RENESAS

Company Confidential

User Manual

DA14585 loT Multi Sensor
Development Kit Developer's
Guide

UM-B-101

Abstract

The IoT Multi Sensor Development Kit (MSK) based on DA14585 supports 15 Degrees of Freedom
and includes five reference applications: 0T Sensors, 0T Smart Tag, and three different types of
beacons. The corresponding apps run on iOS/Android devices and the cloud services offers great
flexibility to customers in product design. This document provides a detailed guide for developers on
using these reference applications for their own projects.

RENESAS

UM-B-101
DA14585 IoT Multi Sensor Development Kit Company Confidential

Developer's Guide

Contents
2N ¢ 153 1 - o 1
(L0] 1=] o1 £ SRR 2
L Lo TN =T OO PP PPPPP 6
1= = PPNt 7
1 Terms and DefinitiONS s 9
2 REEIENCES ..o 10
G T 1o o Yo LU o] 4 o o S 11
3.1 DA14585 I0T MSK Hardware FEAUIEScciiiiiiiiiiiiicicciic e 11
3.2 DA14585 10T MSK Hardware ArChit@CtUIecceviiiiiiiiiiee e 12
4 DA14585 10T MSK Reference APPliCAtiONoocuuiiiiiiiiie e 12
4.1 SOMWEAIE FEAIUIES s 12
4.2 SOfWAIE ArCNIEECIUNE nnannnnan 13
421 (0 1=Tox A 1 =SSR 13
4.2.2 ST 10 o= TN 1= 14
4.2.3 Application ConfiguIation.............ceeeeeiiiiiiiiiee e e e e 16
424 Configure for Air QUAality INAEXoooiiiiiiiii e 17
4.3 OPErAtiON OVEIVIEWvviiiiiiiiieeiiiite ettt e sttt e e sttt sttt e s et bt e e s e bt e e s aabb e e e s antbe e e s ansbeeeeenbeas 17
4.3.1 GeNEral DESCIIPLON ..ceiii et e e e e e e s e e e e e e e e 17
4.3.2 Application INIGANIZALIONcvviiiiiiiee e 18
4.3.3 N0 AV =Y 11T USRS 18
434 ConNected/SENSOIS IAIEuuuieiiiiiiii 19
4.35 CoNNECIEd/SENSOIS ACLIVEuuuiiiiiiiiiiiiiiiii e aananannnes 19
4.3.6 ConNected/SENSOrs STOPPEU.cciee ittt e e e e e e e 20
4.3.7 DiSCONNECT ... 20
YV (0T o = o F= o (= SRS 20
A5 SENSON INLEITACE aaanan 21
45.1 GeENEral DESCIIPIONoitiiiie it s e e s nb e e e e 21
45.1.1 I T 22
45.1.2 INTERRUPT L. e e e e e e 23
45.1.3 FORGCED.ttt e e e e e e e e e e e s eanees 23
4514 FORCED _INTER_SNGL_SHOTcccciiieiciiie e 23
45.2 SENSOr INLEITACE AP e e e e e 24
45.3 Driver Adaptation LAYooiuuiiiiieaeee ittt e e 25
T B oY oo I D T4 1YY R 25
4.6.1 Environmental SENSOr ... 25
4.6.2 MOLION SENSOK ..o 26
4.6.2.1 TDK ICM-42605.....0ceiieiei ettt e e e e e e e e e e 26
4.6.2.2 BOSCH BMILB0.........cuiiiiiiiiieeiiiiieesereeeseee s siee e s snree e s esaee e 26
4.6.3 =T L= (o IR T= o 1o 27
4.6.4 OPLICAI SENSON ...t e e e e bbb e e e e e e e e anbareeeeaa e an 27
4.6.5 GPIO EXPANAET ...ttt e e e 27
4.6.6 POWET AMPETIEE...cii i e e e e e 28
A7 AJAING 8 NEW SENSOK ...eeiiiiiiiiiee ittt s e e s et e e s et e e e s anbe e e e e nneas 28
TS 1= To [1= (o =T D = o | = 1SS 28
User Manual Revision 1.2 17-Jan-2022
CFR0012 2 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide
48.1 Sensor Fusion Data REPOIMINGc.uveiiiiiiiieiiieee et 29
4.8.2 Environmental Data REPOIINGvvvviieiiiiiiiiieeiie et e s e e e snnneee s 30
4.9 Dialog Wearable SEIVICE V2 ...t 31
4.9.1 Feature RepOrt StrUCTUIe ..., 32
49.2 Multi Sensor Report and SeNSOr REPOIT.........eeuiiiiiiiiiiiiiiiie e 33
4921 Sensor Report for Accelerometer, Gyroscope, and
MagnNetOMELer 34
4.9.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric
PrESSUIE ..ot a e 34
4.9.2.3 Sensor Report for Indoor Air Quality (JAQ)......covovveeerriireeiniieeeeee. 34
4924 Sensor Report for Ambient Light and Proximitycccoccceeennnen. 35
4.9.2.5 Sensor Report fOr BULtON..........oooiiiiiiiiiieeee e 35
49.2.6 Sensor Report for SEeNSor FUSIONocoviiiieiiiiieeiee e 35
4.9.2.7 Sensor Report for Velocity Delta........ccccceeeevviiiiiieein e 36
49.2.8 Sensor Report for Euler Angle Deltacccoooviiviiininiciniieeee, 36
4.9.2.9 Sensor Report for Quaternion Delta...........coovccvvveeeeeeiiivicciiiieeeeeee, 36
49.3 Report Structures for Configuration and Control............cccceeeviiiiiieiie e, 36
49.3.1 Start COMMAN........ccoiiiiiiiiiie e e e e e e 37
4.9.3.2 StOP COMMANG....eiiiiiiiiiiiiiiie e a e 37
4.9.3.3 Read Parameters from Flash Memorycccoocviiiiie e, 37
4934 Reset to Factory DefaultSccccvvveeeee e 37
4.9.3.5 Store Basic Configuration in Flash Memorycccccccoviiiiiieeennnn. 37
49.3.6 Store Calibration Coefficients and Control Configuration in Flash
MEBIMOIY .t a e 38
4.9.3.7 Return RUNNING StAtUScooveeiiiiiiiiieee e 38
4.9.3.8 Reset Sensor Fusion and Calibration Configuration 38
4.9.3.9 Basic Configurationccccceoiiiiiiiiiiee e 38
4.9.3.10 Read Basic Configuration..............ueeeiiieeiiiiiiiiiieeee et 40
49.3.11 Set Sensor Fusion Coefficients Commandcccccceevvvicivieenneeennn. 41
4.9.3.12 Read Sensor Fusion COeffiCientsS...........ooiuiiiiiiiieiiiiiieeceee e 42
4.9.3.13 Set Calibration COeffiCientSoovccuiiiiiiieiie e 42
49.3.14 Read Calibration CoeffiCients...........ccccveiiiiieiiiie e, 42
4.9.3.15 Set Calibration Control FIags..........ccooviiiiiiiiiiiieeee e 43
4.9.3.16 Read Calibration Controlcccvvviiieeeiiiiiiieece e 44
4.9.3.17 Fast Accelerometer Calibrationccoooiiieiiiieiiiiiiiieee e 44
4.9.3.18 Set Calibration MOAESouvvieeiiiiiiiice e 44
4.9.3.19 Read Calibration MOAESccvviiiiiiiiieiiee e 45
4.9.3.20 REAd DEVICE SENSOISeeiiiieeiiiiiiieiiieee e i eiiieeee e e e e e sseeereeeeeaeeeeennees 45
49.3.21 Read Software VErSiON.........cooviiiiiiiiiee e 46
4.9.3.22 Start LED BIINK ...vvviiiiiiiec et 46
4.9.3.23 StOP LED BliNK.....ooeiiiieiieee e 46
4.9.3.24 Set Proximity Hysteresis LIMItSccccccveeeiiiiiiiiecece e a7
4.9.3.25 Read Proximity Hysteresis LimitS.........cccoocuvereiiiieieiniiiee e 47
4,9.3.26 Calibration COmMPIELEuviiieiiee e a7
4.9.3.27 Proximity Calibration Commandccoocciiiiiiiiiiiiiiiee e a7
4.10 Sensor Calibration LIDFAryccc.uviiiiieeiiiiiieie e e e e s s e e e e e e s e e e e e e s e nnnrneeees 48
O T R @ V=TV = TP PPPP TSP 48
User Manual Revision 1.2 17-Jan-2022

CFR0012

30f 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide
410.1.1 ModeS Of OPEIAIONcciiieiiieiiiee e 48
4.10.1.2 Calibration ROULINEScooiiiiiiiieee e 48
4.10.1.3 Calibration ProCedure ... 49
4.00.2 APLUSAQE ... 50
4.10.2.1 AlTOCALION ...ttt 50
4.10.2.2 INIEANIZALION ..eeeeee e 50
4.10.2.3 PrOCESSING -..ctteteeiiee ettt a e 52
4.11 SeNSOr FUSION LIDIAIYooiiiiiiiiiiiieii ettt 53
I O T © 1V T PSPPSR PP ST 53
4.11.2 SmartFusion Integration ENGINEcooiiiiiiiiiiiiecie e 53
411.2.1 ModeS Of OPEIAIONciiiiiiiiiiiiiie e 53
4.11.2.2 APTUSAQGE.....ceiiiiie ittt 54
4.11.3 SmartFusion Attitude and Heading Reference System.........cccccceevviiieeiiiienennns 55
411.3.1 Modes Of OPErAtiONeevvieeiiiiiiiiee e 55
4.11.3.2 APTUSAGE.....eeiiiiee ittt sttt 56
5 Smart Tag Reference APPliCatiONcoii i 57
L 700 R [1 o Yo [T 1o o PR 57
5.2 SOMWAIE FEAIUINES ... ettt e e s 58
521 Profiles @and SErVICESuviiei it e e e e s eenreaee s 58
5.2.2 AT e 58
5.2.3 Advertising and SIeep PhaSes..........ooiiiiiiiiiiiii e 58
524 (VY 0 2 o] o I V) (=] 1 = Lo = S 59
5.25 Y=o PP TP 59
5.2.6 BAttery LEVELot 59
5.3 SOftWAre AICIITECIUMEcouiiiiiii ettt e b s 60
5.4 Operation Overview and State Machines ... 60
54.1 Application Configuration Parameters.........cccccooevciiiiieeeee it 60
5.4.2 Application Task State MacChineccuuuiiiiiiiiii e 60
543 (072111 o= Tod [=11 Tox 1 o] o <R 62
5.4.4 F o AV 4113 o TP 62
545 (0] o1 a1 Tox 1o o P RS RRET 63
5.4.6 Y=o] 2 SRS 63
5.4.7 PUSH BUHON ... e e 63
54.8 Proximity Reporter and AlITS.......cooiiiiii i 64
5.4.9 PWM ENQINE ...ttt et e e et e e e e e e e snnbeeeeeas 65
5410 SmartTag Sequence DIagramcccceeiiiiieiiiiiee et 66
6 Beacon Reference APPIICALIONSooiiiiiiiiiiiiie e 66
LG 70 R [011 o To [V 1T o O PSP U PP PT PR PPRPPN 66
6.2 WRhALIS @ BEACONT ...ttt e et e e e e e e e e e e e e e eeeeas 67
6.3 BEACON EXAMPIE ...ciiiiiiiii e n 67
6.4 BEACON FOMMALS........cuiiiiiiiiiiiiirie ittt r e e er e e e s e e 68
6.4.1 1 27= = Lo o] o I RS PPRRPR 68
6.4.2 FN 11 =T=T: Voo OO U PP PP RPN 69
6.4.3 EAAYSIONE ... 70
6.4.3.1 EddyStone-UIDccoooeiiiiiiee e e e a e 71
6.4.3.2 EddyStone-URLccuoiiiiiiiieiie e 72
User Manual Revision 1.2 17-Jan-2022
CFR0012 4 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101

DA14585 IoT Multi Sensor Development Kit Company Confidential

Developer's Guide
6.4.3.3 Unencrypted EAdystone-TLM.........cocoiiiiiiiiieiiiee e 73
6.5 SOMWAIE FEALUIES.....ciiiiiieie ittt s et s e s r e s nee s 74
6.6 BEACON PAr@MELEISeiiiiiiiiiiiieiieie e s 74
6.6.1 F o AV g[S o DT = ST 74
6.6.1.1 Using the user default beacon config StruCt..........ccccocveieennen. 75
6.6.1.2 Reading Advertising Data from Flash...........ccccocoviininiiiiineee, 76
6.6.2 AAVErtISING INTEIVALcooiiiiiii e 77
6.7 SOMWAIE AICNITECTUIEcciiiiiie ittt e e e s 77
6.8 OPEIAtiON OVEIVIEWeeiiiiiiiiieeitiiee ettt ettt e sttt ettt e e s be et e e sbbe e e e sbbb e e e sbb e e e e sbbaeeessaneeeas 78
6.8.1 Configuration SWItChESuuiiiii e 79
6.9 User AdVertiSe SW MOAUIEooiiiiiiii ettt 80
6.9.1 5] 1/ - SRS 80
6.9.2 PATEIN ... 80
6.9.3 User Advertise SW Module Callbacks............coovuiiiiiiiiiiiiiie e 82
6.10 Device COoNfIQUratiOnN SEIVICEuuiiii ittt e e e e e e e e e e e e e s e annbeeeeeas 82
6.10.1 Device Configuration Service SPecifiCation............cccccevriireiriiiieeiniee e 82
6.11 Environmental Data NotifiCations SErVICE..........ccoviieiiiiiiiieie e 83
6.11.1 Environmental Data Notifications Service Specification..............ccccocveeviiieeennnn. 83
6.12 Beacon CONfIQUIALION.c.uiii ittt e e e saba e e sabeeee s 84
6.12.1 Beacon Configuration Memory Mapccooiioiiiiiiiiiiaeee e 84
6.13 Battery Level SAMPIINGeeii it 86
6.14 Beacon Examples for DAL14585 10T MSKcciiiiiiiiiiiiiiiii e saneaee s 86
B.14.1 ARBEACON ..eeiiiiiei ittt e e e e e e e e e e e e e s 86
6.14.1.1 AltBeacon Example Sequence Diagramcccccevvveeeeriieeeennieneeens 87
B.14.2 EAUAYSIONEoiiiiiiiiiiiie ettt e e e e et e e e e e eeaaa e 88
6.14.2.1 Eddystone Example Sequence Diagram..........ccccceeveivereenniveeesenenen. 89
B.14.3 IBEACONci ittt 89
6.14.3.1 iBeacon Example Sequence Diagram..........cccoocveeeinieneiiiiineseenen. 91
7 Memory Footprint and Power Measurements ..o 91
7.1 MEMOIY FOOIPIINT ..o 91
7.2 POWET CONSUMIPLION.uiiiiiiiiiiie it 92
AppPendix A MSK BOOL SEQUENCEcoiiiaaiiiitiieie ettt e e e e e e e bbbt e e e e e e s e snnbeeeeaaeeeaanneee 93
PN o] o X=T a0 T = T Y= T Lo T A\ = o RPN 93
Appendix C Using the mkimage APPIICALIONeviiiiiiii e 95
(O R 1 R =T oIS o] LTRSS 95
(O A (11 B 7=t (=3 1Y (0T [RSP 96
c.21 MKIMAGE SINGIEeiiiiiiit e e e e e e e e snaees 96
C.22 MKIMAGE MU ...t e e snaeee s 96
c.2.3 MKIMage Whole _IMQ.......c.uuiiiiiiee e e e 97
C.24 MKIMage MUILI_NO_SUOLA........ccoiuiiiiiiiiiie et 97
C.25 001 4 F= o T o3 o [P PRRPR: 97
Appendix D Flash Programming in MSK AppliCatioNS........ccooiiciiiiiiie e 97
D.1 Basic Information About the MSK ApPliCatioNScooeiiiiiiiiiiiiei e 97
D.1.1 ProduCt HEAUEN ... 97
D.1.2 [g Tz Vo [N L= To [T SRR 98
User Manual Revision 1.2 17-Jan-2022
CFR0012 5of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide
D.1.3 Beacon Configuration Struct and Configuration Struct Header...............cccceeene. 98
D.1.4 Smart Tag Bonding Data, 10T Flash Base, I0T Flash Base Cal..............cccc........ 99
D.2 Flash Programimingo.eeeeoiieeieiiiiieeesiiie ettt e st e e e s sibe e e e s sabreeessnnneeeeanes 99
D.2.1 Burning the Whole Image in Flash Memorycccccccvvievie i 99
D.2.2 Preparing the Various .imgand .bin Files Manually.............ccccooeeveeiiniiiinnnnn. 101
Appendix E Using the SUOTA Application for ANdroidcccooocciiiieeeee i 103
REVISION HISTOTY ...ttt ettt e e e shb et e e s sh b e e e e sabe e e e s sabaeeeesnbeeeeeaaes 109
Figures
Figure 1: Internet of THINGS (I0T)....ueiii it e e e e e 11
Figure 2: Hardware Architecture of DAL4585 10T MSKccoiiiiiiiiiiiiiiiie e 12
Figure 3: DA14585 10T MSK Software ArChiteCUIe..........ccoiiiiiieiiiie et 13
Figure 4: General Application Flow of DAL4585 [0T MSKcocoiiiiiiiiiiiieciiee e 18
Figure 5: DA14585 10T MSK iN AQVEItISE StAteceiiiiiiiiiiiiiiiiie et 18
Figure 6: Overview of SeNSOrs Data Pathouuiiiiiiiiii e 20
Figure 7: SeNSOr INtEIfACE OVEIVIEWuiiiiii ittt e et e e e e e e nbebeeeaa e e an 22
Figure 8: Timer SeNsS0ors TIMEIINE ... e e e e e e e st reeeeeeeaean 22
Figure 9: INTERRUPT SENSOr ACCESS SEQUENCEuvvvieeiieiitiiieeeeeesiiietteseeesesssssssntneseesesssnnnssseseeeesann 23

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

FOrced REaAd SEUUENCEuuiiiiiie et e e e s e e e e e e e s et e e e e e e s snnnrnaeeeeeaeaean 23
FORCED_INTER_SNGL_SHOT FUNCHONAILYcoeeiiiiieiiiiiie i 23
SIREQISIIAtiON PAthcooiiiiiiiii e 24
Sequence Diagram of Sensor FUSIoNn REPOItiNGc..veiviiiieiiiiiiiieiiiee e 30
Sequence Diagram of Environmental Sensor Reportingcccveveveveeriiiieeeniieee e 31
Smart Tag Application TASK FSMooiiiiiiiiii e 61
Smart Tag Reference Application Sequence Diagramocccueveeerieeiniiiiiieeeee e 66
BEaCON ProtOCOI LOGOSueiiiiiiiieeiiiiie ettt e et e e e e e e eiba e e e e e e e e s 67
Bluetooth LOW ENergy BEACON..........ouuuiiiiiiie ettt 67
Description of the Exhibit on a Smartphone..........ccccveve i 68
IBEACON FIAMEoi ittt ettt b e e esre e 68
ABEACON FIaIME.....coiiiiiiii ettt et e e e eenee s 69
Eddystone Modes Supported by Dialog's Beacon Reference Design..........ccccccvvvvevreeennn. 70
Eddystone Different Mode Frames ANalyZedcoooiiiiiiiiiii i 70
Example of a Device Configuration Struct in Flash Memorycccccvveeeeeiiiicciiieneeeeen 76
Beacon SW SYSIEM OVEIVIEWeiiiiiiiiieiiiie ettt ettt ettt e e e e e e 77
OPEIAtION OVEIVIEWeiiiiiiiii ettt ettt et et et e e sttt e e s bbbt e e s bt et e e asbn e e e snnneee s 79
User Advertise Usage EXAMPIEoooiiiiiiiiiiiiie ettt 81
Data Format in Write ConfIQUIatioN...........coouiiiiiiiiiiie et 82

Figure 29: Indication Data Format in Read RESPONSEc..uuiiiiiiiiiiiiiieiei e 83
Figure 30: AltBeacon Example TranSition DIAgIamooocuueeiiiieaiiiiiiieiee et eeaa e 87
Figure 31: Altbeacon SeqUENCE DIAgramcccuviiiiiee e e e s e e e e st e e e e e e sentrreeeeaaeae s 87
Figure 32: Eddystone UID/URL/TLM Example Transition Diagram..........cccccceevecivireeeeeeeeiicinieeeeeeeenn 88
Figure 33: Eddystone SequenCe DIagramccuuuiiiiieeiieiiiiiiee e e e s sesie e e e e e e st e e e e e e e s sentnrreeaaaeaean 89
Figure 34: iBeacon Example Transition DIiagram..........ccueeeiiiiieeiniiiee ettt 90
Figure 35: iBeacon SEqUENCE DIAGIAMcoiuiiiiiiiiie ettt ettt s e et e e st e e e eneeas 91
Figure 36: Application Programmed in OTP FIagS........ccuutiiiiiiiiiiiiee et 93
Figure 37: Analyzing a FIash Memory IMAage........c.ueiiiiiiiie et 94
Figure 38: Initial Window to Choose Device and Connection TYPEcueveeviiereeiiiere e 99
Figure 39: Opening SmartSnippets Board SETUPcuiie it 100
Figure 40: Smart Snippets Board Setup WINAOW...........coooiiiiiiiiiiie i 100
Figure 41: SPI FIash Programimer... ...ttt e et e e e e e eeeeas 100
Figure 42: Device Config Struct Format in Xt File ... 102
Figure 43: Programming the Various Fields of the Device Configuration Struct.................coecvvvneee.. 102
Figure 44: Creating a Custom Dev_Conf Struct .binFile...........ccccooiiiiiiiiiiie 103
FIgUIe 45: SUOTA APP ICON....eiiiiiitiee ettt e et e e e st e e e e s st ae e e e sabneeeeaaes 104
User Manual Revision 1.2 17-Jan-2022

CFR0012

6 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Figure 46: DeViCe SeleCHON MENUc.uuiiiiiiei i e e e s e e e e e e s e st ae e e e e e e s e snnraeeees 104
T [0 A] ST (== o SR 105
Figure 48: File SEIECHON SCIEENccoi it s e e e e e s e st e e e e e e s e snnrraeees 105
Figure 49: SUOTA Parameter SENGS .. .uuuuriiieeiiiiiiiiieee e e e ssstieee e e ee e s s s santeeeeeae e s s s snnteaeeeseeesnsnnsneeeees 106
Figure 50: SUOTA UpIOadiNg SCIEEMuvviiiiieei ittt e st e e e s st ae e e e e e e s e st e e e e e e s e annreaeees 107
Figure 51: SUCCESSTUl UPAAte SCIEEN........uuiiii et e e e e e e snnraaeee s 108
Tables

Table 1: Source Files for DA14585 10T MSK: OVEIVIEWccoiiiiiiiiiiiiieeiiiiiee e e e snneeee s 14
Table 2: Source Files Specific to DALA585 10T MSKcoiiiiiiiiiiiiiiiieie et 15
Table 3: Header Files for the Configuration of DAL14585 I0T MSKcciviiiiiiiiiiiiieee e e 15
Table 4: Configuration ParamEtersoouiiii ittt sbb e saareee s 16
Table 5: DWSV2 CharaCteriStCSuuiiiiiiiiiiiiiiiiieee ettt e e e e e sttt e e e e e e s et e e e e e e e e sasnbebeeeeaaeeesannnnes 31
Table 6: Features REPOI SIIUCTUIEcoi ittt sbe et e snn e e e snnneeeas 32
Table 7: MUIti SENSOT REPOIT.........eiiiiiiiiiee ittt et e e sbb et e e sbnr e e e snnneee s 33
TabIE 8: SENSOI REPOIeeeiiiiiei ittt ettt e e e e et e e e e e e e s e bbb be et e e e e e e s aaabbbeeeeaaeeesannnes 33
Table 9: Report TYPES/REPOIT ID'Suiiiiieiiiiie ettt ettt e e e e e abb e e e e e e e e e saaeeee 33
Table 10: Report Structure for Accelerometer, Gyroscope, and Magnetometer............cccccceveeeeeiineee 34
Table 11: Bitfield Structure for SnNST State ... 34
Table 12: Environmental SENSOr REPOMciiiiiiiiii ittt e e aneeee s 34
Table 13: Indoor Air Quality (IAQ) REPOITcciiiiiiiiiitiie ettt 34
Table 14: Sensor Report for Ambient Light and ProxXimitycccocueeiiiiiiiiiiiie e 35
Table 15: Sensor RePOrt fOr BUIION.......c.io e e e e e 35
Table 16: Sensor Report fOr SENSOr FUSIONiiiii ittt e e e e e e e e e e seaeeee 35
Table 17:Sensor Report for VelOCity DElta...........coovi it 36
Table 18: Sensor Report for Euler ANgIe Delta........ccoioiuiiiiiiii et 36
Table 19: Sensor Report for Quaternion DERa.............cccuviiiiii e 36
Table 20: Report Structure for COMMEANASoviiiiiiiiiiieiee e e e e e e e e e e seannes 37
Table 21: Start COMMEANGcocoi i e e e e e s s s e e e e aeeesasse s teeeeeeeeesnnssnseneeeaeeesannsne 37
Table 22: Start CoOmMMANT REPIYcoiiriiiiiiiiiiee ittt e et e e sbbe e e e neeeee s 37
Table 23: S0P COMMENG.oiiiiiiiii ittt e bt e e sttt e e sbb e e e e sbee e e e anbeeeesneeeeean 37
Table 24: Stop CoOMMANT REPIY ...eeiiiiiiiee ettt sanee e s 37
Table 25: Read FIash COMMEANGooiiiiiiiiie et e e e e e e e e e e e e e e s neeee 37
Table 26: Reset to Defaults (RtD) COMMANG.........ccoiiiiiiiiiiiie it seeeee s 37
Table 27: Store Basic Configuration COMMEANGooiuuiiiiiiieea i e e e e e e seaeees 37
Table 28: Store Calibration and Control COMMANcoiiiiiiiiiiiiiiieie e 38
Table 29: Return Running Status COMMEANGccooiiiiiiiiiiiiei e e e e e e e e e e seneeee 38
Table 30: Return RUNNING Status REPIY.......ccuiiiiiiiee e e e e e sennnes 38
Table 31: Reset Sensor Fusion and Calibration Configuration commandcccccceoevcvviiieeeee e, 38
Table 32: Basic Configuration COMMANG.............coiiiiiiiiiiiiiiee e e s e e e e e e s s e e e e e e e e sennenes 38
Table 33: Read Basic Configuration COMMEANGooiiiiiiiiiiiiiiee e 40
Table 34: Read Basic Configuration Command RePIY...........coiriiiiiiiiiiiiice e 40
Table 35: Set Sensor Fusion Coefficients COMMANoooiiiiiiiiiiiie e 41
Table 36: Read Sensor Fusion Coefficients COmMmMaNdccueeiiiiiiiiiiiiiiie e 42
Table 37: Read Sensor Fusion Coefficients Command RepIY.........cocvvviiiiiiiiiiiiiiiie e 42
Table 38: Set Calibration Coefficients CoOmMMAaNduueiiiiiiiiiiii e 42
Table 39: Read Calibration Coefficients CoOmMmMaNdcooiiiiiiiiiiiiiiiie e 42
Table 40: Read Calibration Coefficients Command RepIY.......ccooiuiiiiiiiiiiiiiii e 42
Table 41: Set Calibration Control Flags Command.............cccceeeiiiiiiiiiiiiie e e 43
Table 42: Calibration Control FIAgS #L........ooiiiiiiiiie et e e e e e e e s rre e e e e e e e senenes 43
Table 43: Calibration Control FIAQS #2.......cco it e e e e e e r e e e e e e s eaenes 43
Table 44: Calibration ParamMeterS.uuui ittt sttt e e e sbee e e sbbeeaesneeeee s 43
Table 45: Read Calibration Control Flags Commandcceooiiiiiiiiiiieee e e e ssereeee e e e e 44
Table 46: Read Calibration Control Flags Command RePIYcccuvviiiieeeii i e 44
Table 47: Fast Accelerometer Calibration COmMmMandcooviiiiiiiiiieee e 44
Table 48: Fast Accelerometer Calibration REPIY........c..ooiiiiiiiiiiiiiiii e 44
Table 49: Set Calibration Modes COMMEANTcciiiiiiiiiiiiiiieie e r e e e e e ssseerereeeaeeesenneeee 44
User Manual Revision 1.2 17-Jan-2022

