 0xA5 Integer number that increments after 

each report. 
Concatenated sensor reports (Table 8). 

Table 8: Sensor Report 

Report ID (1 Byte) Sensor State (1 Byte) Calibration State (1 Byte) Sensor Data (N Bytes) 

1 to 24 (Table 9) Value depending on sensor 

type. 

Value depending on sensor 

type. 

Depends on sensor 

type. 

Table 9: Report Types/Report ID's 

Report ID Report Type 

1 ACCELEROMETER_REPORT_ID 

2 GYROSCOPE_REPORT_ID 

3 MAGNETOMETER_REPORT_ID 

4 PRESSURE_REPORT_ID 

5 HUMIDITY_REPORT_ID 

6 TEMPERATURE_REPORT_ID 

7 SENSOR_FUSION_REPORT_ID 

8 COMMAND_REPLY_REPORT_ID 

9 AMBIENT_LIGHT_REPORT_ID 

10 PROXIMITY_REPORT_ID 

11 GAS_REPORT_ID 

12 iAQ_REPORT_ID 

13 BUTTON_REPORT_ID 

14 VELOCITY_DELTA_REPORT_ID 

15 EULER_ANGLE_DELTA_REPORT_ID 

16 QUATERNION_DELTA_REPORT_ID 

17+ Reserved 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 34 of 110 © 2022 Renesas Electronics 

4.9.2.1 Sensor Report for Accelerometer, Gyroscope, and Magnetometer 

Table 10: Report Structure for Accelerometer, Gyroscope, and Magnetometer 

Report field Field size (B) Description 

ucReportId 1 1, 2, or 3 (Table 9) 

snsr_state 1 Sensor state (snsr_state, see Table 11) 

cal_state 1 Calibration state used only for magnetometer. 

0: Calibration State Disabled 

1: Calibration State Initialized 

2: Calibration State Bad 

3: Calibration State OK 

4: Calibration State Good 

5: Calibration State Error 

val_x 2 X axis value for the selected sensor 

val_y 2 Y axis value for the selected sensor 

val_z 2 Z axis value for the selected sensor 

Table 11: Bitfield Structure for snsr_state 

Bit(s) Field Description 

0 in_data_valid Input (pre-calibration) data valid flag 

1 out_data_valid Output (post calibration) data valid flag 

2 cal_enabled Calibration enabled flag 

3 cal_settled Calibration settled flag 

4 cal_converged Calibration converged flag 

5:7 cal_mode Calibration mode 

4.9.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric Pressure 

Table 12: Environmental Sensor Report 

Report field Field size (B) Description 

ucReportId 1 4, 5, 6, 11 (Table 9) 

ucSensorState 1 Always 2 (Sensor Ready) 

ucSensorEvent 1 Always 3 (Update Value) 

Val32 4 Sensor value 

4.9.2.3 Sensor Report for Indoor Air Quality (IAQ) 

Table 13: Indoor Air Quality (IAQ) Report 

Report field Field size (B) Description 

ucReportId 1 12 (Table 9) 

ucSensorState 1 Always 2 (Sensor Ready) 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 35 of 110 © 2022 Renesas Electronics 

Report field Field size (B) Description 

ucSensorEvent 1 Accuracy 0-3: 

0: Unreliable 

1: Low Accuracy 

2: Medium Accuracy 

3: High Accuracy 

Val32 4 Sensor value 0-500 

4.9.2.4 Sensor Report for Ambient Light and Proximity 

Table 14: Sensor Report for Ambient Light and Proximity 

Report field Field size (B) Description 

ucReportId 1 9 and10 (Table 9) 

ucSensorState 1 Always 2 (Sensor Ready) 

ucSensorEvent 1 Always 3 (Update Value) 

Val32 4 Sensor value 

4.9.2.5 Sensor Report for Button 

Table 15: Sensor Report for Button 

Report field Field size (B) Description 

ucReportId 1 13 (Table 9) 

ucSensorState 1 Button Status 0-1: 

0: Released 

1: Pressed 

ucSensorEvent 1 Always 3 (Update Value) 

Val32 4 Reserved 

4.9.2.6 Sensor Report for Sensor Fusion 

Table 16: Sensor Report for Sensor Fusion 

Report field Field size (B) Description 

ucReportId 1 7 (Table 9) 

ucSensorState 1 Always 2 (Sensor Ready) 

mcal_state 1 Magnetometer calibration state: 

0: Calibration State Disabled 

1: Calibration State Initialized 

2: Calibration State Bad 

3: Calibration State OK 

4: Calibration State Good 

5: Calibration State Error 

val_w 2 W sensor fusion value 

val_x 2 X sensor fusion value 

val_y 2 Y sensor fusion value 

val_z 2 Z sensor fusion value 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 36 of 110 © 2022 Renesas Electronics 

4.9.2.7 Sensor Report for Velocity Delta 

Table 17:Sensor Report for Velocity Delta 

Report field Field size (B) Description 

ucReportId 1 14 (Table 9) 

snsr_state 1 Accelerometer state (see Table 11) 

q_format 1 Q format of δV data 

val_x 2 X axis value for δV data 

val_y 2 Y axis value for δV data 

val_z 2 Z axis value for δV data 

4.9.2.8 Sensor Report for Euler Angle Delta 

Table 18: Sensor Report for Euler Angle Delta 

Report field Field size (B) Description 

ucReportId 1 15 (Table 9) 

snsr_state 1 Gyroscope state (see Table 11) 

q_format 1 Q format of δΘ data 

val_x 2 X axis value for δΘ data 

val_y 2 Y axis value for δΘ data 

val_z 2 Z axis value for δΘ data 

4.9.2.9 Sensor Report for Quaternion Delta 

Table 19: Sensor Report for Quaternion Delta 

Report field Field size (B) Description 

ucReportId 1 16 (Table 9) 

ucSensorState 1 Always 2 (Sensor Ready) 

mcal_state 1 n/a 

val_w 2 W value for δQ data 

val_x 2 X value for δQ data 

val_y 2 Y value for δQ data 

val_z 2 Z value for δQ data 

4.9.3 Report Structures for Configuration and Control 

The DWSv2 provides the wrbl_dws_control_char (WR) and wrbl_dws_control_reply_char (NTF) 

characteristics for configuring and controlling the device. The device may also send unsolicited 
messages (such as STOP) to signal events. 

Typically, the central device issues a command using the control characteristic and waits for a reply 
from the notification reply characteristic. The replies issued by the IoT sensor always start with byte 
0x08 (COMMAND_REPLY_REPORT_ID, omitted from the following tables), followed by the Command ID 

and the command data. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 37 of 110 © 2022 Renesas Electronics 

Table 20: Report Structure for Commands 

Report ID (1 Byte) Command ID (1 Byte) Command Data (N Bytes) 

COMMAND_REPLY_REPORT_ID =8 See following tables. Depending on Command ID, varies in length 

and field types. 

4.9.3.1 Start Command 

Table 21: Start Command 

Offset (B) Description Value 

0 Command ID 1 

Table 22: Start Command Reply 

Offset (B) Description Value 

0 Command ID 1 

1 Running Status 1: Running 

4.9.3.2 Stop Command 

Table 23: Stop Command 

Offset (B) Description Value 

0 Command ID 0 

Table 24: Stop Command Reply 

Offset (B) Description Value 

0 Command ID 0 

1 Running Status 0: Stopped 

4.9.3.3 Read Parameters from Flash Memory 

Table 25: Read Flash Command 

Offset (B) Description Value 

0 Command ID 2 

4.9.3.4 Reset to Factory Defaults 

Table 26: Reset to Defaults (RtD) Command 

Offset (B) Description Value 

0 Command ID 3 

4.9.3.5 Store Basic Configuration in Flash Memory 

Table 27: Store Basic Configuration Command 

Offset (B) Description Value 

0 Command ID 4 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 38 of 110 © 2022 Renesas Electronics 

4.9.3.6 Store Calibration Coefficients and Control Configuration in Flash Memory 

Table 28: Store Calibration and Control Command 

Offset (B) Description Value 

0 Command ID 5 

4.9.3.7 Return Running Status 

Table 29: Return Running Status Command 

Offset (B) Description Value 

0 Command ID 6 

Table 30: Return Running Status Reply 

Offset (B) Description Value 

0 Command ID 6 

1 Running Status 0: Stopped 

1: Running 

4.9.3.8 Reset Sensor Fusion and Calibration Configuration 

Table 31: Reset Sensor Fusion and Calibration Configuration command 

Offset (B) Description Value 

0 Command ID 7 

4.9.3.9 Basic Configuration 

Table 32: Basic Configuration Command 

Offset (B) Description Value 

0 Command ID 10 

1 Sensor Combination Bit 0: Accelerometer Enable 

Bit 1: Gyroscope Enable 

Bit 2: Magnetometer Enable 

Bit 3: Environmental Sensor Enable 

Bit 4: Gas Sensor Enable 

Bit 5: Proximity Sensor Enable 

Bit 6: Ambient Light Sensor Enable 

Note: For SF to operate, only certain 
combinations are allowed regarding 
accelerometer, gyroscope, and 
magnetometer. 

The combinations allowed are: 

● Gyroscope only. 

● Gyroscope and accelerometer. 

● Accelerometer and magnetometer. 

● Accelerometer, gyroscope, and 
magnetometer. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 39 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

2 Accelerometer Range 0x03: 2 G 

0x05: 4 G 

0x08: 8 G 

0x0C: 16 G 

3 Accelerometer Rate 0x06: 1 kHz (ICM42605) or 800 Hz (BMI160) 

0x07: 200 Hz 

0x08: 100 Hz 

0x09: 50 Hz 

0x0A: 25 Hz 

4 Gyroscope Range 0x00: 2000 deg/s 

0x01: 1000 deg/s 

0x02: 500 deg/s 

0x03: 250 deg/s 

0x04: 125 deg/s 

5 Gyroscope Rate 0x06: 1 kHz (ICM42605) or 800 Hz (BMI160) 

0x07: 200 Hz 

0x08: 100 Hz 

0x09: 50 Hz 

0x0A: 25Hz 

6 Magnetometer Rate Valid only if SF is off. 

0: Accelerometer ODR/1 

1: Accelerometer ODR/2 

3: Accelerometer ODR/4 

7: Accelerometer ODR/8 

7 Environmental Sensors Rate 1: 0.33 Hz 

2: 0.5 Hz 

4: 1 Hz 

6: 2 Hz 

Note: Only option 1 is available when the 
gas sensor is enabled. 

8 Sensor Fusion Rate 0: SF Off 

10: 10 Hz (not applicable for BMI160 when 
the rate is 800Hz). 

25: 25 Hz 

50: 50 Hz 

100: 100 Hz 

9 Sensor Fusion Mode 0: Sensor Fusion (AHRS) Off 

1: Sensor Fusion (AHRS) On 

10 Sensor Fusion Raw Data Enable 0: Disabled 

1: Enabled Raw Data (decimated at SF 
ODR) 

2: Enabled Integration Engine Data 

11 Reserved NA 

12 Gas Sensor rate Not used. The gas sensor rate is always 
0.33 Hz (Low Power Mode). 

13 Proximity/Ambient Light Mode Not used. The mode is always polled. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 40 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

14 Proximity/Ambient Light Rate 0: Sensor Off 

1: 10 Hz 

2: 5 Hz 

3: 2 Hz 

4: 1 Hz 

5: 0.5 Hz 

6: 0.2 Hz 

4.9.3.10 Read Basic Configuration 

Table 33: Read Basic Configuration Command 

Offset (B) Description Value 

0 Command ID 11 

Table 34: Read Basic Configuration Command Reply 

Offset (B) Description Value 

0 Command ID 11 

1 Sensor Combination Bit 0: Accelerometer Enable 

Bit 1: Gyroscope Enable 

Bit 2: Magnetometer Enable 

Bit 3: Environmental Sensor Enable 

Bit 4: Gas Sensor Enable 

Bit 5: Proximity Sensor Enable 

Bit 6: Ambient Light Sensor Enable 

Note: For SF to operate, only certain 
combinations are allowed regarding 
accelerometer, gyroscope, and 
magnetometer. 

The combinations allowed are: 

● Gyroscope only. 

● Gyroscope and accelerometer. 

● Accelerometer and magnetometer. 

● Accelerometer, gyroscope and 
magnetometer. 

2 Accelerometer Range 0x03: 2 G 

0x05: 4 G 

0x08: 8 G 

0x0C: 16 G 

3 Accelerometer Rate 0x06: 1 kHz (ICM42605) or 800 Hz (BMI160) 

0x07: 200 Hz 

0x08: 100 Hz 

0x09: 50 Hz 

0x0A: 25Hz 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 41 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

4 Gyroscope Range 0x00: 2000 deg/s 

0x01: 1000 deg/s 

0x02: 500 deg/s 

0x03: 250 deg/s 

0x04: 125 deg/s 

5 Gyroscope Rate 0x06: 1 kHz (ICM42605) or 800 Hz (BMI160) 

0x07: 200 Hz 

0x08: 100 Hz 

0x09: 50 Hz 

0x0A: 25Hz 

6 Magnetometer Rate Valid only if SF is off. 

0: Accelerometer ODR/1 

1: Accelerometer ODR/2 

3: Accelerometer ODR/4 

7: Accelerometer ODR/8 

7 Environmental Sensors Rate 1: 0.33 Hz 

2: 0.5 Hz 

4: 1 Hz 

6: 2 Hz 

8 Sensor Fusion Rate 0: SF Off 

10: 10 Hz 

25: 25 Hz 

50: 50 Hz 

100: 100 Hz 

9 Sensor Fusion Mode Reserved 

10 Sensor Fusion Raw Data Enable 0: Disabled 

1: Enabled (RAW) 

2: Enabled Integration Engine 

11 Reserved NA 

12 Gas Sensor rate Not used. The gas sensor rate is always 
0.33 Hz (Low Power Mode). 

13 Proximity/Ambient Light Mode Not used. The mode is always polled. 

14 Proximity/Ambient Light Rate 0: Sensor Off 

1: 10 Hz 

2: 5 Hz 

3: 2 Hz 

4: 1 Hz 

5: 0.5 Hz 

6: 0.2 Hz 

4.9.3.11 Set Sensor Fusion Coefficients Command 

Table 35: Set Sensor Fusion Coefficients Command 

Offset (B) Description Value 

0 Command ID 12 

1 BETA A LSB Sensor Fusion Beta A Gain (LSB) 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 42 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

2 BETA A MSB Sensor Fusion Beta A Gain (MSB) 

3 BETA M LSB Sensor Fusion Beta M Gain (LSB) 

4 BETA M MSB Sensor Fusion Beta M Gain (MSB) 

5:8 TEMPERATURE_REPORT_ID Reserved 

4.9.3.12 Read Sensor Fusion Coefficients 

Table 36: Read Sensor Fusion Coefficients Command 

Offset (B) Description Value 

0 Command ID 13 

Table 37: Read Sensor Fusion Coefficients Command Reply 

Offset (B) Description Value 

0 Command ID 13 

1 BETA A LSB Sensor Fusion Beta A Gain (LSB) 

2 BETA A MSB Sensor Fusion Beta A Gain (MSB) 

3 BETA M LSB Sensor Fusion Beta M Gain (LSB) 

4 BETA M MSB Sensor Fusion Beta M Gain (MSB) 

5:8 Reserved NA 

4.9.3.13 Set Calibration Coefficients 

Table 38: Set Calibration Coefficients Command 

Offset (B) Description Value 

0 Command ID 14 

1 Sensor Type 2: Magnetometer 

2 Q Format Integer value 

3:8 Offset Vector (3 × int16) Integer value 

9:26 Matrix 3 × 3 × int16 Signed fixed point value 

4.9.3.14 Read Calibration Coefficients 

Table 39: Read Calibration Coefficients Command 

Offset (B) Description Value 

0 Command ID 15 

Table 40: Read Calibration Coefficients Command Reply 

Offset (B) Description Value 

0 Command ID 15 

1 Sensor Type Magnetometer = 2  

2 Q Format Integer value 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 43 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

3:8 Offset Vector 3 × 1 int16 Integer value 

9:26 Matrix 3 × 3 int16 Signed fixed point value 

4.9.3.15 Set Calibration Control Flags 

Table 41: Set Calibration Control Flags Command 

Offset (B) Description Value 

0 Command ID 16 

1 Sensor Type 2: Magnetometer 

2:3 Calibration Control Flags Byte 2: see Table 42 

Byte 3: see Table 43 

4:15 Calibration Parameters See Table 44 

Table 42: Calibration Control Flags #1 

 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 

Calibration 

Mode 
Reserved Reserved Offset 

apply 

Matrix 

apply 

Offset 

update 

Matrix 

update 

Init from 

static 

Offset post 

apply 

Static X X 1: Yes 1: Yes 0: No 0: No 0: No 1: Yes 

Basic Auto X X 1: Yes 1: Yes 1: Yes 1: Yes 0: No 1: Yes 

SmartFusion 

Auto 
X X 1: Yes 1: Yes 1: Yes 1: Yes 1: Yes 1: Yes 

Table 43: Calibration Control Flags #2 

 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 

Calibration 

Mode 
Reserved Reserved Reserved Reserved Reserved Reserved Converged 

(read only) 

Settled 
(read 

only) 

Static X X X X X X X 0: No 

Basic Auto X X X X X X 0: No 1: Yes 

SmartFusion 

Auto 
X X X X X X 1: Yes 1: Yes 

Table 44: Calibration Parameters 

Offset (B) Static Basic SmartFusion Description 

0 Reserved ref_mag ref_mag Reference magnitude 

1 Reserved mag_range mag_range Magnitude range 

2 Reserved mag_alpha mag_alpha Magnitude filter coefficient 

3 Reserved mag_delta_thresh mag_delta_thresh Magnitude gradient threshold 

4 Reserved Reserved mu_offset Offset update rate 

5 Reserved Reserved mu_matrix Matrix update rate 

6 Reserved Reserved err_alpha Overall error filter coefficient 

7 Reserved Reserved err_thresh Overall error threshold 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 44 of 110 © 2022 Renesas Electronics 

