

Company Confidential

User Manual

DA14585 Range Extender Reference Application

UM-B-089

Abstract

This document describes the hardware system setup of a range extender daughterboard based on the Dialog DA14585 Bluetooth® low energy SoC and the Skyworks SKY66111-11 Front End Module. Target hardware: DA14585_rd_qfn40_fem_module_vB – Board Number: 321-13-B. Target silicon: DA14585

DA14585 Range Extender Reference Application

Company Confidential

Contents

Ab	stract			1
Co	Contents 2			
Fig	igures4			
Tal	bles			5
1	Term	s and Def	finitions	6
2				
-				
4			iew	
	4.1		· · · · · · · · · · · · · · · · · · ·	
	4.2		Description	
	4.3	System I	nterface	11
5	Syste	em Power	⁻ Supply	
6	Bluet	ooth [®] Lo	w Energy SoC	
7	RF Fi	ont End.		14
	7.1	Power ar	nplifier	15
	7.2	Control S	Signals	
		7.2.1	RF Control Signals	16
		7.2.2	Power Control Signals	
	7.3		tup	
	7.4	•		
	7.5			
•	7.6		e attenuator (optional)	
8		-	ver Control Circuit	
9	•			
10			sign Pin Assignment	
11	Deve	lopment i	mode - Peripheral Pin Mapping	
12	PCB	Assembly	y	30
			5 Range Extender Schematic	
			aterials	
13			nents	
	13.1		rformance Measurements	
		13.1.1	Receiver Sensitivity	
			13.1.1.1 Test Description 13.1.1.2 Test Setup	
			13.1.1.3 Test Results	
		13.1.2	Transmitter Output Power	
			13.1.2.1 Test Description	
			13.1.2.2 Test Setup	
			13.1.2.3 Test Results	
		13.1.3	Current Consumption	
			13.1.3.1 Test Description	39
			13.1.3.2 Test Setup	39
Us	er Mar	nual	Revision 1.2 19	Jan-2022

DA14585 Range Extender Reference Application

Company Confidential

			13.1.3.3	Test Results	40
	13.2	BLE FCC	C Measureme	ents	42
		13.2.1	Maximum C	Output Power and Antenna Gain (Transmitter)	42
			13.2.1.1	Test Specification	42
			13.2.1.2	Test Setup	42
			13.2.1.3	Test Results	42
		13.2.2	Emissions L	imitations Conducted (Transmitter)	45
			13.2.2.1	Test Specification	45
			13.2.2.2	Test Setup	45
			13.2.2.3	Test Results	45
		13.2.3	Band Edge	Compliance Radiated (Transmitter)	49
			13.2.3.1	Test Specification	49
			13.2.3.2	Test Setup	49
			13.2.3.3	Test Results	49
		13.2.4	Band Edge	Compliance Conducted (Transmitter)	51
			13.2.4.1	Test Specification	51
			13.2.4.2	Test Setup	51
			13.2.4.3	Test Results	51
		13.2.5	Spurious Er	nissions Radiated above 1GHz	53
			13.2.5.1	Test Specification	53
			13.2.5.2	Test Setup	53
			13.2.5.3	Test Results	53
14	PCB	Design G	uidelines		55
		-			
	14.2	RF layou	t design		57
		14.2.1	Radio IC		57
		14.2.2	RF transmis	ssion lines	58
		14.2.3	RX Spuriou	s Emissions	58
15	Safet	v Informa	ation		60
		-		vare Guide	
·Ρ	A.1			1	
	/	A.1.1	•	h	
		A.1.2		C	
	A.2			nity reporter project	
		A.2.1		,	
	A.3		•	est	
	A.4			operating modes	
	• •	A.4.1		uilding for FOUR_DBM power operation	
Δn	nendi		•	Current Consumption	
-	-	-	-	-	
ĸe	VISION	nistory.			10