CFR0012 7 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Table 50: Read Calibration Modes COMMANGcuuiiiiiiiiiiiiiiie e seeaeee s 45
Table 51: Read Calibration Modes Command REPIYuuuiiiieiiiiiiiiiiiiec e 45
Table 52: Read Device SeNSOrs COMMANTuuuiiiiiriieeiiiieeeiiieeeesiteeessteeeesssseeeesseeeeesnsseeessnsseeees 45
Table 53: Read Device Sensors Command REPIY.......ccuuiviiieie i e e 45
Table 54: Read Application Software Version Commandccccvieiieeeeiiiiiiiieeeee e ssrinireee e e e e 46
Table 55: Read Application Software Version Command ReEPIY.......cccceveveeiiiiiiiiiiiee e e e 46
Table 56: Start LED BIINK COMMANGcoiiiuiiiiiiiie e e ee e s st e e e e e s sssneeteeeeeee e e sssnnnneeeeeaeeesnnnnnns 46
Table 57: Stop LED BIINK COMMAN..........ouiiiiiiiiiiiiiiiiee ittt snanee s 46
Table 58: Set Proximity Hysteresis Limits COMMANcoooiiiiiiiiiiiniiiie e a7
Table 59: Read Proximity Hysteresis Limits COMMAaNdccueviiiiiiiiiiiiiiie e a7
Table 60: Read Proximity Hysteresis Limits Command Reply...........ccovviiiiiiiiiiiiiiii e a7
Table 61: Calibration Complete NOtFICALIONeiiiiiiiiiiii e 47
Table 62: Proximity Calibration COmMMEaNG...........cooiiiiiiiiiiiie e 47
Table 63: Proximity Calibration Command Replycc.uueiiiiiiiiii e 47
TADIE B4 AlCIT TYPES - eieeeeeee ettt ettt et e oottt e e e e e e e ek b b be et e e e e e e e e hbbbe e e e e e e e e sanbbbeeeeaaeeesanrnee 58
Table 65: PUSh-BULION INTEITACE ...t n 59
Table 66: Smart Tag Application Configurable Parameters...........cccoveveeeeiiiciiieiiee e 60
Table 67: Application Task: FSM StatesSccuuiiiiieiiiiiiiiiiee e e e e e s e e e e e e s s s sanrer e e e e e e e sennenes 60
Table 68: State Transitions of the Application Task FSM ...t 61
Table 69: Example of Advertising Data from a Museum BeacoN.............coovvvciviiiiieeeisiiiciiieieee e 68
Table 70: AItBEacON ProtOCOI FI€IUSooiiiiiiiiiiiie et e e e e e e e seneeee 69
Table 71: EAdyStONe Frame TYPEScueiiiiiiiie ittt ettt ettt et e e s e e e snnneee s 71
Table 72: EAdyStONe UID FIamMe..........uoiiiiiiiiieiiieee ittt ettt snnne e s 71
Table 73: Frame SPeCIfICAtION...........uuiiiiiiiiiie e e e e e e e e e e e s aneee 72
Table 74 URL SChEeME PrefiXottt e e e e e e e seieeee 72
Table 75: Eddystone-URL HTTP URL ENCOQINGccoiiiiiiiiiiiaieii ittt 72
Table 76: Eddystone-TLM Frame SPeCifiCationcccuuiiiieeeii i e e e ssinre e e e e e e senenes 73
Table 77: Format of Struct user beacon CONEig TAG ... 74
Table 78: AdVertiSing INTErVAl LOCATIONcoiiiiiiiiiiiiiee ettt sanee e 77
Table 79: Source Files of Beacon Reference AppliCationsScooiiiiiiiiiiiiiiiiiiee e 77
Table 80: List of Software Configuration SWItCNES...........cocuiiiiiiiiii e 79
Table 81: List of Profile Configuration SWItChesS..........ooouuiiiiiiii e 79
Table 82: Characteristics of the Device Configuration SErVICecceeiiiiiiiiiiiiiieiieee e 82
Table 83: Characteristics of the Environmental Data Notifications Serviceccccoovciieeiiiinninins 83
Table 84: Configuration Data FOIMAL...........cccuiiiiiiee e e e e e e e e e e e e s e e e e e e e e e e sennenes 84
Table 85: MEMOIY FOOIPIINTccciii it e e e e s s e e e e e e s e eaa e e e e aeeesasanntaeeeaaeeesannnnes 91
Table 86: POWET CONSUMPLIONuiiiiiiiieeeieciie et e e e e e s et e e e e e e s s st eeeae e e s e stsbaaeeeaeeesasnsnraeeeaaeessannnnes 92
Table 87: Parts of the Image Depending on the APPlICAtION...........cooiieiiiiiiiie i 94
Table 88 Available mKimage SCHPLS.......cuii ittt s 95
Table 89: Product Header FOIMAL.........ccooi it e e e e e e e e e e e e s aneeee 97
Table 90: Image Header FOMMALcouii ettt e et e e e e e e s abebeeea e e e e e sannees 98
Table 91: Beacon Configuration HEAETeiiiiiiiiieii et 98
Table 92: Beacon Configuration StruCt FOrMat...........oociuiiiiiei e e 99
Table 93: Files Needed or Created During Flash Programmingccccccoovcuviiiieeeeiiiciiieeee e 101
User Manual Revision 1.2 17-Jan-2022

CFR0012 8 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

1 Terms and Definitions

Company Confidential

ADC Analog to Digital Converter

AHRS Attitude and Heading Reference System
API Application Programming Interface
BASS Battery Service Server

BD Address Bluetooth Device Address

BLE Bluetooth Low Energy

ciB Communication Interface Board

DAL Driver Adaptation Layer

DISS Device Information Service Server
DWS Dialog Wearable Service

FEM Front End Module

FIFO First In First Out buffer

FSM Finite State Machine

GAP Generic Access Profile

GAPC Generic Access Profile Controller
GAPM Generic Access Profile Manager
GATT Generic Attribute Profile

IAQ Indoor Air Quality

IE Integration Engine

IMU Inertial Measurement Unit

loT Internet of Things

IRQ Interrupt Request

LSB Least Significant Bit

MEMS Microelectromechanical Systems

MSB Most Significant Bit

MSK Multi Sensor Development Kit

MTU Maximum Transmission Unit

NTF Notifications are Allowed

NVDS Non-Volatile Data Storage

ODR Output Data Rate

PWM Pulse Width Modulation

RAM Random Access Memory

Report Notification of Sensor Data and Control
RSSI Received Signal Strength Indicator
SCL Sensor Calibration Library

SF Sensor Fusion

SFL Sensor Fusion Library

Sl Sensors Interface

SUOTA Software Update over the Air

UART Universal Asynchronous Receiver/Transmitter
uuID Universal Unique Identifier

WR Write Enabled

User Manual Revision 1.2 17-Jan-2022
CFR0012 9 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

2 References

[1] UM-B-080, DA14585/586 SDK 6 Software Developer’s Guide, User Manual, Dialog
Semiconductor.

[2] UM-B-079, DA14585/586 SDK 6 Software Platform Reference, User Manual, Dialog
Semiconductor.

[8] RW-BLE-GAP-IS, GAP Interface Specification, Riviera Waves.

[4] UM-B-048, DA14585/DA14586 Getting Started Guide with the Basic Development Kit V2.0,
User Manual, Dialog Semiconductor.

[5] DA14585, Datasheet v3.2, Dialog Semiconductor.

[6] UM-B-089, DA14585 Range Extender Reference Application, User Manual, Dialog
Semiconductor.

[7]1 https://lwww.bluetooth.com/specifications/assigned-numbers/company-identifiers

[8] UM-B-065, Bluetooth® Smart Communication Interface Board, User Manual, Dialog
Semiconductor.

[9] https://github.com/google/eddystone

[10] https://github.com/google/eddystone/tree/master/eddystone-uid

[11] https://github.com/google/eddystone/tree/master/eddystone-url

[12] https://github.com/google/eddystone/blob/master/eddystone-tim/tim-plain.md

[13] https://github.com/AltBeacon/spec

[14] UM-B-095, DA14585 IoT Multi Sensor Development Kit Hardware Design, User Manual, Dialog
Semiconductor.

[15] https://lwww.bluetooth.com/specifications/gatt.

[16] AN-B-001, DA14580/581/583 Booting from Serial Interfaces, Application Note, Dialog
Semiconductor

[17] UM-B-102, DA14585 Getting Started Guide with the loT Multi Sensor Development Kit, User
Manual, Dialog Semiconductor

User Manual Revision 1.2 17-Jan-2022

CFR0012 10 of 110 © 2022 Renesas Electronics

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers
https://github.com/google/eddystone
https://github.com/google/eddystone/tree/master/eddystone-uid
https://github.com/google/eddystone/tree/master/eddystone-url
https://github.com/google/eddystone/blob/master/eddystone-tlm/tlm-plain.md
https://github.com/AltBeacon/spec
https://www.bluetooth.com/specifications/gatt

on LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

3 Introduction

Company Confidential

This document allows users to develop their own applications based on the DA14585 IoT Multi
Sensor Development Kit (MSK) reference design. The following chapters present detailed features of
each project and the software configuration of the reference design.

Clwd ™"
Database <—> Web services

=

Ethernet

‘ Qm‘cwa]

Wi-Fi

Sensors

Figure 1: Internet of Things (l1oT)

3.1 DA14585 loT MSK Hardware Features

m Highly integrated Dialog Semiconductor DA14585 Bluetooth® Smart SoC
m Stand-alone module
m Low cost due to printed antenna
m Low cost PCB
m Combined accelerometer/gyroscope sensor unit
m Combined sensors:
O Accelerometer and gyroscope sensor unit
O Indoor Air Quality, Temperature, Humidity and Pressure
O Ambient Light Sensor and Proximity
m Access to processor via JTAG and UART from the enclosure
m Programmable RF power up to +9.3dBm
m Three Led indicators
m General purpose push button
m Expansion slots
m Powered by two low cost AAA alkaline batteries
User Manual Revision 1.2

M \ Blietooth

17-Jan-2022

CFR0012 11 of 110

© 2022 Renesas Electronics

S LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

3.2 DA14585 loT MSK Hardware Architecture

? 23

epo1 | DCDC I

GPO2 FXLG408UMX SPK0O838HT4H MX25R2035 Power converter |
XGPO Microphone Flash ON/OFF 3.0vDo 1.8V
GPO3 expander o I g
N\ N | ‘ . i
— o L, J
| 2X4, 2.54mm |
L AKO09915C
e Qm (sl akpsetse
| expandanliity
| = 12C, SPI,CS | XTAL
| providing GRID — 16MHz
- T DA14585 BLE SoC
BMEG80 — ;E:_LE
Environmental & <T
gas (CO:z) sensor
SKY&66111
VCNL4010 mr
Proximity IR and 2c p!
ALS sensor ' —
Printed
5 2 E‘ antenna
& M Il —
| e -1 NS — =
ICP10110 | |
Buzzer, - ICM-42605 BMI160
. Deb!
:r.:slgll:lrz | LT Hei%%l:g Accelerometer Accelerometer I
sensor | A IGyro | IGyro
| _w —

Figure 2: Hardware Architecture of DA14585 loT MSK

4 DA14585 lIoT MSK Reference Application

4.1 Software Features

This section explains the advanced software features of Dialog's DA14585 loT MSK reference
applications:

GAP peripheral role.
GATT-based bidirectional data and control transfers.

m Sensor fusion library (SFL) with updated rates from 10 Hz to 100 Hz and selection among three
different sensors: accelerometer, gyroscope, and magnetometer.

m Three environmental sensors: pressure, humidity, and temperature.

m Ambient light and proximity sensor.

m Indoor Air Quality (IAQ) feature.

m Switch between Sensor Fusion (SF) data mode and raw data mode.

m Notifications for sensor data streaming.

m Sensor range and updated rate control.

User Manual Revision 1.2 17-Jan-2022

CFR0012 12 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Save and restore operation settings.

Three calibration modes for magnetometer.
Gyroscope drifting elimination algorithm.
iOS and Android central Apps.

Auto sleep and motion wakeup.

4.2 Software Architecture

42.1 Project Files

The project resides in "projects\target apps\iot\iot 585\Keil 5\iot585.uvprojx". The same
project supports both raw and SF operation. The mode of operation can be switched from the central
device application.

Project specific folders are:
e Sensor Fusion library files: iot\common iot files\lib
e Sensor Calibration files: target apps\iot\common iot files\src\calibration

e |oT Profile files: target apps\iot\common iot files\src\profiles

The project shares the following common folders:

e Driver Adaptation Layer files: projects\target apps\common\src\Driver Adaptation Layer
e Drivers folders: projects\target apps\common\src\drivers
e Sensor Interface folder: projects\target apps\common\src\Sensors Interface
e Common SDK folder: SDK 585\sdk\
user_iot.c
user_platform.c }7 user_sensors.c
1 |
I
sensors_interface_api.c
. user_sensor_sfl.c
user_sensor_config.c
sensors_interface.c user_sensor_raw.c
user_dws.c basi |
asic_acc_cal.c
Driver Adaptation Layer SBE LiE g basic_autocal.c
magneto_ak099.c sensor_calibration.c
— static_calibration.c
motion_icm4X6.c :))
spi_flash.c sensor_fusion.lib
optical_vcnl4010.c
environmental_bme680.c |
user_sensor_reports.c
Sensor Drivers spi.c
ak09915 |
icm42605 diEe
vcnl4010 dws_task.c
bme680.c
Figure 3: DA14585 IoT MSK Software Architecture
User Manual Revision 1.2 17-Jan-2022

CFR0012 13 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

422 Source Files

Company Confidential

The reference applications of DA14585 lIoT MSK are developed based on the DA14585 SDK
software. For more information on the SDK, please refer to [1] and [2].

The source code files of the reference applications are briefly described in Table 1.

Table 1: Source Files for DA14585 loT MSK: Overview

Group

Files

Description

User Platform Files (IoT DK)

user periph setup.c
i2c gpio extender.c
user iot dk utils.c
sensors_periph interface.c

Peripheral setup, Range extender,
LED control functions, Sensors
i2c-spi communication helper
functions.

User Application (IoT DK)

user dws.c
user dws_task.c
user iot.c

Main application files.

File user iot.c contains the
connect/disconnect/advertise
handlers.

Files user dws.cand
user iot task.c contain the user
interface to the DWS.

User Profiles (loT DK)

dws.c
dws_task.c

Service functions and FSM
handlers.

Sensor Calibration (IoT DK)

basic acc cal.c

basic autocal.c

static calibration.c
sensor calibration.c
smartfusion autocal.lib

Accelerometer calibration
functions.

Magnetometer calibration
functions, specific to each
calibration mode.

User Sensors (loT DK)

user sensor config.c
user Sensors.c

user sensor reports.c
user Sensor raw.cC
user sensor sfl.c

Sensor initialization.
Sensor state machine.

Main application callback
functions.

User SFL

user sfl util.c
sensor fusion.lib

Files to process sensor data

Sensor interface (IoT DK)

sensors_interface api.c
sensors_interface.c

New interface to simplify sensor
integration to project.

Driver Adaptation Layer (IoT DK)

magneto ak099.c

motion icmd4X6.c (or
motion bmil60.c)
optical vcnl4010.c
environmental bme680.c

This layer defines a common
instruction set for the "Sensor
interface" to access the sensors.

bsec_lib (IoT DK)

user iag.c
libalgobsec full.lib

Functions that estimate the air
quality output.

wkup_adapter (IoT DK)

wkup adapter.c

A wrapper to the "wkupct quadec”
to further extend the possibilities of
the module.

Drivers (loT DK)

bme680 folder
icm426xx (or bmil60)
ak09915 folder
vcnld010 folder

folder

These folders contain the factory
drivers of the sensors.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

14 of 110

© 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Table 2: Source Files Specific to DA14585 IoT MSK

File Name

Description

user iot.c

Contains all top level BLE callback functions for connection, disconnection,
and advertising.

user dws.c
user dws task.c

Provide users space access to the DWS custom service.

user Ssensors.c

Contains sensor initialization functions.
Handles sensor data on application level.

user sensor reports.c

The user space functions that are specific for sending reports (sensor and
sensor fusion data) to the central device.

user sensor sfl.c
user space raw.C

User space sensor data processing.

basic acc cal.c

Accelerometer calibration functions.

static calibration.c
basic autocal.c
sensor_calibration.c
smartfusion autocal.lib

The calibration functions for the three modes, that is, static, basic auto, and
SmartFusion auto.

user s fl_utzl .C
sensor fusion.lib

Sensor fusion library API.

sensors_interface api.c
sensors_interface.c

Expose the Sensor Interface API to the application user.
Core methods to implement the Sensor Interface module functionality.

icm426xx impl.c (or
bmile0 impl.c)
bme680_imp.c
ak09915 impl.c
vcnl4010 impl.c

Driver functions for each sensor that act as middleware for the "driver
adaptation layer". These drivers make use of the actual manufactured
drivers and use only the functions that are really needed for this
implementation instead of all available features.

The project contains a header file for each source file that contains function prototypes and
definitions. Some header files contain information that is essential for the operation and configuration
of the 10T project. The header files reside in the folder

projects\target apps\iot\iot 585\src\config. The header files are listed in Table 3.

Table 3: Header Files for the Configuration of DA14585 IoT MSK

File Name

Description

dal458x config basic.h (SDK)

Basic configuration of DA14585 for security, watchdog, and print
functions. Furthermore, in this file users can control the sensors that
are included in the project.

dal458x config advanced.h (SDK)

Advanced features of DA14585, such as low power clock source.

user config.h (SDK)

Configure data related to sleep modes, advertise, and parameter
update.

user app iot config.h (IoT DK)

Application specific definitions: sensor calibration parameters,
motion wakeup, advertising time, and LED signaling.

user callback config.h (SDK)

Application callback functions.

user modules config.h (IoT DK)

User-related module activation/deactivation.

user periph setup.h (IoT DK)

Peripheral related definitions (GPIO).

user profiles config.h (IoT DK)

Included profiles.

user dws_config.h (IoT DK)

Definition of Dialog Wearable Service.

User Manual

Revision 1.2 17-Jan-2022

CFR0012

15 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

4.2.3

Application Configuration

Company Confidential

A group of compilation switches allows to control the application’s behavior. The most important

switches are listed in Table 4.

Table 4: Configuration Parameters

Name

Default value

Description

user_config.h

app default sleep mode

ARCH EXT SLEEP ON

This controls whether the
processor to enter sleep mode
or not. Use ARCH SLEEP OFF
when connected to a debugger.

USER DEVICE NAME

"IoT-585"

The advertising name string.

connection param configuration

e Min-Max connection
interval: 20 ms to 40 ms,

e Latency: 4 (events
missed),

® Supervision timeout: 2 s.

Recommended settings.

dal458x_config_basic.h

CFG_PRINTF DISABLED Enables/disables the use of
UART debug messages.

CEG_WDOG ENABLED Enables the Watchdog timer.

VCNL40lO_OPTO_SENSOR_AVAILABIE ENARBRLED Enables/disables the opto
sSensor.

AKO 99XX7MAGNET075ENSOR7AVAILABLE ENABLED Enables/disables the
magnetometer sensor.

ICM4XX ACCEL SENSOR AVAILABLE ENABLED Enables/disables the ICM4xx
accelerometer-gyroscope
sensor.

BMI160_ACCEL SENSOR AVAILABLE DISABLED Enables/disables the BMI160
accelerometer-gyroscope
sensor.

BME680_ENVIRONM SENSOR AVAILABLE | ENABLED Enables/disables the
environmental sensor.

TAQ ENABLED ENABLED Enables/disables the IAQ
algorithm.

1AQ RESTORE_STATUS ENABLE ENABLED Enables/disables saving the IAQ
algorithm state

CFG_RANGE EXT BYPASS

Configures the range extender's
power value. For more
information please refer to [6].

dal458x_config_advanced.h

CFG_LP CLK

LP CLK XTAL32

LP_CLK XTAL32: Use external
XTAL32 as a low power clock
(recommended).

LP_CLK RCX20: Use internal
RCX20 as a low power clock.

CFG_NVDS_TAG BD ADDRESS

{0x99, 0x00, 0x00,
0xCA, OxEA, 0x80}

Defines the BD address if it is
not programmed in OTP.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

16 of 110

© 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Name

Default value

Description

user_app_iot_config.h

FAST ADV_INTERVAL

160 (= 100 ms)

The advertising interval. Unit:
0.625 ms.

ADV_TIME OUT 6000 (= 60 s) The time that the device
advertises before it goes to
sleep. Unit: 10 ms.

ALWAYS ADVERTISE DISABLED If enabled, the system will
remain in advertising state and
never go to sleep mode.

USE_FAST ACC_CAL ENABLED If enabled, the accelerometer
calibration becomes available.

GYRO_SDC_ENABLED ENABLED If enabled, the gyroscope drift
compensation is applied.

USE_SPI_FLASH CONFIG ENABLED If enabled, external flash will be
active to read and store
configuration parameters.

MAGNETO CAL ENABLED ENABLED

Enables the calibration function
of magnetometer. For more
information see section 4.11.1.

4.2.4 Configure for Air Quality Index

The Bosch BSEC Library that computes the Air Quality Index (AQI) is not included in the default
configuration (I2Q ENABLED is undefined). If users would like to compile an image that includes this
library, other features should be removed to gain the required memory space. For example, this
could be accomplished with the following steps:

1. Remove the VCNL4010 proximity sensor and undefine VCNL4010 OPTO SENSOR AVAILABLE from

dal458x config basic.h.

2. Disable "wake on motion" feature by defining ALWAYS ADVERTISE in user app iot config.h.
This also removes the low power configuration parts of ICM426xx driver.

3. Disable the fast accelerometer calibration and undefine ALWAYS USE FAST ACC CAL in

user app iot config.h.

4. Build.

5. Define IAQ ENABLED from dal458x config basic.h
6. Build again. The produced iot585.hex how includes the AQI feature.

4.3 Operation Overview

4.3.1 General Description

A general view of the application flow is presented in Figure 4.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

17 of 110

© 2022 Renesas Electronics

LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

Y

P Start/Stop
.APP“FatI.on Advertise > Sellimeizl) — > Connected./ —»{ Disconnect
initialization Sensors Idle Sensors Active

A 4

b -~
y

Wake on
motion

Figure 4: General Application Flow of DA14585 loT MSK

4.3.2 Application Initialization
The function user iot app on init() located in "user iot.c"file handles:

e |Initialize processor peripherals, periph init().
e Initialize radio extender GPIOs, init ext gpio().

e Disable all external sensors and turn off all LEDs to reduce power consumption,
clr led(ALL LED).

e Explicitly for the accelerometer sensor inside this routine, certain registers will be set to avoid
overconsumption.

e Clear sensor interface variables, wkup ad init ().
e Load sensor configuration from flash if available, user periph sensors initialize().
e Start BLE parameter updating.

4.3.3 Advertise
In this state, DA14585 loT MSK will be visible to client applications.

Start Led blink
start_advertise_blink()

Advertise start
user_adv_start()

Advertisement start
user_easy_gap_undirected_advertise_start()

)

Advertising complete
user_app_on_adv_undirect_complete()

A A

Keep system awake

Power down

A 4

Setup WakeOnMotion
wom_acc_setup()

Figure 5: DA14585 IoT MSK in Advertise State

This block has the following operations:

e "Advertise start" block calls the user adv_start () function. The following actions take place:

User Manual Revision 1.2 17-Jan-2022

CFR0012 18 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o Start a timer to produce a LED blink using start advertise blink (). While the system
remains in advertising state, the LED will blink periodically according to the
ADVERTISE LED ON TIME and ADVERTISE LED OFF TIME.

o Actual advertisement begins by sending a gapm start advertise cmdto the GAP layer
using the user easy gap undirected advertise start () function.

e "Advertising complete": Advertisement time period is determined by the value set on
ADV TIME OUT.

o When the timer expires, user app on adv_undirect complete () iS executed to terminate
advertising.

o Routine user_adv_start () will be executed again if sleep mode is set to ARCH SLEEP OFF.

o If sleep mode is set to ARCH EXT SLEEP ON, the system will attempt to power off and enable
wake-on-motion interrupt. This action will not apply if:

— The user has explicitly set the system to stay "awake" by setting the ALWAYS ADVERTISE
switch.

— The motion sensor is excluded from this project and therefore there are no means to wake
the processor.

e "Setup WakeOnMotion". The accelerometer for this purpose is configured for low power
operation with the “anymotion” interrupt function set. The processor can go to Extended Sleep
mode and wakes up only when it receives an interrupt from the accelerometer. Then the interrupt
handler wkup intr non connected cb() is executed and advertising is initiated.

434 Connected/Sensors ldle

On connected state, the user on connection () function will execute all the necessary procedures in
order to set up the system for run-time operation:

Stops the advertising timer, user stop adv_timer ().

Starts the blink timer to indicate connection event, start connection blink().
Sets the sensors to the default parameters, user periph sensors initialize().
Suspend the sensors, user periph sensors_suspend().

Starts the BLE parameter update procedure, app easy gap param update start().

435 Connected/Sensors Active

The sensors will enter active state when a "Start” command is sent from the application. In this state
the following actions will take place:

Initialize sensors control variable.

Initialize gyro static drift compensation, if enabled.

Initialize magneto calibration, if enabled.

Initialize sensor fusion algorithm.

Initialize all external sensors, if enabled.

Now the system will begin retrieving data from all active sensors and forward these to the client
application. During this process, if one shot cal active is enabled, magnetometer calibration will
take place. This is a separate operation and will be discussed in section 4.9.3.27.

A general description for the data path in the "run" state is presented in Figure 6. Note that "Sensor
Interface" has a significant role in this operation and will be described in detail in section 4.5.

User Manual Revision 1.2 17-Jan-2022

CFR0012 19 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Send report

A

Sensor fusion .
Sensor driver

!

Sensor Wkup Adapter |
. Sensor Interface
Application Cb Sensor Timer |

Figure 6: Overview of Sensors Data Path

"Data ready" indication for each sensor is triggered either from timer events or from interrupt events.
In both cases this indication is forwarded to the "Sensor Interface" to handle. This entity is
responsible for discovering which sensor has created the event. This information will be used to
select the correct sensor driver to retrieve data. The "Sensor Interface" is also aware of which
application’s callback function is bound to this sensor and will forward the data. The callback function
is defined by users and from that point on users will decide how to handle this information. In this
project, the information is sent to client application using the reporting mechanism.

This path differentiates if the SFL is used. Data from these devices (accelerometer, gyroscope, and
magnetometer) will be processed in the SFL and the outcome will be fed to the reporting mechanism.

4.3.6 Connected/Sensors Stopped

A "stop" command terminates sensor operations. If calibration takes place during the "run" state,
stopping the sensors will initiate the following:

e Save magnetometer or accelerometer calibration results in flash memory
e Inform the client application that calibration has finished

Note that sensor calibration will be described extensively in section 4.10.

4.3.7 Disconnect
On this state, function user on disconnect will execute the following:

e Clear all LEDs and suspend sensors to minimize power consumption
e Reinitiate the advertising procedure

4.4 Wkup_adapter

This module is an extension to the "WakeUP Capture Timer" to further extend the possibilities of
interrupt handling. The need for such an adapter emerges with the 10T project development where it
requires to support multiple interrupts as well as a simplified method to decode and handle these
events.

NOTE

Currently this module supports interrupts in port 1 and 2. This hardware configuration does not support other
ports.

This module provides users the following functions:

® wkup ad register gpio: This function adds a new entry to the wkup ad entry table. Available
parameters are:

User Manual Revision 1.2 17-Jan-2022

CFR0012 20 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o sel port, sel pins, pol pins: Register the port, pin, and polarity of the interrupt,
respectively.

O ch. is the callback function that is called when the interrupt is activated.

o cb_inv. is the callback function that that is called when the interrupt with reverse polarity is
activated.

Some variables initialized by wkup ad register gpio are used internally by the wakeup adapter and
are members of struct wkup ad entry:

O active. The cb function only examines pins that are set as interrupt sources, thus speeding
up the lookup process.
O Triggered. This variable will point out whether an interrupt is already served.

® wkup ad init: This function will initialize the wkup ad entry table. The size of this table and the
number of available interrupts is declared in MAX IRQ ENTRIES definition.

® wkup ad remove gpio: This function will remove a specific entry from the table that matches the
pin and port conditions.

® vwkup ad clear all gpio: This function will clear all entries on the wkup _ad entry table and
further disable all active interrupts.

® vwkup ad cb: This is the main callback function of the module. When an interrupt is triggered:
o All registered interrupts are checked for their active flag.

Inspect matching port and pin.

Look for the polarity settings of this interrupt.

Check triggered status

Eventually the appropriate callback function is executed, returning the port and pin that cause
the interrupt. The sensors_interface module uses this information to locate the sensor that
performs the read function.

O O O O

45 Sensor Interface

45.1 General Description

The purpose of this module is to simplify the integration and operation of any sensors. Users who
follows the described methods should ignore the sensor complexity and treat new sensors or the
currently installed sensors with the same approach. With the Sensor Interface (Sl) software module,
users do not have to program complex implementations that directly use timers and the

wkup adapter module. An overview of this module is presented in Figure 7.

The Sl isolates the application code from the drivers and use the Driver Adaptation Layer which will
be discussed in 4.5.3.

Two different lists of sensors are created:

e Timed-based sensors
e Event driven (GPIO) sensors

User Manual Revision 1.2 17-Jan-2022

CFR0012 21 0f 110 © 2022 Renesas Electronics

S LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Sensor Interface

TIMED sensors DB GPIO sensors DB

\ng

User Application
Sensor Interface API

Data Available Data Available
decoder decoder

Driver Adaptation Layer
Device Drivers

Figure 7: Sensor Interface Overview

Users can configure a sensor using the si_config t structure and set the operation mode using the
si sensor operation mode t parameter. The available values for this parameter are described in
the following sections in detail.

451.1 Timer

Setting a sensor as "TIMER" falls in the "Timed-based sensors" category. This approach is used
when users would like to access the sensor in periodic intervals appointed in the
periodic read interval variable. When the periodic read interval expires, the callback
function set in read fn member is executed to retrieve the actual sensor data.

Most sensors need to perform sampling before the data are actually available for retrieval. For this
reason, a second timer and a callback function are made available in the si config t configuration
structure to handle this scenario:

e force read fn: Holds the callback function that initializes the measurement procedure at
read delay time before the actual read.