4.9.3.16 Read Calibration Control 

Table 45: Read Calibration Control Flags Command 

Offset (B) Description Value 

0 Command ID 17 

Table 46: Read Calibration Control Flags Command Reply 

Offset (B) Description Value 

0 Command ID 17 

1 Sensor Type 2: Magnetometer 

2:3 Calibration Control Flags Byte 2: see Table 42 

Byte 3: see Table 43 

4:15 Calibration Parameters See Table 44 

4.9.3.17 Fast Accelerometer Calibration 

Table 47: Fast Accelerometer Calibration Command 

Offset (B) Description Value 

0 Command ID 18 

Table 48: Fast Accelerometer Calibration Reply 

Offset (B) Description Value 

0 Command ID 18 

1 Fast Calibration Status 0: Stopped 

1: Started 

4.9.3.18 Set Calibration Modes 

Table 49: Set Calibration Modes Command 

Offset (B) Description Value 

0 Command ID 19 

1 Calibration Mode for Accelerometer Not used, reserved for future use. 

2 Calibration Mode for Gyroscope Not used, reserved for future use. 

3 Calibration Mode for Magnetometer 0: None 

1: Static 

2: Continuous Auto 

3: Auto One Shot 

4 Auto Calibration Mode for Accelerometer Not used, reserved for future use. 

5 Auto Calibration Mode for Gyroscope Not used, reserved for future use. 

6 Auto Calibration Mode for Magnetometer 0: Basic Auto Calibration 

1: Smart Auto Calibration 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 45 of 110 © 2022 Renesas Electronics 

4.9.3.19 Read Calibration Modes 

Table 50: Read Calibration Modes Command 

Offset (B) Description Value 

0 Command ID 20 

Table 51: Read Calibration Modes Command Reply 

Offset (B) Description Value 

0 Command ID 20 

1 Calibration Mode for Accelerometer Not used, reserved for future use. 

2 Calibration Mode for Gyroscope Not used, reserved for future use. 

3 Calibration Mode for Magnetometer 0: None 

1: Static 

2: Continuous Auto 

3: Auto One Shot 

4 Auto Calibration Mode for Accelerometer Not used, reserved for future use. 

5 Auto Calibration Mode for Gyroscope Not used, reserved for future use. 

6 Auto Calibration Mode for Magnetometer 0: Basic Auto Calibration 

1: Smart Auto Calibration 

4.9.3.20 Read Device Sensors 

Table 52: Read Device Sensors Command 

Offset (B) Description Value 

0 Command ID 21 

Table 53: Read Device Sensors Command Reply 

Offset (B) Description Value 

0 Command ID 21 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 46 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

1-17 Sensor Type Physical Sensors: 

0: None 

1: Accelerometer 

2: Gyroscope 

3: Magnetometer 

4: Barometer 

5: Humidity Sensor 

6: Temperature Sensor 

7: Ambient Light 

8: Proximity Sensor 

9: Button 

10: RAW GAS 

11: Proximity Calibration 

12-24: Reserved 

Virtual Sensors: 

64: Sensor Fusion 

65: Integration Engine (IE) 

66: Indoor Air Quality 

67-74: Reserved 

4.9.3.21 Read Software Version 

Table 54: Read Application Software Version Command 

Offset (B) Description Value 

0 Command ID 22 

Table 55: Read Application Software Version Command Reply 

Offset (B) Description Value 

0 Command ID 22 

1-17 Version Number Version number of the application in 
ASCII representation, for example, 

“v6.160.2” 

4.9.3.22 Start LED Blink 

Table 56: Start LED Blink Command 

Offset (B) Description Value 

0 Command ID 23 

4.9.3.23 Stop LED Blink 

Table 57: Stop LED Blink Command 

Offset (B) Description Value 

0 Command ID 24 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 47 of 110 © 2022 Renesas Electronics 

4.9.3.24 Set Proximity Hysteresis Limits 

Table 58: Set Proximity Hysteresis Limits Command 

Offset (B) Description Value 

0 Command ID 25 

1-2 Proximity Low Limit (proximity off) 0-65535 

3-4 Proximity Low Limit (proximity on) 0-65535 

4.9.3.25 Read Proximity Hysteresis Limits 

Table 59: Read Proximity Hysteresis Limits Command 

Offset (B) Description Value 

0 Command ID 26 

Table 60: Read Proximity Hysteresis Limits Command Reply 

Offset (B) Description Value 

0 Command ID 26 

1-2 Proximity Low Limit (proximity off) 0-65535 

3-4 Proximity Low Limit (proximity on) 0-65535 

4.9.3.26 Calibration Complete 

The calibration complete notification is only sent from the device to the central application when a 
calibration operation is completed. 

Table 61: Calibration Complete Notification 

Offset (B) Description Value 

0 Command ID 27 

1 Sensor Type 0: Accelerometer 

1: Gyroscope 

2: Magnetometer 

2 Status 0: OK 

1: Error 

4.9.3.27 Proximity Calibration Command 

Table 62: Proximity Calibration Command 

Offset (B) Description Value 

0 Command ID 28 

Table 63: Proximity Calibration Command Reply 

Offset (B) Description Value 

0 Command ID 28 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 48 of 110 © 2022 Renesas Electronics 

Offset (B) Description Value 

1 Start/Stop 1: Started 

0: Ended 

4.10 Sensor Calibration Library 

4.10.1 Overview 

The SmartFusion Sensor Calibration Library (SCL) provides a set of routines for calibrating 
microelectromechanical systems (MEMS) sensors, such as gyroscopes, accelerometers, and 
magnetometers. By applying these routines to captured sensor data, it is possible to compensate for 
the typically exhibited imperfections and distortion. 

4.10.1.1 Modes of Operation 

The routines provided by the SCL have been designed with flexibility in mind and support various 
modes of operation depending on the specific characteristics of the sensors and the system 
requirements. 

The supported calibration modes are as follows: 

● Static Calibration Mode: 

○ When the sensor distortions are measurable, stable, and consistent between devices, static 
calibration is the preferred mode of operation as it gives the best performance in terms of 
distortion correction. 

○ In this mode the calibration routine is initialized with static calibration coefficients which are 
then applied to the sensor data and do not change. 

○ These static calibration coefficients are typically calculated off-line by the device 
manufacturer by analyzing recordings of raw sensor data made under controlled conditions. 
The calibration coefficients are stored in either the device’s firmware or non-volatile memory. 

● Continuous Automatic Calibration Mode: 

○ When the sensor distortions are unstable and/or inconsistent between devices, continuous 
automatic calibration is the preferred mode of operation as it allows the calibration 
coefficients to be determined automatically at runtime without requiring them to be built into 
the firmware or programmed into non-volatile memory. 

○ In this mode the auto-calibration function continually monitors the sensor data for distortions 
and adapts the calibration coefficients to compensate for them. 

● One-shot Automatic Calibration Mode:  

○ When the sensor distortions are relatively stable in the short term, one-shot auto-calibration 
mode may be preferable. 

○ In this mode the auto-calibration function is run upon device startup to determine the sensor 
distortions but is disabled once the calibration is complete and suitable calibration coefficients 
have been calculated. 

4.10.1.2 Calibration Routines 

The SCL provides a number of routines for both static and automatic calibration of three-dimensional 
sensor data. 

NOTE 

Not all these routines are appropriate for all types of sensors or can be used in all calibration modes. 

The supported calibration routines are as follows: 

● Static Calibration: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 49 of 110 © 2022 Renesas Electronics 

○ The static calibration routine applies user-defined static calibration coefficients in the form of 
a 3 × 3 transformation matrix and a 3-dimensional vector offset. 

○ This routine is suitable for all types of sensors but is only appropriate for use in static 
calibration mode as the coefficients do not change. 

● Basic Auto-Calibration: 

○ The basic auto-calibration routine monitors the data captured from sensors for basic offset 
and scaling distortions, calculating and applying appropriate calibration coefficients at runtime 
in order to compensate for them. 

○ This routine is not designed to detect and compensate for the sophisticated types of 
distortions such as cross-axis, spherical and rotational distortions. 

○ It presumes that the magnitude of the external stimulus to the sensor (such as magnetic or 
gravitational field strength) is constant and only varies according to device orientation. 

○ Neither is it able to support scenarios where the distortions are not constant but vary over 
time. 

● SmartFusion Auto-Calibration: 

○ To overcome some of the shortcomings of the basic auto-calibration routine, a more 
sophisticated algorithm is also provided. 

○ In addition to being able to calculate and compensate for basic offset and scaling distortions, 
this algorithm can also compensate for more sophisticated distortions such as magnetometer 
soft iron spherical distortions. 

○ It is also able to cope with gradual changes in sensor distortions and external stimulus over 
time, although some adaptation time is required. 

● Static Drift Compensation: 

○ This routine has been specifically designed to reduce gyroscope drift and is not appropriate 
for use with any other type of sensors. 

○ Gyroscopes typically exhibit small biases, indicating slow rotation even when the device is 
stationary. This results in drifts in the calculated orientation when the gyroscope data is 
integrated. 

○ Although these biases typically have large static components that can be compensated for 
using static calibration, there is often a residual bias that varies over time due to temperature 
or gravitational effects. 

○ The static drift compensation routine provides tracks and removes these dynamic biases, 
eliminating drift when the device is stationary. 

○ The algorithm also includes a noise gate to eliminate drift induced by random walk due to 
noise. 

4.10.1.3 Calibration Procedure 

It requires sampling an external stimulus, such as a magnetic or gravitational field, at a wide range of 
different orientations for the basic and SmartFusion auto-calibration routines to operate correctly. 
Therefore, it is necessary to rotate the device to determine the distortions and calculate appropriate 
calibration coefficients. It is also important that these external stimuli remain constant in both 
magnitude and direction. 

It is required to calibrate the magnetometer in a place where the magnetic field is reasonably strong 
and uniform. The rotation can be performed manually by randomly rotating the device until the 
calibration routine signals its completion. 

It is important that the device is not subjected to any lateral movement while being rotated during the 
accelerometer calibration, as lateral movements will distort the sampling of the gravitational field. It is 
therefore recommended to use a gimbal in conjunction with these routines to rotate the 
accelerometer around its center without any lateral movement. 

When using the device in an environment where the external stimulus is constantly changing, such 
as when the magnetic field fluctuates with position or the device is subjected to lateral accelerations, 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 50 of 110 © 2022 Renesas Electronics 

it is recommended to perform an initial automatic calibration in one-shot mode under controlled 
situations and then switch to static calibration mode using the resultant calibration coefficients. 

4.10.2 API Usage 

The various calibration routines provided by the SCL are designed to work together and complement 
each other. For the common functionalities, the routines use generic controls, parameters, and code. 
The more advanced routines re-use the functionality of the basic routines. For example, the basic 
auto-calibration routine re-uses the static calibration routine to apply its calibration parameters to the 
sensor data. 

More specifically, the parameter structures for all routines are designed to overlap so that they can 
share the same location in memory, thus sharing common parameters. The purpose is to aid 
switching between calibration modes without unnecessary copying of parameter data between 
different routines and to minimize the memory footprint. 

Wrapper code (sensor_calibration.h|c) has been provided in the SDK, which implements the 

overlapping of the various calibration routines and provides a common interface through which the 
calibration routines can be used. 

4.10.2.1 Allocation 

An instance of the appropriate calibration parameter structure (static_calibration_params, 

basic_autocal_params, smartfusion_autocal_params, or static_drift_compensation_params) or 

combined wrapper instance structure (cal_instance) shall be instantiated, either statically or on the 

heap, and shall be maintained during the life-cycle of sensor calibration processing. 

4.10.2.2 Initialization 

Before processing can be performed on an instance of a calibration routine, a subset of parameters 
within the appropriate parameter structure must be initialized. These parameters are as follows: 

● Generic: Common to all 

○ in_data: Pointer from which to read raw sensor input data 

○ out_data: Pointer to which to write processed sensor output data 

● Static calibration: In addition to the generic parameters: 

○ offset: Offset vector coefficients to be subtracted from sensor data in same representation 

as raw sensor data 

○ matrix: 3 × 3 matrix of signed fixed point coefficients to apply to sensor data. 

○ q_format: Q format of matrix coefficients 

○ flags: Control flags 

– apply: Flag to control whether calibration coefficients are applied 

– matrix_apply: Flag to control whether matrix coefficients are applied in addition to offset 

– offset_post_apply: Flag to control whether vector coefficients are applied before or after 

the matrix coefficients are applied 

● Basic Auto-calibration: In addition to the static calibration parameters: 

○ ref_mag: Reference magnitude indicating expected geomagnetic field strength in same 

representation as raw sensor data 

○ mag_range: Q15 unsigned fixed-point scaler indicating range +/- reference magnitude of valid 

sensor data 

○ mag_alpha: Q15 unsigned fixed-point coefficient controlling the filtering applied to the 

calculated sensor vector magnitude 

○ mag_delta_threshold: Q15 unsigned fixed-point threshold applied to the calculated gradient 

of the filtered sensor vector magnitude below which the algorithm is considered to have 
settled 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 51 of 110 © 2022 Renesas Electronics 

○ flags: Control flags 

– update: Flag to control whether calibration coefficients are updated 

– matrix_update: Flag to control whether matrix coefficients are] updated in addition to 

offset 

● SmartFusion Auto-calibration: In addition to the basic auto-calibration parameters: 

○ mu_offset: Q15 unsigned fixed-point convergence speed of offset parameters 

○ mu_matrix: Q15 unsigned fixed-point convergence speed of matrix parameters 

○ err_alpha: Q15 unsigned fixed-point coefficient controlling the filtering applied to the overall 

error in calculated cost function 

○ err_thresh: Q15 unsigned fixed-point threshold applied to the calculated overall error below 

which the algorithm is considered to have converged 

○ flags: Control flags 

– init_from_static: Flag to control whether calibration coefficients are initialized externally 

by a user or should be reset by initialization routine 

● Static Drift Compensation: In addition to the static calibration parameters: 

○ bias_thresh: Threshold indicating the maximum range of dynamic shift in dynamic bias 

magnitude that can be tracked 

○ bias_alpha: Q15 unsigned fixed-point convergence speed of bias tracking 

○ bias_range_limit: Q8 limit indicating maximum range of biases that can be tracked 

○ noise_gate_thresh: Threshold indicating the magnitude of output data (after bias has been 

removed) below which the noise gate is applied 

○ flags: Control flags 

– update: Flag to control whether the bias offset is updated 

– init_from_static: Flag to control whether calibration coefficients are initialized externally 

by a user or should be reset by initialization routine. 

NOTE 

This can be used to specify the static component of the bias, allowing a tighter range of bias_thresh to be 

specified so that slower movements can be tracked. 

● Sensor Calibration Wrapper: If the wrapper instance structure is used, the mode field should be 
initialized to indicate which calibration routine should be used. The valid modes specified by the 
cal_mode enumeration are: 

○ CAL_NONE: No calibration routine is applied 

○ CAL_STATIC: The static calibration routine is applied 

○ CAL_BASIC_AUTOCAL: The basic auto-calibration routine is applied 

○ CAL_SMARTFUSION_AUTOCAL: The SmartFusion auto-calibration routine is applied 

○ CAL_STATIC_DRIFT_COMPENSATION: The static drift compensation routine is applied 

Once the calibration parameters have been initialized, it is necessary to call the appropriate routine’s 
initialization function (if it has one) or the cal_init() function when the wrapper is being used. 

NOTE 

It is presumed that un-initialized parameters will be reset to zero. It is therefore advised to use the memset() 

function to reset the parameter structure before initialization. 

When using the wrapper, the controls field is a union of a 16-bit word and the overlapped calibration 

routine flags bit field structure, allowing the flags to be set individually or all at once. 

To generate optimal code for the ARM M0, pointers to the input/output data vectors refer to vector 
types where the elements are declared as 32-bit signed integer types. However, the range of these 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 52 of 110 © 2022 Renesas Electronics 

elements should not exceed a signed 16-bit range (-32768 ≤ x|y|z ≤ 32767). The overall magnitude of 
the represented vector should also not exceed unsigned 16-bit range (|v| ≤ 32768). 

Similarly, the fixed-point matrix coefficients also use 32-bit types but should not exceed a signed 16-
bit range. In cases where the matrix coefficients represent values greater than one, they should be 
scaled to a 16-bit range and the q_format parameter should also be adjusted accordingly. For 

example, to represent coefficients in the range of +/- 2.0, q_format should be set to 14 and the 

coefficients scaled by 214. Values of + 2.0 (32768 once scaled) should saturate at 32767 to prevent 
overflow. 

Depending on the algorithm used to calculate the calibration coefficients, the offset vector may need 
to be applied before or after applying the matrix. The static calibration routine supports both methods, 
but this should be indicated by setting the offset_post_apply appropriately. When set, the offset 

vector will be applied after applying the matrix. 

When applying static calibration, it is necessary to initialize the calibration coefficients (offset and 

matrix) to be applied. 

When applying SmartFusion auto calibration, in some cases it may be preferred to backup and 
restore the calculated calibration coefficients between instantiations rather than starting from scratch 
each time. In this case it is necessary to prevent the calibration routine’s initialization function from 
resetting the coefficients by setting the init_from_static flag. 

In order to work correctly, the auto calibration routines need to know the expected magnitude of the 
vector produced by the sensor once distortions have been removed. This reference magnitude is 
provided by initializing the ref_mag parameter. The value of this parameter should ideally be 

determined by performing an external measurement of the gravitational/geomagnetic field strength 
and expressing this in the same format and sensitivity as generated by the sensor. Without this, the 
value can be set according to estimated or published values. Alternatively, this value can be set to 
zero which enables a mode in which the calibration attempts to determine the sensor vector 
magnitude for itself. 

As there is inevitably some margin of error in setting the reference magnitude and potentially quite a 
lot of variability in the uncalibrated sensor vector magnitude, the mag_range parameter has been 

provided to specify the tolerance for the reference magnitude. This should be set in order to 
encompass the full range of expected acceptable magnitude values. For example, when the 
expected magnitude is 1000 and the desired tolerance +/-10% (a range from 900 to 1100), the 
mag_range should be set to 0.1 (3277 in Q15 fixed point). In cases where the actual magnitude lies 

outside this range, the auto calibration routine will never complete. Conversely, when the range is set 
too wide, the calibration routine will detect completion too early and result in imperfect calibration. In 
case of noisy sensor data, the magnitude range can also be used to filter out outliers to some extent. 

The SmartFusion auto calibration routine includes functionality for detecting when it has achieved 
convergence and the sensor distortions have been sufficiently removed. This is useful for 
determining when calibration is complete or when it has subsequently become unsettled. As the level 
of attainable convergence is sensitive to the amount of noise that exists in the sensor data, tuning 
parameters have been provided to tune the performance. The err_alpha parameter tunes the 

amount of filtering applied to the calculated overall error and can be increased in situations where the 
amount of noise in the sensor data is higher. The err_thresh parameter sets the threshold at which 

convergence is detected and should be increased in situations where higher sensor noise has 
reduced the level of convergence that is attainable. 

4.10.2.3 Processing 

Sensor calibration processing is performed either by calling the appropriate process function on an 
instantiation of the related parameter structure or by calling function cal_process() when using the 

wrapper. 

Prior to calling the process function, it is necessary to indicate to the algorithm whether the sensor 
data is valid and has been updated by setting the in_data_valid flag. This is done to prevent invalid 

data from getting into the calibration routine and corrupting its operation. Examples of invalid data 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 53 of 110 © 2022 Renesas Electronics 

include null data while the sensor is starting up or saturated sensor data. Detection of these 
conditions are sensor specific, so this must be done prior to calling the calibration routine. 

For SmartFusion auto-calibration, it is possible to speed up the rate of convergence by calling the 
process function multiple times between samples. In this case the in_data_valid flag should only be 

set when the sensor data is updated. 

In some cases, it may be desirable to disable the application of the calibration coefficients at runtime 
or selectively only apply offset correction. The apply flag enables/disables the application of the 

calibration coefficients altogether. The matrix_apply flag enables/disables the application of just the 

matrix coefficients. It is not possible to only apply the matrix coefficients. 

In some cases (for instance upon completion of one-shot mode), it may be desirable to disable the 
updating of the calibration coefficients by the auto calibration routine at runtime or selectively only 
update the offset coefficients. The update flag enables/disables the updating of the calibration 

coefficients altogether. The matrix_update flag enables/disables the update of just the matrix 

coefficients. It is not possible to only update the matrix coefficients. 

Once the sensor calibration routine’s processing cycle is complete, the calibrated sensor data can be 
read from the location referenced by the out_data pointer. The out_data_valid flag can also be 

read to determine whether the calibration routine detects the sensor data to be within its valid range 
of acceptable magnitudes (as specified by ref_mag and mag_range). 

Since the state of the calibration routine can be determined, flags have been provided indicating 
when calibration is complete or has become unsettled. For basic auto-calibration, the settled flag 

can be used and for SmartFusion auto-calibration routine the converged flag can be used. In one-

shot mode, calibration can be stopped when the appropriate flag is set. 

4.11 Sensor Fusion Library 

4.11.1 Overview 

The Sensor Fusion Library (SFL) provides a set of modules for the processing and fusing of senor 
data. 

4.11.2 SmartFusion Integration Engine 

The SmartFusion Integration Engine is provided for integrating and decimating sensor data from 
MEMS gyroscopes and accelerometers. 

Sensor fusion applications often have restrictions on the maximum rates at which raw sensor can be 
sampled and utilized. These restrictions are often determined by the maximum rate at which the 
sensor data can be processed and/or the bandwidth available to transmit it. However, limiting the 
rate at which the inertial sensors are sampled in this way reduces the accuracy at which the motion 
can be tracked. 

By numerically integrating the inertial sensor data, it is possible to sample it at much higher rates and 
decimate it to a lower rate without losing any of the critical motion information. This allows the data to 
processed and transmitted at much lower rates without losing any accuracy. 

4.11.2.1 Modes of Operation 

The SmartFusion Integration Engine supports different modes of operation depending on what types 
of inertial sensor information are available and in what format they are required. These modes of 
operation are handled by a set of sensor data integrators as follows: 

● δQ Integrator: Integrates 3D gyroscope data and outputs changes in orientation in body relative 
unit quaternion (w, x, y, z) form. 

● δΘ Integrator: Integrates 3D gyroscope data and outputs changes in orientation in body relative 
Euler angle (φ, θ, ψ) form. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 54 of 110 © 2022 Renesas Electronics 

● δV Integrator: Integrates 3D accelerometer data and outputs changes in velocity in body relative 
form. 

Each of these integrators operate independently and can be used all at once or in any combination. 
They can also operate at different sample rates and decimation factors. 

4.11.2.2 API Usage 

Allocation 

An instance of the smartfusion_integration_engine structure must be instantiated, either statically 

or on the heap, and must be maintained for the life-cycle of sensor fusion processing. 

Initialization 

Before processing can be performed on an instance of the SmartFusion Integration Engine module, a 
subset of the parameters within the smartfusion_integration_engine structure must be initialized. 

These parameters are as follows: 

● controls: Module control and status flags. 

● dv_integrator: δV integrator parameters 

● dt_integrator: δΘ integrator parameters 

● dq_integrator: δQ integrator parameters 

The controls field is an instance of the smartfusion_integration_engine_flags bit-field structure. 

This contains the control flags for the module. These include the a_data_valid and g_data_valid 

input flags for indicating when valid accelerometer or gyroscope input data is available as well as the 
dv_data_valid, dt_data_valid, and dq_data_valid flags for indicating when valid δV, δΘ, and/or 

δQ output data is available. These should all be initialized to 0. 

dv_integrator and dt_integrator are instances of the smartfusion_vector_integrator structure, 

while dq_integrator is an instance of the smartfusion_quaternion_integrator. These structures 

share common parameters which must be initialized. These parameters are as follows: 

● in_data: Pointer to the appropriate type of input sensor data. 

● dec_factor: Decimation factor. 

● scale_factor: Scale factor applied to integrated sensor data. 

● scale_shift: Scale shift applied to integrated sensor data (used in conjunction with 

scale_factor). 

NOTE 

All remaining parameters are either output or state parameters and need not be initialized. 

The in_data pointer should reference raw input sensor data of a type which is appropriate for each 

integrator. For the δV integrator, this should reference accelerometer data. For the δΘ and δQ 
integrators, this should reference gyroscope data. 

dec_factor is an integer value and should be set according to how much the rate of the raw sensor 

data should be decimated by. One output delta sample is output for every dec_factor samples. 

Setting dec_factor to 0 disables the integrator. 

The scale_factor and scale_shift are used in conjunction with each other and are applied to the 

integrated sensor data to scale it to the desired output representation. As they have sensitivity 
scaling, sample rate scaling, unit conversion and dynamic range scaling all encoded within them, 
selecting appropriate values can be quite complex. 

After initializing all the parameters indicated previously, it is necessary to call the 
smartfusion_integration_engine_init() function on the instantiated of the 

smartfusion_integration_engine structure. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 55 of 110 © 2022 Renesas Electronics 

Processing 

Integration Engine module processing is performed by calling the 
smartfusion_integration_engine_process() function on an instance of the 

smartfusion_integration_engine structure. Prior to calling this function, the contents of the vectors 

referenced by the in_data pointers in each enabled integrator should be updated with the 

appropriate sensor data and the associated data valid flag should be set to 1. 

If the sensors are sampled at different rates and data from individual sensors are not available at 
every processing cycle, the data valid flags for these inputs should be set to 1 when they have data 
available and 0 when not. 

The integrators each have their own countdown timers which they use to determine when to 
calculate their output delta data. When these counters expire (reach zero), delta is calculated, the 

counter is reset to dec_factor, and the appropriate delta data ready flag in the controls field is set 

to 1. 

These delta data ready flags can be polled after calling the 
smartfusion_integration_engine_process() function. However, as a convenience they are also 

returned by the function in the form of a bit-mask: 

● Bit 0: dv_data_valid 

● Bit 1: dt_data_valid 

● Bit 2: dq_data_valid 

When the appropriate flag is set after calling the process function, the corresponding delta data can 

be read and used. These remain valid until the next delta value is calculated, although the 

corresponding flags are cleared the next time smartfusion_integration_engine_process() is 

called. 

δV and δΘ are represented in 16-bit fixed point form with a Q format and units determined by 
scale_factor and scale_shift. δQ is always represented in Q15 fixed point unit quaternion form. 

4.11.3 SmartFusion Attitude and Heading Reference System  

The SmartFusion Attitude and Heading Reference System (AHRS) is provided for fusing sensor data 
from MEMS gyroscopes, accelerometers and magnetometers to determine and track the absolute 
orientation of the device in which they are mounted relative to the Earth frame of reference. 

The algorithm assumes that the sensor data supplied to it has been calibrated and that all distortions 
have been compensated for. When this is not the case, the performance will be compromised and 
drift artifacts may be observed. 

4.11.3.1 Modes of Operation 

The SmartFusion AHRS algorithm supports different modes of operation depending on what types of 
sensor information are available. The supported modes are as follows: 

● Gyroscope, Accelerometer, and Magnetometer (GAM) Mode: 

With information from all the sensors, the algorithm can track the absolute orientation of the 
device and compensate for any drift in the gyroscope data and noise in the accelerometer and 
magnetometer data. 

● Gyroscope and Accelerometer (GA) Mode: 

Using information from only the gyroscope and accelerometer, the algorithm can track the 
absolute orientation of the device and compensate for any drift in the pitch and roll components 
of the gyroscope data as well as noise in the accelerometer data. The reference heading is taken 
to be whatever the heading is at initialization, but this can drift over time. 

● Gyroscope Only (G) Mode: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 56 of 110 © 2022 Renesas Electronics 

Using information from only the gyroscope, the algorithm can track changes in the orientation of 
the device but cannot compensate for any drift in the gyroscope data. The reference orientation is 
taken to be whatever the orientation is at initialization, but this can drift over time. 

● Accelerometer and Magnetometer (AM) Mode: 

Using information from only the accelerometer and magnetometer, the algorithm is able to track 
the absolute orientation of the device but is less able to compensate for noise in the 
accelerometer and magnetometer data. 

NOTE 

Gyroscope and Magnetometer (GM) Mode is not supported. 

4.11.3.2 API Usage 

Allocation 

An instance of the smartfusion_ahrs structure must be instantiated, either statically or on the heap, 

and must be maintained for the life-cycle of sensor fusion processing. 

Initialization 

Before processing can be performed on an instance of the SmartFusion AHRS module, a subset of 
the parameters within the smartfusion_ahrs structure must be initialized. These parameters are as 

follows: 

● controls: Module control flags. 

● dq_data: Pointer to the quaternion step rotation (δQ) input data. 

● a_data: Pointer to the accelerometer input data. 

● m_data: Pointer to the magnetometer input data. 

● beta_a: Scaling factor controlling the relative weight of accelerometer data. 

● beta_m: Scaling factor controlling the relative weight of magnetometer data. 

● q: Output quaternion representing the orientation of the device in Earth frame of reference. 

The controls field is a union of an 8-bit word and an instance of the smartfusion_ahrs_flags bit-

field structure. This contains the control flags for the module, allowing them to be set and read 
individually using the flags field or all at once using the word field. These flags should be initialized 

to indicate which sensors are available by setting the appropriate dq_data_valid, a_data_valid, and 

m_data_valid flags to 1 or 0 to indicate the mode of operation. 

Rather than use raw gyroscope data directly, the AHRS module receives gyroscope data in unit 
quaternion form, which represents the step rotation undergone by the device over the given sample 
period (δQ) in body relative terms. The elements (w, x, y and z) of dq_data are represented using 

Q15 signed fixed point values in the range of -1.0 to 1.0 (-32768 to 32767). Although this step 
rotation may be calculated directly from the angular velocity reported by the gyroscope, it is 
recommended to use the output of the δQ integrator in the Integration Engine. 

Accelerometer and magnetometer data should be supplied to the AHRS module in raw form. The 
representations and magnitudes of these vectors are not important as they have no impact on the 
module. 

Although the data structures for the δQ quaternion and the accelerometer/magnetometer vectors use 
underlying 32-bit types (for optimization reasons), they actually represent 16-bit quantities. Therefore, 
the magnitudes of these quaternions and vectors should never exceed signed 16-bit signed integer 
range (that is, -32768 ≤ ||v|| ≤ 32767). 

If data for a particular sensor is unavailable (for example, when using the module in GA, G, and AM 
modes), the associated pointer should be set to NULL. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 57 of 110 © 2022 Renesas Electronics 

beta_a and beta_m are both Q15 unsigned fixed point parameters representing positive scaling 

factors in the range of 0 to 1.0 (32768). Suitable values for beta_a and beta_m should be selected to 

match the requirements of the use-case in terms of the maximum rate of rotation and tolerance to 
noise. Increasing these values will allow faster rates of rotation to be tracked at the expense of 
tolerance to accelerometer/magnetometer noise. 

Although q is a unit quaternion representing the orientation of the device output by the module, 

subsequent orientations are dependent on previous ones, so it is necessary to initialize this with a 
starting orientation. If the device orientation is known at the time of initialization, this can be used, 
otherwise it is recommended to use the reference orientation [1.0, 0.0, 0.0, 0.0] (that is, upright and 
facing north). The elements (w, x, y and z) of q are represented using Q15 signed fixed point values 

in the range of -1.0 to 1.0 (-32768 to 32767). 

Processing 

AHRS module processing is performed by calling the smartfusion_ahrs_process() function on an 

instance of the smartfusion_ahrs structure. Prior to calling this function, the contents of the vectors 

referenced by dq_data, a_data, and m_data should be updated with the appropriate sensor data. 

If the sensors are sampled at different rates and data from individual sensors are not available at 
every processing cycle, the flags for these inputs should be set to 1 when they have data available 
and 0 when not. They can also be used to indicate to the module when the sensor data is invalid for 
some reason and should therefore be ignored. Examples of invalid data include when the sensor is in 
an initialization or error state, saturated, or the magnitude is too low. 

The algorithm uses a right-handed coordinate system, where the x-axis is aligned with north, the y-
axis is aligned with east, and the z-axis is aligned with down. The gyroscope, accelerometer, and 
magnetometer data must be converted to this coordinate space for the algorithm to function correctly. 

NOTE 

Positive gyroscope values represent a clockwise rotation around the associated axis (when looking in the 

direction it is pointing). 

The algorithm also assumes that the sensors have been sampled synchronously at a regular interval 
and that all distortions (for example, magnetometer hard/soft iron distortions) have been properly 
compensated for. If not, the algorithm performance will be degraded. 

Once processing is complete, an updated orientation estimate can be read from q. This parameter 

represents the current Earth frame of reference orientation of the device in Q15 signed fixed point 
unit quaternion form. 

5 Smart Tag Reference Application 

5.1 Introduction 

Smart Tag, Dialog's Bluetooth® low energy proximity tag reference application, provides an ideal 
starting point to develop a proximity tag application with the shortest time-to-market and lowest 
development cost and effort. The design comes with a complete software solution for the full 
proximity application and profile source codes. Dialog also provides fully-featured Android and iOS 
applications to manage the proximity tag’s settings, trigger alerts, check the battery status, and play a 
fun ‘Seek & Find’ game, all in source code. 

The Smart Tag reference application functions in the role of a Bluetooth Low Energy Proximity 
Reporter defined in the Proximity Profile listed in the Bluetooth specification [15]. The Proximity 
profile defines the behavior of a Bluetooth device when it moves away from a peer device, and it 
covers the use case where a connection loss causes an immediate alert. This alert notifies the user 
that the devices have become separated. 

The Smart Tag application is designed to run on Dialog’s DA14585 MSK HW reference design. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 58 of 110 © 2022 Renesas Electronics 

As a starting point, developers are suggested to get familiar with the DA14585 datasheet [5], the 
software developer’s guide of the DA14585 SDK [1], and the software platform reference of the 
DA14585 SDK [2]. 

5.2 Software Features 

5.2.1 Profiles and Services 

Besides the Proximity Reporter profile, the Smart Tag application implements the following profiles 
and services for monitoring and supporting additional features: 

■ Proximity profile, Reporter role 

□ Link Loss service 

□ Immediate Alert service 

□ Tx Power service 

■ Battery Service, Server role 

■ Data Information service, Server role 

■ Find Me profile, Locator role 

■ SUOTA, Server role 

5.2.2 Alerts 

The Smart Tag application supports two types of alerts for user notifications, high level and mild 
level, as described in Table 64. 

Table 64: Alert Types 

Alert Type Description 

High level ● LED blinking with a buzzer tone with the following pattern: 

○ LED: 150 ms on, 150 ms off. 

○ Buzzer: 150 ms on, 150 ms off, alternating between 392 Hz (“G” note) and 440 Hz (“A” 

note) 

● Triggered when peer device writes immediate alert with ‘High Alert’, or Smart Tag disconnects 

from peer and Link Loss is set to ‘High Alert’. 

Mild level ● LED blinking with a buzzer tone with the following pattern: 

○ LED: 500 ms on, 500 ms off 

○ Buzzer: 500 ms on, 500 ms off, 440 Hz (“A” note) 

● Triggered when peer device writes immediate alert with ‘Mild Alert’, or Smart Tag disconnects 

from peer and Link Loss is set to ‘Mild Alert’. 

5.2.3 Advertising and Sleep Phases 

Smart Tag advertises in undirected mode with different intervals for specific advertising phases: 

● Advertising phase (200 ms interval): 

It is the first minute after start-up or disconnection. 

● Advertising phase (1000 ms interval): 

It is the period of three minutes after the 200 ms interval phase. 

● Deep Sleep phase: 

After four minutes, the Smart Tag stops advertising and enters continuous Deep Sleep mode. 

In Advertising mode, the Smart Tag blinks the green LED with a pattern of 50 ms on and 1000 ms 
off. Once devices are connected, the LED stops blinking; when the devices are disconnected, the 
LED starts blinking again since Smart Tag goes again in advertising mode. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 59 of 110 © 2022 Renesas Electronics 

The Smart Tag application supports Extended Sleep mode during Connectable and Connected 
states, and Deep Sleep mode during the Deep Sleep Phase. The supported sleep modes of the 
DA14585 are explained in section 8.6 in [1]. 