® read delay: Specify the time period that force read fnis executed before the actual read is
scheduled. Users shall give enough time for sampllng to take place before actual data are read.

Implementing both timers and their functionality is illustrated in Figure 8.

periodic_read_interval periodic_read_interval
4 > g

read_delay read_delay

4 > 4 |
o
o
in
Z Yl = | .
= g & 3| &

P

time
Figure 8: Timer Sensors Timeline
As an example, the VCNL4010 optical sensor is setup as a "TIMED" sensor. A callback function set
in force read fnand read delay is used to initiate measurements of ambient light and proximity

values. A read callback function and periodic read interval timer is used to read the actual data
collected from the sampling mode.

User Manual Revision 1.2 17-Jan-2022

CFR0012 22 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

45.1.2 INTERRUPT

This operation mode falls in the Event-driven (GPIO) sensors category. It is a quite straightforward
mode for INTERRUPT based sensors, as the sensor in question is only accessed when an interrupt
event occurs. The interrupt hardware parameters (pin, port, and polarity), as well as an interrupt
callback, must be registered in the si_config structure during the registration of the sensor.

INTERRUPT

h 4

Device Sleeps or Idle v Interrupt Callback

Figure 9: INTERRUPT Sensor Access Sequence
In this reference design, this mode is used with the ICM42605 accelerometer sensor.

45.1.3 FORCED

This mode does not fall into the categories above. A sensor of this type is usually "free running"”,
taking samples at a rate previously set during the sensor configuration. Users can freely issue an
SI READ CMD command (through the SI API) to retrieve the sensor data.

SI_READ_CMD

Free running sensor Force read action

Figure 10: Forced Read Sequence
In this reference design, this mode is used with the AKO99XX magnetometer sensor.

45.1.4 FORCED_INTER_SNGL_SHOT

"Forced Interrupt Single Shot" is a hybrid of FORCED and INTERRUPT mode. When registering a sensor
with an operation mode of FORCED INTER SNGL SHOT, an interrupt is registered (the same way as in
section 4.5.1.2).

Initially, the sensor will be set in sampling mode. The registered interrupt will signal that data are
available. To repeat the process, issue an SI_FORCE TO READ CMD to reassign the device to the
sampling mode.

Configure sensor Interrupt
to beginsampling triggered:
wu
v o E
o & o

time
Figure 11: FORCED_INTER_SNGL_SHOT Functionality

In this reference design, this mode is used with the AKO99XX magnetometer sensor.

User Manual Revision 1.2 17-Jan-2022

CFR0012 23 0f 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

452 Sensor Interface API

The "Sensor Interface API" is part of the "Sensor Interface" module shown in Figure 7 and provides
the following functionalities to users:
® si reset()

o The reset operation clears all information in both TIMED and GPIO sensors table in the "SI"
module.

o This action takes place when all sensors are suspended to avoid unintentional operation of
any devices. On system startup this information is already initialized.

® si register sensor ()
o This command registers a new sensor in the module.
o The sensor registration procedure in SI module is shown in Figure 12.

TIMED

TIMED sensors DB “

A

app_easy_timer

Mode of operation

Register cmd

INTERRUPT

h 4

INTERRUPT sensors DB Wkup_Adapter

Figure 12: Sl Registration Path

In the Sl registration path, the first thing to inspect is the mode of operation. After this, each device
will be registered in the corresponding database (DB). TIMED based sensors will further use the
"app easy timer" library. INTERRURT based sensors will register necessary data to the
"wkup adapter" module that keeps track of all HW interrupts.
® si send command():

Provided that a sensor is already registered, the following commands are available:

O SI _FORCE TO READ CMD immediately executes the user-defined callback function
force read fn. This operation applies to TIMED based sensors.

O SI READ CMD immediately executes the user-defined callback function read fn. This
operation applies to INTERRUPT based sensors.

e ST STOP SENSCOR CMD disables the sensor.

Each device type has separate and common configuration parameters, all of which are members of
the si_config struct.

e Available settings for TIMED devices include:

O operation mode: This value will define the sensor as a TIMED device and should be set as
TIMER.

0 read delay: The amount of time when users apply a forced mode to the device prior to
reading the actual data.

O periodic read interval: The amount of time that users expect to read data from the
device.

o0 force read fn: A callback function defined by users to setup the device in forced mode.
e Available settings for INTERRUPT devices:

O operation mode: This value will define the sensor as an INTERRUPT device and should be
set as INTERRUPT.

O sensors pin conf: Users should provide the pin, port, and polarity settings for the
"wkup adapter” to enable the interrupt.

e Common settings:

User Manual Revision 1.2 17-Jan-2022

CFR0012 24 0of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

O "Driver specific settings": Users are required to pass all necessary device specific
information to the driver layer using this variable.

o0 sensor id: Each sensor should have a unique ID.

O set sensor config: A user-defined callback function to setup the device in driver space.
This function uses the previously defined driver specific settings.

O data size: The actual size of the data that are expected during a read operation.
o read fn: A user defined callback function to read the actual data from the device.
O pre data read fn: A user defined callback function that is executed before the normal read.

4.5.3 Driver Adaptation Layer

"Driver Adaptation Layer (DAL)" is a middleware for the Sl to interconnect directly to the device
drivers. The DAL shall provide certain hook functions that are common in the Si for all device types.
These functions are described below:

® <device> setup: This function uses the "driver specific settings" to configure the desirable
operation of the device.

® <device> force read: this function puts the device in forced mode.

® <device> read: this function retrieves data from the device.

® <device> disable: this function stops the device operation and put it in minimum consumption
mode. This is currently not supported by the SI module and should be called from
user periph sensors suspend() function.

4.6 Device Drivers

4.6.1 Environmental Sensor
BOSCH BME 680 is an environmental sensor capable of:

e Measuring pressure

e Measuring humidity

e Measuring temperature

e Detecting volatile organic compounds

DA14585 loT MSK reference application also includes the "Bosch Software Environmental Cluster”
library that provides IAQ output.

Used functions:

® bme680 init performs software reset as well as reads the chip-ID and calibration data from the
sensor.

® bme680 set sensor settingsis used to set the oversampling, filter and temperature, pressure,
humidity, and gas selection settings in the sensor.

® bme680 get profile dur retrieves the profile duration of the sensor.

® bme680 set sensor mode sets the power mode of the sensor. In this implementation, two modes,
forced and sleep, are used.

® bme680 get sensor data returns the sensor data with compensated values.
These driver files are located in "projects\target apps\common\src\drivers\bme680".

Communication interface: 12C

User Manual Revision 1.2 17-Jan-2022

CFR0012 25 0f 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

46.2 Motion Sensor

46.2.1 TDK ICM-42605

The TDK ICM-42605 motion sensor, used in this reference design, is a 6-axis motion tracking device
with the following features:

3-axis gyroscope

3-axis accelerometer

User-programmable interrupts

Wake-on-motion interrupt for low power operation of applications processor

Used functions:

® SetupInvDevice426 sets up the communication interface of the device, FIFO size, and callback
functions to handle data read.

® ConfigurelInvDevice is used to configure the sampling rate and sensitivity of each sensor.

® HandlelInvDeviceFifoPacket426 is the callback function that retrieves available data from the
sensor.

® wom acc setup pauses sensor operations and puts ICM-42605 in "Wake-on-Motion" state with
minimum power consumption.

® icmd26xxInterrupt wom cbis the callback function that is executed right after a motion event.

® DisableBothModules set both sensors (accelerometer and gyroscope) in low power mode to
reduce consumption.

These driver files are located in "projects\target apps\common\src\drivers\icm4d26xx".

Communication interface: SPI

4.6.2.2 BOSCH BMI160

This reference design also provides support for the BOSCH BMI160 motion sensor. To enable the
BMI160 sensor, users should un-define ICM4XX ACCEL SENSOR AVAILABLE and define
BMI160 ACCEL SENSOR AVAIIABLE in dal458x basic.h.

Among others the BMI160 has the following features:

m 16-bit digital, triaxial accelerometer

m 16-bit digital, triaxial gyroscope

m Integrated interrupts for enhanced autonomous motion detection

Used functions:

® setup bmile0() setups the communication interface of the device, FIFO size, and callback
functions to handle data read. It calls the following:

O set bmil60 init () is a helper function used to set up the serial interface, SPI read/write
functions, and delay functions of the module.

O set bmil60 operating mode () is a helper function used to set up rate, range, and power
mode of the sensors.

O set bmil60 fifo watermark interrupt () sets up the sensor watermark level.

® handle bmi fifo packet160 () is the callback function that retrieves available data from the
sensor via SPI.

® wom acc setup pauses sensor operations and puts BMI160 in "Wake-on-Motion" state with
minimum power consumption.

® Dbmil60 interrupt wom cb() is the callback function that is executed right after a motion event.

User Manual Revision 1.2 17-Jan-2022

CFR0012 26 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

® DisableBothModules () sets both sensors (accelerometer and gyroscope) in low power mode to
reduce consumption.

These driver files are located in "projects\target apps\common\src\drivers\bmil60".

Communication interface: SPI.

4.6.3 Magneto Sensor

Asahi Kasei AK09915 is 3-axis electronic compass sensor with highly sensitive Hall-sensor
technology.

Used functions:

® 2k09915 init configures operation modes of the sensor: single measurement, continuous, and
power down.

® 2k09915 single measurement mode retrieves data from the sensor.

® ak09915 power down and stop stops all activities and sets the sensor to low power mode to
reduce consumption.

These driver files are located in "projects\target apps\common\src\drivers\ak09915".

Communication interface: SPI.

4.6.4 Optical Sensor

VISHAY VCNL4010 is an optical sensor with the following features:
Proximity sensor

Ambient light sensor

Built-in infrared emitter

Programmable LED drive current

Used functions:

e vcnl4010 config determines which sensor is enabled (proximity, ambient, or both) and set the
power level of the infrared emitter.

® vcnl4010 set force mode fn puts the sensor into forced mode.
® vcnl4010 read after force fnretrieves data from the sensor.
e vcnl4010 disable sensor sets the sensor to low power mode to reduce consumption.

These driver files are located in "projects\target apps\common\src\drivers\vcnl4010".

Communication interface: 12C.

4.6.5 GPIO Expander

ON Semiconductor FXL6408UMX is a low power GPIO expander with the following features:

m Eight independently configurable 1/O ports.

m Low-power quiescent current of 1.5 pyA.

This device handles the three LEDs as well as the power output of the power amplifier.

Used functions:

® set ctrl pwm bp sets range extender PWM bypass. For more information please refer to [6].
e clr ctrl pwm bp clears range extender PWM bypass. For more information please refer to [6].
® init ext gpio initializes the driver.

® set led turns on one single LED or all LEDs.

User Manual Revision 1.2 17-Jan-2022

CFR0012 27 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

e clr led turns off one single LED or all LEDs.
These driver files are located in "projects\target apps\common\src\drivers\gpio extender".
User functions are located in the "user iot dk utils.c"file.

Communication interface: 12C.

4.6.6 Power Amplifier

Skyworks SKY66111-11 is a fully integrated radio frequency Front End Module (FEM) designed for
Smart Energy applications.

Used functions:

e No user API is available for this device. Power settings can be changed in
"dal458x config basic.h"from RANGE EXT MOLE to act as bypass or full power.

The driver files are located in "SDK 585\sdk\platform\driver\range ext\sky66111".

4.7 Adding a New Sensor

To add a new sensor to the DA14585 IoT MSK, it is recommended for developers to follow the
following steps:

1. Create a new folder in the common\src\drivers directory with the device name. Place all files
needed to drive the new sensor in the new folder. Use a file with the name <xxx> impl to
summarize all actions that are relevant to the DAL calls. In the Driver Adaptation Layer folder,
place a file related to this sensor to provide the specific functionality described in section 4.5.3.

2. Editthe user periph setup source and header files to support the hardware connection
parameters for the new device. Most common parameters are the ports and pins connections to
the DA14585.

3. Inthe user sensors.c file, add various routines to handle the device in user space:

a. Initialization function: it shall contain all necessary information related to the driver space and
Sl on how the new device is setup for operation. The format of this routine is similar to
user sensor <xxx> init().

b. Data callback function: include a routine with the following format void
user <xxx> data cb(uint8 t *data ptr, uintlé t *data size) to handle data retrieval
from the driver layer. Preserve the parameters format where *data ptr points to the memory
location of the data and *data_size indicates the size of the data.

c. Disable function: user periph sensors suspend () contains the callback functions to disable
all available sensors.
d. Translation functions: these are for compatibility reasons and are entirely up to the user.

4. Inuser sensors.hadd the new sensor to obtain a different ID needed by the sensor interface
to distinguish the sensor entities.

5. The sensors periph interface.c file contains routines to access both SPI and I2C interface
peripherals. If the new sensor requires a different approach, users can add their own routines in
this file for this purpose.

6. Inthe user dws reports.hfile, declare a report and sensor type ID for the new device. To
complete this action, in the user sensors.c file the user prepare <xxx> data functions must
include the data related to sensor.

4.8 Sequence Diagrams

This section outlines the sequence of events and processes when data is transferred from the
sensors to the GATT in Dialog’s wearable devices. The sequence diagrams also describe the data
reporting from sensor fusion and environmental sensors.

User Manual Revision 1.2 17-Jan-2022

CFR0012 28 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

4.8.1 Sensor Fusion Data Reporting

Generation of sensor fusion data is triggered by the "Data ready" IRQ signal of an inertial sensor
(accelerometer or gyroscope). An inertial sensor is registered in the Sl as an interrupt driven device,
hence the Sl calls the read function of the DAL for sampling the sensor data and the application
callback function to deliver sampled data to the application.

The application parses the obtained inertial sensor data and stores them in a dynamically allocated
area. It combines the first accelerometer/gyro sample with the stored magneto sensor sample and
starts subsequent executions of SF algorithm in user sensor fusion process function.

Then it adds the latest raw data samples of accelerometer/gyro/magneto sample and the SF result in
a DWS report notification and passes it to GATT layer to be transmitted over to the BLE interface.

Finally, it initiates the magneto data sampling by issuing a FORCE TO READ command to Sl through
the si_send command API function of the Sl. Sl sets the magneto sensor in single shot mode and
waits for the "data ready” IRQ of the magneto sensor. When the interrupt is asserted, the SI will
fetch the data and call the application callback, which then stores the magneto sample and combine
it with the next bunch of inertial sensor samples.

User Manual Revision 1.2 17-Jan-2022

CFR0012 29 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

w Sensaor Interface Application DWS

Innertial IRQ N

si_check_data_availability()

i~
>
< motion_read() | ﬂ
‘driver read() (Called by user_on_system_powered()
<

»
>

user_maotion_data_cb()

user_read_fifo_header_data() Parse accelerometer
and gyro dafa.

Combine parsed accel &
gyro data with stored
magneto data

Run Sensor Fusion

user_process_fifo_frames()

user_sensor_fusion_process()

VRVAV

user_add multi_sensor_report
(ACCEL)

v

| ‘ user_add_multi_sensor_report
(GYRO)

v

| ‘ user_add_multi_sensor_report
(MAGNETO)

L

| ‘ user_add multi_sensor_report
(SENSOR_FUSION)

<
| ‘user_send_muIti_sensor_report()_
>

send to GATT,

si_send_command | ‘ Force magneto read
(FORCE_TO_READ,
MAGNETOMETER)
_magneto_force _read()
set made Set Magneto to single

shot measurement

Set Data Ready flag mode
Magneto IRQ =

L

si_check data availability()

»
P>

magneto_read()

<4
<

_driver read() Called by user_on_system_powered])
<

»
P

user_magneto_data_cb()

Ld

> Parse magneto data and

store to combine with
next innertial sample

Figure 13: Sequence Diagram of Sensor Fusion Reporting

482 Environmental Data Reporting

An environmental sensor is registered in Sl in TIMER mode. The initialization of measurement
procedure and the read of the measured values are done in different time instances. Two functions of
the adaptation layer of the environmental sensor are registered for this purpose:
environmental force read() to force read operation on the sensor and environmental read() for
reading sampled data.

The Sl initiates two timer instances: environmental force read() is called on the expiration of the
first timer to initiate the measurement procedure, and environmental read() on the expiration of
the second timer to read the measured data. When sensor data are available, the SI will call the
application callback function.

If "volatile organic compounds"” sample is available, the application will run the air quality algorithm
and add reports for temperature/humidity/pressure sensors. The Air Quality classification results in a
DWS notification message and sends it to GATT.

User Manual Revision 1.2 17-Jan-2022

CFR0012 30 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Driver

Sensor Interface

Application

DWS

Company Confidential

force read timer

%

»
‘enwronmental_force_read()| ‘
-

driver force read
‘—

read timer

environmental_read()

v

4
*

driver redd

v

I

[1+]

start timers for next sample

rF

user_env_data_cb()_
L

update_iaq()

—

user_add_multi_sensor_report
(SENSOR_TYPE_PRESSURE)'| |

‘ | user_add_multi_sensor_report
(SENSOR_TYPE_HUMIDITY) '| |

‘ | user_add_multi_sensor_report
(SENSOR7WPE7TEMPERATURE)I |

‘ |‘user_add_muIti_sensor_reporl N
_ (SENSOR_TYPEJAQ) ||

user_send_multi_sensor_report()
>

sen

d DWS report to GATT,

Figure 14: Sequence Diagram of Environmental Sensor Reporting

4.9

Dialog Wearable Service V2

The DA14585 loT MSK reference application contains the Dialog Wearable Service version 2
(DWSv2) in order to transfer and control sensor data. This service includes several characteristics

that are listed in Table 5.

The DWSv2 provides a means to:

memory.

Transfer raw and calibrated sensor data.
Transfer sensor fusion data.

Table 5: DWSv2 Characteristics

Configure the device, such as setting the operating parameters.

Control the device, such as start/stop sensor operation and load/store data to non-volatile

Service/Characteristic UuID Properties | Size (B) | Description
(Note 1)
wrbl_dws_svc 2EA7-8970-7D44-4BB- RD 16 Service attribute
B097-2618-3F40-2400
wrbl_dws_accel_char 2EA7-8970-7D44-4BB- NTF 25 Accelerometer Report.
B097-2618-3F40-2401 Legacy DWS
compatibility, not used.
wrbl_dws_gyro_char 2EAT7-8970-7D44-4BB- NTF 25 Gyroscope Report.
B097-2618-3F40-2402 Legacy DWS
compatibility, not used.
User Manual Revision 1.2 17-Jan-2022
CFR0012 31 0f 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

Company Confidential

Service/Characteristic

UuID

wrbl_dws_mag_char

2EA7-8970-7D44-4BB-
B097-2618-3F40-2403

wrbl_dws_baro_char

2EA7-8970-7D44-4BB-
B097-2618-3F40-2404

wrbl_dws_hum_char

2EA7-8970-7D44-4BB-
B097-2618-3F40-2405

wrbl_dws_temp_char

2EA7-8970-7D44-4BB-
B097-2618-3F40-2406

wrbl_dws_sensf_char

2EA7-8970-7D4444BB-
B097-2618-3F40-2407

wrbl_dws_feat_char

2EAT7-8970-7D44-4BB-
B097-2618-3F40-2408

wrbl_dws_control_char

2EAT7-8970-7D44-4BB-
B097-2618-3F40-2409

wrbl_dws_control_reply_char

2EAT7-8970-7D44-4BB-
B097-26183F40-240A

wrbl_dws_multi_sens_char

2EAT7-8970-7D44-4BB-
B097-26183F40-2410

Properties | Size (B) | Description
(Note 1)

NTF 25 Magnetometer Report.
Legacy DWS
compatibility, not used.

NTF 25 Barometer Report.
Legacy DWS
compatibility, not used.

NTF 25 Humidity Report.
Legacy DWS
compatibility, not used.

NTF 25 Temperature Report.
Legacy DWS
compatibility, not used.

NTF 25 Sensor Fusion Report.
Legacy DWS
compatibility, not used.

RD 25 Device Features

WR 32 Control Point

NTF 32 Command Reply

NTF 109 Sensors Report

Note 1

49.1

RD: read, WR: write, NTF: notify, IND: indicate.

Feature Report Structure

Upon connection, the central device reads the feature characteristic (wrbl dws feat char) in order
to determine the capabilities and the firmware version of the connected device.

Table 6: Features Report Structure

Offset (B) Name Description
0 accelerometer_en 0: Accelerometer not present
1: Accelerometer present
1 gyro_en 0: Gyroscope not present
1: Gyroscope present
2 magn_en 0: Magnetometer not present
1: Magnetometer present
3 pressure en 0: Barometer not present
1: Barometer present
4 humidity en 0: Humidity sensor not present
1: Humidity sensor present
5 temp_en 0: Temperature sensor not present
1: Temperature sensor present
6 s_fusion en 0: Sensor fusion capability not present
1: Sensor fusion capability present
User Manual Revision 1.2 17-Jan-2022
CFR0012 32 0f 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

Company Confidential

Offset (B) Name Description
7 to 22 version(] Version number, ASCII
23 device_ type Device version:

0: DA14580 loT
2: DA14585 10T MSK

4.9.2 Multi Sensor Report and Sensor Report

All sensor data are encapsulated in reports named "sensor reports" specific for each sensor type.
The sensor reports are concatenated into a multi sensor report using wrbl dws multi sens char
and the multi sensor report is transferred as a BLE notification to the central device.

Table 7: Multi Sensor Report

Preamble (1 Byte) | Timestamp (1 Byte)

Sensor Reports (Up to 107 bytes)

Always 0xA5 Integer number that increments after
each report.

Concatenated sensor reports (Table 8).

Table 8: Sensor Report

Report ID (1 Byte) Sensor State (1 Byte) Calibration State (1 Byte) Sensor Data (N Bytes)
1to 24 (Table 9) Value depending on sensor | Value depending on sensor Depends on sensor
type. type. type.

Table 9: Report Types/Report ID's

Report ID Report Type

1 ACCELEROMETER REPORT ID

2 GYROSCOPE REPORT ID

3 MAGNETOMETER REPORT ID

4 PRESSURE REPORT ID

5 HUMIDITY REPORT ID

6 TEMPERATURE. REPORT ID

7 SENSOR FUSION REPORT ID

8 COMMAND REPLY REPORT ID

9 AMBIENT LIGHT REPORT ID

10 PROXIMITY REPORT ID

11 GAS_REPORT ID

12 iAQ REPORT ID

13 BUTTON REPCRT ID

14 VELOCITY DELTA REPORT ID

15 EULER ANGLE DELTA REPORT ID

16 QUATERNION DELTA REPORT ID

17+ Reserved

User Manual Revision 1.2 17-Jan-2022
CFR0012 33 0f 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

49.2.1 Sensor Report for Accelerometer, Gyroscope, and Magnetometer

Table 10: Report Structure for Accelerometer, Gyroscope, and Magnetometer

Report field Field size (B) Description

ucReportlId 1 1, 2, or 3 (Table 9)

snsr_state 1 Sensor state (snsr_state, see Table 11)
cal_state 1 Calibration state used only for magnetometer.

0: Calibration State Disabled
1: Calibration State Initialized
2: Calibration State Bad

3: Calibration State OK

4: Calibration State Good

5: Calibration State Error

val x 2 X axis value for the selected sensor
val y 2 Y axis value for the selected sensor
val_z 2 Z axis value for the selected sensor

Table 11: Bitfield Structure for snsr_state

Bit(s) | Field Description
0 in_data valid Input (pre-calibration) data valid flag
1 out_data valid | output (post calibration) data valid flag
2 cal_enabled Calibration enabled flag
3 cal_settled Calibration settled flag
4 cal_converged Calibration converged flag
5:7 cal_mode Calibration mode
49.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric Pressure

Table 12: Environmental Sensor Report

Report field Field size (B) Description
ucReportId 1 4,5, 6, 11 (Table 9)
ucSensorsState 1 Always 2 (Sensor Ready)
ucSensorEvent 1 Always 3 (Update Value)
Val32 4 Sensor value

49.2.3 Sensor Report for Indoor Air Quality (IAQ)

Table 13: Indoor Air Quality (IAQ) Report

Report field Field size (B) Description

ucReportId 1 12 (Table 9)

ucSensorState 1 Always 2 (Sensor Ready)

User Manual Revision 1.2 17-Jan-2022

CFR0012 34 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Report field Field size (B) Description
ucSensorEkEvent 1 Accuracy 0-3:
0: Unreliable

1: Low Accuracy
2: Medium Accuracy
3: High Accuracy

Val32 4 Sensor value 0-500

4.9.2.4 Sensor Report for Ambient Light and Proximity

Table 14: Sensor Report for Ambient Light and Proximity

Report field Field size (B) Description
ucReportId 1 9 and10 (Table 9)
ucSensorState 1 Always 2 (Sensor Ready)
ucSensorEvent 1 Always 3 (Update Value)
Val32 4 Sensor value

4.9.2.5 Sensor Report for Button

Table 15: Sensor Report for Button

Report field Field size (B) Description
ucReportld 1 13 (Table 9)
ucSensorsState 1 Button Status 0-1:

0: Released

1: Pressed
ucSensorEvent 1 Always 3 (Update Value)
Val3z 4 Reserved
4.9.2.6 Sensor Report for Sensor Fusion

Table 16: Sensor Report for Sensor Fusion

Report field Field size (B) Description

ucReportId 1 7 (Table 9)

ucSensorState 1 Always 2 (Sensor Ready)
mcal_state 1 Magnetometer calibration state:

0: Calibration State Disabled
1: Calibration State Initialized
2: Calibration State Bad

3: Calibration State OK

4: Calibration State Good

5: Calibration State Error

val w 2 W sensor fusion value
val x 2 X sensor fusion value
val y 2 Y sensor fusion value
val z 2 Z sensor fusion value
User Manual Revision 1.2 17-Jan-2022

CFR0012 35 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

4.9.2.7 Sensor Report for Velocity Delta

Table 17:Sensor Report for Velocity Delta

Report field Field size (B) Description

ucReportId 1 14 (Table 9)

snsr_state 1 Accelerometer state (see Table 11)
q_format 1 Q format of 8V data

val x 2 X axis value for 8V data

val y 2 Y axis value for 8V data

val z 2 Z axis value for 8V data

4.9.2.8 Sensor Report for Euler Angle Delta

Table 18: Sensor Report for Euler Angle Delta

Report field Field size (B) Description

ucReportId 1 15 (Table 9)

snsr_state 1 Gyroscope state (see Table 11)
q_format 1 Q format of 50 data

val_x 2 X axis value for 50 data

val_y 2 Y axis value for 50 data

val z 2 Z axis value for 50O data
4.9.2.9 Sensor Report for Quaternion Delta

Table 19: Sensor Report for Quaternion Delta

Report field Field size (B) Description
ucReportId 1 16 (Table 9)
ucSensorState 1 Always 2 (Sensor Ready)
mcal state 1 n/a

val w 2 W value for 6Q data

val x 2 X value for 5Q data

val y 2 Y value for 8Q data

val z 2 Z value for 8Q data

4.9.3 Report Structures for Configuration and Control

The DWSV2 provides the wrbl dws control char (WR) and wrbl dws control reply char (NTF)
characteristics for configuring and controlling the device. The device may also send unsolicited
messages (such as STOP) to signal events.

Typically, the central device issues a command using the control characteristic and waits for a reply
from the notification reply characteristic. The replies issued by the 10T sensor always start with byte
0x08 (COMMAND REPLY REPORT ID, omitted from the following tables), followed by the Command ID
and the command data.

User Manual Revision 1.2 17-Jan-2022

CFR0012 36 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Table 20: Report Structure for Commands

Company Confidential

Report ID (1 Byte)

Command ID (1 Byte)

Command Data (N Bytes)

COMVAND REPLY REPORT ID =8

See following tables.

Depending on Command ID, varies in length
and field types.

49.3.1 Start Command

Table 21: Start Command

Offset (B) Description Value

0 Command ID 1
Table 22: Start Command Reply

Offset (B) Description Value

0 Command ID 1

1 Running Status 1: Running
4.9.3.2 Stop Command

Table 23: Stop Command

Offset (B) Description Value

0 Command ID 0
Table 24: Stop Command Reply

Offset (B) Description Value

0 Command ID 0

1 Running Status 0: Stopped
4.9.3.3 Read Parameters from Flash Memory

Table 25: Read Flash Command

Offset (B) Description Value

0 Command ID 2
4.9.3.4 Reset to Factory Defaults

Table 26: Reset to Defaults (RtD) Command

Offset (B) Description Value

0 Command ID 3
4.9.35 Store Basic Configuration in Flash Memory

Table 27: Store Basic Configuration Command

Offset (B) Description Value

0 Command ID 4
User Manual Revision 1.2 17-Jan-2022
CFR0012 37 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

4.9.3.6 Store Calibration Coefficients and Control Configuration in Flash Memory

Table 28: Store Calibration and Control Command

Offset (B) Description Value
0 Command ID 5
4.9.3.7 Return Running Status

Table 29: Return Running Status Command

Offset (B) Description Value

0 Command ID 6

Table 30: Return Running Status Reply

Offset (B) Description Value

0 Command ID 6

1 Running Status 0: Stopped
1: Running

4.9.3.8 Reset Sensor Fusion and Calibration Configuration

Table 31: Reset Sensor Fusion and Calibration Configuration command

Offset (B) Description Value

0 Command ID 7

4.9.3.9 Basic Configuration

Table 32: Basic Configuration Command

Offset (B) Description Value
0 Command ID 10
1 Sensor Combination Bit 0: Accelerometer Enable

Bit 1: Gyroscope Enable

Bit 2: Magnetometer Enable

Bit 3: Environmental Sensor Enable
Bit 4: Gas Sensor Enable

Bit 5: Proximity Sensor Enable

Bit 6: Ambient Light Sensor Enable

Note: For SF to operate, only certain
combinations are allowed regarding
accelerometer, gyroscope, and
magnetometer.

The combinations allowed are:

® Gyroscope only.

e Gyroscope and accelerometer.

® Accelerometer and magnetometer.
°

Accelerometer, gyroscope, and
magnetometer.

User Manual Revision 1.2 17-Jan-2022

CFR0012 38 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Offset (B)

Description

Value

2

Accelerometer Range

0x03:2 G
0x05:4 G
0x08: 8 G
0x0C: 16 G

Accelerometer Rate

0x06: 1 kHz (ICM42605) or 800 Hz (BMI160)
0x07: 200 Hz

0x08: 100 Hz

0x09: 50 Hz

Ox0A: 25 Hz

Gyroscope Range

0x00: 2000 deg/s
0x01: 1000 deg/s
0x02: 500 deg/s
0x03: 250 deg/s
0x04: 125 deg/s

Gyroscope Rate

0x06: 1 kHz (ICM42605) or 800 Hz (BMI160)
0x07: 200 Hz

0x08: 100 Hz

0x09: 50 Hz

Ox0A: 25Hz

Magnetometer Rate

Valid only if SF is off.

0: Accelerometer ODR/1
: Accelerometer ODR/2
: Accelerometer ODR/4
: Accelerometer ODR/8

Environmental Sensors Rate

:0.33 Hz
:0.5Hz
:1Hz

1 2Hz

Note: Only option 1 is available when the
gas sensor is enabled.

O A DNPEP[(INWER

Sensor Fusion Rate

0: SF Off

10: 10 Hz (not applicable for BMI160 when
the rate is 800Hz).

25: 25 Hz
50: 50 Hz
100: 100 Hz

Sensor Fusion Mode

0: Sensor Fusion (AHRS) Off
1: Sensor Fusion (AHRS) On

10

Sensor Fusion Raw Data Enable

0: Disabled

1: Enabled Raw Data (decimated at SF
ODR)

2: Enabled Integration Engine Data

11

Reserved

NA

12

Gas Sensor rate

Not used. The gas sensor rate is always
0.33 Hz (Low Power Mode).

13

Proximity/Ambient Light Mode

Not used. The mode is always polled.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

39 of 110

© 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Offset (B) Description Value
14 Proximity/Ambient Light Rate 0: Sensor Off
1: 10 Hz
2:5Hz
3:2Hz
4:1Hz
5:0.5Hz
6: 0.2 Hz
4.9.3.10 Read Basic Configuration
Table 33: Read Basic Configuration Command
Offset (B) Description Value
0 Command ID 11
Table 34: Read Basic Configuration Command Reply
Offset (B) Description Value
0 Command ID 11
1 Sensor Combination Bit 0: Accelerometer Enable
Bit 1: Gyroscope Enable
Bit 2: Magnetometer Enable
Bit 3: Environmental Sensor Enable
Bit 4: Gas Sensor Enable
Bit 5: Proximity Sensor Enable
Bit 6: Ambient Light Sensor Enable
Note: For SF to operate, only certain
combinations are allowed regarding
accelerometer, gyroscope, and
magnetometer.
The combinations allowed are:
e Gyroscope only.
e Gyroscope and accelerometer.
e Accelerometer and magnetometer.
e Accelerometer, gyroscope and
magnetometer.
2 Accelerometer Range 0x03:2 G
0x05:4 G
0x08: 8 G
0x0C: 16 G
3 Accelerometer Rate 0x06: 1 kHz (ICM42605) or 800 Hz (BMI160)
0x07: 200 Hz
0x08: 100 Hz
0x09: 50 Hz
O0x0A: 25Hz
User Manual Revision 1.2 17-Jan-2022
CFR0012 40 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Offset (B)

Description

Value

4

Gyroscope Range

0x00: 2000 deg/s
0x01: 1000 deg/s
0x02: 500 deg/s
0x03: 250 deg/s
0x04: 125 deg/s

Gyroscope Rate

0x06: 1 kHz (ICM42605) or 800 Hz (BMI160)
0x07: 200 Hz

0x08: 100 Hz

0x09: 50 Hz

Ox0A: 25Hz

Magnetometer Rate

Valid only if SF is off.

0: Accelerometer ODR/1
: Accelerometer ODR/2
: Accelerometer ODR/4
: Accelerometer ODR/8

Environmental Sensors Rate

:0.33 Hz
:0.5Hz
:1Hz
12 Hz

Sensor Fusion Rate

Ol ADNPFP|INWPER

: SF Off
10: 10 Hz
25: 25 Hz
50: 50 Hz
100: 100 Hz

Sensor Fusion Mode

Reserved

10

Sensor Fusion Raw Data Enable

0: Disabled
1: Enabled (RAW)
2: Enabled Integration Engine

11

Reserved

NA

12

Gas Sensor rate

Not used. The gas sensor rate is always
0.33 Hz (Low Power Mode).

13

Proximity/Ambient Light Mode

Not used. The mode is always polled.

14

Proximity/Ambient Light Rate

: Sensor Off
10 Hz

5 Hz

2 Hz

1Hz
:0.5Hz
:0.2Hz

o U WN RO

49311

Set Sensor Fusion Coefficients Command

Table 35: Set Sensor Fusion Coefficients Command

Offset (B) Description Value
0 Command ID 12
1 BETA ALSB Sensor Fusion Beta A Gain (LSB)
User Manual Revision 1.2 17-Jan-2022
CFR0012 41 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Offset (B) Description Value
2 BETA A MSB Sensor Fusion Beta A Gain (MSB)
3 BETA M LSB Sensor Fusion Beta M Gain (LSB)
4 BETA M MSB Sensor Fusion Beta M Gain (MSB)
5:8 TEMPERATURE_REPORT_ID Reserved
4.9.3.12 Read Sensor Fusion Coefficients
Table 36: Read Sensor Fusion Coefficients Command
Offset (B) Description Value
0 Command ID 13
Table 37: Read Sensor Fusion Coefficients Command Reply
Offset (B) Description Value
0 Command ID 13
1 BETA ALSB Sensor Fusion Beta A Gain (LSB)
2 BETA A MSB Sensor Fusion Beta A Gain (MSB)
3 BETA M LSB Sensor Fusion Beta M Gain (LSB)
4 BETA M MSB Sensor Fusion Beta M Gain (MSB)
5:8 Reserved NA
4.9.3.13 Set Calibration Coefficients
Table 38: Set Calibration Coefficients Command
Offset (B) Description Value
0 Command ID 14
1 Sensor Type 2: Magnetometer
2 Q Format Integer value
3:8 Offset Vector (3 % int16) Integer value
9:26 Matrix 3 x 3 x int16 Signed fixed point value
4.9.3.14 Read Calibration Coefficients
Table 39: Read Calibration Coefficients Command
Offset (B) Description Value
0 Command ID 15
Table 40: Read Calibration Coefficients Command Reply
Offset (B) Description Value
0 Command ID 15
1 Sensor Type Magnetometer = 2
2 Q Format Integer value
User Manual Revision 1.2 17-Jan-2022

CFR0012

42 of 110

© 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

Company Confidential

Offset (B) Description Value
3:8 Offset Vector 3 x 1int16 Integer value
9:26 Matrix 3 x 3 int16 Signed fixed point value
4.9.3.15 Set Calibration Control Flags

Table 41: Set Calibration Control Flags Command

Offset (B) Description Value
0 Command ID 16
1 Sensor Type 2: Magnetometer
2:3 Calibration Control Flags Byte 2: see Table 42
Byte 3: see Table 43
4:15 Calibration Parameters See Table 44
Table 42: Calibration Control Flags #1
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Calibration Reserved Reserved Offset Matrix Offset Matrix | Init from | Offset post
Mode apply apply update update static apply
Static 1: Yes 1: Yes 0: No 0: No 0: No 1: Yes
Basic Auto 1: Yes 1: Yes 1: Yes 1:Yes 0: No 1:Yes
SmartFusion 1:Yes | 1:Yes 1: Yes 1:Yes | 1:Yes 1: Yes
Auto
Table 43: Calibration Control Flags #2
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Calibration Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Converged | Settled
Mode (read only) (read
only)
Static X X X 0: No
Basic Auto 0: No 1: Yes
SmartFusion X X 1: Yes 1: Yes
Auto
Table 44: Calibration Parameters
Offset (B) Static Basic SmartFusion Description
0 Reserved ref_mag ref_mag Reference magnitude
1 Reserved mag_range mag_range Magnitude range
2 Reserved mag_alpha mag_alpha Magnitude filter coefficient
3 Reserved mag_delta thresh | mag delta thresh | \jagnitude gradient threshold
4 Reserved Reserved mu_offset Offset update rate
5 Reserved Reserved mu_ratrix Matrix update rate
6 Reserved Reserved err alpha Overall error filter coefficient
7 Reserved Reserved err_thresh Overall error threshold
User Manual Revision 1.2 17-Jan-2022
CFR0012 43 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

4.9.3.16 Read Calibration Control

Table 45: Read Calibration Control Flags Command

Company Confidential

Offset (B) Description Value
0 Command ID 17
Table 46: Read Calibration Control Flags Command Reply
Offset (B) Description Value
0 Command ID 17
1 Sensor Type 2: Magnetometer
2:3 Calibration Control Flags Byte 2: see Table 42

Byte 3: see Table 43
4:15 Calibration Parameters See Table 44
4.9.3.17 Fast Accelerometer Calibration
Table 47: Fast Accelerometer Calibration Command
Offset (B) Description Value
0 Command ID 18
Table 48: Fast Accelerometer Calibration Reply
Offset (B) Description Value
0 Command ID 18
1 Fast Calibration Status 0: Stopped

1: Started
49.3.18 Set Calibration Modes
Table 49: Set Calibration Modes Command
Offset (B) Description Value
0 Command ID 19
1 Calibration Mode for Accelerometer Not used, reserved for future use.
2 Calibration Mode for Gyroscope Not used, reserved for future use.
3 Calibration Mode for Magnetometer 0: None
1: Static
2: Continuous Auto
3: Auto One Shot
4 Auto Calibration Mode for Accelerometer Not used, reserved for future use.
5 Auto Calibration Mode for Gyroscope Not used, reserved for future use.
6 Auto Calibration Mode for Magnetometer 0: Basic Auto Calibration
1: Smart Auto Calibration

User Manual Revision 1.2 17-Jan-2022
CFR0012 44 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

4.9.3.19 Read Calibration Modes

Table 50: Read Calibration Modes Command

Offset (B) Description Value

0 Command ID 20

Table 51: Read Calibration Modes Command Reply

Offset (B) Description Value
0 Command ID 20
1 Calibration Mode for Accelerometer Not used, reserved for future use.
2 Calibration Mode for Gyroscope Not used, reserved for future use.
3 Calibration Mode for Magnetometer 0: None

1: Static

2: Continuous Auto
3: Auto One Shot

4 Auto Calibration Mode for Accelerometer Not used, reserved for future use.
5 Auto Calibration Mode for Gyroscope Not used, reserved for future use.
6 Auto Calibration Mode for Magnetometer 0: Basic Auto Calibration

1: Smart Auto Calibration

4.9.3.20 Read Device Sensors

Table 52: Read Device Sensors Command

Offset (B) Description Value

0 Command ID 21

Table 53: Read Device Sensors Command Reply

Offset (B) Description Value
0 Command ID 21
User Manual Revision 1.2 17-Jan-2022

CFR0012 45 of 110 © 2022 Renesas Electronics

UM-B-101

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

LENESAS

Company Confidential

Offset (B)

Description

Value

1-17

Sensor Type

Physical Sensors:
0: None
1: Accelerometer
2: Gyroscope
3: Magnetometer
4: Barometer
5: Humidity Sensor
6: Temperature Sensor
7: Ambient Light
8: Proximity Sensor
9: Button
10: RAW GAS
11: Proximity Calibration
12-24: Reserved
Virtual Sensors:

64: Sensor Fusion
65: Integration Engine (IE)
66: Indoor Air Quality
67-74: Reserved

4.9.3.21

Table 54: Read Application Software Version Command

Read Software Version

Offset (B) Description Value

0 Command ID 22

Table 55: Read Application Software Version Command Reply

Offset (B) Description Value

0 Command ID 22

1-17 Version Number Version number of the application in
ASCII representation, for example,

“v6.160.2"

4.9.3.22 Start LED Blink

Table 56: Start LED Blink Command

Offset (B) Description Value

0 Command ID 23

4.9.3.23 Stop LED Blink

Table 57: Stop LED Blink Command

Offset (B) Description Value

0 Command ID 24

User Manual Revision 1.2 17-Jan-2022

CFR0012 46 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

4.9.3.24

Set Proximity Hysteresis Limits

Table 58: Set Proximity Hysteresis Limits Command

Company Confidential

Offset (B) Description Value
0 Command ID 25
1-2 Proximity Low Limit (proximity off) 0-65535
3-4 Proximity Low Limit (proximity on) 0-65535
4.9.3.25 Read Proximity Hysteresis Limits

Table 59: Read Proximity Hysteresis Limits Command

Offset (B) Description Value
0 Command ID 26
Table 60: Read Proximity Hysteresis Limits Command Reply

Offset (B) Description Value
0 Command ID 26
1-2 Proximity Low Limit (proximity off) 0-65535
3-4 Proximity Low Limit (proximity on) 0-65535
4.9.3.26 Calibration Complete

The calibration complete notification is only sent from the device to the central application when a
calibration operation is completed.

Table 61: Calibration Complete Notification

Offset (B) Description Value
0 Command ID 27
1 Sensor Type 0: Accelerometer
1: Gyroscope

2: Magnetometer

2 Status 0: OK
1: Error

4.9.3.27 Proximity Calibration Command
Table 62: Proximity Calibration Command
Offset (B) Description Value
0 Command ID 28
Table 63: Proximity Calibration Command Reply
Offset (B) Description Value
0 Command ID 28
User Manual Revision 1.2 17-Jan-2022
CFR0012 47 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Offset (B) Description Value
1 Start/Stop 1: Started
0: Ended

4.10 Sensor Calibration Library

4.10.1 Overview

The SmartFusion Sensor Calibration Library (SCL) provides a set of routines for calibrating
microelectromechanical systems (MEMS) sensors, such as gyroscopes, accelerometers, and
magnetometers. By applying these routines to captured sensor data, it is possible to compensate for
the typically exhibited imperfections and distortion.

4.10.1.1 Modes of Operation

The routines provided by the SCL have been designed with flexibility in mind and support various
modes of operation depending on the specific characteristics of the sensors and the system
requirements.

The supported calibration modes are as follows:

e Static Calibration Mode:

o When the sensor distortions are measurable, stable, and consistent between devices, static
calibration is the preferred mode of operation as it gives the best performance in terms of
distortion correction.

o In this mode the calibration routine is initialized with static calibration coefficients which are
then applied to the sensor data and do not change.

o0 These static calibration coefficients are typically calculated off-line by the device
manufacturer by analyzing recordings of raw sensor data made under controlled conditions.
The calibration coefficients are stored in either the device’s firmware or non-volatile memory.

e Continuous Automatic Calibration Mode:

o When the sensor distortions are unstable and/or inconsistent between devices, continuous
automatic calibration is the preferred mode of operation as it allows the calibration
coefficients to be determined automatically at runtime without requiring them to be built into
the firmware or programmed into non-volatile memory.

o In this mode the auto-calibration function continually monitors the sensor data for distortions
and adapts the calibration coefficients to compensate for them.

e One-shot Automatic Calibration Mode:

o When the sensor distortions are relatively stable in the short term, one-shot auto-calibration
mode may be preferable.

o In this mode the auto-calibration function is run upon device startup to determine the sensor
distortions but is disabled once the calibration is complete and suitable calibration coefficients
have been calculated.

4.10.1.2 Calibration Routines

The SCL provides a number of routines for both static and automatic calibration of three-dimensional
sensor data.

NOTE

Not all these routines are appropriate for all types of sensors or can be used in all calibration modes.

The supported calibration routines are as follows:

e Static Calibration:

User Manual Revision 1.2 17-Jan-2022

CFR0012 48 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o The static calibration routine applies user-defined static calibration coefficients in the form of
a 3 x 3 transformation matrix and a 3-dimensional vector offset.

o This routine is suitable for all types of sensors but is only appropriate for use in static
calibration mode as the coefficients do not change.

e Basic Auto-Calibration:

o The basic auto-calibration routine monitors the data captured from sensors for basic offset
and scaling distortions, calculating and applying appropriate calibration coefficients at runtime
in order to compensate for them.

o This routine is not designed to detect and compensate for the sophisticated types of
distortions such as cross-axis, spherical and rotational distortions.

o It presumes that the magnitude of the external stimulus to the sensor (such as magnetic or
gravitational field strength) is constant and only varies according to device orientation.

o Neither is it able to support scenarios where the distortions are not constant but vary over
time.

e SmartFusion Auto-Calibration:

o To overcome some of the shortcomings of the basic auto-calibration routine, a more
sophisticated algorithm is also provided.

o In addition to being able to calculate and compensate for basic offset and scaling distortions,
this algorithm can also compensate for more sophisticated distortions such as magnetometer
soft iron spherical distortions.

o ltis also able to cope with gradual changes in sensor distortions and external stimulus over
time, although some adaptation time is required.

e Static Drift Compensation:

o This routine has been specifically designed to reduce gyroscope drift and is not appropriate
for use with any other type of sensors.

o Gyroscopes typically exhibit small biases, indicating slow rotation even when the device is
stationary. This results in drifts in the calculated orientation when the gyroscope data is
integrated.

o Although these biases typically have large static components that can be compensated for
using static calibration, there is often a residual bias that varies over time due to temperature
or gravitational effects.

o The static drift compensation routine provides tracks and removes these dynamic biases,
eliminating drift when the device is stationary.

o The algorithm also includes a noise gate to eliminate drift induced by random walk due to
noise.

4.10.1.3 Calibration Procedure

It requires sampling an external stimulus, such as a magnetic or gravitational field, at a wide range of
different orientations for the basic and SmartFusion auto-calibration routines to operate correctly.
Therefore, it is necessary to rotate the device to determine the distortions and calculate appropriate
calibration coefficients. It is also important that these external stimuli remain constant in both
magnitude and direction.

It is required to calibrate the magnetometer in a place where the magnetic field is reasonably strong
and uniform. The rotation can be performed manually by randomly rotating the device until the
calibration routine signals its completion.

It is important that the device is not subjected to any lateral movement while being rotated during the
accelerometer calibration, as lateral movements will distort the sampling of the gravitational field. It is
therefore recommended to use a gimbal in conjunction with these routines to rotate the
accelerometer around its center without any lateral movement.

When using the device in an environment where the external stimulus is constantly changing, such
as when the magnetic field fluctuates with position or the device is subjected to lateral accelerations,

User Manual Revision 1.2 17-Jan-2022

CFR0012 49 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

it is recommended to perform an initial automatic calibration in one-shot mode under controlled
situations and then switch to static calibration mode using the resultant calibration coefficients.

4.10.2 APl Usage

The various calibration routines provided by the SCL are designed to work together and complement
each other. For the common functionalities, the routines use generic controls, parameters, and code.
The more advanced routines re-use the functionality of the basic routines. For example, the basic
auto-calibration routine re-uses the static calibration routine to apply its calibration parameters to the
sensor data.

More specifically, the parameter structures for all routines are designed to overlap so that they can
share the same location in memory, thus sharing common parameters. The purpose is to aid
switching between calibration modes without unnecessary copying of parameter data between
different routines and to minimize the memory footprint.

Wrapper code (sensor _calibration.h|c) has been provided in the SDK, which implements the
overlapping of the various calibration routines and provides a common interface through which the
calibration routines can be used.

4.10.2.1 Allocation

An instance of the appropriate calibration parameter structure (static calibration params,

basic autocal params, smartfusion autocal params, Of static drift compensation params) Or
combined wrapper instance structure (cal instance) shall be instantiated, either statically or on the
heap, and shall be maintained during the life-cycle of sensor calibration processing.

4.10.2.2 Initialization

Before processing can be performed on an instance of a calibration routine, a subset of parameters
within the appropriate parameter structure must be initialized. These parameters are as follows:

e Generic: Common to all

O in data: Pointer from which to read raw sensor input data

O out data: Pointer to which to write processed sensor output data
e Static calibration: In addition to the generic parameters:

o offset: Offset vector coefficients to be subtracted from sensor data in same representation
as raw sensor data

o matrix: 3 x 3 matrix of signed fixed point coefficients to apply to sensor data.
o g format: Q format of matrix coefficients
o flags: Control flags
— apply: Flag to control whether calibration coefficients are applied
— matrix apply: Flag to control whether matrix coefficients are applied in addition to offset

— offset post apply: Flag to control whether vector coefficients are applied before or after
the matrix coefficients are applied

e Basic Auto-calibration: In addition to the static calibration parameters:

o ref mag: Reference magnitude indicating expected geomagnetic field strength in same
representation as raw sensor data

0 mag range: Q15 unsigned fixed-point scaler indicating range +/- reference magnitude of valid
sensor data

o0 mag alpha: Q15 unsigned fixed-point coefficient controlling the filtering applied to the
calculated sensor vector magnitude

O mag delta threshold: Q15 unsigned fixed-point threshold applied to the calculated gradient
of the filtered sensor vector magnitude below which the algorithm is considered to have
settled

User Manual Revision 1.2 17-Jan-2022

CFR0012 50 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o flags: Control flags
— update: Flag to control whether calibration coefficients are updated

— matrix update: Flag to control whether matrix coefficients are] updated in addition to
offset

e SmartFusion Auto-calibration: In addition to the basic auto-calibration parameters:
o mu_offset: Q15 unsigned fixed-point convergence speed of offset parameters
0 mu matrix: Q15 unsigned fixed-point convergence speed of matrix parameters

o0 err alpha: Q15 unsigned fixed-point coefficient controlling the filtering applied to the overall
error in calculated cost function

o err thresh: Q15 unsigned fixed-point threshold applied to the calculated overall error below
which the algorithm is considered to have converged

o flags: Control flags

— init from static: Flag to control whether calibration coefficients are initialized externally
by a user or should be reset by initialization routine

e Static Drift Compensation: In addition to the static calibration parameters:

O bias_thresh: Threshold indicating the maximum range of dynamic shift in dynamic bias
magnitude that can be tracked

O bias_alpha: Q15 unsigned fixed-point convergence speed of bias tracking
O bias range limit: Q8 limit indicating maximum range of biases that can be tracked

O noise gate thresh: Threshold indicating the magnitude of output data (after bias has been
removed) below which the noise gate is applied

o flags: Control flags
— update: Flag to control whether the bias offset is updated

— init from static: Flag to control whether calibration coefficients are initialized externally
by a user or should be reset by initialization routine.

NOTE

This can be used to specify the static component of the bias, allowing a tighter range of bias thresh to be
specified so that slower movements can be tracked.

e Sensor Calibration Wrapper: If the wrapper instance structure is used, the mode field should be
initialized to indicate which calibration routine should be used. The valid modes specified by the
cal mode enumeration are:

O CAL NONE: No calibration routine is applied

O CAL STATIC: The static calibration routine is applied

O CAL BASIC AUTOCAL: The basic auto-calibration routine is applied

O CAL SMARTFUSION AUTOCAL: The SmartFusion auto-calibration routine is applied

O CAL STATIC DRIFT COMPENSATICN: The static drift compensation routine is applied

Once the calibration parameters have been initialized, it is necessary to call the appropriate routine’s
initialization function (if it has one) or the cal init () function when the wrapper is being used.

NOTE

It is presumed that un-initialized parameters will be reset to zero. It is therefore advised to use the memset ()
function to reset the parameter structure before initialization.

When using the wrapper, the controls field is a union of a 16-bit word and the overlapped calibration
routine flags bit field structure, allowing the flags to be set individually or all at once.

To generate optimal code for the ARM MO, pointers to the input/output data vectors refer to vector
types where the elements are declared as 32-bit signed integer types. However, the range of these

User Manual Revision 1.2 17-Jan-2022

CFR0012 51 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

elements should not exceed a signed 16-bit range (-32768 < x|y|z < 32767). The overall magnitude of
the represented vector should also not exceed unsigned 16-bit range (Jv| < 32768).

Similarly, the fixed-point matrix coefficients also use 32-bit types but should not exceed a signed 16-
bit range. In cases where the matrix coefficients represent values greater than one, they should be
scaled to a 16-bit range and the g format parameter should also be adjusted accordingly. For
example, to represent coefficients in the range of +/- 2.0, g_format should be set to 14 and the
coefficients scaled by 214. Values of + 2.0 (32768 once scaled) should saturate at 32767 to prevent
overflow.

Depending on the algorithm used to calculate the calibration coefficients, the offset vector may need
to be applied before or after applying the matrix. The static calibration routine supports both methods,
but this should be indicated by setting the offset post apply appropriately. When set, the offset
vector will be applied after applying the matrix.

When applying static calibration, it is necessary to initialize the calibration coefficients (offset and
matrix) to be applied.

When applying SmartFusion auto calibration, in some cases it may be preferred to backup and
restore the calculated calibration coefficients between instantiations rather than starting from scratch
each time. In this case it is necessary to prevent the calibration routine’s initialization function from
resetting the coefficients by setting the init from static flag.

In order to work correctly, the auto calibration routines need to know the expected magnitude of the
vector produced by the sensor once distortions have been removed. This reference magnitude is
provided by initializing the ref mag parameter. The value of this parameter should ideally be
determined by performing an external measurement of the gravitational/geomagnetic field strength
and expressing this in the same format and sensitivity as generated by the sensor. Without this, the
value can be set according to estimated or published values. Alternatively, this value can be set to
zero which enables a mode in which the calibration attempts to determine the sensor vector
magnitude for itself.

As there is inevitably some margin of error in setting the reference magnitude and potentially quite a
lot of variability in the uncalibrated sensor vector magnitude, the mag range parameter has been
provided to specify the tolerance for the reference magnitude. This should be set in order to
encompass the full range of expected acceptable magnitude values. For example, when the
expected magnitude is 1000 and the desired tolerance +/-10% (a range from 900 to 1100), the
mag_range should be set to 0.1 (3277 in Q15 fixed point). In cases where the actual magnitude lies
outside this range, the auto calibration routine will never complete. Conversely, when the range is set
too wide, the calibration routine will detect completion too early and result in imperfect calibration. In
case of noisy sensor data, the magnitude range can also be used to filter out outliers to some extent.

The SmartFusion auto calibration routine includes functionality for detecting when it has achieved
convergence and the sensor distortions have been sufficiently removed. This is useful for
determining when calibration is complete or when it has subsequently become unsettled. As the level
of attainable convergence is sensitive to the amount of noise that exists in the sensor data, tuning
parameters have been provided to tune the performance. The err alpha parameter tunes the
amount of filtering applied to the calculated overall error and can be increased in situations where the
amount of noise in the sensor data is higher. The err thresh parameter sets the threshold at which
convergence is detected and should be increased in situations where higher sensor noise has
reduced the level of convergence that is attainable.

4.10.2.3 Processing

Sensor calibration processing is performed either by calling the appropriate process function on an
instantiation of the related parameter structure or by calling function cal process () when using the
wrapper.

Prior to calling the process function, it is necessary to indicate to the algorithm whether the sensor
data is valid and has been updated by setting the in data validflag. This is done to prevent invalid
data from getting into the calibration routine and corrupting its operation. Examples of invalid data

User Manual Revision 1.2 17-Jan-2022

CFR0012 52 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

include null data while the sensor is starting up or saturated sensor data. Detection of these
conditions are sensor specific, so this must be done prior to calling the calibration routine.

For SmartFusion auto-calibration, it is possible to speed up the rate of convergence by calling the
process function multiple times between samples. In this case the in data valid flag should only be
set when the sensor data is updated.

In some cases, it may be desirable to disable the application of the calibration coefficients at runtime
or selectively only apply offset correction. The apply flag enables/disables the application of the
calibration coefficients altogether. The matrix apply flag enables/disables the application of just the
matrix coefficients. It is not possible to only apply the matrix coefficients.

In some cases (for instance upon completion of one-shot mode), it may be desirable to disable the
updating of the calibration coefficients by the auto calibration routine at runtime or selectively only
update the offset coefficients. The update flag enables/disables the updating of the calibration
coefficients altogether. The matrix update flag enables/disables the update of just the matrix
coefficients. It is not possible to only update the matrix coefficients.

Once the sensor calibration routine’s processing cycle is complete, the calibrated sensor data can be
read from the location referenced by the out data pointer. The out data valid flag can also be
read to determine whether the calibration routine detects the sensor data to be within its valid range
of acceptable magnitudes (as specified by ref mag and mag range).

Since the state of the calibration routine can be determined, flags have been provided indicating
when calibration is complete or has become unsettled. For basic auto-calibration, the settled flag
can be used and for SmartFusion auto-calibration routine the converged flag can be used. In one-
shot mode, calibration can be stopped when the appropriate flag is set.

4.11 Sensor Fusion Library

4.11.1 Overview

The Sensor Fusion Library (SFL) provides a set of modules for the processing and fusing of senor
data.

4.11.2 SmartFusion Integration Engine

The SmartFusion Integration Engine is provided for integrating and decimating sensor data from
MEMS gyroscopes and accelerometers.