5.2.4 Push-Button Interface 

The actions that are triggered on a push-button event depend on the operating state of the Smart 
Tag, as described in Table 65. 

Table 65: Push-Button Interface 

Operating State Action on Button Press 

Alert is active Stop alert. 

Deep Sleep phase Wake up Smart Tag and start advertising. 

Connected and ‘find me’ locator 
discovered, immediate alert 

service on peer device 

If the alert is not active, writes alert characteristic of immediate alert service 

on peer device. 

Stops the alert in peer device if alert is active. 

Advertising phase Long press (currently set to 3 s): bonding data are deleted from SPI Flash 
memory. When long press is detected, an 880 Hz tone (‘A’ note, 5th octave) 

will be played for 125 ms (Note 1) 

All other states None 

Note 1 When deleting the bonding data from the Smart Tag SPI Flash and the Android device is paired with 
the Smart Tag device, the Smart Tag device needs to be removed from the list of paired devices of the 
Android device (usually via menu Settings > Bluetooth > Forget Device). 

5.2.5 Security 

According to the Bluetooth Core specification, the purpose of bonding is to create a relation between 
two Bluetooth devices based on a common link key (a bond). The link key is created and exchanged 
(pairing) during the bonding procedure and is expected to be stored by both Bluetooth devices to be 
used for future authentication. 

Since the DA14585 IoT MSK reference design does not have a keyboard or display, it only supports 
the ‘Just Works’ pairing method. Upon completion of a successful bonding procedure, the Smart Tag 
application stores the security information (LTK, EDIV, and RAND which will be also referred as 
‘bonding data’) in the SPI Flash memory for reuse on subsequent reconnections of the bonded 
device. For more information regarding the bonding procedure refer to [3], section 5.6. 

When the Smart Tag is in Advertising mode, users can ‘forget’ a bonded central device by keeping 
the button pressed until a tone is heard. This indicates that the security information has been deleted 
from the SPI Flash memory and a new central device can now pair with the Smart Tag device. 

NOTE 

The Smart Tag transmits a Security Request command to the central device in order to trigger the pairing 
procedure upon receiving the connection request from the central device. However, this command could be 

ignored by the central device, when it does not wish to start a pairing procedure. 

5.2.6 Battery Level 

In Connected state, the Smart Tag software samples the battery level and updates the value of the 
battery level characteristic. The notification capability of the characteristic is disabled at the beginning 
of each connection. To enable value update notifications, the peer device must write the 
configuration attribute of the characteristic with the corresponding value. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 60 of 110 © 2022 Renesas Electronics 

5.3 Software Architecture 

Group File Name Description 

user_platform i2c_gpio_extender.c User drivers for the I2C GPIO extender 

user_app user_smarttag_proj.c 

user_smarttag_utils.c 

Application code 

Utilities user_iot_dk_utils.c 

battery.c 

User drivers for battery and MSK HW peripherals 

5.4 Operation Overview and State Machines 

This section provides information about important functions of the application and a detailed 
description of the used Finite State Machines (FSM). 

5.4.1 Application Configuration Parameters 

The main parameters of the Smart Tag application software, which can be adjusted to customize 
certain functionality of the application, are listed in Table 66. 

Table 66: Smart Tag Application Configurable Parameters 

Parameter Description Current 

Value 

APP_SPI_POWEROFF_DELAY Upon application initialization, the timer 
APP_FLASH_POWEROFF_TIMER is set with this value to delay the SPI 

Flash power down mode and allow developers to use the 
SmartSnippets Flash Programmer application to connect to the 
Smart Tag device and re-program the SPI Flash device. 

1 s 

APP_SLEEP_DELAY Upon application initialization, the function 
app_set_startup_sleep_delay(APP_SLEEP_DELAY) is called to 

modify the system startup sleep delay. This delay allows the 
developer to have an active JTAG interface and to use the 

debugger to connect to the Smart Tag device.  

5 s 

APP_FIRST_ADV_PHASE_DUR  This parameter sets the APP_ADV_TIMER to control the advertising 

intervals. Refer to section 5.2.3 for details. 

60 s 

APP_FIST_ADV_PHASE_INTVAL  This parameter sets the advertising interval for the first 

advertising phase. 
200 ms 

APP_SECOND_ADV_PHASE_DUR This parameter sets the APP_ADV_TIMER to control the advertising 

intervals. Refer to section 5.2.3 for details. 

3 min 

APP_SECOND_ADV_PHASE_INTVAL This parameter sets the advertising interval for the second 

advertising phase. 
1 s 

APP_BOND_DB_DATA_OFFSET The SPI Flash start address where the bonding data are stored. 0x32000 

APP_ADV_BLINK_ON_DUR Controls the LED ‘on’ duration during advertising. 50 ms 

APP_ADV_BLINK_OFF_DUR Controls the LED ‘off’ duration during advertising. 1 s 

5.4.2 Application Task State Machine 

The FSM of the application task of Smart Tag consists of the following states (Table 67): 

Table 67: Application Task: FSM States 

State Description 

APP_DISABLED Application task initiated. Waiting for GAPM_DEVICE_READY_IND message. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 61 of 110 © 2022 Renesas Electronics 

State Description 

APP_DB_INIT Database initialization in progress. 

APP_CONNECTABLE Advertising or Continuous Extended Sleep. 

APP_CONNECTED Device connected to Proximity Monitor. 

Figure 15 graphically illustrates the FSM. The state transitions are described in Table 68. 

 

Figure 15: Smart Tag Application Task FSM 

Table 68: State Transitions of the Application Task FSM 

State Transition Event 

From To Action 

APP_DISABLED  GAPM_DEVICE_READY_IND message reception. 

 APP_DB_INIT Start database initialization of supported profiles. 

APP_DB_INIT  Database initialization procedure is completed.  

 ADVERTISE 

(APP_CONNECTABLE) 

Start advertising in 200 ms advertising interval. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 62 of 110 © 2022 Renesas Electronics 

State Transition Event 

From To Action 

ADVERTISE 

(APP_CONNECTABLE) 

 Timer for 1000 ms advertising interval expired. 

 CONTINUOUS SLEEP 

(APP_CONNECTABLE) 

Device stops advertising and/or active alerts and switches to 

Deep Sleep mode. 

CONTINUOUS SLEEP 

(APP_CONNECTABLE) 

 Button press event. 

 ADVERTISE 

(APP_CONNECTABLE) 

Device exits Deep Sleep mode and restarts advertising in 200 

ms interval. 

ADVERTISE 

(APP_CONNECTABLE) 

 Connection Request has been received. 

 

 APP_CONNECTED Enable profiles and start battery polling. 

APP_CONNECTED  Device disconnects. 

 ADVERTISE 

(APP_CONNECTABLE) 

Start advertising in 200 ms advertising interval. 

5.4.3 Callback Functions 

A set of callback functions is defined in user_callback_config.h which consist of the entry points of 

the application. 

● user_app_on_init(): 

○ It is the main entry point of the application task. 

○ It is used to initialize the parameters of high-level profiles and low-level hardware modules. 

● user_app_on_set_dev_config_complete(): 

○ It is called after the device configuration is complete. 

○ This means that the device database of the supported profiles has been created and the 
device can enter Advertising mode. 

○ Also, in this function the Flash power-off timer is initialized. This timer allows users to use the 
SmartSnippets tool to program the Flash memory by leaving the Flash memory in power-up 
mode for (APP_SPI_POWEROFF_DELAY * 10) ms. The default time is 1 s. 

5.4.4 Advertising 

● user_advertise_operation(): 

○ It starts or restarts the Advertising mode. 

○ It is called upon completion of the database initialization, upon device disconnection, and 
upon expiration of the advertising timer to start the advertising interval of the second phase. 

○ The function also initializes the advertising timer for the variable advertising interval feature 
and the blink timer for Advertising mode LED blinking. 

○ Finally, function user_undirected_advertise_start() constructs and sends the command 

GAPM_START_ADVERTISE_CMD to the GAPM_TASK in order to initiate the advertising mode. 

● user_adv_timer_handler(): 

○ It is called upon expiration of the advertising timer. 

○ Its main functionality is to program the correct advertising phase. 

○ For Continuous Sleep state, the function disables all timers and alerts before setting the 
device in Deep Sleep mode. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 63 of 110 © 2022 Renesas Electronics 

● user_blink_timer_handler() 

○ It handles the expiration of the LED blinking timer, restarts the timer, and inverts the state of 
the LED. 

5.4.5 Connection 

● user_app_on_connection(): 

○ It is called upon reception of a connection request from a central role device. 

○ When this function is called, the Smart Tag application stops the LED blinking timer, enables 
the profiles and services, selects the proper sleep mode, and enables the device profiles. 

● user_on_disconnect(): 

○ It is called upon reception of a GAPC_DISCONNECT_IND message, which indicates that the 

connection does not exist anymore. 

○ When this function is called, the battery level polling is stopped, and the advertising 
procedure starts again. 

5.4.6 Security 

● user_app_on_pairing_request(): 

○ It is called during the pairing process. 

○ It informs the peer device about the security capabilities of the device. The Smart Tag 
application uses ‘Just Works’ mode with bonding capability. 

○ It also checks whether the Smart Tag device is already paired with another device by looking 
for bonding data stored in SPI Flash memory. When the Smart Tag device is already paired 
with another central device, it will not accept the new pairing request. Smart Tag only 
supports bonding with one central device at a time. 

● default_app_on_ltk_exch(): 

○ It is the SDK 5 default function and is called upon reception of a GAPC_BOND_REQ_IND 

message with request set to GAPC_LTK_EXCH (Long Term Key Exchange). 

○ This function generates the LTK and sends it to the host. 

● user_app_on_pairing_succeed(): 

○ It is called upon reception of a GAPC_BOND_IND message with status GAPC_PAIRING_SUCCEED. 

○ The function stores the security information into SPI Flash memory and completes the 
connection establishment phase. 

● user_app_on_encrypt_req_ind(): 

○ It is called to initiate a secure connection upon the reception of a GAPC_ENCRYPT_REQ_IND 

message. 

○ In order to validate the connecting host, this function uses the parameters RAND and EDIV to 

check whether the Smart Tag has already stored the bonding data in SPI Flash memory. If 
not, the request is rejected, and the peer is disconnected. 

● user_app_on_encrypt_ind() 

○ It is called upon the reception of a GAPC_ENCRYPT_IND message to indicate that encryption is 

completed. 

○ The database is updated with values from the SPI Flash memory. 

5.4.7 Push button 

In the application initialization function user_app_on_init(), a wakeup interrupt (IRQ) is enabled on 

the GPIO that is allocated to the push-button interface. This is done via the API functions 
wkupct_register_callback() and wkupct_enable_irq() of the wakeup module driver. The callback 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 64 of 110 © 2022 Renesas Electronics 

function user_button_press_cb() is registered to enable a wakeup interrupt when the button is 

pressed. 

● user_button_press_cb(): 

○ It is the callback function of the application, called from the WKUP_QUADEC_IRQn() interrupt 

handler of the wakeup module driver when the button is pressed. 

○ The function checks the state of the application and triggers the required action, as described 
in Table 65. 

○ It also calls the API functions wkupct_register_callback() and wkupct_enable_irq() of 

the wakeup module driver to register the user_button_release_cb() callback function and 

enable a wakeup interrupt when the button is released. 

○ Finally, the function sends a wakeup message to the TASK_APP to start the button press timer, 

which is used to detect a long key press for deleting the bonding data stored in the SPI Flash 
memory. 

● user_button_release_cb(): 

○ It is the callback function of the application, called from the WKUP_QUADEC_IRQn() interrupt 

handler of the wakeup module driver when the button is released. 

○ The function calls the API functions wkupct_register_callback() and 

wkupct_enable_irq() of the wakeup module driver to register the app_button_press_cb() 

callback function and enable a wakeup interrupt when the button is pressed. 

○ Finally, the function sends a wakeup message to the TASK_APP to stop the button press timer. 

● user_wakeup_handler(): 

○ It is called upon reception of the wakeup message and calls function 
user_advertise_operation() to start advertising. 

○ It also starts/stops the button press timer depending on the button status 
(user_button_status). 

5.4.8 Proximity Reporter and Alerts 

● app_proxr_enable(): 

○ It enables the Proximity Reporter profile upon connection. 

● user_proxr_alert_ind_handler(): 

○ It is the message handler of a PROXR_LLS_ALERT_IND message, which is sent by the Proximity 

Reporter profile to trigger an alert on the device. 

○ This function calls functions user_proxr_alert_start() or user_proxr_alert_stop() to 

start or stop an alert, depending on the alert level received in PROXR_ALERT_IND. 

● user_proxr_alert_start(): 

○ It initiates user alert indications. 

○ It updates the alert state parameters and depending on the alert level it starts the PWM 
engine by calling the function user_proxr_pwm_enable() to generate the alert melody. 

NOTE 

The LED functionality is controlled from within the functions that program the PWM tones, as explained in 

section 5.4.9. 

● user_proxr_alert_stop(): 

○ It stops user alert indications. 

○ It clears the alert state parameters, turns off the alert LED, and stops the APP_PXP_TIMER. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 65 of 110 © 2022 Renesas Electronics 

5.4.9 PWM Engine 

This section describes how the Smart Tag uses the PWM0 and PWM1 (TIMER 0) outputs to create 
the alert melodies. Details on the PWM0 and PWM1 can be found in section 7.12 in [1]. 

● user_proxr_pwm_enable(): it initializes TIMER 0: 

○ It enables the TIMER 0 peripheral clock by calling the set_tmr_enable() PWM API driver 

function. 

○ It calls set_tmr_div() to sets the TIMER 0 clock division factor to 8 (16 MHz clock source). 

○ It calls timer0_init() to initialize the PWM with the desired PWM mode, TIMER 0 ‘on’ time 

division option, and clock source selection. 

– In this example, the timer tick period is configured to: 

(1/16 MHz)  ×  8 (clock division)  ×  10 (TIM0_CLK_DIV_BY_10)  =  5 µs (1) 

○ It sets the TIMER 0 ‘on’, ‘high’, and ‘low’ times by calling function timer0_set(). 

○ It registers a callback function for SWTIM_IRQn interrupts by calling 

timer0_register_callback(). The callback function pointer is an input parameter to this 

function. In the Smart Tag application three different melodies/tones are needed, which are 
handled by the following callback functions: 

– high_alert_pwm_callback(): programs the high alert melody. 

– mild_alert_pwm_callback(): programs the mild alert melody. 

– button_pwm_callback(): programs the button long press tone. 

○ It enables the SWTIM_IRQn by calling the timer0_enable_irq() function. 

○ It starts TIMER 0 by calling the timer0_start() function. 

● high_alert_pwm_callback(): 

It is a callback function for the SWTIM_IRQn interrupt that handles the high alert melody. The 

following parameters configure the alert melody: 

○ The melody is defined in the constant array alert_high_notes[]. 

○ In this array developers can define a new sequence of notes and pauses. Note values 
represent the frequency of the musical notes. For example, ‘880’ means 880 Hz which is the 
‘A’ note of the 5th octave. 

○ Each time this callback function is called, a note or a pause from the array will be 
programmed to the PWM engine by calling the functions timer0_set_pwm_high_counter() 

and timer0_set_pwm_low_counter(). 

○ The duration of the note/pause is determined by the parameter value ALERT_HIGH_DURATION 

that is passed to the function timer0_set_pwm_on_counter(). At the end of this duration, an 

interrupt will be triggered, and the callback function will be executed again to program the 
next note/pause from the array. 

○ For the LED to blink synchronously with the melody, the LED is controlled within 
high_alert_pwm_callback(). When a pause is programmed, the LED is turned off. When a 

note is played, the LED is turned on. 

● mild_alert_pwm_callback(): 

It is a callback function for the SWTIM_IRQn interrupt that handles the mild alert melody. This 

function is similar to the high_alert_pwm_callback() function, described in the previous section, 

with one extra parameter: 

○ ALERT_MILD_EXTRA_DELAY: This parameter determines how many times the function will be 

called without programming a note/pause. This is needed in case that a note/pause duration 
needs to be quite long and cannot be set by the timer0_set_pwm_on_counter() range. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 66 of 110 © 2022 Renesas Electronics 

○ The notes/pauses for the mild alert melody are defined in the constant array 
alert_mild_notes[]. The duration of the note/pause is determined by the parameter value 

ALERT_MILD_DURATION. 

● button_pwm_callback(): 

It is a callback function for the SWTIM_IRQn interrupt that handles the long button press alert. This 

alert is a single tone alert (button_press_notes = PWM_TONE_A_5TH) and the TIMER 0 ‘on’ 

counter is not programmed again, because no further interrupts are needed to program more 
notes/pauses. 

5.4.10 SmartTag Sequence Diagram 

 

Figure 16: Smart Tag Reference Application Sequence Diagram 

6 Beacon Reference Applications 

6.1 Introduction 

This section describes the Bluetooth® Low Energy Beacon reference application design based on 
DA14585. It serves as a developer's guide to customize the beacon for any desired purposes. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 67 of 110 © 2022 Renesas Electronics 

Dialog Semiconductor is a member of the iBeacon™ program. Please contact your local sales office 
to learn more about the possibilities we can offer relating to this standard. The Dialog Beacon 
reference application also supports the AltBeacon protocol as well as the Eddystone™ protocol, with 
supported modes being the Eddystone-UID, the Eddystone-URL, and the Eddystone-TLM 
(unencrypted). 

 

Figure 17: Beacon Protocol Logos 

The Beacon reference software can be downloaded from the Dialog support portal and run on the 
DA14585 IoT MSK reference hardware. It also runs on Dialog's DA14585/14586 Development kit 
(Expert/Pro/Basic). 

6.2 What is a Beacon? 

Beacons are battery powered devices that advertise a particular Bluetooth low energy payload with 
identifying information. In short, it is a device that just says Figure 18. 