Sensor fusion applications often have restrictions on the maximum rates at which raw sensor can be
sampled and utilized. These restrictions are often determined by the maximum rate at which the
sensor data can be processed and/or the bandwidth available to transmit it. However, limiting the
rate at which the inertial sensors are sampled in this way reduces the accuracy at which the motion
can be tracked.

By numerically integrating the inertial sensor data, it is possible to sample it at much higher rates and
decimate it to a lower rate without losing any of the critical motion information. This allows the data to
processed and transmitted at much lower rates without losing any accuracy.

4.11.2.1 Modes of Operation

The SmartFusion Integration Engine supports different modes of operation depending on what types
of inertial sensor information are available and in what format they are required. These modes of
operation are handled by a set of sensor data integrators as follows:

e 05Q Integrator: Integrates 3D gyroscope data and outputs changes in orientation in body relative
unit quaternion (w, X, y, z) form.

e 50 Integrator: Integrates 3D gyroscope data and outputs changes in orientation in body relative
Euler angle (¢, 6, w) form.

User Manual Revision 1.2 17-Jan-2022

CFR0012 53 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

e OV Integrator: Integrates 3D accelerometer data and outputs changes in velocity in body relative
form.

Each of these integrators operate independently and can be used all at once or in any combination.
They can also operate at different sample rates and decimation factors.

4.11.2.2 APl Usage

Allocation

An instance of the smartfusion integration engine Structure must be instantiated, either statically
or on the heap, and must be maintained for the life-cycle of sensor fusion processing.

Initialization

Before processing can be performed on an instance of the SmartFusion Integration Engine module, a
subset of the parameters within the smartfusion integration engine structure must be initialized.
These parameters are as follows:

® controls: Module control and status flags.
® dv integrator: OV integrator parameters
® dt integrator: 0O integrator parameters

® dg integrator: 0Q integrator parameters

The controls field is an instance of the smartfusion integration engine flags bit-field structure.
This contains the control flags for the module. These include the a_data validand g data valid
input flags for indicating when valid accelerometer or gyroscope input data is available as well as the
dv data valid, dt data valid, and dg data valid flags for indicating when valid &V, 60, and/or
0Q output data is available. These should all be initialized to 0.

dv_integrator and dt integrator are instances of the smartfusion vector integrator structure,
while dg_integrator is an instance of the smartfusion quaternion integrator. These structures
share common parameters which must be initialized. These parameters are as follows:

e in data: Pointer to the appropriate type of input sensor data.
® dec factor: Decimation factor.
® scale factor: Scale factor applied to integrated sensor data.

® scale shift: Scale shift applied to integrated sensor data (used in conjunction with
scale factor).

NOTE

All remaining parameters are either output or state parameters and need not be initialized.

The in data pointer should reference raw input sensor data of a type which is appropriate for each
integrator. For the &V integrator, this should reference accelerometer data. For the @ and 8Q
integrators, this should reference gyroscope data.

dec factoris an integer value and should be set according to how much the rate of the raw sensor
data should be decimated by. One output delta sample is output for every dec factor samples.
Setting dec factor to 0 disables the integrator.

The scale factor and scale shift are used in conjunction with each other and are applied to the
integrated sensor data to scale it to the desired output representation. As they have sensitivity
scaling, sample rate scaling, unit conversion and dynamic range scaling all encoded within them,
selecting appropriate values can be quite complex.

After initializing all the parameters indicated previously, it is necessary to call the
smartfusion integration engine init () function on the instantiated of the
smartfusion integration engine structure.

User Manual Revision 1.2 17-Jan-2022

CFR0012 54 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Processing

Integration Engine module processing is performed by calling the

smartfusion integration engine process () function on an instance of the

smartfusion integration engine structure. Prior to calling this function, the contents of the vectors
referenced by the in data pointers in each enabled integrator should be updated with the
appropriate sensor data and the associated data valid flag should be set to 1.

If the sensors are sampled at different rates and data from individual sensors are not available at
every processing cycle, the data valid flags for these inputs should be set to 1 when they have data
available and 0 when not.

The integrators each have their own countdown timers which they use to determine when to
calculate their output delta data. When these counters expire (reach zero), delta is calculated, the
counter is reset to dec_factor, and the appropriate delta data ready flag in the controls field is set
to 1.

These delta data ready flags can be polled after calling the
smartfusion integration engine process () function. However, as a convenience they are also
returned by the function in the form of a bit-mask:

e Bit0: dv data valid

e Bitl:dt data valid

® Bit2: dg data valid

When the appropriate flag is set after calling the process function, the corresponding delta data can
be read and used. These remain valid until the next delta value is calculated, although the

corresponding flags are cleared the next time smartfusion integration engine process() is
called.

OV and 60 are represented in 16-bit fixed point form with a Q format and units determined by
scale factor and scale shift. dQ is always represented in Q15 fixed point unit quaternion form.

4.11.3 SmartFusion Attitude and Heading Reference System

The SmartFusion Attitude and Heading Reference System (AHRS) is provided for fusing sensor data
from MEMS gyroscopes, accelerometers and magnetometers to determine and track the absolute
orientation of the device in which they are mounted relative to the Earth frame of reference.

The algorithm assumes that the sensor data supplied to it has been calibrated and that all distortions
have been compensated for. When this is not the case, the performance will be compromised and
drift artifacts may be observed.

4.11.3.1 Modes of Operation

The SmartFusion AHRS algorithm supports different modes of operation depending on what types of

sensor information are available. The supported modes are as follows:

e Gyroscope, Accelerometer, and Magnetometer (GAM) Mode:
With information from all the sensors, the algorithm can track the absolute orientation of the
device and compensate for any drift in the gyroscope data and noise in the accelerometer and
magnetometer data.

e Gyroscope and Accelerometer (GA) Mode:

Using information from only the gyroscope and accelerometer, the algorithm can track the
absolute orientation of the device and compensate for any drift in the pitch and roll components
of the gyroscope data as well as noise in the accelerometer data. The reference heading is taken
to be whatever the heading is at initialization, but this can drift over time.

e Gyroscope Only (G) Mode:

User Manual Revision 1.2 17-Jan-2022

CFR0012 55 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Using information from only the gyroscope, the algorithm can track changes in the orientation of
the device but cannot compensate for any drift in the gyroscope data. The reference orientation is
taken to be whatever the orientation is at initialization, but this can drift over time.

e Accelerometer and Magnetometer (AM) Mode:

Using information from only the accelerometer and magnetometer, the algorithm is able to track
the absolute orientation of the device but is less able to compensate for noise in the
accelerometer and magnetometer data.

NOTE

Gyroscope and Magnetometer (GM) Mode is not supported.

4.11.3.2 APl Usage

Allocation

An instance of the smartfusion ahrs structure must be instantiated, either statically or on the heap,
and must be maintained for the life-cycle of sensor fusion processing.

Initialization

Before processing can be performed on an instance of the SmartFusion AHRS module, a subset of
the parameters within the smartfusion ahrs structure must be initialized. These parameters are as
follows:

controls: Module control flags.

dg_data: Pointer to the quaternion step rotation (8Q) input data.

a_data: Pointer to the accelerometer input data.

m_data: Pointer to the magnetometer input data.

beta_a: Scaling factor controlling the relative weight of accelerometer data.
beta m: Scaling factor controlling the relative weight of magnetometer data.

a: Output quaternion representing the orientation of the device in Earth frame of reference.

The controls field is a union of an 8-bit word and an instance of the smartfusion ahrs flags bit-
field structure. This contains the control flags for the module, allowing them to be set and read
individually using the flags field or all at once using the word field. These flags should be initialized
to indicate which sensors are available by setting the appropriate dq data valid, a data valid, and
m data validflags to 1 or O to indicate the mode of operation.

Rather than use raw gyroscope data directly, the AHRS module receives gyroscope data in unit
guaternion form, which represents the step rotation undergone by the device over the given sample
period (8Q) in body relative terms. The elements (w, x, y and z) of dq_data are represented using
Q15 signed fixed point values in the range of -1.0 to 1.0 (-32768 to 32767). Although this step
rotation may be calculated directly from the angular velocity reported by the gyroscope, it is
recommended to use the output of the 6Q integrator in the Integration Engine.

Accelerometer and magnetometer data should be supplied to the AHRS module in raw form. The
representations and magnitudes of these vectors are not important as they have no impact on the
module.

Although the data structures for the 8Q quaternion and the accelerometer/magnetometer vectors use
underlying 32-bit types (for optimization reasons), they actually represent 16-bit quantities. Therefore,
the magnitudes of these quaternions and vectors should never exceed signed 16-bit signed integer
range (that is, -32768 < ||v|| < 32767).

If data for a particular sensor is unavailable (for example, when using the module in GA, G, and AM
modes), the associated pointer should be set to NULL.

User Manual Revision 1.2 17-Jan-2022

CFR0012 56 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

beta aand beta mare both Q15 unsigned fixed point parameters representing positive scaling
factors in the range of 0 to 1.0 (32768). Suitable values for beta_a and beta mshould be selected to
match the requirements of the use-case in terms of the maximum rate of rotation and tolerance to
noise. Increasing these values will allow faster rates of rotation to be tracked at the expense of
tolerance to accelerometer/magnetometer noise.

Although g is a unit quaternion representing the orientation of the device output by the module,
subsequent orientations are dependent on previous ones, so it is necessary to initialize this with a
starting orientation. If the device orientation is known at the time of initialization, this can be used,
otherwise it is recommended to use the reference orientation [1.0, 0.0, 0.0, 0.0] (that is, upright and
facing north). The elements (w, X, y and z) of g are represented using Q15 signed fixed point values
in the range of -1.0 to 1.0 (-32768 to 32767).

Processing

AHRS module processing is performed by calling the smartfusion ahrs process () function on an
instance of the smartfusion ahrs structure. Prior to calling this function, the contents of the vectors
referenced by dq data, a data, and m data should be updated with the appropriate sensor data.

If the sensors are sampled at different rates and data from individual sensors are not available at
every processing cycle, the flags for these inputs should be set to 1 when they have data available
and 0 when not. They can also be used to indicate to the module when the sensor data is invalid for
some reason and should therefore be ignored. Examples of invalid data include when the sensor is in
an initialization or error state, saturated, or the magnitude is too low.

The algorithm uses a right-handed coordinate system, where the x-axis is aligned with north, the y-
axis is aligned with east, and the z-axis is aligned with down. The gyroscope, accelerometer, and
magnetometer data must be converted to this coordinate space for the algorithm to function correctly.

NOTE

Positive gyroscope values represent a clockwise rotation around the associated axis (when looking in the
direction it is pointing).

The algorithm also assumes that the sensors have been sampled synchronously at a regular interval
and that all distortions (for example, magnetometer hard/soft iron distortions) have been properly
compensated for. If not, the algorithm performance will be degraded.

Once processing is complete, an updated orientation estimate can be read from q. This parameter
represents the current Earth frame of reference orientation of the device in Q15 signed fixed point
unit quaternion form.

5 Smart Tag Reference Application

5.1 Introduction

Smart Tag, Dialog's Bluetooth® low energy proximity tag reference application, provides an ideal
starting point to develop a proximity tag application with the shortest time-to-market and lowest
development cost and effort. The design comes with a complete software solution for the full
proximity application and profile source codes. Dialog also provides fully-featured Android and iOS
applications to manage the proximity tag’s settings, trigger alerts, check the battery status, and play a
fun ‘Seek & Find’ game, all in source code.

The Smart Tag reference application functions in the role of a Bluetooth Low Energy Proximity
Reporter defined in the Proximity Profile listed in the Bluetooth specification [15]. The Proximity
profile defines the behavior of a Bluetooth device when it moves away from a peer device, and it
covers the use case where a connection loss causes an immediate alert. This alert notifies the user
that the devices have become separated.

The Smart Tag application is designed to run on Dialog’s DA14585 MSK HW reference design.

User Manual Revision 1.2 17-Jan-2022

CFR0012 57 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

As a starting point, developers are suggested to get familiar with the DA14585 datasheet [5], the
software developer’s guide of the DA14585 SDK [1], and the software platform reference of the
DA14585 SDK [2].

5.2 Software Features

5.2.1 Profiles and Services

Besides the Proximity Reporter profile, the Smart Tag application implements the following profiles
and services for monitoring and supporting additional features:

m Proximity profile, Reporter role

O Link Loss service

O Immediate Alert service

o Tx Power service

Battery Service, Server role

Data Information service, Server role

Find Me profile, Locator role

SUOTA, Server role

5.2.2 Alerts

The Smart Tag application supports two types of alerts for user notifications, high level and mild
level, as described in Table 64.

Table 64: Alert Types

Alert Type | Description

High level | e LED blinking with a buzzer tone with the following pattern:
o LED: 150 ms on, 150 ms off.
o Buzzer: 150 ms on, 150 ms off, alternating between 392 Hz (“G” note) and 440 Hz (“A”
note)
e Triggered when peer device writes immediate alert with ‘High Alert’, or Smart Tag disconnects
from peer and Link Loss is set to ‘High Alert’.

Mild level | ® LED blinking with a buzzer tone with the following pattern:
o LED: 500 ms on, 500 ms off
o0 Buzzer: 500 ms on, 500 ms off, 440 Hz (“A” note)

o Triggered when peer device writes immediate alert with ‘Mild Alert’, or Smart Tag disconnects
from peer and Link Loss is set to ‘Mild Alert’.

5.2.3 Advertising and Sleep Phases
Smart Tag advertises in undirected mode with different intervals for specific advertising phases:

e Advertising phase (200 ms interval):
It is the first minute after start-up or disconnection.
e Advertising phase (1000 ms interval):
It is the period of three minutes after the 200 ms interval phase.
e Deep Sleep phase:
After four minutes, the Smart Tag stops advertising and enters continuous Deep Sleep mode.
In Advertising mode, the Smart Tag blinks the green LED with a pattern of 50 ms on and 1000 ms

off. Once devices are connected, the LED stops blinking; when the devices are disconnected, the
LED starts blinking again since Smart Tag goes again in advertising mode.

User Manual Revision 1.2 17-Jan-2022

CFR0012 58 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

The Smart Tag application supports Extended Sleep mode during Connectable and Connected
states, and Deep Sleep mode during the Deep Sleep Phase. The supported sleep modes of the
DA14585 are explained in section 8.6 in [1].

5.24 Push-Button Interface

The actions that are triggered on a push-button event depend on the operating state of the Smart
Tag, as described in Table 65.

Table 65: Push-Button Interface

Operating State Action on Button Press
Alert is active Stop alert.
Deep Sleep phase Wake up Smart Tag and start advertising.

Connected and ‘find me’ locator If the alert is not active, writes alert characteristic of immediate alert service
discovered, immediate alert on peer device.

service on peer device Stops the alert in peer device if alert is active.

Advertising phase Long press (currently set to 3 s): bonding data are deleted from SPI Flash
memory. When long press is detected, an 880 Hz tone (‘A’ note, 5th octave)
will be played for 125 ms (Note 1)

All other states None

Note 1 When deleting the bonding data from the Smart Tag SPI Flash and the Android device is paired with
the Smart Tag device, the Smart Tag device needs to be removed from the list of paired devices of the
Android device (usually via menu Settings > Bluetooth > Forget Device).

5.2.5 Security

According to the Bluetooth Core specification, the purpose of bonding is to create a relation between
two Bluetooth devices based on a common link key (a bond). The link key is created and exchanged
(pairing) during the bonding procedure and is expected to be stored by both Bluetooth devices to be
used for future authentication.

Since the DA14585 IoT MSK reference design does not have a keyboard or display, it only supports
the ‘Just Works’ pairing method. Upon completion of a successful bonding procedure, the Smart Tag
application stores the security information (LTK, EDIV, and RAND which will be also referred as
‘bonding data’) in the SPI Flash memory for reuse on subsequent reconnections of the bonded
device. For more information regarding the bonding procedure refer to [3], section 5.6.

When the Smart Tag is in Advertising mode, users can ‘forget’ a bonded central device by keeping
the button pressed until a tone is heard. This indicates that the security information has been deleted
from the SPI Flash memory and a new central device can now pair with the Smart Tag device.

NOTE

The Smart Tag transmits a Security Request command to the central device in order to trigger the pairing
procedure upon receiving the connection request from the central device. However, this command could be
ignored by the central device, when it does not wish to start a pairing procedure.

5.2.6 Battery Level

In Connected state, the Smart Tag software samples the battery level and updates the value of the
battery level characteristic. The notification capability of the characteristic is disabled at the beginning
of each connection. To enable value update natifications, the peer device must write the
configuration attribute of the characteristic with the corresponding value.

User Manual Revision 1.2 17-Jan-2022

CFR0012 59 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

5.3

Software Architecture

Company Confidential

Group

File Name Description

user_platform

i2c gpio extender.c

User drivers for the 12C GPIO extender

user_app user smarttag proj.c Application code
user smarttag utils.c
Utilities user_iot dk utils.c User drivers for battery and MSK HW peripherals

battery.c

5.4

This section provides information about important functions of the application and a detailed

Operation Overview and State Machines

description of the used Finite State Machines (FSM).

541

Application Configuration Parameters

The main parameters of the Smart Tag application software, which can be adjusted to customize
certain functionality of the application, are listed in Table 66.

Table 66: Smart Tag Application Configurable Parameters

Parameter Description Current
Value
APP SPT POWEROFF DELAY Upon application initialization, the timer 1s
- - APP FLASH POWEROFF TIMER is set with this value to delay the SPI
Flash power down mode and allow developers to use the
SmartSnippets Flash Programmer application to connect to the
Smart Tag device and re-program the SPI Flash device.
APP SLEEP DEIAY Upon application initialization, the function 5s
app_set startup sleep delay (APP_SLEEP DEIAY) is called to
modify the system startup sleep delay. This delay allows the
developer to have an active JTAG interface and to use the
debugger to connect to the Smart Tag device.
APP FIRST ADV PHASE DUR This parameter sets the APP_ ADV_TIMER to control the advertising | 60 s
intervals. Refer to section 5.2.3 for details.
APP FIST ADV PHASE INIVAL This parameter sets the advertising interval for the first 200 ms
advertising phase.
APP SECOND ADV_PHASE DUR This parameter sets the APP ADV_TIMER to control the advertising | 3 min
intervals. Refer to section 5.2.3 for details.
APP SECOND ADV_PHASE INTVAL | This parameter sets the advertising interval for the second 1ls
advertising phase.
APP_BOND_DB DATA OFFSET The SPI Flash start address where the bonding data are stored. 0x32000
APP ADV BLINK ON DUR Controls the LED ‘on’ duration during advertising. 50 ms
APP ADV BLINK OFF DUR Controls the LED ‘off duration during advertising. ls
5.4.2 Application Task State Machine
The FSM of the application task of Smart Tag consists of the following states (Table 67):
Table 67: Application Task: FSM States
State Description
APP DISABLED Application task initiated. Waiting for GAPM DEVICE READY IND message.
User Manual Revision 1.2 17-Jan-2022
CFR0012 60 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

State Description

APP DB INIT Database initialization in progress.

APP CONNECTABLE Advertising or Continuous Extended Sleep.
APP_CONNECTED Device connected to Proximity Monitor.

Figure 15 graphically illustrates the FSM. The state transitions are described in Table 68.

APP_DISABLED

GAMP Device Ready Indication

APP_DB_INIT

Database Initialization -~~~ ’ e
Completion T

CONTINUOQUS
SLEEP

ADVERTISE
[200 ms/1000 ms]

1 + 3 min advertising

APP_CONNECTABLE !
timers expiration

Disconnection Connection Requé_s_t"’-f-r-,.,__, o =T

APP_
CONNECTED

Figure 15: Smart Tag Application Task FSM

Table 68: State Transitions of the Application Task FSM

State Transition Event

From To Action

APP DISABLED GAPM DEVICE READY IND message reception.
APP DB INIT Start database initialization of supported profiles.

APP DB INIT Database initialization procedure is completed.
ADVERTISE Start advertising in 200 ms advertising interval.
(APP_CONNECTABLE)

User Manual Revision 1.2

17-Jan-2022

CFR0012

61 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

State Transition Event

From To Action

ADVERTISE Timer for 1000 ms advertising interval expired.

(APP_CONNECTABLE)

CONTINUOUS SLEEP Device stops advertising and/or active alerts and switches to
(app coNNECTABLE) | Deep Sleep mode.

CONTINUOUS SLEEP Button press event.
(APP_CONNECTABLE)

ADVERTISE Device exits Deep Sleep mode and restarts advertising in 200
(APP_CONNECTABLE) | Ms interval.

ADVERTISE Connection Request has been received.
(APP_CONNECTABLE)

APP_CONNECTED Enable profiles and start battery polling.
APP CONNECTED Device disconnects.
ADVERTISE Start advertising in 200 ms advertising interval.

(APP_CONNECTABLE)

5.4.3

Callback Functions

A set of callback functions is defined in user callback config.hwhich consist of the entry points of

the app

lication.

® user app on init():

o

O

It is the main entry point of the application task.
It is used to initialize the parameters of high-level profiles and low-level hardware modules.

® user app on set dev config complete():

O

o

544

It is called after the device configuration is complete.

This means that the device database of the supported profiles has been created and the
device can enter Advertising mode.

Also, in this function the Flash power-off timer is initialized. This timer allows users to use the
SmartSnippets tool to program the Flash memory by leaving the Flash memory in power-up
mode for (APP_SPI POWEROFF DELAY * 10) ms. The default timeis 1 s.

Advertising

® user advertise operation():

O

O

It starts or restarts the Advertising mode.

It is called upon completion of the database initialization, upon device disconnection, and
upon expiration of the advertising timer to start the advertising interval of the second phase.

The function also initializes the advertising timer for the variable advertising interval feature
and the blink timer for Advertising mode LED blinking.

Finally, function user undirected advertise start() constructs and sends the command
GAPM START ADVERTISE CMD to the GAPM TASK in order to initiate the advertising mode.

® user adv timer handler():

o ltis called upon expiration of the advertising timer.
o Its main functionality is to program the correct advertising phase.
o For Continuous Sleep state, the function disables all timers and alerts before setting the
device in Deep Sleep mode.
User Manual Revision 1.2 17-Jan-2022

CFR0012

62 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

® user blink timer handler ()

o It handles the expiration of the LED blinking timer, restarts the timer, and inverts the state of
the LED.

5.4.5 Connection

® user app on connection():
o ltis called upon reception of a connection request from a central role device.

o When this function is called, the Smart Tag application stops the LED blinking timer, enables
the profiles and services, selects the proper sleep mode, and enables the device profiles.

® user on disconnect():

o lItis called upon reception of a GAPC DISCONNECT IND message, which indicates that the
connection does not exist anymore.

© When this function is called, the battery level polling is stopped, and the advertising
procedure starts again.

5.4.6 Security

® user app on pairing request():
o ltis called during the pairing process.

o Itinforms the peer device about the security capabilities of the device. The Smart Tag
application uses ‘Just Works’ mode with bonding capability.

o It also checks whether the Smart Tag device is already paired with another device by looking
for bonding data stored in SPI Flash memory. When the Smart Tag device is already paired
with another central device, it will not accept the new pairing request. Smart Tag only
supports bonding with one central device at a time.

® default app on 1tk exch():
o lItis the SDK 5 default function and is called upon reception of a GAPC BOND REQ IND
message with request set to GAPC LTK EXCH (Long Term Key Exchange).
o This function generates the LTK and sends it to the host.
® user app on pairing succeed():
o lItis called upon reception of a GAPC BOND IND message with status GAPC PATRING SUCCEED.

o The function stores the security information into SPI Flash memory and completes the
connection establishment phase.

® user app on encrypt req ind():
o lItis called to initiate a secure connection upon the reception of a GAPC_ENCRYPT REQ IND
message.

o In order to validate the connecting host, this function uses the parameters RAND and EDIV to
check whether the Smart Tag has already stored the bonding data in SPI Flash memory. If
not, the request is rejected, and the peer is disconnected.

® user app on encrypt ind()

o lItis called upon the reception of a GAPC ENCRYPT IND message to indicate that encryption is
completed.

o The database is updated with values from the SPI Flash memory.

5.4.7 Push button

In the application initialization function user app on init (), a wakeup interrupt (IRQ) is enabled on
the GPIO that is allocated to the push-button interface. This is done via the API functions
wkupct register callback() and wkupct enable irq() of the wakeup module driver. The callback

User Manual Revision 1.2 17-Jan-2022

CFR0012 63 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

function user button press cb() is registered to enable a wakeup interrupt when the button is
pressed.
® user button press cb():

o ltis the callback function of the application, called from the WKUP_QUADEC IRQOn() interrupt
handler of the wakeup module driver when the button is pressed.

o The function checks the state of the application and triggers the required action, as described
in Table 65.

o ltalso calls the API functions wkupct register callback() and wkupct enable irq() of
the wakeup module driver to register the user button release cb() callback function and
enable a wakeup interrupt when the button is released.

o Finally, the function sends a wakeup message to the TASK APP to start the button press timer,
which is used to detect a long key press for deleting the bonding data stored in the SPI Flash
memory.

® user button release cb():

o ltis the callback function of the application, called from the WKUP_QUADEC IROn () interrupt
handler of the wakeup module driver when the button is released.

o The function calls the API functions wkupct register callback() and
wkupct enable irg() of the wakeup module driver to register the app button press cb()
callback function and enable a wakeup interrupt when the button is pressed.

o Finally, the function sends a wakeup message to the TASK APP to stop the button press timer.
® user wakeup handler():

o ltis called upon reception of the wakeup message and calls function
user advertise operation() to start advertising.

o It also starts/stops the button press timer depending on the button status
(user button status).

5.4.8 Proximity Reporter and Alerts

® app proxr enable():
o It enables the Proximity Reporter profile upon connection.
® user proxr alert ind handler():

o lItis the message handler of a PROXR LLS ALERT IND message, which is sent by the Proximity
Reporter profile to trigger an alert on the device.

o This function calls functions user proxr alert start() Or user proxr alert stop() to
start or stop an alert, depending on the alert level received in PROXR ALERT IND.

® user proxr alert start():

o ltinitiates user alert indications.

o Itupdates the alert state parameters and depending on the alert level it starts the PWM
engine by calling the function user proxr pwm enable () to generate the alert melody.

NOTE

The LED functionality is controlled from within the functions that program the PWM tones, as explained in
section 5.4.9.

® user proxr alert stop():
o It stops user alert indications.
o It clears the alert state parameters, turns off the alert LED, and stops the APP PXP TIMER.

User Manual Revision 1.2 17-Jan-2022

CFR0012 64 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

5.4.9 PWM Engine

This section describes how the Smart Tag uses the PWMO0 and PWM1 (TIMER 0) outputs to create
the alert melodies. Details on the PWMO0 and PWM1 can be found in section 7.12 in [1].
® user proxr pwm enable(): itinitializes TIMER O:

o Itenables the TIMER O peripheral clock by calling the set tmr enable () PWM API driver
function.

o ltcalls set tmr div() to sets the TIMER O clock division factor to 8 (16 MHz clock source).

o ltcalls timer0 init() to initialize the PWM with the desired PWM mode, TIMER 0 ‘on’ time
division option, and clock source selection.

— In this example, the timer tick period is configured to:
(1/16 MHz) X 8 (clock division) x 10 (TIMO_CLK_DIV_BY_10) = 5us (2)

o It sets the TIMER 0 ‘on’, ‘high’, and ‘low’ times by calling function timer(0 set ().

o ltregisters a callback function for SWTIM IROn interrupts by calling
timer(0 register callback (). The callback function pointer is an input parameter to this
function. In the Smart Tag application three different melodies/tones are needed, which are
handled by the following callback functions:
— high alert pwm callback () : programs the high alert melody.
— mild alert pwm callback () : programs the mild alert melody.
— button pwm callback () : programs the button long press tone.

o Itenables the SWITIM IROn by calling the timer0O enable irg() function.

o It starts TIMER 0 by calling the timer0 start () function.

® high alert pwm callback():

It is a callback function for the SWTIM IROn interrupt that handles the high alert melody. The

following parameters configure the alert melody:

o The melody is defined in the constant array alert high notes[].

o In this array developers can define a new sequence of notes and pauses. Note values
represent the frequency of the musical notes. For example, ‘880" means 880 Hz which is the
‘A’ note of the 5th octave.

o Each time this callback function is called, a note or a pause from the array will be
programmed to the PWM engine by calling the functions timer0 set pwm high counter ()
and timer0 set pwm low counter ().

o The duration of the note/pause is determined by the parameter value ALERT HIGH DURATION
that is passed to the function timer0 set pwm on counter (). At the end of this duration, an
interrupt will be triggered, and the callback function will be executed again to program the
next note/pause from the array.

o For the LED to blink synchronously with the melody, the LED is controlled within
high alert pwm callback (). When a pause is programmed, the LED is turned off. When a
note is played, the LED is turned on.

® mild alert pwm callback():

It is a callback function for the SWTIM IROn interrupt that handles the mild alert melody. This
function is similar to the high alert pwm callback() function, described in the previous section,
with one extra parameter:

O ALERT MILD EXTRA DELAY: This parameter determines how many times the function will be
called without programming a note/pause. This is needed in case that a note/pause duration
needs to be quite long and cannot be set by the timer0 set pwm on counter () range.

User Manual Revision 1.2 17-Jan-2022

CFR0012 65 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o The notes/pauses for the mild alert melody are defined in the constant array
alert mild notes[]. The duration of the note/pause is determined by the parameter value
ALERT MILD DURATION.