 

Figure 18: Bluetooth Low Energy Beacon 

Although [17] contains a startup guide that explains how to run the Beacon reference software out of 
the box and how to configure the main parameters, this section provides to software developers all 
design details to customize the Dialog Beacon reference application for more advanced use cases, 
such as: 

● Adaptive modification of advertising data 

● Choosing from various beacon formats 

● Interleaving connectable advertising events 

● Software Updates Over The Air (SUOTA) 

6.3 Beacon Example 

Table 69 shows a beacon configuration that is chosen for an international museum application, 
where each exhibit has its own unique beacon. The specific advertising data transmitted by each 
beacon is picked up by mobile phones near the exhibit. The mobile phone will then direct users to 
additional information regarding the exhibit. 

In this museum example, the organization uses a Universal Unique Identifier (UUID). The museum 
location is indicated by the Major Field and the exhibit number within the museum by the Minor field. 

https://support.dialog-semiconductor.com/


 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 68 of 110 © 2022 Renesas Electronics 

Table 69: Example of Advertising Data from a Museum Beacon 

Museum Location London Paris Amsterdam 

UUID 1234A567-3854-ABED-8FAC-56E783159AE2 

Major 10 20 30 

Minor Exhibit #1 1 1 1 

Exhibit #2 2 2 2 

Exhibit #3 3 3 3 

When the beacon sends ‘20’ as a major value and ‘1’ as a minor value, the application on 
smartphones/tablets will guide visitors to additional information on exhibit #1 from the Paris museum. 
This additional information might come from the smartphone application or from the Internet. As a 
result, visitors will receive only the specific information that is of interest when standing close to the 
exhibit (Figure 19). 

 

Figure 19: Description of the Exhibit on a Smartphone 

The smartphone application can also provide a distance indication to the beacon using the RSSI 
value. 

There are endless other applications using Beacon apart from the museum application, for example, 
in retail, advertising, and sports events. 

6.4 Beacon Formats 

There are various beacon formats. The beacon formats supported by DA14585 IoT MSK are 
presented in the following subsections. 

6.4.1 iBeacon 

iBeacon™ is a protocol developed by Apple but used by various vendors. It is a closed format that 
exposes a UUID and other configurable values. An iBeacon frame is presented in Figure 20. 

 

Figure 20: iBeacon Frame 

An iBeacon frame consists of: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 69 of 110 © 2022 Renesas Electronics 

● iBeacon Prefix: A 9-byte constant preamble identifying iBeacon 

● UUID: A 16-byte string used to differentiate a large group of related beacons. 

● Major: A 2-byte string meant to distinguish a smaller subset of beacons within the larger group. 

● Minor: A 2-byte string meant to identify individual beacons. 

● Tx Power: A 1-byte value representing the RSSI at 1 m from the advertiser. 

6.4.2 AltBeacon 

AltBeacon is an open beacon format for proximity beacons. The emitted message contains 
information that the receiving device can use to identify the beacon and to compute its relative 
distance to the beacon. The receiving device may use this information as a contextual trigger to 
execute procedures and implement behaviors that are relevant to being in proximity to the 
transmitting beacon (see [13]). Figure 21 presents the AltBeacon frame structure. 

 

Figure 21: AltBeacon Frame 

Table 70 provides more detailed information on the various field of an AltBeacon frame. 

Table 70: AltBeacon Protocol Fields 

Field Name Description Accepted Values 

AD LENGTH 

[MFG SPECIFIC] 

Length of the type and data portion of the 
Manufacturer Specific advertising data 

structure. 

0x1B 

AD TYPE 

[MFG SPECIFIC] 

Type representing the Manufacturer 

Specific advertising data structure. 
0xFF 

MFG ID The beacon device manufacturer's 

company identifier code. 

The little-endian representation of the beacon 
device manufacturer's company code as 
maintained by the Bluetooth SIG assigned 

numbers database. 

BEACON CODE The AltBeacon advertisement code. The big-endian representation of the value 

0xBEAC. 

BEACON ID A 20-byte value uniquely identifying the 

beacon. 

The big-endian representation of the beacon 
identifier. For interoperability purposes, the 
first 16 bytes of the beacon identifier should 
be unique to the advertiser's organizational 
unit. Any remaining bytes of the beacon 
identifier may be subdivided as needed 

for the use case (Note 1). 

REFERENCE 

RSSI 

A 1-byte value representing the average 
received signal strength at 1m from the 

advertiser. 

A signed 1-byte value from 0 to -127. 

MFG 

RESERVED 

Reserved for use by the manufacturer to 

implement special features. 

A 1-byte value from 0x00 to 0xFF. 
Interpretation of this value is to be defined by 
the manufacturer and is to be evaluated 

based on the MFG ID value. 

Note 1 In Dialog's beacon reference design, the Beacon ID is divided into a 16-byte UUID, a 2-byte ALT_val1, 
and a 2-byte ALT_val2. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 70 of 110 © 2022 Renesas Electronics 

6.4.3 Eddystone 

Eddystone™ is a protocol specification that defines a BLE message format for proximity beacon 
messages. It describes several different frame types that may be used individually or in combination 
to create beacons suitable for a variety of applications (see [9]). Figure 22 shows the Eddystone 
modes supported by the Dialog Beacon reference design. 

 

Figure 22: Eddystone Modes Supported by Dialog's Beacon Reference Design 

Figure 23 describes the various fields of the different Eddystone Beacon modes. 

 

Figure 23: Eddystone Different Mode Frames Analyzed 

The specific type of Eddystone frame is encoded in the high-order four bits of the first octet in the 
Service Data associated with the Service UUID. Permissible values are shown in Table 71. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 71 of 110 © 2022 Renesas Electronics 

Table 71: Eddystone Frame Types 

Frame Type High Order 4 bits Byte Value 

UID 0000 0x00 

URL 0001 0x10 

TLM 0010 0x20 

EID 0011 0x30 

RESERVED 0100 0x40 

Note 1 The four low-order bits are reserved for future use and shall be 0000. 

Note 2 Although the core Bluetooth data types are defined in the standard as little-endian, Eddystone's multi-
value bytes defined in the Service Data are all big-endian. 

6.4.3.1 Eddystone-UID 

The Eddystone-UID frame broadcasts an opaque and unique 16-byte Beacon ID composed of a 10-
byte namespace and a 6-byte instance. The Beacon ID is useful in mapping a device to a record in 
external storage. The namespace of the ID can be used to group a particular set of beacons, while 
the instance of the ID identifies individual devices in the group. The division of the ID into a 
namespace and an instance can also be used to optimize BLE scanning strategies, for example, by 
filtering only the namespace. 

The UID frame is encoded in the advertisement as a Service Data block associated with the 
Eddystone service UUID. The frame layout is shown in Table 72. 

Table 72: Eddystone UID Frame 

Byte Offset Field Description 

0 Frame Type Value = 0x00 

1 Ranging Data Calibrated Tx power at 0 m 

2 NID[0] 10-byte Namespace 

3 NID[1]  

4 NID[2]  

5 NID[3]  

6 NID[4]  

7 NID[5]  

8 NID[6]  

9 NID[7]  

10 NID[8]  

11 NID[9]  

12 BID[0] 6-byte Instance 

13 BID[1]  

14 BID[2]  

15 BID[3]  

16 BID[4]  

17 BID[5]  

18 RFU Reserved for future use, must be 0x00 

19 RFU Reserved for future use, must be0x00 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 72 of 110 © 2022 Renesas Electronics 

More on information on the Eddystone-UID specification can be found in [10]. 

6.4.3.2 Eddystone-URL 

The Eddystone-URL frame broadcasts a URL using a compressed encoding format in order to fit 
more within the limited advertisement packet. Once decoded, the URL can be used by any client with 
access to the internet. 

Table 73: Frame Specification 

Byte Offset Field Description 

0 Frame Type Value = 0x10 

1 TX Power Calibrated Tx power at 0 m 

2 URL Scheme Encoded Scheme Prefix 

3+ Encoded URL Length 1 to 17 

For URLs longer than 17 bytes, a URL shortener is recommended. 

Table 74 URL Scheme Prefix 

Decimal Hex Expansion 

0 0x00 http://www. 

1 0x01 https://www. 

2 0x02 http:// 

3 0x03 https:// 

The HTTP URL scheme is defined by RFC 1738. The encoding consists of a sequence of 
characters. Character codes excluded from the URL encoding are used as text expansion codes. 
When a user agent receives the Eddystone-URL, the byte codes in the URL identifier are replaced by 
the expansion text according to Table 75. 

Table 75: Eddystone-URL HTTP URL Encoding 

Byte Offset Field Description 

0 0x00 .com/ 

1 0x01 .org/ 

2 0x02 .edu/ 

3 0x03 .net/ 

4 0x04 .info/ 

5 0x05 .biz/ 

6 0x06 .gov/ 

7 0x07 .com 

8 0x08 .org 

9 0x09 .edu 

10 0x0A .net 

11 0x0B .info 

12 0x0C .biz 

13 0x0D .gov 

https://goo.gl/
https://www.ietf.org/rfc/rfc1738.txt


 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 73 of 110 © 2022 Renesas Electronics 

Byte Offset Field Description 

14..32 0x0E…0x20 Reserved for future use 

127..255 0x7F...0xFF Reserved for future use 

URLs are written only with the graphic printable characters of the US-ASCII coded character set. The 
octets 00 to 20 and 7F to FF hexadecimal are not used. See “Excluded US-ASCII Characters” in 
RFC 3986. 

IMPORTANT NOTE 

In short, the URL-prefix is represented by one byte (see Table 74), followed by the URL in ASCII, and 

succeeded by the extension (see Table 75), if applicable. 

Below an example of a URL frame is presented: 

uint8_t url_adv_data[] = 

{ 

  0x03,  // Length of Service List 

  0x03,  // Param: Service List 

  0xAA, 0xFE,  // Eddystone ID 

  0x0E,  // Length of Service Data 

  0x16,  // Service Data 

  0xAA, 0xFE, // Eddystone ID 

  0x10,  // Frame type: URL 

  0xC5, // Power 

  0x00, // http://www. 

  'd',  'i',  'a',  's',  'e',  'm',  'i', 

  0x07, // .com 

}; 

During the development of Dialog's Beacon reference design, an Eddystone-URL generator has 
been used, however it is not essential to create a URL frame whether one follows the specification. 
More information on the Eddystone-URL specification can be found in [11]. 

6.4.3.3 Unencrypted Eddystone-TLM 

Eddystone Beacons may transmit data about their own operation to clients. This data is called 
telemetry and is useful for monitoring the health and operation of a fleet of beacons. Since the 
Eddystone-TLM frame does not contain a beacon ID, it must be paired with an identifying frame 
which provides the ID, either of type Eddystone-UID or Eddystone-URL. 

Table 76: Eddystone-TLM Frame Specification 

Byte offset Field Description 

0 Frame Type Value = 0x20 

1 Version TLM version, value = 0x00 

2 VBATT[0] Battery voltage, 1 mV/bit 

3 VBATT[1]  

4 TEMP[0] Beacon temperature 

5 TEMP[1]  

6 ADV_CNT[0] Advertising PDU count 

7 ADV_CNT[1]  

8 ADV_CNT[2]  

9 ADV_CNT[3]  

10 SEC_CNT[0] Time since power-on or reboot (up timer) 

https://tools.ietf.org/rfc/rfc3986.txt


 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 74 of 110 © 2022 Renesas Electronics 

Byte offset Field Description 

11 SEC_CNT[1]  

12 SEC_CNT[2]  

13 SEC_CNT[3]  

More information on the unencrypted Eddystone-TLM specification can be found in [12]. 

6.5 Software Features 

This section explains the advanced software features of Dialog's BLE Beacon. The following 
configurations are supported: 

● Non-connectable advertising (Beacon mode) 

○ Allows users to advertise data with the lowest power consumption. 

● Connectable advertising (Peripheral mode) 

○ Allows users to connect to a central device to run SUOTA and use official BLE and custom 
128-bit profiles. 

● Dynamically change beacon data 

○ Values major_ALT_value1 and minor_ALT_value2 are periodically updated with measured 

data. In the "altbeacon_dynamic" project, these are data from the environmental sensor. 

○ TLM data (up timer, temperature, battery readings) are updated. 

● Support of SPI Flash memory 

○ Power off/on for power saving. 

○ Storage of the beacon configuration (product header, configuration structure). 

○ Storage of an updated image received through SUOTA. 

○ Storage of boot loader. 

● SUOTA 

○ After a connection has been established, the firmware can be updated. 

○ Dual image boot loader. 

● Custom 128-bit profiles 

○ Environmental Data Notifications proprietary profile. This service makes data from the 
environmental sensor (temperature, humidity, pressure) available to the user. 

○ Device configuration proprietary profile. The beacon configuration can be read and modified 
by the central device. 

6.6 Beacon Parameters 

The following subsections describe how to modify the basic parameters of the beacon: advertising 
data and advertising interval. 

6.6.1 Advertising Data 

The data to be advertised is derived from a structure by the name of user_beacon_config_tag. The 

struct contains fields that can serve any beacon format or mode. In Table 77, the 
user_beacon_config_tag struct is analyzed. 

Table 77: Format of Struct user_beacon_config_tag 

Type Name Size (B) Description 

uint8_t uuid[16] 16 UUID value if iBeacon, AltBeacon or Eddystone-UID 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 75 of 110 © 2022 Renesas Electronics 

Type Name Size (B) Description 

uint16_t major_ALT_val1 2 iBeacon Major value or AltBeacon value 1 

uint16_t minor_ALT_val2 2 iBeacon Minor value or AltBeacon value 2 

uint16_t company_id 2 Manufacturer ID 

uint16_t adv_int 2 Advertising Interval 

uint8_t power 1 Reference value of the received signal strength (RSSI) measured 

at 1 m. The value is represented in signed format. (Note 1) 

uint8_t beacon_type 1 Beacon Type (iBeacon, AltBeacon, Eddystone UID/URL) 

uint8_t url_prefix 1 http://www. or https://www. or http:// or https:// 

uint8_t url[19] 19 The url preceded by the length of service data and succeeded by 

the extension (.com, .net and others) 

uint8_t TLM_version 1 The TLM version of the TLM service (if TLM is used). (Note 2) 

uint8_t TLM_used 1 Flag that shows if TLM is used or not. (Note 2) 

Note 1 To estimate the distance to a transmitting beacon, the receiving device uses and calibrates RSSI by 
the measured power parameter, which is included in the advertising data. The measured power 

parameter is a 1-byte value in signed representation. The value depends on the RF transmit power 
and antenna implementation of the hardware. For Dialog's Beacon, the RSSI level measured at 1 m is 
-59 dBm (see Note 3) 

Note 2 Eddystone-TLM is not an "independent" Eddystone beacon mode. It must be paired with either 
Eddystone-UID or Eddystone-URL (see section 6.4.3.3). 

Note 3 Follow these steps to convert the RSSI level (-59 dBm) into signed format: 

1. Take positive value:  (59)𝐷𝐸𝐶𝐼𝑀𝐴𝐿 = (0011 1011)𝐵𝐼𝑁𝐴𝑅𝑌 

2. Reverse all bits:  (0011 1011)𝐵𝐼𝑁𝐴𝑅𝑌 => (1100 0100)𝐵𝐼𝑁𝐴𝑅𝑌 𝑅𝐸𝑉𝐸𝑅𝑆𝐸 

3. Take 1’s complement:  (1100 0100)𝐵𝐼𝑁𝐴𝑅𝑌 𝑅𝐸𝑉𝐸𝑅𝑆𝐸 => (1100 0101)1′𝑆 𝐶𝑂𝑀𝑃𝐿 

4. Convert to hexadecimal:  (1100 0101)1′𝑆 𝐶𝑂𝑀𝑃𝐿 = (𝐶5)𝐻𝐸𝑋 

Two methods are used to populate the contents of the struct: 

● Using the user_default_beacon_config struct (defined in the code) and programming the 

desired values. 

● Reading the contents of a device configuration struct in the Flash memory. 

The two methods are explained in detail in section 6.6.1.1 and 6.6.1.2. 

6.6.1.1 Using the user_default_beacon_config Struct 

If a Flash memory is not available or not to be used, the contents of the user_beacon_config_tag 

struct are populated with the contents of the user_default_beacon_config struct. Below an 

example of a populated user_default_beacon_config struct is presented: 

const struct user_beacon_config_tag user_default_beacon_config = { 

   .uuid = {0x58,0x5C,0xDE,0x93,0x1B,0x01,0x42,0xCC,0x9A,0x13, // 10-byte Namespace 

          0x25,0x00,0x9B,0xED,0xC6,0x5E}, // 6-byte Instance 

   .major_ALT_val1 = 0x0800, // Major/Alt1 Value 

   .minor_ALT_val2 = 0x0400, // Minor/Alt2 Value 

   .company_id = DIALOG_COMP_ID, // Beacon company ID 

   .adv_int = BEACON_ADVERTISING_INTERVAL, // Advertising interval 

   .power = 0xC5, // Tx Power 

   .beacon_type = xxx_BEACON_TYPE, // Reserved for future use 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 76 of 110 © 2022 Renesas Electronics 

   .url_prefix = HTTPWWW, // Populated if used 

   .url = {0x0E, 'd','i','a','s','e','m','i',DOTCOM},// Populated if used 

   .TLM_version = 0x00, // Populated if used 

   .TLM_used = 0x01 // Populated if used 

} 

NOTE 

The fields major_ALT_val1 and minor_ALT_val2 are in big endian format. 

This example shows how users can use the same struct to alternate between different beacon types. 
Depending on the application, some of the fields of the struct are used and some are not. For 
example, if the application uses the Eddystone-URL beacon type (see 6.4.3.2), the fields ".uuid", 

".major_ALT_val1", and ".minor_ALT_val2" are not used. If the beacon type is different, for 

example, Eddystone-UID (see 6.4.3.1), the fields ".url_prefix" and ".url" would not be used. The 

advertised data packet is synthesized according to the beacon type. 

6.6.1.2 Reading Advertising Data from Flash 

If a Flash memory is used, the program reads the advertising data values from a device configuration 
struct that is written in Flash memory. The device configuration struct is by default located at address 
0x30000, but this can easily be configured by the value set in the product header (see Appendix 
D.1.1). The data are written in Flash in the order of the user_beacon_config_tag struct. Figure 24 

shows an example of the contents of a configuration struct in a Flash memory. 