® button pwm callback():

Itis a callback function for the SWTIM IRQOn interrupt that handles the long button press alert. This
alert is a single tone alert (button press notes = PWM TONE A 5TH) and the TIMER 0 ‘on’
counter is not programmed again, because no further interrupts are needed to program more
notes/pauses.

5.4.10 SmartTag Sequence Diagram

SmartTag_User_App User_configuration SDK

. app_on_init()

user_app_on_init()

Iy

_Aapp_on_set dev_config_complete()

user_app_on_set_dev_config_complete()

default_app_on_set_dev_config_complete()

v

default_operation_adv()

<

useriadvenisefoperamon()D

app_on_adv_undirect_complete()

<
<

user_app_on_adv_undirect_complete()

<
useriadvemsefoperat\on()D

< app_on_connection()

user_app_on_connection()

A

app_easy_security_request() NOT BONDED

A4

app_on_pairing_succeeded()

<
<

user_app_on_pairing_succeed()

A

app_easy security_bdb_add_eniry()

A4

M app_on_encrypt_ind()

user_app_on_encrypt_ind()

A

app_easy_security_resolve_bdaddr() ALREADY BONDED, TIMECUT

A4

user_on_encryption_request_timeout_handler() p]
app_easy_gap_disconnect()

v

app_easy_security_resolve_bdaddr() ALREADY BONDED

A4

o app_on_encrypt_reqg_ind()

user_app_on_encrypt _req_ind()

<
<

user_on_encryption_request_timeout_handler()

app_easy_gap_disconnect()

v

Button Press (3s) .

»
user_bunon_press_timer_hand\er()D

bond_db_clear()

v

Figure 16: Smart Tag Reference Application Sequence Diagram

6 Beacon Reference Applications
6.1 Introduction

This section describes the Bluetooth® Low Energy Beacon reference application design based on
DA14585. It serves as a developer's guide to customize the beacon for any desired purposes.

User Manual Revision 1.2 17-Jan-2022

CFR0012 66 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Dialog Semiconductor is a member of the iBeacon™ program. Please contact your local sales office
to learn more about the possibilities we can offer relating to this standard. The Dialog Beacon
reference application also supports the AltBeacon protocol as well as the Eddystone™ protocol, with
supported modes being the Eddystone-UID, the Eddystone-URL, and the Eddystone-TLM
(unencrypted).

=\ Works with
) Apple iBeacon] ALT

BEACON

Eddystone
Figure 17: Beacon Protocol Logos

The Beacon reference software can be downloaded from the Dialog support portal and run on the
DA14585 loT MSK reference hardware. It also runs on Dialog's DA14585/14586 Development kit
(Expert/Pro/Basic).

6.2 Whatis a Beacon?

Beacons are battery powered devices that advertise a particular Bluetooth low energy payload with
identifying information. In short, it is a device that just says Figure 18.

" My name is this and | have this unique 1D "

(2

-
SRy -

Figure 18: Bluetooth Low Energy Beacon

Although [17] contains a startup guide that explains how to run the Beacon reference software out of
the box and how to configure the main parameters, this section provides to software developers all
design details to customize the Dialog Beacon reference application for more advanced use cases,
such as:

Adaptive modification of advertising data

Choosing from various beacon formats

Interleaving connectable advertising events

Software Updates Over The Air (SUOTA)

6.3 Beacon Example

Table 69 shows a beacon configuration that is chosen for an international museum application,
where each exhibit has its own unique beacon. The specific advertising data transmitted by each
beacon is picked up by mobile phones near the exhibit. The mobile phone will then direct users to
additional information regarding the exhibit.

In this museum example, the organization uses a Universal Unique Identifier (UUID). The museum
location is indicated by the Major Field and the exhibit number within the museum by the Minor field.

User Manual Revision 1.2 17-Jan-2022

CFR0012 67 of 110 © 2022 Renesas Electronics

https://support.dialog-semiconductor.com/

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Table 69: Example of Advertising Data from a Museum Beacon

Museum Location London Paris Amsterdam
UuID 1234A567-3854-ABED-8FAC-56E783159AE2
Major 10 20 30
Minor Exhibit #1 1 1 1
Exhibit #2 2 2 2
Exhibit #3 3 3 3

When the beacon sends ‘20’ as a major value and ‘1’ as a minor value, the application on
smartphones/tablets will guide visitors to additional information on exhibit #1 from the Paris museum.
This additional information might come from the smartphone application or from the Internet. As a
result, visitors will receive only the specific information that is of interest when standing close to the
exhibit (Figure 19).

Figure 19: Description of the Exhibit on a Smartphone

The smartphone application can also provide a distance indication to the beacon using the RSSI
value.

There are endless other applications using Beacon apart from the museum application, for example,
in retail, advertising, and sports events.

6.4 Beacon Formats

There are various beacon formats. The beacon formats supported by DA14585 loT MSK are
presented in the following subsections.

6.4.1 iBeacon

iBeacon™ is a protocol developed by Apple but used by various vendors. It is a closed format that
exposes a UUID and other configurable values. An iBeacon frame is presented in Figure 20.

iBeacon Prefix UuID Major Number | Minor Number TX Power
9Bytes 16Bytes 2Bytes 2Bytes 1Byte

Figure 20: iBeacon Frame

An iBeacon frame consists of:

User Manual Revision 1.2 17-Jan-2022

CFR0012 68 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

6.4.2

AltBeacon

Company Confidential

iBeacon Prefix: A 9-byte constant preamble identifying iBeacon

UUID: A 16-byte string used to differentiate a large group of related beacons.

Major: A 2-byte string meant to distinguish a smaller subset of beacons within the larger group.
Minor: A 2-byte string meant to identify individual beacons.

Tx Power: A 1-byte value representing the RSSI at 1 m from the advertiser.

AltBeacon is an open beacon format for proximity beacons. The emitted message contains
information that the receiving device can use to identify the beacon and to compute its relative
distance to the beacon. The receiving device may use this information as a contextual trigger to
execute procedures and implement behaviors that are relevant to being in proximity to the
transmitting beacon (see [13]). Figure 21 presents the AltBeacon frame structure.

1 Byte
AD Length

1 Byte
AD Type

2 Byte
MFG ID

2 Byte
Beacon Code

20 Byte
Beacon ID

16B UID + 2B ALT_Val1 +2B ALT_Val2

1 Byte
Ref RSSI

1 Byte
MFG RSVD

Figure 21: AltBeacon Frame

Table 70 provides more detailed information on the various field of an AltBeacon frame.

Table 70: AltBeacon Protocol Fields

Field Name Description Accepted Values
AD LENGTH Length of the type and data portion of the 0x1B
[MFG SPECIFIC] | Manufacturer Specific advertising data
structure.
AD TYPE Type representing the Manufacturer OxFF
[MFG SPECIFIC] | Specific advertising data structure.
MFG ID The beacon device manufacturer's The little-endian representation of the beacon

company identifier code.

device manufacturer's company code as
maintained by the Bluetooth SIG assigned
numbers database.

BEACON CODE

The AltBeacon advertisement code.

The big-endian representation of the value
OxBEAC.

BEACON ID A 20-byte value uniquely identifying the The big-endian representation of the beacon
beacon. identifier. For interoperability purposes, the
first 16 bytes of the beacon identifier should
be unique to the advertiser's organizational
unit. Any remaining bytes of the beacon
identifier may be subdivided as needed
for the use case (Note 1).
REFERENCE A 1-byte value representing the average A signed 1-byte value from 0 to -127.
RSSI received signal strength at 1m from the
advertiser.
MFG Reserved for use by the manufacturer to A 1-byte value from 0x00 to OxFF.
RESERVED implement special features. Interpretation of this value is to be defined by
the manufacturer and is to be evaluated
based on the MFG ID value.
Note 1 In Dialog's beacon reference design, the Beacon ID is divided into a 16-byte UUID, a 2-byte ALT vall,

and a 2-byte ALT_val2.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

69 of 110

© 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

6.4.3 Eddystone

Eddystone™ is a protocol specification that defines a BLE message format for proximity beacon
messages. It describes several different frame types that may be used individually or in combination
to create beacons suitable for a variety of applications (see [9]). Figure 22 shows the Eddystone
modes supported by the Dialog Beacon reference design.

Eddystone

Eddystone-UID Eddystone-URL Eddystone-TLM

1 byte frame type = 0x00 1 byte frame type = 0x01 1 byte frame type = 0x20

1 byte Tx powerat 0 m 1 byte Tx powerat 0 m 1 byte TLM version = 0x00

10 byte - Namespace 1D 18 byte only Battery voltage

6 byte - Instance ID 1 byte - URL prefix: Beacon temperature
0x00 - http:/Avww Advertising PDU count

2 bytes reserved 0x01 - hitps:/ www Time since power-on
0x02 - http://
0x03 - https://

Figure 22: Eddystone Modes Supported by Dialog's Beacon Reference Design

Figure 23 describes the various fields of the different Eddystone Beacon modes.

Eddystone Beacon - 31B

Len |Type |Fiags | Len Type | Eddystone Len |Type Eddystone Eddystone Frame
0x02 | 0x01 | 0x06 | ox03 [Eoiy | UUID o7y | (e | BUID 20Bytes
0x03 | OxAA,0xFE 0x16 | OXAA,0xFE
Y 1 1
3B 4B up to 20B
Adv Flags, Services Advertised Eddystone Frames.

Standard Currently 3 types
|

———— UUID frame (0x00)

Frame PoWer
20B Type @1m Namespace ID Instance 1D RFU

0x00 1B 10B 6B 2B

1B
168 UUID
——— URL frame (0x10)
Frame T URL
6-20B gi?g Power esg::;‘.:'(Encoded URL

1B 1B 1B 0-178

0x00 = http:/iwww.
1— 0x01 = https:/fwww.
0x02 = http://

P 0x03 = https://

l'—————» TLM frame (0x20)

Frame

Tibe Version Battery Beacon Adv PDU Count Time Since Boot
14B 01;0 0x00 | Voltage (mV Temp since boot (0.1s increments)
1B 2B 2B 4B 4B

1B

Figure 23: Eddystone Different Mode Frames Analyzed

The specific type of Eddystone frame is encoded in the high-order four bits of the first octet in the
Service Data associated with the Service UUID. Permissible values are shown in Table 71.

User Manual Revision 1.2 17-Jan-2022

CFR0012 70 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Table 71: Eddystone Frame Types

Company Confidential

Frame Type High Order 4 bits Byte Value
uiD 0000 0x00
URL 0001 0x10
LM 0010 0x20
EID 0011 0x30

RESERVED 0100 0x40

Note 1 The four low-order bits are reserved for future use and shall be 0000.

Note 2 Although the core Bluetooth data types are defined in the standard as little-endian, Eddystone's multi-
value bytes defined in the Service Data are all big-endian.

6.4.3.1 Eddystone-UID

The Eddystone-UID frame broadcasts an opaque and unique 16-byte Beacon ID composed of a 10-
byte namespace and a 6-byte instance. The Beacon ID is useful in mapping a device to a record in
external storage. The namespace of the ID can be used to group a particular set of beacons, while
the instance of the ID identifies individual devices in the group. The division of the ID into a
namespace and an instance can also be used to optimize BLE scanning strategies, for example, by

filtering only the namespace.

The UID frame is encoded in the advertisement as a Service Data block associated with the
Eddystone service UUID. The frame layout is shown in Table 72.

Table 72: Eddystone UID Frame

Byte Offset Field Description

0 Frame Type Value = 0x00

1 Ranging Data Calibrated Tx power at 0 m

2 NID[O] 10-byte Namespace

3 NID[1]

4 NID[2]

5 NID[3]

6 NID[4]

7 NID[5]

8 NID[6]

9 NID[7]

10 NID[8]

11 NID[9]

12 BID[O] 6-byte Instance

13 BID[1]

14 BID[2]

15 BID[3]

16 BID[4]

17 BID[5]

18 RFU Reserved for future use, must be 0x00

19 RFU Reserved for future use, must be0x00
User Manual Revision 1.2 17-Jan-2022
CFR0012 71 of 110 © 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

More on information on the Eddystone-UID specification can be found in [10].

6.4.3.2 Eddystone-URL

The Eddystone-URL frame broadcasts a URL using a compressed encoding format in order to fit
more within the limited advertisement packet. Once decoded, the URL can be used by any client with

access to the internet.

Table 73: Frame Specification

Byte Offset Field Description
0 Frame Type Value = 0x10
1 TX Power Calibrated Tx power at 0 m
2 URL Scheme Encoded Scheme Prefix
3+ Encoded URL Length 1to 17

For URLs longer than 17 bytes, a URL shortener is recommended.

Table 74 URL Scheme Prefix

Decimal Hex Expansion
0 0x00 http://www.
1 0x01 https://www.
2 0x02 http://
3 0x03 https://

The HTTP URL scheme is defined by RFC 1738. The encoding consists of a sequence of
characters. Character codes excluded from the URL encoding are used as text expansion codes.
When a user agent receives the Eddystone-URL, the byte codes in the URL identifier are replaced by

the expansion text according to Table 75.

Table 75: Eddystone-URL HTTP URL Encoding

Byte Offset Field Description

0 0x00 .com/
1 0x01 .org/
2 0x02 .edu/
3 0x03 .net/
4 0x04 .info/
5 0x05 .biz/
6 0x06 .gov/
7 0x07 .com
8 0x08 .org

9 0x09 .edu
10 Ox0A .net

11 0x0B .info
12 0x0C .biz

13 0x0D .gov

User Manual Revision 1.2 17-Jan-2022

CFR0012

72 of 110

© 2022 Renesas Electronics

https://goo.gl/
https://www.ietf.org/rfc/rfc1738.txt

. LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Byte Offset Field Description
14..32 OxOE...0x20 Reserved for future use
127..255 Ox7F...OxFF Reserved for future use

URLSs are written only with the graphic printable characters of the US-ASCII coded character set. The
octets 00 to 20 and 7F to FF hexadecimal are not used. See “Excluded US-ASCII Characters” in
RFC 3986.

IMPORTANT NOTE

In short, the URL-prefix is represented by one byte (see Table 74), followed by the URL in ASCII, and
succeeded by the extension (see Table 75), if applicable.

Below an example of a URL frame is presented:

uint8 t url adv data[] =

{
0x03, // Length of Service List
0x03, // Param: Service List
0xAA, OxFE, // Eddystone ID
0x0E, // Length of Service Data
0x16, // Service Data
0xAA, OxFE, // Eddystone ID
0x10, // Frame type: URL
0xC5, // Power
0x00, // http://www.
ldl, lil’ lal, lSl’ lel’ lml’ lil’
0x07, // .com

}i

During the development of Dialog's Beacon reference design, an Eddystone-URL generator has
been used, however it is not essential to create a URL frame whether one follows the specification.
More information on the Eddystone-URL specification can be found in [11].

6.4.3.3 Unencrypted Eddystone-TLM

Eddystone Beacons may transmit data about their own operation to clients. This data is called
telemetry and is useful for monitoring the health and operation of a fleet of beacons. Since the
Eddystone-TLM frame does not contain a beacon ID, it must be paired with an identifying frame
which provides the ID, either of type Eddystone-UID or Eddystone-URL.

Table 76: Eddystone-TLM Frame Specification

Byte offset Field Description
0 Frame Type Value = 0x20
1 Version TLM version, value = 0x00
2 VBATT[O] Battery voltage, 1 mV/bit
3 VBATT[1]
4 TEMP[O] Beacon temperature
5 TEMP[1]
6 ADV_CNTI[0] Advertising PDU count
7 ADV_CNT[1]
8 ADV_CNT[2]
9 ADV_CNT[3]
10 SEC_CNT[0] Time since power-on or reboot (up timer)
User Manual Revision 1.2 17-Jan-2022

CFR0012 73 of 110 © 2022 Renesas Electronics

https://tools.ietf.org/rfc/rfc3986.txt

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Byte offset Field Description
11 SEC_CNTI[1]
12 SEC_CNT[2]
13 SEC_CNTI[3]

More information on the unencrypted Eddystone-TLM specification can be found in [12].

6.5 Software Features

This section explains the advanced software features of Dialog's BLE Beacon. The following
configurations are supported:
e Non-connectable advertising (Beacon mode)
o Allows users to advertise data with the lowest power consumption.
e Connectable advertising (Peripheral mode)

o Allows users to connect to a central device to run SUOTA and use official BLE and custom
128-bit profiles.

e Dynamically change beacon data

o0 Values major ALT valuel and minor ALT value2 are periodically updated with measured
data. In the "altbeacon_dynamic" project, these are data from the environmental sensor.

o TLM data (up timer, temperature, battery readings) are updated.
e Support of SPI Flash memory
o Power off/on for power saving.
o Storage of the beacon configuration (product header, configuration structure).
o Storage of an updated image received through SUOTA.
o Storage of boot loader.
e SUOTA
o After a connection has been established, the firmware can be updated.
o Dual image boot loader.
e Custom 128-bit profiles

o Environmental Data Notifications proprietary profile. This service makes data from the
environmental sensor (temperature, humidity, pressure) available to the user.

o Device configuration proprietary profile. The beacon configuration can be read and modified
by the central device.

6.6 Beacon Parameters

The following subsections describe how to modify the basic parameters of the beacon: advertising
data and advertising interval.

6.6.1 Advertising Data

The data to be advertised is derived from a structure by the name of user beacon config tag. The
struct contains fields that can serve any beacon format or mode. In Table 77, the
user beacon config tag struct is analyzed.

Table 77: Format of Struct user_beacon config tag

Type Name Size (B) Description
uint8 t uuid[16] 16 UUID value if iBeacon, AltBeacon or Eddystone-UID
User Manual Revision 1.2 17-Jan-2022

CFR0012 74 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Type Name Size (B) Description

uintlé t | major ALT vall 2 iBeacon Major value or AltBeacon value 1

uintl6 t | minor ALT val2 2 iBeacon Minor value or AltBeacon value 2

uintlé t company _id 2 Manufacturer ID

uintlé t adv_int 2 Advertising Interval

uint8 t power 1 Reference value of the received signal strength (RSSI) measured
at 1 m. The value is represented in signed format. (Note 1)

uint8 t beacon type 1 Beacon Type (iBeacon, AltBeacon, Eddystone UID/URL)

uint8 t url prefix 1 http://www. or https://www. or http:// or https://

uint8 t url[19] 19 The url preceded by the length of service data and succeeded by
the extension (.com, .net and others)

uint8 t TIM version 1 The TLM version of the TLM service (if TLM is used). (Note 2)

uint8 t TIM used 1 Flag that shows if TLM is used or not. (Note 2)

Note 1 To estimate the distance to a transmitting beacon, the receiving device uses and calibrates RSSI by
the measured power parameter, which is included in the advertising data. The measured power
parameter is a 1-byte value in signed representation. The value depends on the RF transmit power
and antenna implementation of the hardware. For Dialog's Beacon, the RSSI level measured at 1 m is
-59 dBm (see Note 3)

Note 2 Eddystone-TLM is not an "independent” Eddystone beacon mode. It must be paired with either
Eddystone-UID or Eddystone-URL (see section 6.4.3.3).

Note 3 Follow these steps to convert the RSSI level (-59 dBm) into signed format:

1. Take positive value: (59 pecimar = (0011 1011) giyary
2. Reverse all bits: (0011 1011) g;nary => (1100 0100) g ary REVERSE
3. Take 1’'s complement: (1100 0100) g;nary rEVERsE => (1100 0101) /5 compL

4. Convertto hexadecimal: (1100 0101)/s compr = (C5)urx
Two methods are used to populate the contents of the struct:

® Using the user default beacon config struct (defined in the code) and programming the
desired values.

e Reading the contents of a device configuration struct in the Flash memory.

The two methods are explained in detail in section 6.6.1.1 and 6.6.1.2.

6.6.1.1 Using the user_default beacon config Struct

If a Flash memory is not available or not to be used, the contents of the user beacon config tag
struct are populated with the contents of the user default beacon config struct. Below an
example of a populated user default beacon config struct is presented:

const struct user beacon config tag user default beacon config = {
.uuid = {0x58,0x5C, 0xDE, 0x93, 0x1B, 0x01, 0x42, 0xCC, 0x9A, 0x13, // 10-byte Namespace
0x25,0x00, 0x9B, OxED, 0xC6, 0x5E}, // 6-byte Instance
.major ALT vall = 0x0800, // Major/Altl Value
.minor ALT val2 = 0x0400, // Minor/Alt2 Value
.company id = DIALOG COMP ID, // Beacon company ID
.adv_int = BEACON ADVERTISING INTERVAL, // Advertising interval
.power = 0xC5, // Tx Power

.beacon type = xxx BEACON TYPE, // Reserved for future use

User Manual Revision 1.2 17-Jan-2022

CFR0012 75 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

.url prefix = HTTPWWW, // Populated if used
.url = {OxO0E, 'd4d','i','a','s','e','m"','i',DOTCOM}, // Populated if used
.TIM version = 0x00, // Populated if used
.TIM used = 0x01 // Populated if used
}

NOTE

The fields major ALT vall and minor ALT val2 are in big endian format.

This example shows how users can use the same struct to alternate between different beacon types.
Depending on the application, some of the fields of the struct are used and some are not. For
example, if the application uses the Eddystone-URL beacon type (see 6.4.3.2), the fields ".uuid",
".major ALT vall", and".minor ALT val2" are notused. If the beacon type is different, for
example, Eddystone-UID (see 6.4.3.1), the fields ".url prefix" and ".url" would not be used. The
advertised data packet is synthesized according to the beacon type.

6.6.1.2 Reading Advertising Data from Flash

If a Flash memory is used, the program reads the advertising data values from a device configuration
struct that is written in Flash memory. The device configuration struct is by default located at address
0x30000, but this can easily be configured by the value set in the product header (see Appendix
D.1.1). The data are written in Flash in the order of the user beacon config tag struct. Figure 24
shows an example of the contents of a configuration struct in a Flash memory.

[58 5c de 63 1b 01 42 cc 9a 13 25 00 9b ed c6 bel
00 08] 00 04[d2 00f a0 00 c5fo3]o0]oel 64 69 61 73
65 6d 69 07 00 00 00 00 00 00 00 00 00 00 0001

Figure 24: Example of a Device Configuration Struct in Flash Memory

In Figure 24, different colors from left to right represents different components in the format of the
user beacon config tag struct (see Table 77 for more information):

e Red is the uuid
e Green isthe major ALT vall value
e Yellow is the minor ALT val2 value
e Black is the company id
® Blueisthe adv_int
e Brown is the Tx power
® Grey is the beacon type
e Purple is the url prefix
e Light blue is the url in ASCII (here it is "diasemi") with:
o Orange is the length of the service data
o Light grey is the URL postfix (here it is the code for ".com")
o Light green bytes are not needed (because this specific URL is shorter) and are set to 0x00
e Light purple is the TIM version
e Pink is the TIM used flag

NOTE

The values are in opposite endianness compared to the code.

User Manual Revision 1.2 17-Jan-2022

CFR0012 76 of 110 © 2022 Renesas Electronics

LENESAS

Company Confidential

UM-B-101

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

6.6.2

The BLE Beacon sends advertising packets at a certain time interval. This is called the advertising
interval. According to the BLE specification, the advertising interval can be set from 20 ms up to
10.24 s.

At a shorter advertising interval, the radio of the beacon will be enabled more often, resulting in
higher average power consumption. A shorter advertising interval will also lead to an increased
number of packets per second at the receiver and therefore result in a more accurate RSSI reading.

Advertising Interval

If the advertising data derive from Flash, the advertising interval takes the value of the adv_int field
of the device configuration struct written in flash (Figure 24, blue field).

If no Flash memory is used, the advertising interval parameter can be changed at the location shown
in Table 78.

Table 78: Advertising Interval Location

Parameter Macro Project File Name
Beacon advertising interval BEACON ADVERTISING INTERVAL All beacons user config.h
SUQOTA advertising interval SUOTA ADVERTISING INTERVAL All beacons user config.h

6.7 Software Architecture

Figure 25 presents how the Beacon reference applications are structured.

Beacon Application

| S ECN TS | | user_device_config user_suota |
= I User_env_data_ntf

| app_easy I | device_config I
I I env_data_ntf | suota l

1 1

| SaE | | GATT I ‘ SPI

user_config_storage

Figure 25: Beacon SW System Overview
Table 79 shows the source files of the Beacon reference applications.

Table 79: Source Files of Beacon Reference Applications

Group File Name Project Description
user platform user periph setup.c All beacons Peripheral modules initialization,
GPIO pins assignment
user config storage user_config_storage.c All beacons Application configuration data
storage API
device config device config.c Eddystone, Device Configuration profile

User Manual

Revision 1.2

17-Jan-2022

CFR0012

77 of 110

© 2022 Renesas Electronics

UM-B-101

LENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

Company Confidential

Group File Name Project Description
device config task.c iBeacon
user device config.c
user device config task.c
env _data ntf env data ntf.c Eddystone Environmental Data Notifications
user env data ntf.c Profile
env data ntf task.c
user env data ntf task.c
user drivers i2c gpio extender.c All beacons User drivers for the 12C GPIO
user iot dk utils.c (battery.c extender, battery and MSK HW
battery.c not in peripherals
AltBeacon)
bme680_drivers bme680.c Eddystone, Environmental Sensor Drivers
bme680_implc.c AltBeacon
sensor_inteface sensors_inteface.c Eddystone, Sensors interface API
sensors_inteface api.c AltBeacon
environmental bme680.c
utilities wkup adapter.c All beacons Various utilities for wakeup, crc
sensors_periph interface.cc and peripherals
rc32.c
user beacon user eddy uid url tlm.c Eddystone Application Code
user altbeacon dynamic.c AltBeacon
user ibeacon suota button.c iBeacon
user adv_api user advertise.c All beacons User Advertise SW module

6.8 Operation Overview

Figure 26 presents the system operation.

User Manual

Revision 1.2

17-Jan-2022

CFR0012

78 of 110

© 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

Application

on_period_switch_cb

start_pattern
update_adv_string
stop_pattern

—)

user_beacon

app_on_adv_nonconn_complete
app_on_adv_undirect_complete

app_adv_start

PR

app_easy

Figure 26: Operation Overview

6.8.1 Configuration Switches

The code contains various configuration switches which include or exclude functionalities from the
code. They are divided into two categories:

e Software configuration switches
e Profile configuration switches

The various configuration switches are outlined in Table 80 and Table 81.

Table 80: List of Software Configuration Switches

Switch Used in Description
CFG_CONFIG_STORAGE AltBeacon, Read/Write configuration from/to Flash memory
Eddystone, enabled.
iBeacon
CFG_DYNAMIC BEACON DATA AltBeacon If defined, the major/minor values of the beacon

are updated dynamically with data from the
Environmental sensor.

CFG_DEV_CNF_HDR CRC32_SUPPORT AltBeacon, If defined, a CRC32 value of the configuration
Eddystone, struct data is calculated and compared to the
iBeacon CRC_word included in the configuration struct
header.

USE_EDDYSTONE UID/USE EDDYSTONE URL Eddystone Eddystone-UID or Eddystone-URL packets will be
advertised depending on which will be defined.

Table 81: List of Profile Configuration Switches

Switch Used in Description
CFG_PRF DEVICE CONFIG Eddystone, Custom 128-bit “Device Configuration” profile is
iBeacon enabled.
User Manual Revision 1.2 17-Jan-2022

CFR0012 79 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Switch Used in Description
CFG_PRF ENV_DATA NIF Eddystone Enables custom 128-bit "Environmental Data
Notifications" profile.
CFG_PRF SUOTAR iBeacon Dialog SUOTA profile is enabled. CFG_SPI_FLASH
switch must be defined.
CFG_PRF DISS Eddystone, Device Information Service Server (DISS) profile.
iBeacon
CFG_PRF BASS Eddystone, Battery Service profile. Battery readings are updated
iBeacon using an advanced battery reporting mechanism.

6.9 User Advertise SW Module

The user advertise SW module provides users with an easy API to create configurable advertising
strings with easily configurable advertising parameters (for example, advertising interval). Below the
structural components of the user advertise module are outlined.

6.9.1 Style
The main block of the user advertise SW module is called a style. Below, the style type is presented:

/// Advertising Style

typedef struct user adv style

{
/// Advertising interval
uintl6 t adv_int;
/// RAdvertising length
uint8 t adv len;
/// Counter of advertising events
uintl6 t cnt upd adv string;
/// BAdvertising mode
uint8 t adv mode;
/// BAdvertising data
uint8 t adv data([31];

} user adv style t;

An advertising style contains information about:

Advertising interval

Length of the advertising string

Amount of advertising events of that specific style before switching to another style
Advertising mode (undirected or non-connectable)

A 31-byte array containing the actual data to be advertised.

6.9.2 Pattern

An array of styles is called a pattern. The maximum number of styles allowed per pattern is
configurable and is defined by the MAX STYLES PER PATTERN macro.