 

Figure 24: Example of a Device Configuration Struct in Flash Memory 

In Figure 24, different colors from left to right represents different components in the format of the 
user_beacon_config_tag struct (see Table 77 for more information): 

● Red is the uuid 

● Green is the major_ALT_val1 value 

● Yellow is the minor_ALT_val2 value 

● Black is the company_id 

● Blue is the adv_int 

● Brown is the Tx power 

● Grey is the beacon_type 

● Purple is the url_prefix 

● Light blue is the url in ASCII (here it is "diasemi") with: 

○ Orange is the length of the service data 

○ Light grey is the URL postfix (here it is the code for ".com") 

○ Light green bytes are not needed (because this specific URL is shorter) and are set to 0x00 

● Light purple is the TLM_version 

● Pink is the TLM_used flag 

NOTE 

The values are in opposite endianness compared to the code. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 77 of 110 © 2022 Renesas Electronics 

6.6.2 Advertising Interval 

The BLE Beacon sends advertising packets at a certain time interval. This is called the advertising 
interval. According to the BLE specification, the advertising interval can be set from 20 ms up to 
10.24 s. 

At a shorter advertising interval, the radio of the beacon will be enabled more often, resulting in 
higher average power consumption. A shorter advertising interval will also lead to an increased 
number of packets per second at the receiver and therefore result in a more accurate RSSI reading. 

If the advertising data derive from Flash, the advertising interval takes the value of the adv_int field 

of the device configuration struct written in flash (Figure 24, blue field). 

If no Flash memory is used, the advertising interval parameter can be changed at the location shown 
in Table 78. 

Table 78: Advertising Interval Location 

Parameter Macro Project File Name 

Beacon advertising interval BEACON_ADVERTISING_INTERVAL All beacons user_config.h 

SUOTA advertising interval SUOTA_ADVERTISING_INTERVAL All beacons user_config.h 

6.7 Software Architecture 

Figure 25 presents how the Beacon reference applications are structured. 

 

Figure 25: Beacon SW System Overview 

Table 79 shows the source files of the Beacon reference applications. 

Table 79: Source Files of Beacon Reference Applications 

Group File Name Project Description 

user_platform user_periph_setup.c All beacons Peripheral modules initialization, 

GPIO pins assignment 

user_config_storage user_config_storage.c All beacons Application configuration data 

storage API 

device_config device_config.c Eddystone, Device Configuration profile 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 78 of 110 © 2022 Renesas Electronics 

Group File Name Project Description 

device_config_task.c 

user_device_config.c 

user_device_config_task.c 

iBeacon 

env_data_ntf env_data_ntf.c 

user_env_data_ntf.c 

env_data_ntf_task.c 

user_env_data_ntf_task.c 

Eddystone Environmental Data Notifications 

Profile 

user_drivers i2c_gpio_extender.c 

user_iot_dk_utils.c 

battery.c 

All beacons 
(battery.c 

not in 

AltBeacon) 

User drivers for the I2C GPIO 
extender, battery and MSK HW 

peripherals 

bme680_drivers bme680.c      

bme680_implc.c 

Eddystone, 

AltBeacon 
Environmental Sensor Drivers 

sensor_inteface sensors_inteface.c 

sensors_inteface_api.c 

environmental_bme680.c 

Eddystone, 

AltBeacon 
Sensors interface API 

utilities wkup_adapter.c 

sensors_periph_interface.cc

rc32.c 

All beacons Various utilities for wakeup, crc 

and peripherals 

user_beacon user_eddy_uid_url_tlm.c Eddystone Application Code 

user_altbeacon_dynamic.c AltBeacon 

user_ibeacon_suota_button.c iBeacon 

user_adv_api user_advertise.c All beacons User Advertise SW module  

6.8 Operation Overview 

Figure 26 presents the system operation. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 79 of 110 © 2022 Renesas Electronics 

 

Figure 26: Operation Overview 

6.8.1 Configuration Switches 

The code contains various configuration switches which include or exclude functionalities from the 
code. They are divided into two categories: 

● Software configuration switches 

● Profile configuration switches 

The various configuration switches are outlined in Table 80 and Table 81. 

Table 80: List of Software Configuration Switches 

Switch Used in Description 

CFG_CONFIG_STORAGE AltBeacon, 
Eddystone, 

iBeacon 

Read/Write configuration from/to Flash memory 

enabled. 

CFG_DYNAMIC_BEACON_DATA AltBeacon If defined, the major/minor values of the beacon 
are updated dynamically with data from the 

Environmental sensor. 

CFG_DEV_CNF_HDR_CRC32_SUPPORT AltBeacon, 
Eddystone, 

iBeacon 

If defined, a CRC32 value of the configuration 
struct data is calculated and compared to the 
CRC_word included in the configuration struct 

header. 

USE_EDDYSTONE_UID/USE_EDDYSTONE_URL Eddystone Eddystone-UID or Eddystone-URL packets will be 

advertised depending on which will be defined. 

Table 81: List of Profile Configuration Switches 

Switch Used in Description 

CFG_PRF_DEVICE_CONFIG Eddystone, 

iBeacon 

Custom 128-bit “Device Configuration” profile is 

enabled. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 80 of 110 © 2022 Renesas Electronics 

Switch Used in Description 

CFG_PRF_ENV_DATA_NTF Eddystone Enables custom 128-bit "Environmental Data 

Notifications" profile.  

CFG_PRF_SUOTAR iBeacon Dialog SUOTA profile is enabled. CFG_SPI_FLASH 

switch must be defined.  

CFG_PRF_DISS Eddystone, 

iBeacon 
Device Information Service Server (DISS) profile.  

CFG_PRF_BASS Eddystone, 

iBeacon 

Battery Service profile. Battery readings are updated 

using an advanced battery reporting mechanism. 

6.9 User Advertise SW Module 

The user advertise SW module provides users with an easy API to create configurable advertising 
strings with easily configurable advertising parameters (for example, advertising interval). Below the 
structural components of the user advertise module are outlined. 

6.9.1 Style 

The main block of the user advertise SW module is called a style. Below, the style type is presented: 

/// Advertising Style 

typedef struct user_adv_style 

{  

    /// Advertising interval 

    uint16_t adv_int; 

    /// Advertising length                

    uint8_t  adv_len; 

    /// Counter of advertising events               

    uint16_t cnt_upd_adv_string; 

    /// Advertising mode    

    uint8_t adv_mode; 

    /// Advertising data                

    uint8_t adv_data[31];            

} user_adv_style_t; 

An advertising style contains information about: 

● Advertising interval 

● Length of the advertising string 

● Amount of advertising events of that specific style before switching to another style 

● Advertising mode (undirected or non-connectable) 

● A 31-byte array containing the actual data to be advertised. 

6.9.2 Pattern 

An array of styles is called a pattern. The maximum number of styles allowed per pattern is 
configurable and is defined by the MAX_STYLES_PER_PATTERN macro. 

The value of the cnt_upd_adv_string field of each style shows how many advertising events will 

take place before a style switches to the next. Below an example of a pattern is presented. 

user_adv_style_t ibeacon_suota_pattern[2] =  

{ 

    { 

        .adv_int = iBEACON_ADV_INT, 

        .adv_len = iBEACON_ADV_LEN, 

        .cnt_upd_adv_string = iBEACON_EVENTS, 

        .adv_mode = NON_CONNECTABLE_MODE, 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 81 of 110 © 2022 Renesas Electronics 

        .adv_data = <pointer to a data array> 

    }, 

    { 

        .adv_int = SUOTA_ADVERTISING_INTERVAL, 

        .adv_len = USER_ADVERTISE_DATA_LEN, 

        .cnt_upd_adv_string = SUOTA_EVENTS_TO_SWITCH, 

        .adv_mode = UNDIRECTED_MODE, 

        .adv_data = USER_ADVERTISE_SUOTA,   

    }    

}; 

In this example, a pattern is declared, consisting of two styles. The data for the second style in the 
pattern is derived from the array shown below: 

#define USER_ADVERTISE_DATA         "\x05"\ 

                                    ADV_TYPE_COMPLETE_LIST_16BIT_SERVICE_IDS\ 

                                    ADV_UUID_DEVICE_INFORMATION_SERVICE\ 

                                    ADV_UUID_SUOTAR_SERVICE\ 

                                    "\x0E"\ 

                                    ADV_TYPE_COMPLETE_LOCAL_NAME\ 

                                    USER_DEVICE_NAME 

Figure 27 presents how to use a user advertise SW block. 

 

Figure 27: User Advertise Usage Example 

In this example, the pattern contains three styles. When cnt_upd_adv_string of the first style is 

reached, in other words, <cnt_upd_adv_string> events have been advertised, the application 

switches to the second style. The same happens when the cnt_upd_adv_string of the second style 

is reached. However, when < cnt_upd_adv_string > events of the third advertising style have been 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 82 of 110 © 2022 Renesas Electronics 

advertised, the application starts advertising again from the first style. The row of events, or the times 
a style is advertised, depends on the application. 

6.9.3 User Advertise SW Module Callbacks 

The User Advertise SW Module makes two callbacks to the application and users can use these 
callbacks for any desired usage. In the provided examples, a callback is used to inform the 
application of advertising events and the other callback is called every time the 
user_on_ble_powered system callback is called. More information on the User Advertise SW module 

API is included in the doxygen documentation that is included in the release. 

NOTE 

The system callback user_on_ble_powered updates the advertising string. 

6.10 Device Configuration Service 

The Device Configuration Service is a custom 128-bit profile developed by Dialog Semiconductor. 
The profile provides a generic interface to a peripheral device for reading and writing configuration 
parameters of the application, irrespective of the number, type, and size of the parameters. 

6.10.1 Device Configuration Service Specification 

The Device Configuration Service provides four characteristics outlined in Table 82. 

Table 82: Characteristics of the Device Configuration Service 

Characteristic Name Qualifier Properties Size (B) 

Configuration structure version  Mandatory Read 66 

Write configuration Mandatory Write 1 

Read command Mandatory Write 1 

Read response Mandatory Indicate 67 

● Configuration structure version: 

○ It identifies the type and version of the configuration structure of the application. 

○ It is used as a convention between device configuration server and client for the format of the 
configuration data. 

○ The Device configuration client should be aware of the ID and size of each configuration 
parameter. 

● Write configuration: 

○ The Device configuration client writes the configuration data into this characteristic. 

○ The data format is shown in Figure 28: 

 

Figure 28: Data Format in Write Configuration 

○ The maximum configuration data size supported by the Device configuration service is 64 
bytes. Up to 256 parameters can be supported. The client can read the parameter data after 
the end of a write operation. 

● Read Command: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 83 of 110 © 2022 Renesas Electronics 

○ The Device configuration client writes a parameter ID into this characteristic, requesting the 
command server to return the current values of the parameters. 

● Read Response: 

○ The Device configuration server sends an indication including the configuration data of a 
parameter, whenever the client requests it by writing the parameter ID to the read command 
characteristic. 

○ The format of the indication data is shown in Figure 29. 

 

Figure 29: Indication Data Format in Read Response 

6.11 Environmental Data Notifications Service 

The Environmental Data Notifications Service is a custom 128-bit profile developed by Dialog 
Semiconductor. The profile provides a generic interface to a peripheral device providing data from 
the environmental sensor (temperature, humidity, and pressure). 

6.11.1 Environmental Data Notifications Service Specification 

The Environmental Data Notifications Service provides five characteristics outlined in Table 83. 

Table 83: Characteristics of the Environmental Data Notifications Service 

Characteristic Name Qualifier Properties Size (B) 

Temperature Mandatory Read 2 

Pressure Mandatory Read 4 

Humidity Mandatory Read 4 

External Event Mandatory Read 1 

Sampling Interval Mandatory Read/Write 2 

● Temperature: 

○ The "Temperature" characteristic carries the temperature value read by the environmental 
sensor. 

○ Executing a read command, the current temperature value from the sensor will be 
transmitted. The same will happen upon a button press, if characteristic notifications are 
enabled. 

● Pressure: 

○ The "Pressure" characteristic carries the pressure value read by the environmental sensor. 

○ Executing a read command, the current pressure value from the sensor will be transmitted. 
The same will happen upon a button press, if characteristic notifications are enabled. 

● Humidity: 

○ The "Humidity" characteristic carries the humidity value read by the environmental sensor. 

○ Executing a read command, the current humidity value from the sensor will be transmitted. 
The same will happen upon a button press, if characteristic notifications are enabled. 

● External Event: 

○ The "External Event" characteristic carries the external event state (in our case, the state of 
the button). 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 84 of 110 © 2022 Renesas Electronics 

○ Executing a read command, the current button state will be transmitted. The same will 
happen upon a button press, if characteristic notifications are enabled. 

● Sampling Interval: 

○ The "Sampling Interval" characteristic carries the value of the timer interval during which the 
environmental sensor samples environmental data. 

○ These data are used to update the values of the aforementioned characteristics 
(temperature, pressure, and humidity). 

6.12 Beacon Configuration 

Depending on the defined software configuration switches, the configuration data can be modified by 
a central device over the Device Configuration Service or written into SPI Flash memory during the 
production phase. 

The Beacon application reference software uses a configuration storage module, implemented in file 
user_config_storage.c, to fetch and store configuration data from and into the non-volatile memory. 

The configuration storage module provides a list of common API functions to any DA14585 
application. The current version only supports SPI Flash memory. 

6.12.1 Beacon Configuration Memory Map 

Configuration storage uses the memory map of the dual image boot loader. More specifically, it uses 
the first four bytes of the ‘Reserved’ field (byte offset 12) in the Product Header, as described in 
Appendix D.1.1, to define the memory address of the configuration area. The address shall point to 
the start of an SPI Flash sector and no other information shall be stored in the same sector. 

Device configuration data are stored at the start of the configuration area and consist of the device 
configuration header, followed by the device configuration struct. The size of the configuration data is 
112 bytes and the format is outlined in Table 84. 

Table 84: Configuration Data Format 

Byte # Field 

Device Configuration Header 

0, 1 Signature (0x70, 0x53) 

2 Valid flag 

3 Number of items 

4 to 7 CRC 

8 to 23 Version 

24, 25 Data size 

26 Encryption flag 

27 to 63 Reserved 

Device Configuration Struct 

64 to 79 UUID 

80, 81 Major_ALT_val1 

82, 83 Minor_ALT_val2 

84, 85 Company ID 

86, 87 Advertising Interval 

88 Tx Power 

89 Beacon Type (iBeacon/AltBeacon/Eddystone (UUID/URL)) 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 85 of 110 © 2022 Renesas Electronics 

Byte # Field 

90 URL prefix 

91 to 109 URL 

110 TLM version 

111 TLM_used flag 

The fields included in the header are: 

● Signature: 

○ A "magic" number identifying the configuration header. 

○ Value: 0x70, 0x53. 

● Valid flag: 

○ A value of 0xAA denotes a valid image. 

● Number of items: 

○ The number of configuration parameters in the configuration data. 

● CRC (If used): 

○ The checksum calculated over the configuration data. 

● Version: 

○ Determines the configuration structure type and version. 

○ Can be checked by the application to confirm that the expected data are stored. 

● Data size: 

○ Size of the configuration data (in bytes). 

● Encryption flag: 

○ Indicates whether the configuration data have been encrypted. 

○ Encryption of the configuration in memory is not supported in this software release. 

● UID: The value in this field serves different uses depending on the mode used. 

○ If iBeacon is selected, this field contains the 16-byte UUID value. 

○ If AltBeacon is selected, this field contains the 16-byte Beacon ID value (Note 1). 

○ If Eddystone-UID is selected, this field contains the 10-byte namespace value followed by the 
6-byte instance value. 

● Major_ALT_val1: 

○ Contains the Major value for iBeacon or the Alt_val1 for AltBeacon. 

● Minor_ALT_val2: 

○ Contains the Minor value for iBeacon or the Alt_val2 for AltBeacon. 

● Company ID: 

○ The beacon device manufacturer's company identifier code, see [7]. 

● Advertising Interval: 

○ The advertising interval for the beacon (see section 6.6.2). 

● Tx Power: 

○ A 1-byte value representing the average RSSI at 1 m from the advertiser. 

● Beacon Type: 

○ The beacon type included in the Configuration Struct. 

● URL Prefix: 

○ If Eddystone-URL beacon type is selected, this field defines the URL prefix (see Table 74). 

● URL: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 86 of 110 © 2022 Renesas Electronics 

○ If Eddystone-URL beacon type is selected, this field contains the URL in ASCII, preceded by 
the length of service data and succeeded by the extension (.com, .net, and others). 

● TLM_version: 

○ TLM version is reserved for future development of this frame type. At present the value must 
be 0x00. 

● TLM_used flag: 

○ This flag indicates whether the TLM service is used or not. 

6.13 Battery Level Sampling 

If BATTERY_SAMPLING_ENABLED is defined, a battery level and voltage averaging mechanism is 

enabled. 

A user driver has been developed to achieve more accurate battery readings. The main idea is to 
periodically capture an ADC sample from the VBAT3V signal immediately after the device wakes up 
to avoid any possible battery consuming activities. These samples allow the driver to calculate 
average values for the battery voltage and battery level. The calculated average level and voltage 
values can then be used by the application. 

Upon connection, if the BASS service is enabled, 
app_batt_set_level(battery_return_avg_lvl()) is called and sets the battery level in the BASS 

service, making the averaged battery level available when the device is connected. 

6.14 Beacon Examples for DA14585 IoT MSK 

The Beacon reference applications based on DA14585 IoT MSK HW reference design comes with 
three distinct beacon examples that make use of all the different beacon types and features 
supported by Dialog Semiconductor. Below these examples are outlined. 

6.14.1 AltBeacon 

In this example a non-connectable AltBeacon string is advertised containing a 16-byte UID followed 
by four bytes (two bytes for ALT_Val1 and two bytes for ALT_Val2). If the software-built flag 

DYNAMIC_BEACON_DATA is not enabled, ALT_Val1 and ALT_Val1 are populated by the values set in the 

configuration struct in flash (if CONFIG_STORAGE is enabled) or by the default values hardcoded in the 

default configuration struct. If DYNAMIC_BEACON_DATA is enabled, the 2-byte values are populated by 

environmental sensor data, refreshed every periodic_read_interval set by users when initializing 

the environmental sensor. 

Figure 30 presents the advertising transition diagram of the AltBeacon example. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 87 of 110 © 2022 Renesas Electronics 

 

Figure 30: AltBeacon Example Transition Diagram 

6.14.1.1 AltBeacon Example Sequence Diagram 

 

Figure 31: Altbeacon Sequence Diagram 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 88 of 110 © 2022 Renesas Electronics 

6.14.2 Eddystone 

In this example, a connectable Eddystone-UID or Eddystone URL string is advertised, depending on 
the corresponding build flags USE_EDDYSTONE_UID or USE_EDDYSTONE_URL. 

The advertising string contains a 16-byte UID if the flag USE_EDDYSTONE_UID is used. 

If the flag USE_EDDYSTONE_URL is used, an encoded URL with a length ranging from 1 to 17 bytes is 

contained in the advertising string. 

Every time when user_adv_on_adv_complete is called, the application advertises an EDDYSTONE-

TLM advertising string and then returns to advertising Eddystone-UID or Eddystone-URL strings. As 
explained in 6.4.3.3, the Eddystone-TLM packet contains information about the battery voltage of the 
device. The application uses the battery averaging mechanism described in 6.13 to provide more 
accurate voltage values to the Eddystone-TLM advertising string. 

When connected to a peripheral, the device provides four different GATT services: DISS and BASS 
which are official BLE GATT services and two Dialog proprietary GATT services, the env_data_ntf 

and device_config. The device_config and env_data_ntf services are described in 6.10 and 6.11. 

Figure 32 presents the advertising transition diagram of the Eddystone example. 

 

Figure 32: Eddystone UID/URL/TLM Example Transition Diagram 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 89 of 110 © 2022 Renesas Electronics 

6.14.2.1 Eddystone Example Sequence Diagram 

 

Figure 33: Eddystone Sequence Diagram 

6.14.3 iBeacon 

In this example, a non-connectable iBeacon string is advertised. The Major and Minor values are 
populated by the values set in the configuration struct in flash (if CONFIG_STORAGE is enabled) or by 

the default values hardcoded in the default configuration struct. On button press the device starts 
advertising a connectable SUOTA string for a duration of ADV_SUOTA_TIMEOUT set in 

ibeacon_suota_button.h. However, if during this time period there is another button press, the 

application returns to advertising the non-connectable iBeacon string. 

Figure 34 presents the advertising transition diagram of the iBeacon example: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 90 of 110 © 2022 Renesas Electronics 

 

Figure 34: iBeacon Example Transition Diagram 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 91 of 110 © 2022 Renesas Electronics 

6.14.3.1 iBeacon Example Sequence Diagram 

 

Figure 35: iBeacon Sequence Diagram 

7 Memory Footprint and Power Measurements 

7.1 Memory Footprint 

The SYSRAM footprint of the reference applications in the DA14585 IoT MSK reference design are 
depicted in Table 85. 

Table 85: Memory Footprint 

Application Code RO Data RW Data ZI Initialized 

IoT Sensors 66416 6420 416 14764 

IoT Sensors without Air 

Quality library 
46124 4556 400 13608 

Smart Tag 28332 2952 8 7960 

iBeacon 27056 4004 344 15756 

Eddystone 30140 3936 748 15524 

AltBeacon dynamic 21096 2656 60 15416 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 92 of 110 © 2022 Renesas Electronics 

Besides the application memory footprint, there is a memory area of around 9.5 Kbytes, depending 
on the application, reserved for the exchange memory between BLE controller layer and BLE Core. 

7.2 Power consumption 

Table 86 presents the average power consumption of the most commonly used operation modes of 
the reference applications of DA14585 IoT MSK. 

Table 86: Power Consumption 

Mode Current (avg) 

IoT Sensors 

Advertising: Interval at 100 ms and LED blink 313.596 µA 

Idle (waiting for motion to advertise) 20.679 µA 

All sensors: 

Accelerometer and Gyro at 100 Hz 

Sensor Fusion and Magneto 10 Hz 

Temperature, Humidity, Pressure, and Air quality at 0.3 Hz 

Ambient Light and proximity at 0.5 Hz 

2.008 µA 

Motion sensors: 

Accelerometer and Gyro at 100 Hz 

Sensor Fusion and Magneto 10 Hz 

1371.032 µA 

Environmental sensor 

Temperature, Humidity, Pressure, and Air quality at 0.3 Hz 

1054.313 µA 

Optical sensor 

Ambient Light and proximity at 0.5 Hz 

488.423 µA 

Smart Tag 

Advertising 295.977 µA 

Connected 158.757 µA 

Beacons 

iBeacon Advertising 37.17 µA 

iBeacon Connnected 124.148 µA 

Eddystone Advertising: 

Environmental sampling at 0.25 Hz 

49.198 µA 

Eddystone Connected 

Environmental sampling at 0.25 Hz 

138.226 µA 

AltBeacon Advertising 41.146 µA 

  



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 93 of 110 © 2022 Renesas Electronics 

Appendix A MSK Boot Sequence 

The MSK boot sequence consists of the following stages: 

● BootROM sequence (sections 4.4, 4.4.3, [5]). 

● Secondary Bootloader (Appendix H, [2]) is part of the released code inside folder 
utilities\secondary bootloader. 

● Application Code. 

For the application to be initialized correctly, an architecture that uses Secondary Bootloader with 
mirrored images is used. The secondary bootloader serves four purposes: 

● Initializes the IMU (ICM42605 or BMI160) device to operate in SPI mode. 

○ If offset 0xFE20 in OTP (user area) is not programmed as 0x0, the IMU initialization is 
skipped. 

○ Please be aware that if this bit is set, it cannot be undone, and the device may be unable to 
boot. 

● Scans UART during UART boot. 

● Selects and copies the most recent application image from the flash memory to SRAM. 

● Passes control to application 

The Secondary Bootloader is copied from OTP offset 0x0000 to the end of SRAM, so it is crucial to 
keep the footprint of the Secondary Bootloader as small as possible. 

In non-MSK boards, in order to use the Secondary Bootloader, users should follow the following 
steps: 

1. Burn the generated secondary_bootloader_585.bin into offset 0x0000 of OTP. 

2. Program the two application flags located in offsets 0xFE00 and 0xFE08 of OTP memory using 
SmartSnippets as in Figure 36. 

NOTE 

The MSK boards have the Secondary Bootloader and the OTP application flags written into OTP when shipped. 

 

Figure 36: Application Programmed in OTP Flags 

Appendix B Memory Map 

Figure 37 shows the default memory locations of the different parts of the various images for all 
projects. The figure also shows that the product header, among other information, contains the 
offsets of the images and the configuration struct. The offsets of the two images and the 
configuration struct (in beacon projects) can be modified in the product header, thus enabling users 
to write the images and the struct in those offsets. The secondary bootloader will “look” for those 
offsets when booting the device. See Appendix D.1. Please pay attention to the distance of the 
memory locations to fit the size of the corresponding parts (product header, application image, and 
others). 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 94 of 110 © 2022 Renesas Electronics 

 

Figure 37: Analyzing a Flash Memory Image 

At this point, it is important to note that all these different parts do not exist all at once. Table 87 
shows which part exists and at which location depending on the application. 

Table 87: Parts of the Image Depending on the Application 

 All Beacons Smart Tag IoT Sensors 

Application Image 1 

Application Image 2 

X X X 

X X X 

Beacon Configuration Header and Struct X   

SmarTag Bonding Data  X  

IoT Flash Base (Configuration Data)   X 

IoT Flash Base Cal (Sensor Calibration 

Data) 
  X 

Product Header  X X X 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 95 of 110 © 2022 Renesas Electronics 

Appendix C Using the mkimage Application 

C.1 mkimage Scripts 

The mkimage scripts that run the mkimage modes and create the desired multi-image for the Smart 

Tag and IoT Sensors reference applications or the whole images for the Beacon reference 
application has been created to help users. 

The mkimage modes are analyzed in Appendix C.2. The multi-images or whole images are in .bin 

format and are written in Flash. The multi-images contain two alternative images of the application as 
well as a product header at the end. The whole images are essentially multi-images (two images with 
a product header) but also include a configuration struct for the Beacon. 

The available mkimage scripts as well as the various files needed for the scripts to work are located 

(or should be placed) in "...\utilities\mkimage_utils_scripts" and are shown in Table 88. 

Please note that the ".hex" extension for all images is added by the script automatically and should 

be: 

● C:>iot_image_folder>make_image_beacon.bat altbeacon_dynamic 

● C:>iot_image_folder>make_image_iot.bat io585_585 

● C:>iot_image_folder>make_image_tag.bat smart_tag_585 

● C:>iot_image_folder>make_all_images.bat (no parameters, builds everything if all the needed 

.hex files exist in the build folder). 

Table 88 Available mkimage Scripts 

Script Purpose Needed Files 

make_image_beacon.bat 
Creates a whole image for 
the beacon applications 

<beacon_project>.hex, 

dev_conf_struct_default.cfg, 

user_config_sw_ver.h (struct 

version), 

beacon_sw_version.h (Note 1) 

make_image_iot.bat 
Created a multi-image for the 
IoT sensors application 

<iot_project>.hex, 

iot_sw_version.h 

(Note 2) 

make_image_tag.bat 
Creates a multi-image for the 
Smart Tag application 

<tag_project>.hex, 

tag_sw_version.h (Note 3) 

make_all_images.bat 
Creates whole images for all 
beacon applications and 
multi images for the IoT 
sensors and Smart Tag 
application by calling all 
aforementioned bats. 

This script only works when the .hex 

files are named as following: 

ibeacon_suota_button.hex 

altbeacon_dynamic.hex, 

eddy_uid_url_tlm.hex. 

smart_tag_585.hex,      

iot585_585.hex 

and the corresponding sw_version 

files and beacon configuration files are 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 96 of 110 © 2022 Renesas Electronics 

also present. 

clean.bat 
Removes all .img and .bin 

files from the folder 

N/A 

Note 1 If an alternative .hex file exists, it should go by the name <beacon_project>_1.hex and a file by the 

name “beacon_sw_version1.h” should be provided. 

Note 2 If an alternative .hex file exists, it should go by the name <iot_project>_1.hex. 

Note 3 If an alternative .hex file exists, it should go by the name <tag_project>_1.hex. 

C.2 mkimage Modes 

The mkimage application has different modes to create desired images. 

● Single: creates an .img file from the .bin file of the Keil project. 

● Multi: creates a .bin file from the .bin file of the Keil project that contains two alternative .img 

files that are needed when using the SUOTA functionality and the product header. 

● Whole_img: creates an .img file containing two alternative .img files that are needed when 

using the SUOTA functionality, the config_struct.cfg file, the product header, and optionally 

the bootloader.bin file. 

● Multi_no_suota: creates an .img file containing the config_struct.cfg file, the product header, 

and the .bin file of the Keil project, which is preceded by an AN-B-001 header [16]. 

● cfg: creates a .cfg file containing a device configuration struct preceded by its header. 

IMPORTANT NOTE 

For the mkimage app to work, all needed files should be brought in the mkimage folder where the mkimage.exe will 

be located after building the mkimage project. 

Typing "mkimage" in the command console shows users instructions on the syntax needed to create 

an .img file for all modes of the application. 

C.2.1 mkimage single 

The "mkimage single" mode is used to create an .img file from the .bin file of the Keil project. This 

image contains the software version and the software version date. The .img files created in this 

mode are used for manually burning images one-by-one at specific addresses in Flash memory 
using the SmartSnipperts Studio (see Appendix D.2). 

Example: mkimage single my_project_1.bin sw_version.h img_1.img 

Users should also make a second (different) image file so that during the SUOTA procedure the 
SUOTA application can find another image to load. Users should either include a different .bin file, a 

different sw_version.h file, or both. 

Example: mkimage single my_project_2.bin sw_version.h img_2.img 

C.2.2 mkimage multi 

The "mkimage multi" mode is used to create a .bin file from the .bin file of the Keil project. This bin 

file contains two images created by the "mkimage single" mode and a product header at the end of 

the file. Optionally, the image can be created for an SPI Flash memory or an EEPROM Flash 
memory. The .bin files created by this mode are used for burning in Flash memory using the 

SmartSnipperts Studio (see Appendix D.2). 

Example: 

mkimage multi spi img_1.img 0x0 img2_1.img 0x18000 0x38000 multi_myproject.bin 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 97 of 110 © 2022 Renesas Electronics 

C.2.3 mkimage whole_img 

The "mkimage whole_img" mode is used to create a complete .img file, containing two alternative 

.img files created by "mkimage single" mode that are needed when using the SUOTA functionality, 

the config_struct.cfg file and the product header. 

Example: 

mkimage whole_img img_1.img 0x0 img_2.img 0x18000 config.cfg 0x30000 0x38000 

whole_%1.bin 

The offsets 0x0, 0x18000, and 0x3000 correspond to the file that precedes them: 0x0 is the offset 

where img_1.img is written and so on. The final offset (in this example 0x38000) is the offset where 

the product header is written. 

C.2.4 mkimage multi_no_suota 

The "mkimage multi_no_suota" mode is used to create a whole .img file containing the .bin file of 

the Keil project preceded by an AN-B-001 header and the config_struct.cfg file. Optionally, the 

image can be created for an SPI Flash memory or an EEPROM Flash memory. The generated 
image will not include a SUOTA functionality. 

In "mkimage multi_no_suota" mode, no ".img" file generated by the "mkimage single" mode is 

needed. 

Example: 

mkimage multi_no_suota spi out585.bin dev_conf_with_header.cfg 0x30000 0x38000 out.img 

In this example the out585.bin file (preceded by an AN-B-001 header) is written at address 0x00. 

0x38000 refers to the offset where the product header is written, whereas 0x30000 refers to the 
offset of the config_struct.cfg file. 

C.2.5 mkimage cfg 

The "mkimage cfg" mode is used to create a .cfg file containing a device configuration struct 

preceded by its header. The device configuration struct header also contains a 4-byte CRC which is 
calculated from the fields of the configuration struct. The application also checks a software version 
file and includes the version in the header of the corresponding field. 

Example: mkimage cfg dev_conf.bin sw_ver.h dev_conf_with_header.cfg 

Appendix D Flash Programming in MSK Applications 

D.1 Basic Information About the MSK Applications 

The programmed devices come with the secondary bootloader already burned in the OTP memory. 
Upon booting, the secondary bootloader is expected to find the product header at address 0x38000, 
so that information on the signature, version, and the image offsets can be retrieved. Appendix B 
presents the different locations of MSK applications memory map. The following subsections present 
the formats of the product header, the image header, and the device configuration struct (for beacon 
projects). 

D.1.1 Product Header 

Table 89: Product Header Format 

Byte # Field Description 

0, 1 Signature Product Header signature (0x70, 0x52) 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 98 of 110 © 2022 Renesas Electronics 

Byte # Field Description 

2, 3 Version Version of the product header 

4 to 7 Offset1 Start address of the first image  

8 to 11 Offset2 Start address of the second image  

12 to 17 RFU Reserved for future use 

18 to 21 Config_offset Start address of the device config struct (for beacon projects) 

D.1.2 Image Header 

The Image Header format, which is common for any image created with mkimage.exe, is shown in 

Table 90. The application checks the image header when attempting to write in Flash memory. 

Table 90: Image Header Format 

Byte  Field Description 

0, 1 Signature Image Header signature (0x70, 0x51) 

2 Valid flag To be set to 0xAA (STATUS_VALID_IMAGE) at the end of the image 

burning 

3 ImageID Used to determine which image is newer 

4 to 7 Code size Image size 

8 to 11 CRC Image CRC (Not checked in current version) 

12 to 27 Version Version of the image 

28 to 31 Timestamp Time stamp 

32 Encryption Encryption flag 

33 to 63 Reserved For future use 

D.1.3 Beacon Configuration Struct and Configuration Struct Header 

The device configuration struct is preceded by the device configuration header in the Flash memory. 
Table 91 and Table 92 show the Device Configuration Header and the Device Configuration struct, 
respectively. 

Table 91: Beacon Configuration Header 

Byte # Field Description 

0, 1 Signature Device Config Signature (0x70, 0x53) 

2 Valid flag A value of 0xAA denotes a valid image 

3 Number of items The number of configuration parameters in the configuration data 

4 to 7 CRC CRC of the device configuration struct 

8 to 23 Version Determines the configuration structure type and version 

24 to 25 Data size Size of the configuration data 

26 Encryption flag (Not supported in current version) 

27 to 63 Reserved - 

The Beacon Configuration struct appears in Flash memory in the same way as in the code (see 
section 6.6.1.1). 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 99 of 110 © 2022 Renesas Electronics 

Table 92: Beacon Configuration Struct Format 

Byte # Field Description 

0 to 15 UUID Beacon Universally Unique ID 

16, 17 Major Major Value (MSB first) 

18, 19 Minor Minor Value (MSB first) 

20, 21 Company_id Beacon Company id (MSB first) 

22, 23 Adv_int Advertising interval (MSB first) 

24 Power Beacon output power at 1 m 

25 beacon type iBeacon/AltBeacon/Eddystone (not used in provided examples) 

27 url prefix URL prefix for Eddystone-URL 

28 to 46 url[19] The URL preceded by the length of service data and succeeded by 

the extension (.com, .net, and others) 

47 TLM_version TLM version 

48 TLM_used Flag to indicate whether Eddystone-TLM is used or not 

D.1.4 Smart Tag Bonding Data, IoT Flash Base, IoT Flash Base Cal 

Smart Tag bonding data, IoT Flash base, and IoT Flash base cal (Appendix B) are spaces used by 
the Smart Tag and IoT sensors applications. They are initially blank but are populated by the 
application for their needs. In that sense, they cannot be configured by users. 

D.2 Flash Programming 

D.2.1 Burning the Whole Image in Flash Memory 

The procedure to make use of the provided mkimage scripts and files utilized by the scripts has been 

thoroughly explained in Appendix C.1. 