The value of the cnt_upd adv _string field of each style shows how many advertising events will
take place before a style switches to the next. Below an example of a pattern is presented.

user adv_style t ibeacon suota pattern[2] =
{
{
.adv_int = iBEACON ADV INT,
.adv_len = iBEACON ADV LEN,
.cnt_upd adv_string = iBEACON EVENTS,
.adv_mode = NON CONNECTABLE MODE,

User Manual Revision 1.2 17-Jan-2022

CFR0012 80 of 110 © 2022 Renesas Electronics

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

.adv_data = <pointer to a data array>

b
{

.adv_int = SUOTA ADVERTISING INTERVAL,
.adv_len = USER ADVERTISE DATA IEN,

.cnt_upd adv_string = SUOTA EVENTS TO SWITCH,
.adv_mode = UNDIRECTED MODE,

.adv_data = USER ADVERTISE SUOTA,

}i

In this example, a pattern is declared, consisting of two styles. The data for the second style in the
pattern is derived from the array shown below:

#define USER ADVERTISE DATA "M\x05"\
ADV TYPE COMPLETE LIST 16BIT SERVICE IDS\
ADV UUID DEVICE INFORMATION SERVICE\
ADV UUID SUOTAR SERVICE\
"\x0E"\
ADV TYPE COMPLETE LOCAL NAME\
USER DEVICE NAME
Figure 27 presents how to use a user advertise SW block.

Advertising Pattern

Advertising Style
1

counter update adv string

Advertising Style
2

counter update adv string

Advertising Style
3

|
counter update adv string

y

Figure 27: User Advertise Usage Example

In this example, the pattern contains three styles. When cnt upd adv_string of the first style is
reached, in other words, <cnt_upd adv_string> events have been advertised, the application
switches to the second style. The same happens when the cnt upd adv_string of the second style
is reached. However, when < cnt upd adv_string > events of the third advertising style have been

User Manual Revision 1.2 17-Jan-2022

CFR0012 81 of 110 © 2022 Renesas Electronics

LENESAS

Company Confidential

UM-B-101

DA14585 IoT Multi Sensor Development Kit
Developer's Guide

advertised, the application starts advertising again from the first style. The row of events, or the times
a style is advertised, depends on the application.

6.9.3 User Advertise SW Module Callbacks

The User Advertise SW Module makes two callbacks to the application and users can use these
callbacks for any desired usage. In the provided examples, a callback is used to inform the
application of advertising events and the other callback is called every time the

user on ble powered system callback is called. More information on the User Advertise SW module
API is included in the doxygen documentation that is included in the release.

NOTE

The system callback user on ble powered updates the advertising string.

6.10 Device Configuration Service

The Device Configuration Service is a custom 128-bit profile developed by Dialog Semiconductor.
The profile provides a generic interface to a peripheral device for reading and writing configuration
parameters of the application, irrespective of the number, type, and size of the parameters.

6.10.1

The Device Configuration Service provides four characteristics outlined in Table 82.

Device Configuration Service Specification

Table 82: Characteristics of the Device Configuration Service

Characteristic Name Qualifier Properties Size (B)
Configuration structure version Mandatory Read 66
Write configuration Mandatory Write 1
Read command Mandatory Write 1
Read response Mandatory Indicate 67

e Configuration structure version:

o ltidentifies the type and version of the configuration structure of the application.
o ltis used as a convention between device configuration server and client for the format of the

configuration data.

o The Device configuration client should be aware of the ID and size of each configuration

parameter.
e Write configuration:

o The Device configuration client writes the configuration data into this characteristic.
o The data format is shown in Figure 28:

Parameter Data Dat
id Length ata
< ~ & ~ ~
< < P~ =
1 byte 1 byte Max. 64 bytes

Figure 28: Data Format in Write Configuration

o The maximum configuration data size supported by the Device configuration service is 64
bytes. Up to 256 parameters can be supported. The client can read the parameter data after
the end of a write operation.

e Read Command:

User Manual

Revision 1.2

17-Jan-2022

CFR0012

82 of 110

© 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o The Device configuration client writes a parameter ID into this characteristic, requesting the
command server to return the current values of the parameters.

e Read Response:

o The Device configuration server sends an indication including the configuration data of a
parameter, whenever the client requests it by writing the parameter ID to the read command
characteristic.

o The format of the indication data is shown in Figure 29.

Parameter Data Stat Dat
id Length atus ata
< N N Sy S
< P P 7 < =
1 byte 1 byte 1 byte Max. 64 bytes

Figure 29: Indication Data Format in Read Response

6.11 Environmental Data Notifications Service

The Environmental Data Notifications Service is a custom 128-bit profile developed by Dialog
Semiconductor. The profile provides a generic interface to a peripheral device providing data from
the environmental sensor (temperature, humidity, and pressure).

6.11.1 Environmental Data Notifications Service Specification

The Environmental Data Notifications Service provides five characteristics outlined in Table 83.

Table 83: Characteristics of the Environmental Data Notifications Service

Characteristic Name Qualifier Properties Size (B)
Temperature Mandatory Read 2
Pressure Mandatory Read 4
Humidity Mandatory Read 4
External Event Mandatory Read 1
Sampling Interval Mandatory Read/Write 2

e Temperature:

o The "Temperature" characteristic carries the temperature value read by the environmental
sensor.

o Executing a read command, the current temperature value from the sensor will be
transmitted. The same will happen upon a button press, if characteristic notifications are
enabled.

® Pressure:
o The "Pressure" characteristic carries the pressure value read by the environmental sensor.

o Executing a read command, the current pressure value from the sensor will be transmitted.
The same will happen upon a button press, if characteristic notifications are enabled.

e Humidity:
o The "Humidity" characteristic carries the humidity value read by the environmental sensor.

o Executing a read command, the current humidity value from the sensor will be transmitted.
The same will happen upon a button press, if characteristic notifications are enabled.

e External Event:

o The "External Event" characteristic carries the external event state (in our case, the state of
the button).

User Manual Revision 1.2 17-Jan-2022

CFR0012 83 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o Executing a read command, the current button state will be transmitted. The same will
happen upon a button press, if characteristic notifications are enabled.

e Sampling Interval:

o The "Sampling Interval" characteristic carries the value of the timer interval during which the
environmental sensor samples environmental data.

o These data are used to update the values of the aforementioned characteristics
(temperature, pressure, and humidity).

6.12 Beacon Configuration

Depending on the defined software configuration switches, the configuration data can be modified by
a central device over the Device Configuration Service or written into SPI1 Flash memory during the
production phase.

The Beacon application reference software uses a configuration storage module, implemented in file
user config storage.c, to fetch and store configuration data from and into the non-volatile memory.
The configuration storage module provides a list of common API functions to any DA14585
application. The current version only supports SPI Flash memory.

6.12.1 Beacon Configuration Memory Map

Configuration storage uses the memory map of the dual image boot loader. More specifically, it uses
the first four bytes of the ‘Reserved’ field (byte offset 12) in the Product Header, as described in
Appendix D.1.1, to define the memory address of the configuration area. The address shall point to
the start of an SPI Flash sector and no other information shall be stored in the same sector.

Device configuration data are stored at the start of the configuration area and consist of the device
configuration header, followed by the device configuration struct. The size of the configuration data is
112 bytes and the format is outlined in Table 84.

Table 84: Configuration Data Format

Byte # Field

Device Configuration Header

0,1 Signature (0x70, 0x53)
2 Valid flag
3 Number of items
4to7 CRC
8to 23 Version
24,25 Data size
26 Encryption flag
27 t0 63 Reserved

Device Configuration Struct

64 to 79 uuib
80, 81 Major_ALT_vall
82, 83 Minor_ALT_val2
84, 85 Company ID
86, 87 Advertising Interval
88 Tx Power
89 Beacon Type (iBeacon/AltBeacon/Eddystone (UUID/URL))
User Manual Revision 1.2 17-Jan-2022

CFR0012 84 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Byte # Field
90 URL prefix
91 to 109 URL
110 TLM version
111 TLM_used flag

The fields included in the header are:

e Signature:
o A "magic" number identifying the configuration header.
o Value: 0x70, 0x53.
e Valid flag:
o A value of OXAA denotes a valid image.
e Number of items:
o The number of configuration parameters in the configuration data.
e CRC (If used):
o The checksum calculated over the configuration data.
e \ersion:
o Determines the configuration structure type and version.
o Can be checked by the application to confirm that the expected data are stored.
e Datasize:
o Size of the configuration data (in bytes).
e Encryption flag:
o Indicates whether the configuration data have been encrypted.
o Encryption of the configuration in memory is not supported in this software release.
e UID: The value in this field serves different uses depending on the mode used.
o If iBeacon is selected, this field contains the 16-byte UUID value.
o If AltBeacon is selected, this field contains the 16-byte Beacon ID value (Note 1).

o If Eddystone-UID is selected, this field contains the 10-byte namespace value followed by the
6-byte instance value.

e Major _ALT vall:
o Contains the Major value for iBeacon or the Alt_vall for AltBeacon.
e Minor_ALT_val2:
o Contains the Minor value for iBeacon or the Alt_val2 for AltBeacon.
e Company ID:
o The beacon device manufacturer's company identifier code, see [7].
e Advertising Interval:
o The advertising interval for the beacon (see section 6.6.2).
e Tx Power:
o A 1-byte value representing the average RSSI at 1 m from the advertiser.
e Beacon Type:
o The beacon type included in the Configuration Struct.
o URL Prefix:
o If Eddystone-URL beacon type is selected, this field defines the URL prefix (see Table 74).
e URL:

User Manual Revision 1.2 17-Jan-2022

CFR0012 85 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

o If Eddystone-URL beacon type is selected, this field contains the URL in ASCII, preceded by
the length of service data and succeeded by the extension (.com, .net, and others).

e TLM_ version:

o TLM version is reserved for future development of this frame type. At present the value must
be 0x00.

e TLM_ used flag:
o This flag indicates whether the TLM service is used or not.

6.13 Battery Level Sampling

If BATTERY SAMPLING ENABLED is defined, a battery level and voltage averaging mechanism is
enabled.

A user driver has been developed to achieve more accurate battery readings. The main idea is to
periodically capture an ADC sample from the VBAT3V signal immediately after the device wakes up
to avoid any possible battery consuming activities. These samples allow the driver to calculate
average values for the battery voltage and battery level. The calculated average level and voltage
values can then be used by the application.

Upon connection, if the BASS service is enabled,
app batt set level (battery return avg 1lvl()) is called and sets the battery level in the BASS
service, making the averaged battery level available when the device is connected.

6.14 Beacon Examples for DA14585 IoT MSK

The Beacon reference applications based on DA14585 loT MSK HW reference design comes with
three distinct beacon examples that make use of all the different beacon types and features
supported by Dialog Semiconductor. Below these examples are outlined.

6.14.1 AltBeacon

In this example a non-connectable AltBeacon string is advertised containing a 16-byte UID followed
by four bytes (two bytes for ALT Vall and two bytes for ALT val2). If the software-built flag

DYNAMIC BEACON DATA is not enabled, ALT Vall and ALT Vall are populated by the values set in the
configuration struct in flash (if CONFIG STORAGE is enabled) or by the default values hardcoded in the
default configuration struct. If DYNAMIC BEACON DATA is enabled, the 2-byte values are populated by
environmental sensor data, refreshed every periodic read interval set by users when initializing
the environmental sensor.

Figure 30 presents the advertising transition diagram of the AltBeacon example.

User Manual Revision 1.2 17-Jan-2022

CFR0012 86 of 110 © 2022 Renesas Electronics

RENESAS

UM-B-101
DA14585 loT Multi Sensor Development Kit Company Confidential

Developer's Guide

Update Advertising
Data with —_—
Environmental
Sensor Data

If DYNAMIC BEACON DATA | periodic_read_interval

el
Advertising

—— AltBeacon <

String

ALTBEACON_EVENTS_TO_SWITCH

Refresh
. AdVertising
String

Figure 30: AltBeacon Example Transition Diagram

6.14.1.1 AltBeacon Example Sequence Diagram

AltBeacon_User_App User_Advertise

app_on_init()

4
%

user_on_init{)

B
>

user_beacon_config_init{)

user_build_pattern() >

app_on_set_dev_config_complete()

4
%

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

4
%

default_app_on_db_init_complete() N

default_operation_adv()

r Y

user_advertise_operation()

P

user_adv_start_pattemn()

app_easy_gap_non_connectable_advertise_start() N

app_on_non_conn_complete()

4
%

_user_adv_on_adv_complete()

user_adv_inform_app_cb()

user_process_env_data(),
>

user_adv_update_string() .

app_easy gap update adv data()

v

Figure 31: Altbeacon Sequence Diagram

User Manual Revision 1.2 17-Jan-2022

CFR0012 87 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

6.14.2 Eddystone

In this example, a connectable Eddystone-UID or Eddystone URL string is advertised, depending on
the corresponding build flags USE_EDDYSTONE UID Or USE EDDYSTONE URL.

The advertising string contains a 16-byte UID if the flag USE_EDDYSTONE UIDis used.
If the flag USE_EDDYSTONE URL is used, an encoded URL with a length ranging from 1 to 17 bytes is
contained in the advertlsmg string.

Every time when user adv on adv_complete is called, the application advertises an EDDYSTONE-
TLM advertising string and then returns to advertising Eddystone-UID or Eddystone-URL strings. As
explained in 6.4.3.3, the Eddystone-TLM packet contains information about the battery voltage of the
device. The application uses the battery averaging mechanism described in 6.13 to provide more
accurate voltage values to the Eddystone-TLM advertising string.

When connected to a peripheral, the device provides four different GATT services: DISS and BASS
which are official BLE GATT services and two Dialog proprietary GATT services, the env_data ntf
and device config. The device configand env data ntf services are described in 6.10 and 6.11.

Figure 32 presents the advertising transition diagram of the Eddystone example.

Advertising
TLM String

EDDY_UID_(URL)_EVENTS_TO_SWITCH

Ll

Advertising
Eddystone
UID/URL
String

Figure 32: Eddystone UID/URL/TLM Example Transition Diagram

User Manual Revision 1.2 17-Jan-2022

CFR0012 88 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

6.14.2.1 Eddystone Example Sequence Diagram

Eddystone_User_App User_Advertise User_configuration

app_on_init()

4
%

user_on_init()

»
L

user_beacon_config_init()

4

user_build_pattern() b}

app_on_set_dev_config_complete()

4
<

default_app_on_set_dev_config_complete().

default_operation_adv()

4
%

user_advertise_operation()

4
%

user_adv_start_pattern() .

app_easy_gap_undirective_advertise_start()

app_on_adv_undirect_complete()

4
%

_user_adv_on_adv_complete()

_user_adv_inform_app_cb()

user_adv_update_string() .

app_easy_gap_update adv_data()

v

app_on_connection()

user_on_connection()

rF s

default_app_on_connection()

Tow

Figure 33: Eddystone Sequence Diagram

6.14.3 iBeacon

In this example, a non-connectable iBeacon string is advertised. The Major and Minor values are
populated by the values set in the configuration struct in flash (if CONFIG STORAGE is enabled) or by
the default values hardcoded in the default configuration struct. On button press the device starts
advertising a connectable SUOTA string for a duration of ADV_SUOTA TIMEOUT set in
ibeacon suota button.h. However, if during this time period there is another button press, the
application returns to advertising the non-connectable iBeacon string.

Figure 34 presents the advertising transition diagram of the iBeacon example:

User Manual Revision 1.2 17-Jan-2022

CFR0012 89 of 110 © 2022 Renesas Electronics

UM-B-101

RENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

User Manual

Refresh
> Advertising
String

iBEACON_EVENTS_TO_SWITCH

Advertising
aa— iBeacon —
String
30 seconds
timer or Button
Button Press
Press
‘ SUOTA
advertising
string

Figure 34: iBeacon Example Transition Diagram

Revision 1.2

Company Confidential

17-Jan-2022

CFR0012

90 of 110

© 2022 Renesas Electronics

LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

6.14.3.1 iBeacon Example Sequence Diagram
iBeacon_User_App User_Advertise User_configuration

app_on_init()

4
%

user_on_init()

»
L

user_beacon_config_init()

4

user_build_pattern() D>

app_on_set_dev_config_complete()

4
<

default_app_on_set_dev_config_complete().

default_operation_adv()

4
%

user_advertise_operation()

4
%

user_adv_start_pattern() .

app_easy_gap_non_connectable_advertise_start()

v

app_on_non_conn_complete()

4
*

_user_adv_on_adv_complete()

_user_adv_inform_app_cb()

Button Press

user_adv_start_pattern() .

app_easy_gap_undirected_advertise_start()

app_on_undirect_complete()

4
*

_user_adv_on_adv_complete()
<

_user_adv_inform_app_cb()

app_on_connection()

user_on_connection()

F s

default_app_on_connection()

.

Figure 35: iBeacon Sequence Diagram

7 Memory Footprint and Power Measurements

7.1 Memory Footprint

The SYSRAM footprint of the reference applications in the DA14585 IoT MSK reference design are
depicted in Table 85.

Table 85: Memory Footprint

Application Code RO Data RW Data Zl Initialized
loT Sensors 66416 6420 416 14764
loT Sensors without Air 46124 4556 400 13608
Quality library
Smart Tag 28332 2952 8 7960
iBeacon 27056 4004 344 15756
Eddystone 30140 3936 748 15524
AltBeacon dynamic 21096 2656 60 15416
User Manual Revision 1.2 17-Jan-2022

CFR0012 91 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Besides the application memory footprint, there is a memory area of around 9.5 Khytes, depending
on the application, reserved for the exchange memory between BLE controller layer and BLE Core.

7.2 Power consumption

Table 86 presents the average power consumption of the most commonly used operation modes of
the reference applications of DA14585 loT MSK.

Table 86: Power Consumption

Mode Current (avg)
IoT Sensors
Advertising: Interval at 100 ms and LED blink 313.596 YA
Idle (waiting for motion to advertise) 20.679 pA
All sensors: 2.008 pA

Accelerometer and Gyro at 100 Hz
Sensor Fusion and Magneto 10 Hz
Temperature, Humidity, Pressure, and Air quality at 0.3 Hz
Ambient Light and proximity at 0.5 Hz

Motion sensors: 1371.032 pA
Accelerometer and Gyro at 100 Hz
Sensor Fusion and Magneto 10 Hz

Environmental sensor 1054.313 pA
Temperature, Humidity, Pressure, and Air quality at 0.3 Hz
Optical sensor 488.423 pA
Ambient Light and proximity at 0.5 Hz
Smart Tag
Advertising 295.977 pA
Connected 158.757 pA
Beacons
iBeacon Advertising 37.17 A
iBeacon Connnected 124.148 pA
Eddystone Advertising: 49.198 pA
Environmental sampling at 0.25 Hz
Eddystone Connected 138.226 pA
Environmental sampling at 0.25 Hz
AltBeacon Advertising 41.146 pA
User Manual Revision 1.2 17-Jan-2022

CFR0012 92 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

Appendix A MSK Boot Sequence
The MSK boot sequence consists of the following stages:

® Bo0otROM sequence (sections 4.4, 4.4.3, [5]).

Secondary Bootloader (Appendix H, [2]) is part of the released code inside folder
utilities\secondary bootloader.

e Application Code.

For the application to be initialized correctly, an architecture that uses Secondary Bootloader with
mirrored images is used. The secondary bootloader serves four purposes:
e |Initializes the IMU (ICM42605 or BMI160) device to operate in SPI mode.

o If offset OXFE20 in OTP (user area) is not programmed as 0x0, the IMU initialization is
skipped.

o Please be aware that if this bit is set, it cannot be undone, and the device may be unable to
boot.

e Scans UART during UART boot.
e Selects and copies the most recent application image from the flash memory to SRAM.
e Passes control to application

The Secondary Bootloader is copied from OTP offset 0x0000 to the end of SRAM, so it is crucial to
keep the footprint of the Secondary Bootloader as small as possible.

In non-MSK boards, in order to use the Secondary Bootloader, users should follow the following
steps:
1. Burn the generated secondary bootloader 585.bininto offset 0x0000 of OTP.

2. Program the two application flags located in offsets OXFEOO and OxFEQ8 of OTP memory using
SmartSnippets as in Figure 36.

NOTE

The MSK boards have the Secondary Bootloader and the OTP application flags written into OTP when shipped.

%" OTP Header [DK: DA14585-00] 5% =

TF8FEQ0

™

Application Programmed Flag #1 |Empty OTP set NO, Application firmware in OTP Yes W

TESFE08

)

Application Programmed Flag #2 |Empty OTP set NO, Application firmware in OTP Yes

Figure 36: Application Programmed in OTP Flags

Appendix B Memory Map

Figure 37 shows the default memory locations of the different parts of the various images for all
projects. The figure also shows that the product header, among other information, contains the
offsets of the images and the configuration struct. The offsets of the two images and the
configuration struct (in beacon projects) can be modified in the product header, thus enabling users
to write the images and the struct in those offsets. The secondary bootloader will “look” for those
offsets when booting the device. See Appendix D.1. Please pay attention to the distance of the
memory locations to fit the size of the corresponding parts (product header, application image, and
others).

User Manual Revision 1.2 17-Jan-2022

CFR0012 93 of 110 © 2022 Renesas Electronics

UM-B-101

RENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

0x32000 »

Application Image 1

Application Image 2

O
Beacon Configuration

Header and Structure

SmartTag Bonding Data
e |
lot Flash Base

i —————|
lot Flash Base Cal

Product
Header

Signature
Version
Image 1 offset
Image 2 offset

Beacon Config struct offset

Figure 37: Analyzing a Flash Memory Image

Company Confidential

At this point, it is important to note that all these different parts do not exist all at once. Table 87

shows which part exists and at which location depending on the application.

Table 87: Parts of the Image Depending on the Application

All Beacons Smart Tag IoT Sensors
Application Image 1 X X X
Application Image 2 X X X
Beacon Configuration Header and Struct X
SmarTag Bonding Data X
IoT Flash Base (Configuration Data)
0T Flash Base Cal (Sensor Calibration X
Data)

Product Header X X X
User Manual Revision 1.2 17-Jan-2022
CFR0012 94 of 110 © 2022 Renesas Electronics

. LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Appendix C Using the mkimage Application

C.1 mkimage Scripts

The mkimage scripts that run the mkimage modes and create the desired multi-image for the Smart
Tag and IoT Sensors reference applications or the whole images for the Beacon reference
application has been created to help users.

The mkimage modes are analyzed in Appendix C.2. The multi-images or whole images are in .bin
format and are written in Flash. The multi-images contain two alternative images of the application as
well as a product header at the end. The whole images are essentially multi-images (two images with
a product header) but also include a configuration struct for the Beacon.

The available mkimage scripts as well as the various files needed for the scripts to work are located
(or should be placed) in"...\utilities\mkimage utils scripts" and are shown in Table 88.

Please note that the ".hex" extension for all images is added by the script automatically and should
be:

C:>iot image folder>make image beacon.bat altbeacon dynamic
C:>iot image folder>make image iot.bat 10585 585

C:>iot image folder>make image tag.bat smart tag 585

C:>iot image folder>make all images.bat (no parameters, builds everything if all the needed
.hex files exist in the build folder).

Table 88 Available mkimage Scripts

Script Purpose Needed Files

make image beacon.bat . .
HEge Creates a whole image for <beacon project>.hex,

the beacon applications dev_conf struct default.cfg,

user config sw ver.h (struct
version),

beacon sw version.h (Note 1)

make image iot.bat
—Hage Created a multi-image for the | <iot project>.hex,

loT sensors application iot sw version.h

(Note 2)

make image tag.bat .. .
—Hmage_tad Creates a multi-image for the | <tag project>.hex,

Smart Tag application tag sw version.h (Note 3)

make all images.bat . . .
S ed Creates whole images for all | This script only works when the .hex

beacon applications and files are named as following:
multi images for the 0T
sensors and Smart Tag
application by calling all
aforementioned bats.

ibeacon suota button.hex
altbeacon dynamic.hex,
eddy uid url tlm.hex.
smart tag 585.hex,

iot585 585.hex

and the corresponding sw version
files and beacon configuration files are

User Manual Revision 1.2 17-Jan-2022

CFR0012 95 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

also present.

clean.bat
Removes all .imgand .bin N/A

files from the folder

Note 1 If an alternative .hex file exists, it should go by the name <beacon project> 1.hex and a file by the
name “beacon_sw_versionl.h’ should be provided.

Note 2 If an alternative .hex file exists, it should go by the name <iot project> 1.hex.

Note 3 If an alternative .hex file exists, it should go by the name <tag project> 1.hex.

C.2 mkimage Modes
The mkimage application has different modes to create desired images.

e Single: creates an .img file from the .bin file of the Keil project.

e Multi: creates a .bin file from the .bin file of the Keil project that contains two alternative .img
files that are needed when using the SUOTA functionality and the product header.

e Whole_img: creates an .img file containing two alternative . img files that are needed when
using the SUOTA functionality, the config_struct.cfq file, the product header, and optionally
the bootloader.bin file.

e Multi_no_suota: creates an . img file containing the config struct.cfq file, the product header,
and the .bin file of the Keil project, which is preceded by an AN-B-001 header [16].

e cfg: creates a .cfgfile containing a device configuration struct preceded by its header.

IMPORTANT NOTE

For the mkimage app to work, all needed files should be brought in the mkimage folder where the mkimage . exe will
be located after building the mkimage project.

Typing "mkimage" in the command console shows users instructions on the syntax needed to create
an . img file for all modes of the application.

C21 mkimage single

The "mkimage single" mode is used to create an .img file from the .bin file of the Keil project. This
image contains the software version and the software version date. The . img files created in this
mode are used for manually burning images one-by-one at specific addresses in Flash memory
using the SmartSnipperts Studio (see Appendix D.2).

Example: mkimage single my project 1.bin sw version.h img 1.img

Users should also make a second (different) image file so that during the SUOTA procedure the
SUOTA application can find another image to load. Users should either include a different .bin file, a
different sw_version.h file, or both.

Example: mkimage single my project 2.bin sw version.h img 2.img

C.2.2 mkimage multi

The "mkimage multi" mode is used to create a .bin file from the .bin file of the Keil project. This bin
file contains two images created by the "mkimage single" mode and a product header at the end of
the file. Optionally, the image can be created for an SPI Flash memory or an EEPROM Flash
memory. The .bin files created by this mode are used for burning in Flash memory using the
SmartSnipperts Studio (see Appendix D.2).

Example:

mkimage multi spi img 1.img 0x0 img2 1.img 0x18000 0x38000 multi myproject.bin

User Manual Revision 1.2 17-Jan-2022

CFR0012 96 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

c.2.3 mkimage whole_img

The "mkimage whole img" mode is used to create a complete .img file, containing two alternative
.img files created by "mkimage single" mode that are needed when using the SUOTA functionality,
the config struct.cfgfile and the product header.

Example:

mkimage whole img img 1.img 0x0 img 2.img 0x18000 config.cfg 0x30000 0x38000
whole %1.bin

The offsets 0x0, 0x18000, and 0x3000 correspond to the file that precedes them: 0x0 is the offset
where img 1.img is written and so on. The final offset (in this example 0x38000) is the offset where
the product header is written.

C.24 mkimage multi_no_suota

The "mkimage multi no suota" mode is used to create a whole .img file containing the .bin file of
the Keil project preceded by an AN-B-001 header and the config_struct.cfq file. Optionally, the
image can be created for an SPI Flash memory or an EEPROM Flash memory. The generated
image will not include a SUOTA functionality.

In "mkimage multi no suota” mode, no ".img" file generated by the "mkimage single" mode is
needed.

Example:
mkimage multi no suota spi out585.bin dev_conf with header.cfg 0x30000 0x38000 out.img

In this example the out585.bin file (preceded by an AN-B-001 header) is written at address 0x00.
0x38000 refers to the offset where the product header is written, whereas 0x30000 refers to the
offset of the config struct.cfyfile.

C.25 mkimage cfg

The "mkimage cfg" mode is used to create a .cfg file containing a device configuration struct
preceded by its header. The device configuration struct header also contains a 4-byte CRC which is
calculated from the fields of the configuration struct. The application also checks a software version
file and includes the version in the header of the corresponding field.

Example: mkimage cfg dev conf.bin sw ver.h dev conf with header.cfg

Appendix D Flash Programming in MSK Applications

D.1 Basic Information About the MSK Applications

The programmed devices come with the secondary bootloader already burned in the OTP memory.
Upon booting, the secondary bootloader is expected to find the product header at address 0x38000,
so that information on the signature, version, and the image offsets can be retrieved. Appendix B
presents the different locations of MSK applications memory map. The following subsections present
the formats of the product header, the image header, and the device configuration struct (for beacon
projects).

D.1.1 Product Header

Table 89: Product Header Format

Byte # Field Description
0,1 Signature Product Header signature (0x70, 0x52)
User Manual Revision 1.2 17-Jan-2022

CFR0012 97 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 IoT Multi Sensor Development Kit Company Confidential

Developer's Guide

Byte # Field Description
2,3 Version Version of the product header
4to7 Offsetl Start address of the first image
8to 11 Offset2 Start address of the second image
12to 17 RFU Reserved for future use
18to0 21 Config_offset Start address of the device config struct (for beacon projects)

D.1.2 Image Header

The Image Header format, which is common for any image created with mkimage.exe, is shown in
Table 90. The application checks the image header when attempting to write in Flash memory.

Table 90: Image Header Format

Byte Field Description
0,1 Signature Image Header signature (0x70, 0x51)
2 Valid flag To be set to OXAA (STATUS VALID IMAGE) at the end of the image
burning
3 ImagelD Used to determine which image is newer
4t07 Code size Image size
8to 11 CRC Image CRC (Not checked in current version)
12 to 27 Version Version of the image
2810 31 Timestamp Time stamp
32 Encryption Encryption flag
3310 63 Reserved For future use

D.1.3 Beacon Configuration Struct and Configuration Struct Header

The device configuration struct is preceded by the device configuration header in the Flash memory.
Table 91 and Table 92 show the Device Configuration Header and the Device Configuration struct,

respectively.

Table 91: Beacon Configuration Header

Byte # Field Description
0,1 Signature Device Config Signature (0x70, 0x53)
2 Valid flag A value of OXAA denotes a valid image
3 Number of items The number of configuration parameters in the configuration data
4t07 CRC CRC of the device configuration struct
810 23 Version Determines the configuration structure type and version
24to 25 Data size Size of the configuration data
26 Encryption flag (Not supported in current version)
2710 63 Reserved -

The Beacon Configuration struct appears in Flash memory in the same way as in the code (see
section 6.6.1.1).

User Manual Revision 1.2 17-Jan-2022

CFR0012 98 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

Table 92: Beacon Configuration Struct Format

Byte # Field Description
Oto 15 uuID Beacon Universally Unique ID
16, 17 Major Major Value (MSB first)
18, 19 Minor Minor Value (MSB first)
20,21 Company_id Beacon Company id (MSB first)
22,23 Adv_int Advertising interval (MSB first)
24 Power Beacon output power at 1 m
25 beacon type iBeacon/AltBeacon/Eddystone (not used in provided examples)
27 url prefix URL prefix for Eddystone-URL
28 to 46 url[19] The URL preceded by the length of service data and succeeded by
the extension (.com, .net, and others)
47 TLM_version TLM version
48 TLM_used Flag to indicate whether Eddystone-TLM is used or not

D.1.4 Smart Tag Bonding Data, loT Flash Base, IoT Flash Base Cal

Smart Tag bonding data, loT Flash base, and loT Flash base cal (Appendix B) are spaces used by
the Smart Tag and IoT sensors applications. They are initially blank but are populated by the
application for their needs. In that sense, they cannot be configured by users.

D.2 Flash Programming

D.2.1 Burning the Whole Image in Flash Memory

The procedure to make use of the provided mkimage scripts and files utilized by the scripts has been
thoroughly explained in Appendix C.1.

With SmartSnippets Studio, users can follow the steps below to burn the generated .bin file (multi-
image for Smart Tag and IoT sensors applications and whole image for beacon applications) (see
Appendix C):

1. Open SmartSnippets Studio > SmartSnippets Toolbox (Figure 38). Select JTAG (above),
JTAG adapter (middle panel), a project name (left panel), and chip version (DA14585, right
panel). If SmartSnippets Toolbox is being run for the first time, first define a new project by the

New button.
@ SmartSnippets Toolbox v5.0.5.2063 - Project and Virtual COM port / JTAG selection DS
A
Please select a project from the list: Please select the COM Port or JTAG Serial #: Please select the chip version: P
(U UARTISPI () UART only ®) JTAG (U Hybrid Bold entry marks the chip lastly detected on the
selected JTAG
i i N o
585_beacon) 483017743 , + &) DA14585-00 L
bl " |
eacon ..'..] 5] ".t (L] DA14586-00
. . . —
g 2% (] DA14680-01
e, o -
¥ ., “‘ (L) DA14681-01
. .
g | H i (] DA14682-00
. -
(L) DA14683-00
S I] ‘L | C | (] DA1469x-00
- (] DA15000-00 Iy
- e —
| Open | | Edit | | Delete || New | | Refresh | | Detect | Cannotsee myboard? Help
Support Pack | Using all bundled support packs. Chips from all families are listed. (
v
<t el

Figure 38: Initial Window to Choose Device and Connection Type
User Manual Revision 1.2 17-Jan-2022

CFR0012 99 of 110 © 2022 Renesas Electronics

UM-B-101

RENESAS

DA14585 IoT Multi Sensor Development Kit

Developer's Guide

2. Click the Open button.

Company Confidential

3. From the Tools > Board Setup (Figure 39), make sure that the correct board settings (Figure

40) are set.

N\NEHO)

l Layout | Tools |

<@ & ® & - @ ¢ o
Booter Power oTP Flash EEPROM Proprietary Header Terminal RFMaster Log
Profiler Programmer Programmer Programmer Programmer
Tools
Figure 39: Opening SmartSnippets Board Setup
(" SPI Flash pin configuration M " SPIFlash options 1
SPI_CLK SPI_EN SPI_DI SPI_DO
Mroo |4 ||@ros |A ||@ros A |@ros |4 B yen
PO I PUZ [JPro_s [JPo_7 Page size (bytes):
0 Po_2 0 Po_s O Po7 g P10 SPI_WORD_MODE: | 8-bit m
[JPro_3 [Jro_s (Jpr1o [N
[Po_a O ro7 (P11 P12 SPI_SMN_MODE: [Master Mode |!]
[JPo_s P10 CJprP12 P13 SPI_POL_MODE: [SPI clk initially low m
Oros I (OPa B 0OP13 B H0P20 & SPI_PHA_MODE: | Datavalid on low edge v
SPI_MINT_EN: | Disabled v
SPLCLKDV: [2 v

Figure 40: Smart Snippets Board Setup Window

4. Click the w button on the left to open the SPI Flash Programmer (see Figure 41):

SelectFile to download: cusers! ulti_iot585_585.bin Browse Offsetin SPI Flash memory (HEX): SP| Flash memory size (HEX, in Bytes): 40000
Data File Contents Memory Contents
Address Hex Text
0x00000000 70 S1 AA 01 64 21 01 00 PRO 4! 4 0x00000000 FF FF FF FF FF FF FF FF 00000000 L
0x00000008 6F 8B 03 87 FF FF FF FF ot om L) 0x00000008 FF FF FF FF FF FF FF FF sssasaasl
0x00000010 FF FF FF FF FF FF FF T 0ooooong 0x00000010 FF FF FF FF FF FF FF T 000000
0x00000018 FF EF FF FF FF FF FF EF 0ooooom 0x00000018 FF FF FF FF FF FF FF FF sasssaas}
0x00000020 00 FF FF FF FF FF FF T [sssssaal 0x00000020 FF FF FE FF FY FF FF IT 00000000
0x00000028 ¥F FF FF FF FF ¥F FF IF 00000000 0x0000002¢8 FF FF FF FF FF FF FF FF 000000
0x00000030 FF FF FF FF FF FF FF FF ooooooon 0x00000030 ¥F FF FF FF FF FF FF FF oooooom
0x00000038 FF FF FF FF FF FF FF FF 00000000 0x00000038 FF FF FF FF FF FF FF T [sassssas
0x00000040 68 2B FD 07 6D 05 FC 07 hilms= 0x00000040 FF FF FF FF FF FF FF FF [ssssssas
0x00000048 75 0S FC 07 8D 05 FC 07 UmAw 0x00000048 FF FF FF FF FF FF FF FF 00000000
0x00000050 00 00 00 00 00 00 00 00 0x00000050 FF FF EF FF FF FF FF FF 0oooooo
0x00000058 00 00 00 00 00 00 00 0O 0x00000058 FF FF FF FF FF FF FF FF 0ooooom
0x00000060 00 00 00 00 00 00 00 00 0x00000060 FF FF FF FF FF FF FF FF 00000000
0x00000062 00 00 00 00 AS 0S5 FC 07 O= 0x00000068 FEFF FEFF FE FF FF T 0ooooon
0x00000070 00 00 00 00 00 00 00 00 0x00000070 FF FF FF FF FF FF FF T 00000000
0x00000078 A7 05 FC 07 51 18 FC 07 O=Q= 0x00000078 FF FF FF FF FF FF FF FF [assssaasl
0x00000080 BD 1E FC 07 19 1F FC 07 O = 0x00000080 FF FF FF FF FF FF FF FF 00000000
0x00000088 1D 27 FO 07 A7 18 FC 07 '00= . 0x00000088 FF FF FF FF FF FF FF FF rasassas}
0x00000090 AB 0S FC 07 AB 0S FC 07 O=0= \ 0x00000090 FF FF FF FF FF T T T 00000000 :
SPLCLK:PO_0 SPLENMPO_3 SPLDLPOS SPIDO:P0_6 | connect | | Read3zkB | | Erase | | Erasesector | | Bum | | Bumaverty | | save |

Figure 41: SPI Flash Programmer

5. From Select File to download, browse for the <multi/whole app>.bin file.
6. Insert address 0x00 in the Offset in SPI Flash memory (HEX) field and follow the steps:

User Manual Revision 1.2 17-Jan-2022

CFR0012 100 of 110 © 2022 Renesas Electronics

LENESAS

DA14585 IoT Multi Sensor Development Kit Company Confidential
Developer's Guide

UM-B-101

a. Press Connect and wait for confirmation from the Log window;
b. Press Erase and wait for confirmation from the Log window;
c. Press Burn & Verify and wait for confirmation from the Log window.

IMPORTANT NOTES

e When burning Flash memory with SmartSnippets Studio, click NO when the "Do you want SPI Flash
memory to be bootable?" window appears.

e In SmartSnippets Studio, type (for example) "30000" instead of "0x30000".

7. The image is now burnt in flash and by pressing the Reset button on the CIB board, it will start
working with the programmed application.

D.2.2 Preparing the Various .imgand .bin Files Manually

The following files (Table 93) are needed to program the Flash memory so that an MSK application
starts on a button or hard reset.

Table 93: Files Needed or Created During Flash Programming

File Name Location Description
<application>.hex .\.\Keil_5\out_585 .hex file generated by Keil project
<application>.bin mkimage folder .bin file generated from .hex file

<sw_version>.h .\.\.\sdk\platform\include | .h software version file needed to create
.img
<file>.img mkimage folder .img file created from the .bin file and the
software version file
device config all beacons.txt mkimage_utils_scripts Contains the format of the device config
folder struct
<device config all beacons>.bin mkimage_utils_scripts -binfile creatgd_ by SmartSnippets
folder Toolbox containing the beacon
configuration
<dev_conf struct default>.cfg mkimage_utils_scripts .cfg file containing a default configuration
folder struct preceded by its header
user_config sw _ver.h sw_version folder .h beacon SW version file used to create
the device configuration field (struct and
header)

In order to prepare the necessary files, follow the steps below:

1. Open the mkimage app folder and open a cmd window (Shift + Left click > Open command
window here).

If there already is a .bin file of the Keil project, go directly to step 5.

Copy and paste the .hex file generated by your Keil project in the mkimage folder.

Create a .bin file from the .hex file (using the hex2bin.exe utility).

a bk wDn

Create two different . img files from alternative .bin files containing different images. Typing
"mkimage" in the command console shows instructions on the syntax needed to create an .img
file. Example: mkimage single <generated bin file>.bin <version file>.h

<desired name>.img.

6. Ifa<dev conf default>.binfileis already provided in mkimage folder, skip to step 6.9.
Open SmartSnippets Studio > SmartSnippets Toolbox. The screen show in Figure 38 appears.
a. Choose option JTAG and click button Open.

b. Inthe next screen, press button on the left to open the Proprietary Header Programmer.

User Manual Revision 1.2 17-Jan-2022

CFR0012 101 of 110 © 2022 Renesas Electronics

on RENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

The mkimage folder should contain a device config all beacons.txt file (see Figure 42).

device_config_all_beacons.txt £

1 16 String uuid uuid

20D Integer major major or ALT vall

S 2 Integer minor minor or ALT val2

4 2 Integer company id company id

SR 2 Integer adv_int advertising interval

6 1 Integer power tx power

gl &l Integer beacon type iBeacon/Alt/Eddystone (UUID/URL)

8 1 Integer url prefix url prefix

9 19 sString url (first byte = Length)full url with extension
TON] Integer TLM version TLM version
SICI 1 Integer TLM used TLM used

Figure 42: Device Config Struct Format in .txt File

c. Browse to the file device config all beacons.txt and open it for editing.
d. Enter the desired values at the corresponding blanks (see Figure 43 and Figure 44):

Memory offset (HEX): 1f000

File: ' ties\tools_binaries\device_config_all_beacons.tt| | Browse
Memory Type: (EEPROM () SPIFlash

Address |Size (bytes) Type ' Parameter I Description
0x1F000 3 ‘ String 1 uuid | uuid
0x1F010 .2 ‘Im:eger major major or ALT wvall
0x1F012 .2 .Im:eger .minor minor or ALT val2
0x1F014 2 Integer company id company_id
0x1F01é 2 Integer adv_int advertising interval
0x1F018 1 Integer |power txXx power
0x1F019 1 Integer beacon type iBeacon/Alt/Eddystone (UUID/URL)
0x1F01A 1 .Integer url prefix |url prefix
0x1F01B 19 String url {first byte = Length)full url with extension‘
0x1F02E .1 Integer |TIM version ‘ILM version ‘
0x1F02F . 1 - Integer | TIM used . TIM used

Figure 43: Programming the Various Fields of the Device Configuration Struct

User Manual Revision 1.2 17-Jan-2022

CFR0012 102 of 110 © 2022 Renesas Electronics

S LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Memory offset (HEX): 11000

File: ties\tools_binaries\device_config_all_beacons.txt | Browse

Memory Type: () EEPROM (& SPIFlash

Address i Parameter Description Value

0x1F000 ‘String |uuid ! 2380C52068D211E498030800200C9R66
0x1F010 2 Integer |major major or ALT vall 0003

0x1F012 2 Integer |minor minor or ALT val2 0004

0x1F014 2 Integer |company_id company_id 4Coo0

0x1F016 2 Integer |adv_int advertising interval Eg03

0x1F018 1 Integer |power tX power Cs

0x1F019 1 Integer beacon_type |iBeacon/Alt/Eddystone(UUID/URL) 00

0x1F01a |1 Integer |url prefix |url prefix 00

0x1F01B 19 String url (first byte = Length)full url with extension | 00000000000000000000E064696173656D6907
0x1F02E 1 Integer |TIM version |TLM version 00

0x1F02F 1 Integer |TIM used TIM used 00

Figure 44: Creating a Custom Dev_Conf Struct .bin File

NOTE

Addresses and values are random.

e. Click the Export button at the bottom of the screen to save the .bin file.
f. To edit the generated .bin files:

i. Press button to open the Proprietary Header Programmer.

ii. Click the Import button at the bottom of the screen and browse for <filename>.bin. The
Value column will now be populated with the programmed values.

iii. Modify the values as required.

iv. Click button Export to save the .bin file.

g. To create the device configuration file to be burned into Flash memory, use the mkimage
application in cfg mode (see Appendix C.2.5). This file includes the device configuration
struct preceded by the device configuration struct header.

7. Use "mkimage multi" mode for Smart Tag and loT sensors applications and "mkimage whole"

mode for beacon applications to create the images to be burned in flash as described in
Appendix D.2.1.

Appendix E Using the SUOTA Application for Android

This appendix describes how to use Dialog's SUOTA application to update the software programmed
in the DA14585 MSK HW reference design. There are two variants of the SUOTA application: one for
the Android operating system and one for the iOS. Users can find the SUOTA application by
searching for ‘Dialog SUOTA’ in Google Play Store or Apple App Store. Since these applications
have a similar user interface, only the application for Android operating system is described here.

STEP 1: Prepare the MSK Device
If your device is already programmed, skip this step and proceed with STEP 2.

A dual image secondary boot loader needs to be programmed into the OTP memory of the DA14585.
Moreover, the initial software image with the right header needs to be programmed into the DA14585
loT MSK SPI Flash memory using the Flash Programmer (see Appendix D).

To verify that this step has been completed successfully, reset the device and check the expected
behavior for the desired application:

User Manual Revision 1.2 17-Jan-2022

CFR0012 103 of 110 © 2022 Renesas Electronics

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

e Green LED blinking for Smart Tag
e Yellow LED blinking for 10T sensors
e Beacon advertising for beacon examples

STEP 2: Install and Start the Application on the Android Device

After successful installation, the SUOTA icon appears under the installed applications menu. Click on
the icon (Figure 45) to start the application.

=

L

€dialog

Figure 45: SUOTA App Icon

STEP 3: Initial Menu, Scan for Advertising Devices

Assuming the MSK device advertises a SUOTA advertising string once the SUOTA APP is opened,
the Bluetooth Device address and device name is displayed as shown in Figure 46.

To re-initiate scanning, just press the “SCAN” button in the top right corner.

SUOTA STOP SCAN

Dialog Semiconductor

Please press the SCAN button to search for devices.

Dialog WRBL

80:EA:CA:80:D0:C1 =

-89dB

n SMARTTAG_585 IlI
EACATO-AD: u
B80:EA:CA:70:A0:1D _60dB
DLG-OTA
.....]
02:03:03:EA:05:05 -89dB
DA1458x

80:EA:CA:00:DD:EE

Dialog PX Reporter
80:EA:CA66:34:12

Figure 46: Device Selection Menu

STEP 4: Connect to the Smart Tag Device

Click on the desired device to connect. Once the APP is connected to the device successfully, the
DISS information is displayed on the screen as shown in Figure 47.

User Manual Revision 1.2 17-Jan-2022

CFR0012 104 of 110 © 2022 Renesas Electronics

RENESAS

UM-B-101
DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide
SMARTTAG_585

Manufacturer Dialog Semiconductor

Meodel number DA14585

Firmware revision v_6.0.8

Software revision v6.161.2

UPDATE DEVICE

Figure 47: DIS Screen

STEP 5: Update SmartTag Software Image

Click on the Update device button and a list of files will appear on the screen. For the file to appear
in this File selection screen (Figure 48), it has to be copied to the SUOTA directory of the Android
device. Connect the Android device via USB to the PC where the images are created and copy the
images under the SUOTA directory.

— SUOTA

File selection

altbeacon_dynamic.bin
eddy_uid_url_tlm.bin
iot585_585.img

smart_tag_585.img

Figure 48: File Selection Screen

User Manual Revision 1.2 17-Jan-2022

CFR0012 105 of 110 © 2022 Renesas Electronics

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

STEP 6: Set SUOTA Parameters

Once an image is selected, the Parameter settings (Figure 49) screen appears.

— SUOTA
Parameter settings

Device SMARTTAG_585
File smart_tag_585.img

Select memory type

12¢ Pl
MISO GPIO

P0O_5 v
MOSI GPIO

PO_6 v
CSGPIO

PO_3 h
SCK GPIO

PO_0 h
Image bank

0 -
Block size

p4ao

SEND TO DEVICE

Figure 49: SUOTA Parameter Settings

First set the memory type. The image update procedure is only supported for non-volatile memory
types of SPI (Flash memory) and I12C (EEPROM). In this example SPI (Flash) is selected.

Then select the Image (memory) bank (Figure 49):

1: Use the first bank with start address indicated in the Product Header.
2: Use the second bank with start address indicated in the Product Header.
0: Burn the image into the bank that holds the oldest image.

Next, define the GPIO pins of the memory device. In the SmartTag device, the SPI Flash GPIO
configuration is as follows:

e MISO PO_5
e MOSI PO_6
e CS PO_3
e SCK PO_0

Finally, scroll down to choose the block size. Take the following points into account when setting the
block size.
The block size must be larger than 64 bytes, which is the size of the image header.

The block size must be a multiple of 20 bytes, which is the maximum amount of data that can be
written at once in the SPOTA PATCH DATA characteristic.

e The block size must not be larger than the SRAM buffer in the SUOTA Receiver implementation,
which holds the image data received over the BLE link before burning it into the non-volatile
memory.

User Manual Revision 1.2 17-Jan-2022

CFR0012 106 of 110 © 2022 Renesas Electronics

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

This example uses a block size of 240 bytes.

After all the parameters are set, users can click on the Send to device button at the bottom of the
screen.

STEP 7: Reboot the Device

Once the Send to device button is clicked, a load screen appears that shows the image data blocks
being sent over the BLE link (Figure 50). In case an error occurs, a pop-up indication will inform the

user.
— SUOTA
— Uploading file

Upleading smart_tag_585.img to SMARTTAG_585.
Please wait until the process is completed.

97%

Sending chunk 130 of 134

Enable SPOTA_SERV_STATUS notifications
Firmware CRC: 0x70

Upload size: 32493 bytes

Chunk size: 244 bytes

Set SPOTA_MEM_DEV: 0x13000000

Set SPOTA_GPIO_MAP: 0x05060300

Set SPOTA_PATCH_LENGTH: 244

Update procedure started

Figure 50: SUOTA Uploading Screen

When no error occurs and the SmartTag device has received and programmed the image
successfully, the screen in Figure 51 will appear, asking the user to reboot the SmartTag device.

User Manual Revision 1.2 17-Jan-2022

CFR0012 107 of 110 © 2022 Renesas Electronics

on LENESAS

DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Upload completed

Reboot device?

CANCEL OK

Figure 51: Successful Update Screen

STEP 8: Verify that the New Software is Running on the SmartTag Device

Repeat STEP 3 and STEP 4 to verify that the DIS screen shows the firmware and software version of
the new software.

To re-initiate scanning just press the "SCAN" button in the top right corner.

User Manual Revision 1.2 17-Jan-2022

CFR0012 108 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 loT Multi Sensor Development Kit Company Confidential
Developer's Guide

Revision History

Revision Date Description
1.2 17-Jan-2022 Updated logo, disclaimer, copyright.
11 05-Feb-2019 Updates for 6.160.4

Change details:
For changes:
® Section 4.2.4

o Added this section to include details of how to compile including Bosch BSEC Library.

1.0 03-Aug-2018 Initial version.
User Manual Revision 1.2 17-Jan-2022
CFR0012 109 of 110 © 2022 Renesas Electronics

LENESAS

UM-B-101
DA14585 loT Multi Sensor Development Kit Company Confidential

Developer's Guide

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

User Manual Revision 1.2 17-Jan-2022

CFR0012 110 of 110 © 2022 Renesas Electronics

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	3.1 DA14585 IoT MSK Hardware Features
	3.2 DA14585 IoT MSK Hardware Architecture

	4 DA14585 IoT MSK Reference Application
	4.1 Software Features
	4.2 Software Architecture
	4.2.1 Project Files
	4.2.2 Source Files
	4.2.3 Application Configuration
	4.2.4 Configure for Air Quality Index

	4.3 Operation Overview
	4.3.1 General Description
	4.3.2 Application Initialization
	4.3.3 Advertise
	4.3.4 Connected/Sensors Idle
	4.3.5 Connected/Sensors Active
	4.3.6 Connected/Sensors Stopped
	4.3.7 Disconnect

	4.4 Wkup_adapter
	4.5 Sensor Interface
	4.5.1 General Description
	4.5.1.1 Timer
	4.5.1.2 INTERRUPT
	4.5.1.3 FORCED
	4.5.1.4 FORCED_INTER_SNGL_SHOT

	4.5.2 Sensor Interface API
	4.5.3 Driver Adaptation Layer

	4.6 Device Drivers
	4.6.1 Environmental Sensor
	4.6.2 Motion Sensor
	4.6.2.1 TDK ICM-42605
	4.6.2.2 BOSCH BMI160

	4.6.3 Magneto Sensor
	4.6.4 Optical Sensor
	4.6.5 GPIO Expander
	4.6.6 Power Amplifier

	4.7 Adding a New Sensor
	4.8 Sequence Diagrams
	4.8.1 Sensor Fusion Data Reporting
	4.8.2 Environmental Data Reporting

	4.9 Dialog Wearable Service V2
	4.9.1 Feature Report Structure
	4.9.2 Multi Sensor Report and Sensor Report
	4.9.2.1 Sensor Report for Accelerometer, Gyroscope, and Magnetometer
	4.9.2.2 Sensor Report for Temperature, Humidity, Gas, and Barometric Pressure
	4.9.2.3 Sensor Report for Indoor Air Quality (IAQ)
	4.9.2.4 Sensor Report for Ambient Light and Proximity
	4.9.2.5 Sensor Report for Button
	4.9.2.6 Sensor Report for Sensor Fusion
	4.9.2.7 Sensor Report for Velocity Delta
	4.9.2.8 Sensor Report for Euler Angle Delta
	4.9.2.9 Sensor Report for Quaternion Delta

	4.9.3 Report Structures for Configuration and Control
	4.9.3.1 Start Command
	4.9.3.2 Stop Command
	4.9.3.3 Read Parameters from Flash Memory
	4.9.3.4 Reset to Factory Defaults
	4.9.3.5 Store Basic Configuration in Flash Memory
	4.9.3.6 Store Calibration Coefficients and Control Configuration in Flash Memory
	4.9.3.7 Return Running Status
	4.9.3.8 Reset Sensor Fusion and Calibration Configuration
	4.9.3.9 Basic Configuration
	4.9.3.10 Read Basic Configuration
	4.9.3.11 Set Sensor Fusion Coefficients Command
	4.9.3.12 Read Sensor Fusion Coefficients
	4.9.3.13 Set Calibration Coefficients
	4.9.3.14 Read Calibration Coefficients
	4.9.3.15 Set Calibration Control Flags
	4.9.3.16 Read Calibration Control
	4.9.3.17 Fast Accelerometer Calibration
	4.9.3.18 Set Calibration Modes
	4.9.3.19 Read Calibration Modes
	4.9.3.20 Read Device Sensors
	4.9.3.21 Read Software Version
	4.9.3.22 Start LED Blink
	4.9.3.23 Stop LED Blink
	4.9.3.24 Set Proximity Hysteresis Limits
	4.9.3.25 Read Proximity Hysteresis Limits
	4.9.3.26 Calibration Complete
	4.9.3.27 Proximity Calibration Command

	4.10 Sensor Calibration Library
	4.10.1 Overview
	4.10.1.1 Modes of Operation
	4.10.1.2 Calibration Routines
	4.10.1.3 Calibration Procedure

	4.10.2 API Usage
	4.10.2.1 Allocation
	4.10.2.2 Initialization
	4.10.2.3 Processing

	4.11 Sensor Fusion Library
	4.11.1 Overview
	4.11.2 SmartFusion Integration Engine
	4.11.2.1 Modes of Operation
	4.11.2.2 API Usage
	Allocation
	Initialization
	Processing

	4.11.3 SmartFusion Attitude and Heading Reference System
	4.11.3.1 Modes of Operation
	4.11.3.2 API Usage
	Allocation
	Initialization
	Processing

	5 Smart Tag Reference Application
	5.1 Introduction
	5.2 Software Features
	5.2.1 Profiles and Services
	5.2.2 Alerts
	5.2.3 Advertising and Sleep Phases
	5.2.4 Push-Button Interface
	5.2.5 Security
	5.2.6 Battery Level

	5.3 Software Architecture
	5.4 Operation Overview and State Machines
	5.4.1 Application Configuration Parameters
	5.4.2 Application Task State Machine
	5.4.3 Callback Functions
	5.4.4 Advertising
	5.4.5 Connection
	5.4.6 Security
	5.4.7 Push button
	5.4.8 Proximity Reporter and Alerts
	5.4.9 PWM Engine
	5.4.10 SmartTag Sequence Diagram

	6 Beacon Reference Applications
	6.1 Introduction
	6.2 What is a Beacon?
	6.3 Beacon Example
	6.4 Beacon Formats
	6.4.1 iBeacon
	6.4.2 AltBeacon
	6.4.3 Eddystone
	6.4.3.1 Eddystone-UID
	6.4.3.2 Eddystone-URL
	6.4.3.3 Unencrypted Eddystone-TLM

	6.5 Software Features
	6.6 Beacon Parameters
	6.6.1 Advertising Data
	6.6.1.1 Using the user_default_beacon_config Struct
	6.6.1.2 Reading Advertising Data from Flash

	6.6.2 Advertising Interval

	6.7 Software Architecture
	6.8 Operation Overview
	6.8.1 Configuration Switches

	6.9 User Advertise SW Module
	6.9.1 Style
	6.9.2 Pattern
	6.9.3 User Advertise SW Module Callbacks

	6.10 Device Configuration Service
	6.10.1 Device Configuration Service Specification

	6.11 Environmental Data Notifications Service
	6.11.1 Environmental Data Notifications Service Specification

	6.12 Beacon Configuration
	6.12.1 Beacon Configuration Memory Map

	6.13 Battery Level Sampling
	6.14 Beacon Examples for DA14585 IoT MSK
	6.14.1 AltBeacon
	6.14.1.1 AltBeacon Example Sequence Diagram

	6.14.2 Eddystone
	6.14.2.1 Eddystone Example Sequence Diagram

	6.14.3 iBeacon
	6.14.3.1 iBeacon Example Sequence Diagram

	7 Memory Footprint and Power Measurements
	7.1 Memory Footprint
	7.2 Power consumption

	Appendix A MSK Boot Sequence
	Appendix B Memory Map
	Appendix C Using the mkimage Application
	C.1 mkimage Scripts
	C.2 mkimage Modes
	C.2.1 mkimage single
	C.2.2 mkimage multi
	C.2.3 mkimage whole_img
	C.2.4 mkimage multi_no_suota
	C.2.5 mkimage cfg

	Appendix D Flash Programming in MSK Applications
	D.1 Basic Information About the MSK Applications
	D.1.1 Product Header
	D.1.2 Image Header
	D.1.3 Beacon Configuration Struct and Configuration Struct Header
	D.1.4 Smart Tag Bonding Data, IoT Flash Base, IoT Flash Base Cal

	D.2 Flash Programming
	D.2.1 Burning the Whole Image in Flash Memory
	D.2.2 Preparing the Various .img and .bin Files Manually

	Appendix E Using the SUOTA Application for Android
	STEP 1: Prepare the MSK Device
	STEP 2: Install and Start the Application on the Android Device
	STEP 3: Initial Menu, Scan for Advertising Devices
	STEP 4: Connect to the Smart Tag Device
	STEP 5: Update SmartTag Software Image
	STEP 6: Set SUOTA Parameters
	STEP 7: Reboot the Device
	STEP 8: Verify that the New Software is Running on the SmartTag Device

	Revision History