With SmartSnippets Studio, users can follow the steps below to burn the generated .bin file (multi-

image for Smart Tag and IoT sensors applications and whole image for beacon applications) (see 
Appendix C): 

1. Open SmartSnippets Studio > SmartSnippets Toolbox (Figure 38). Select JTAG (above), 
JTAG adapter (middle panel), a project name (left panel), and chip version (DA14585, right 
panel). If SmartSnippets Toolbox is being run for the first time, first define a new project by the 
New button. 

 

Figure 38: Initial Window to Choose Device and Connection Type 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 100 of 110 © 2022 Renesas Electronics 

2. Click the Open button. 

3. From the Tools > Board Setup (Figure 39), make sure that the correct board settings (Figure 
40) are set. 

 

Figure 39: Opening SmartSnippets Board Setup 

 

Figure 40: Smart Snippets Board Setup Window 

4. Click the  button on the left to open the SPI Flash Programmer (see Figure 41): 

 

Figure 41: SPI Flash Programmer 

5. From Select File to download, browse for the <multi/whole_app>.bin file. 

6. Insert address 0x00 in the Offset in SPI Flash memory (HEX) field and follow the steps: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 101 of 110 © 2022 Renesas Electronics 

a. Press Connect and wait for confirmation from the Log window; 

b. Press Erase and wait for confirmation from the Log window; 

c. Press Burn & Verify and wait for confirmation from the Log window. 

IMPORTANT NOTES 

● When burning Flash memory with SmartSnippets Studio, click NO when the "Do you want SPI Flash 

memory to be bootable?" window appears. 

● In SmartSnippets Studio, type (for example) "30000" instead of "0x30000". 

7. The image is now burnt in flash and by pressing the Reset button on the CIB board, it will start 
working with the programmed application. 

D.2.2 Preparing the Various .img and .bin Files Manually 

The following files (Table 93) are needed to program the Flash memory so that an MSK application 
starts on a button or hard reset. 

Table 93: Files Needed or Created During Flash Programming 

File Name Location Description 

<application>.hex ..\..\Keil_5\out_585 .hex file generated by Keil project 

<application>.bin mkimage folder .bin file generated from .hex file 

<sw_version>.h ..\..\..\sdk\platform\include .h software version file needed to create 
.img 

<file>.img mkimage folder .img file created from the .bin file and the 

software version file 

device_config_all_beacons.txt mkimage_utils_scripts 

folder 

Contains the format of the device config 

struct 

<device_config_all_beacons>.bin mkimage_utils_scripts 

folder 

.bin file created by SmartSnippets 

Toolbox containing the beacon 
configuration 

<dev_conf_struct_default>.cfg mkimage_utils_scripts 

folder 

.cfg file containing a default configuration 

struct preceded by its header 

user_config_sw_ver.h sw_version folder .h beacon SW version file used to create 

the device configuration field (struct and 

header) 

In order to prepare the necessary files, follow the steps below: 

1. Open the mkimage app folder and open a cmd window (Shift + Left click > Open command 

window here). 

2. If there already is a .bin file of the Keil project, go directly to step 5. 

3. Copy and paste the .hex file generated by your Keil project in the mkimage folder. 

4. Create a .bin file from the .hex file (using the hex2bin.exe utility). 

5. Create two different .img files from alternative .bin files containing different images. Typing 

"mkimage" in the command console shows instructions on the syntax needed to create an .img 

file. Example: mkimage single <generated_bin_file>.bin <version_file>.h 

<desired_name>.img. 

6. If a <dev_conf__default>.bin file is already provided in mkimage folder, skip to step 6.g. 

Open SmartSnippets Studio > SmartSnippets Toolbox. The screen show in Figure 38 appears. 

a. Choose option JTAG and click button Open. 

b. In the next screen, press button  on the left to open the Proprietary Header Programmer. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 102 of 110 © 2022 Renesas Electronics 

The mkimage folder should contain a device_config_all_beacons.txt file (see Figure 42). 

 

Figure 42: Device Config Struct Format in .txt File 

c. Browse to the file device_config_all_beacons.txt and open it for editing. 

d. Enter the desired values at the corresponding blanks (see Figure 43 and Figure 44): 

 

Figure 43: Programming the Various Fields of the Device Configuration Struct 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 103 of 110 © 2022 Renesas Electronics 

 

Figure 44: Creating a Custom Dev_Conf_Struct .bin File 

NOTE 

Addresses and values are random. 

e. Click the Export button at the bottom of the screen to save the .bin file. 

f. To edit the generated .bin files: 

i. Press button  to open the Proprietary Header Programmer. 

ii. Click the Import button at the bottom of the screen and browse for <filename>.bin. The 

Value column will now be populated with the programmed values. 

iii. Modify the values as required. 

iv. Click button Export to save the .bin file. 

g. To create the device configuration file to be burned into Flash memory, use the mkimage 

application in cfg mode (see Appendix C.2.5). This file includes the device configuration 

struct preceded by the device configuration struct header. 

7. Use "mkimage multi" mode for Smart Tag and IoT sensors applications and "mkimage whole" 

mode for beacon applications to create the images to be burned in flash as described in 
Appendix D.2.1. 

Appendix E Using the SUOTA Application for Android 

This appendix describes how to use Dialog's SUOTA application to update the software programmed 
in the DA14585 MSK HW reference design. There are two variants of the SUOTA application: one for 
the Android operating system and one for the iOS. Users can find the SUOTA application by 
searching for ‘Dialog SUOTA’ in Google Play Store or Apple App Store. Since these applications 
have a similar user interface, only the application for Android operating system is described here. 

STEP 1: Prepare the MSK Device 

If your device is already programmed, skip this step and proceed with STEP 2. 

A dual image secondary boot loader needs to be programmed into the OTP memory of the DA14585. 
Moreover, the initial software image with the right header needs to be programmed into the DA14585 
IoT MSK SPI Flash memory using the Flash Programmer (see Appendix D). 

To verify that this step has been completed successfully, reset the device and check the expected 
behavior for the desired application: 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 104 of 110 © 2022 Renesas Electronics 

● Green LED blinking for Smart Tag 

● Yellow LED blinking for IoT sensors 

● Beacon advertising for beacon examples 

STEP 2: Install and Start the Application on the Android Device 

After successful installation, the SUOTA icon appears under the installed applications menu. Click on 
the icon (Figure 45) to start the application. 

 

Figure 45: SUOTA App Icon 

STEP 3: Initial Menu, Scan for Advertising Devices 

Assuming the MSK device advertises a SUOTA advertising string once the SUOTA APP is opened, 
the Bluetooth Device address and device name is displayed as shown in Figure 46. 

To re-initiate scanning, just press the “SCAN” button in the top right corner. 

 

Figure 46: Device Selection Menu 

STEP 4: Connect to the Smart Tag Device 

Click on the desired device to connect. Once the APP is connected to the device successfully, the 
DISS information is displayed on the screen as shown in Figure 47. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 105 of 110 © 2022 Renesas Electronics 

  

Figure 47: DIS Screen 

STEP 5: Update SmartTag Software Image 

Click on the Update device button and a list of files will appear on the screen. For the file to appear 
in this File selection screen (Figure 48), it has to be copied to the SUOTA directory of the Android 
device. Connect the Android device via USB to the PC where the images are created and copy the 
images under the SUOTA directory. 

 

Figure 48: File Selection Screen 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 106 of 110 © 2022 Renesas Electronics 

STEP 6: Set SUOTA Parameters 

Once an image is selected, the Parameter settings (Figure 49) screen appears. 

 

Figure 49: SUOTA Parameter Settings 

First set the memory type. The image update procedure is only supported for non-volatile memory 
types of SPI (Flash memory) and I2C (EEPROM). In this example SPI (Flash) is selected. 

Then select the Image (memory) bank (Figure 49): 

1: Use the first bank with start address indicated in the Product Header. 

2: Use the second bank with start address indicated in the Product Header. 

0: Burn the image into the bank that holds the oldest image. 

Next, define the GPIO pins of the memory device. In the SmartTag device, the SPI Flash GPIO 
configuration is as follows: 

● MISO P0_5 

● MOSI P0_6 

● CS  P0_3 

● SCK P0_0 

Finally, scroll down to choose the block size. Take the following points into account when setting the 
block size. 

● The block size must be larger than 64 bytes, which is the size of the image header. 

● The block size must be a multiple of 20 bytes, which is the maximum amount of data that can be 
written at once in the SPOTA_PATCH_DATA characteristic. 

● The block size must not be larger than the SRAM buffer in the SUOTA Receiver implementation, 
which holds the image data received over the BLE link before burning it into the non-volatile 
memory. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 107 of 110 © 2022 Renesas Electronics 

This example uses a block size of 240 bytes. 

After all the parameters are set, users can click on the Send to device button at the bottom of the 
screen. 

STEP 7: Reboot the Device 

Once the Send to device button is clicked, a load screen appears that shows the image data blocks 
being sent over the BLE link (Figure 50). In case an error occurs, a pop-up indication will inform the 
user. 

 

Figure 50: SUOTA Uploading Screen 

When no error occurs and the SmartTag device has received and programmed the image 
successfully, the screen in Figure 51 will appear, asking the user to reboot the SmartTag device. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 108 of 110 © 2022 Renesas Electronics 

 

Figure 51: Successful Update Screen 

STEP 8: Verify that the New Software is Running on the SmartTag Device 

Repeat STEP 3 and STEP 4 to verify that the DIS screen shows the firmware and software version of 
the new software. 

To re-initiate scanning just press the "SCAN" button in the top right corner. 

  



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 109 of 110 © 2022 Renesas Electronics 

Revision History 

Revision Date Description 

1.2 17-Jan-2022 Updated logo, disclaimer, copyright. 

1.1 05-Feb-2019 Updates for 6.160.4 

Change details:  

For changes: 

● Section 4.2.4 

○ Added this section to include details of how to compile including Bosch BSEC Library. 

1.0 03-Aug-2018 Initial version. 



 

 

UM-B-101  

DA14585 IoT Multi Sensor Development Kit 
Developer's Guide 

Company Confidential 

User Manual Revision 1.2 17-Jan-2022 

CFR0012 110 of 110 © 2022 Renesas Electronics 

Status Definitions 

Status Definition 

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or 

additions.  

APPROVED 

or unmarked 

The content of this document has been approved for publication.  

 


	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	3.1 DA14585 IoT MSK Hardware Features
	3.2 DA14585 IoT MSK Hardware Architecture

	4 DA14585 IoT MSK Reference Application
	4.1 Software Features
	4.2 Software Architecture
	4.2.1 Project Files
	4.2.2 Source Files
	4.2.3 Application Configuration
	4.2.4 Configure for Air Quality Index

	4.3 Operation Overview
	4.3.1 General Description
	4.3.2 Application Initialization
	4.3.3 Advertise
	4.3.4 Connected/Sensors Idle
	4.3.5 Connected/Sensors Active
	4.3.6 Connected/Sensors Stopped
	4.3.7 Disconnect

	4.4 Wkup_adapter
	4.5 Sensor Interface
	4.5.1 General Description
	4.5.1.1 Timer
	4.5.1.2 INTERRUPT
	4.5.1.3 FORCED
	4.5.1.4 FORCED_INTER_SNGL_SHOT

	4.5.2 Sensor Interface API
	4.5.3 Driver Adaptation Layer

	4.6 Device Drivers
	4.6.1 Environmental Sensor
	4.6.2 Motion Sensor
	4.6.2.1 TDK ICM-42605
	4.6.2.2 BOSCH BMI160

	4.6.3 Magneto Sensor
	4.6.4 Optical Sensor
	4.6.5 GPIO Expander
	4.6.6 Power Amplifier

	4.7 Adding a New Sensor
	4.8 Sequence Diagrams
	4.8.1 Sensor Fusion Data Reporting
	4.8.2 Environmental Data Reporting

	4.9 Dialog Wearable Service V2
	4.9.1 Feature Report Structure
	4.9.2 Multi Sensor Report and Sensor Report
	4.9.2.1 Sensor Report for Accelerometer, Gyroscope, and Magnetometer
	4.9.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric Pressure
	4.9.2.3 Sensor Report for Indoor Air Quality (IAQ)
	4.9.2.4 Sensor Report for Ambient Light and Proximity
	4.9.2.5 Sensor Report for Button
	4.9.2.6 Sensor Report for Sensor Fusion
	4.9.2.7 Sensor Report for Velocity Delta
	4.9.2.8 Sensor Report for Euler Angle Delta
	4.9.2.9 Sensor Report for Quaternion Delta

	4.9.3 Report Structures for Configuration and Control
	4.9.3.1 Start Command
	4.9.3.2 Stop Command
	4.9.3.3 Read Parameters from Flash Memory
	4.9.3.4 Reset to Factory Defaults
	4.9.3.5 Store Basic Configuration in Flash Memory
	4.9.3.6 Store Calibration Coefficients and Control Configuration in Flash Memory
	4.9.3.7 Return Running Status
	4.9.3.8 Reset Sensor Fusion and Calibration Configuration
	4.9.3.9 Basic Configuration
	4.9.3.10 Read Basic Configuration
	4.9.3.11 Set Sensor Fusion Coefficients Command
	4.9.3.12 Read Sensor Fusion Coefficients
	4.9.3.13 Set Calibration Coefficients
	4.9.3.14 Read Calibration Coefficients
	4.9.3.15 Set Calibration Control Flags
	4.9.3.16 Read Calibration Control
	4.9.3.17 Fast Accelerometer Calibration
	4.9.3.18 Set Calibration Modes
	4.9.3.19 Read Calibration Modes
	4.9.3.20 Read Device Sensors
	4.9.3.21 Read Software Version
	4.9.3.22 Start LED Blink
	4.9.3.23 Stop LED Blink
	4.9.3.24 Set Proximity Hysteresis Limits
	4.9.3.25 Read Proximity Hysteresis Limits
	4.9.3.26 Calibration Complete
	4.9.3.27 Proximity Calibration Command


	4.10 Sensor Calibration Library
	4.10.1 Overview
	4.10.1.1 Modes of Operation
	4.10.1.2 Calibration Routines
	4.10.1.3 Calibration Procedure

	4.10.2 API Usage
	4.10.2.1 Allocation
	4.10.2.2 Initialization
	4.10.2.3 Processing


	4.11 Sensor Fusion Library
	4.11.1 Overview
	4.11.2 SmartFusion Integration Engine
	4.11.2.1 Modes of Operation
	4.11.2.2 API Usage
	Allocation
	Initialization
	Processing


	4.11.3 SmartFusion Attitude and Heading Reference System
	4.11.3.1 Modes of Operation
	4.11.3.2 API Usage
	Allocation
	Initialization
	Processing




	5 Smart Tag Reference Application
	5.1 Introduction
	5.2 Software Features
	5.2.1 Profiles and Services
	5.2.2 Alerts
	5.2.3 Advertising and Sleep Phases
	5.2.4 Push-Button Interface
	5.2.5 Security
	5.2.6 Battery Level

	5.3 Software Architecture
	5.4 Operation Overview and State Machines
	5.4.1 Application Configuration Parameters
	5.4.2 Application Task State Machine
	5.4.3 Callback Functions
	5.4.4 Advertising
	5.4.5 Connection
	5.4.6 Security
	5.4.7 Push button
	5.4.8 Proximity Reporter and Alerts
	5.4.9 PWM Engine
	5.4.10 SmartTag Sequence Diagram


	6 Beacon Reference Applications
	6.1 Introduction
	6.2 What is a Beacon?
	6.3 Beacon Example
	6.4 Beacon Formats
	6.4.1 iBeacon
	6.4.2 AltBeacon
	6.4.3 Eddystone
	6.4.3.1 Eddystone-UID
	6.4.3.2 Eddystone-URL
	6.4.3.3 Unencrypted Eddystone-TLM


	6.5 Software Features
	6.6 Beacon Parameters
	6.6.1 Advertising Data
	6.6.1.1 Using the user_default_beacon_config Struct
	6.6.1.2 Reading Advertising Data from Flash

	6.6.2 Advertising Interval

	6.7 Software Architecture
	6.8 Operation Overview
	6.8.1 Configuration Switches

	6.9 User Advertise SW Module
	6.9.1 Style
	6.9.2 Pattern
	6.9.3 User Advertise SW Module Callbacks

	6.10 Device Configuration Service
	6.10.1 Device Configuration Service Specification

	6.11 Environmental Data Notifications Service
	6.11.1 Environmental Data Notifications Service Specification

	6.12 Beacon Configuration
	6.12.1 Beacon Configuration Memory Map

	6.13 Battery Level Sampling
	6.14 Beacon Examples for DA14585 IoT MSK
	6.14.1 AltBeacon
	6.14.1.1 AltBeacon Example Sequence Diagram

	6.14.2 Eddystone
	6.14.2.1 Eddystone Example Sequence Diagram

	6.14.3 iBeacon
	6.14.3.1 iBeacon Example Sequence Diagram



	7 Memory Footprint and Power Measurements
	7.1 Memory Footprint
	7.2 Power consumption

	Appendix A MSK Boot Sequence
	Appendix B Memory Map
	Appendix C Using the mkimage Application
	C.1 mkimage Scripts
	C.2 mkimage Modes
	C.2.1 mkimage single
	C.2.2 mkimage multi
	C.2.3 mkimage whole_img
	C.2.4 mkimage multi_no_suota
	C.2.5 mkimage cfg


	Appendix D Flash Programming in MSK Applications
	D.1 Basic Information About the MSK Applications
	D.1.1 Product Header
	D.1.2 Image Header
	D.1.3 Beacon Configuration Struct and Configuration Struct Header
	D.1.4 Smart Tag Bonding Data, IoT Flash Base, IoT Flash Base Cal

	D.2 Flash Programming
	D.2.1 Burning the Whole Image in Flash Memory
	D.2.2 Preparing the Various .img and .bin Files Manually


	Appendix E Using the SUOTA Application for Android
	STEP 1: Prepare the MSK Device
	STEP 2: Install and Start the Application on the Android Device
	STEP 3: Initial Menu, Scan for Advertising Devices
	STEP 4: Connect to the Smart Tag Device
	STEP 5: Update SmartTag Software Image
	STEP 6: Set SUOTA Parameters
	STEP 7: Reboot the Device
	STEP 8: Verify that the New Software is Running on the SmartTag Device

	Revision History