Company Confidential

Figures

Figure 4, BCD of the DA14505 Denge Extender (201.42 D)	7
Figure 1: PCB of the DA14585 Range Extender (321-13-B)	/
Figure 2: Block Diagram of Range Extender (321-13-B)	10
Figure 3: DA14585 Range Extender (321-13-B) on a DA14580 PRO-Dev.Kit Motherboard	
Figure 4: Layout of the DA14585 Range Extender daughterboard	
Figure 5:DA14585 QFN40 SoC DA14585 Range Extender	
Figure 6: RF Front End signal paths	
Figure 7: RF Front End schematic	
Figure 8: SKY66111-11 Power Amplifier	15
Figure 9: SKY66111-11 Front End Module - overview	16
Figure 10: BLE_DIAGCNTL_REG (0x40000050) register specification	
Figure 11: BLE_DIAGCNTL2_REG (0x4000020C) register specification	
Figure 12: BLE_DIAGCNTL3_REG (0x40000210) register specification	
Figure 13: Low Pass Filter (L7&L5=2.7nH, C18=1.2pF)	
Figure 14: T-shaped, 3-poles, Low Pass Filter	
Figure 15: Printed Inverted F Antenna geometry	20
Figure 16: Matching network for printed antenna	20
Figure 17: S parameters of Printed IFA and Matching Network	21
Figure 18: Radiation diagram for the board placed vertically	
Figure 19: Radiation diagram for the board placed horizontally	
Figure 20: SKY66111-11 POUT vs VCC & VBIAS (PIN=-1dBm)	
Figure 21: Power regulation circuit	
Figure 22: TX Output Power using PWM mode, 3 channels	24
Figure 23: PWM Duty Cycle vs TX Output Power and VCC	
Figure 24: Top view of PCBA	
Figure 25: Bottom view of PCBA	
Figure 26: RX Sensitivity, Dirty Transmitter OFF, Payload: PRBS9, Length: 37, MAX_POWER	
Figure 27: RX Sensitivity, Dirty Transmitter, Payload: PRBS9, Length: 37, MAX_POWER	
Figure 28: Nominal Average TX Output Power per channel vs all power levels	
Figure 29: Maximum Output Power, CH00	
Figure 30: Maximum Output Power, CH19	
Figure 31: Maximum Output Power, CH39	
Figure 32: Harmonics Level, Lowest Frequency, CH00	
Figure 33: Harmonics Level, Lowest Frequency, CH19	
Figure 34: Harmonics Level, Lowest Frequency, CH39	47
Figure 35: Radiated Emissions in Lower Restricted Band, CH00	50
Figure 36: Radiated Emissions in Upper Restricted Band, CH39	
Figure 37: Conducted Emissions in Lower Band Edge, CH00	
Figure 38: Conducted Emissions in Upper Band Edge, CH39	
Figure 39: TX spurious emissions radiated, CH00	54
Figure 40: RX spurious emissions radiated, CH00	
Figure 41: Full size IFA used in DA14585 Range Extender with dimensions	
Figure 42: DA14585 Range Extender board layout snapshot	
Figure 43: Placement of filter and matching network	
Figure 44: Safety Information of DA14585 Range Extender	
Figure 45: Control pins configuration in SKY66111.h	61
Figure 46: Power modes definition in SKY66111.h	61
Figure 47: Definition of PWM duty cycle preset values in SKY66111.h	62
Figure 48: Global variables declaration in SKY66111.c for the range_ext_api.h	62
Figure 49: Configure GPIOs for SKY66111 operation	
Figure 50: Function timer0_conf_start();	63
Figure 51: Function declare_fem_gpios();	64
Figure 52: Function app_range_extender_reinit();	65
Figure 53: Function app_range_extender_enable();	
Figure 54: Function app_range_extender_sleep();	66
Figure 55: Function app_set_power();	66

User Manua

Company Confidential

Figure 56: function range_ext_init();	67
Figure 57: Copy rext_sky66111-11_v1.1 folder into sdk driver	
Figure 58: Step 2 of adding sky66111.c to sdk_driver	69
Figure 59: Step 3a, Select target options	69
Figure 60: Step 3b, include sky6611.c and range_ext_api.h at the compiler include paths	70
Figure 61: include timer0.c path at the end of compiler include paths	71
Figure 62: define CFG_RANGE_EXT in da1458x_config_advanced.h	71
Figure 63: range_ext.enable() after ble_init() in arch_system.c	72
Figure 64: range_ext.enable() at the end of set_pad_functions() in user_periph_setup.c	72
Figure 65: Include sky66111.h in user_periph_setup.c	73
Figure 66: Call range_ext.enable() at the end of set_pad_functions() in user_periph_setup.c	73
Figure 67: Set FOUR_DBM in range_ext.enable() in arch_system.c	74
Figure 68: Set FOUR_DBM in range_ext.enable() in user_periph_setup.c	74
Figure 69: Build project in order to produce the FOUR_DBM hex file	75
Figure 70: PWM optimized RC circuit	76

Tables

Table 1: Electrical Characteristics (Note 6)	9
Table 2: Jumper Settings for Power Schemes of DA14580 PRO-Dev.Kit Motherboard	12
Table 3: Truth Table for SKY66111-11	16
Table 4: Power control Signals Configuration	18
Table 5: Suggested pin assignment for extracting all RF control signals	18
Table 6: GPIO setup of FEM power control signals	
Table 7: Antenna gain	
Table 8: SKY66111-11 TX Output Power Typical values and Accuracy over PWM Duty Cycle (Note	е
14)	
Table 9: SKY66111-11 VCC voltage level for all power modes	26
Table 10: Y1 16 MHz Crystal Characteristics	. 27
Table 11: Y2 32 kHz Crystal Characteristics	27
Table 12: DA14585 aQFN40 Pin Assignment	
Table 13: Development/ testing mode pin mapping	
Table 14: Bill of Materials	
Table 15: RX Sensitivity for all power levels, Dirty Transmitter OFF (Note 16)	
Table 16: RX Sensitivity for all power levels, Dirty Transmitter ON (Note 17)	
Table 17: Nominal Average TX Power (Note 18)	
Table 18: Current consumption during Advertising Mode (Note 19)	
Table 19: Current consumption during Connection Mode (Note 20)	40
Table 20: Current consumption during Sleep Mode	41
Table 21: Maximum (Peak) Output Power (dBm), RBIAS = 2.2k, CH00, CH19, CH39	42
Table 22: Measured Reference Level	45
Table 23: Conducted TX Harmonics at CH00, CH19, CH39	45
Table 24: Band edge compliance radiated	
Table 25: Band edge compliance conducted	
Table 26: TX spurious emissions radiated limits	53
Table 27: TX spurious emissions radiated	53
Table 28: RX spurious emissions radiated	
Table 29: Antenna types comparison	
Table 30: SKY66111-11 modified PWM Duty Cycle for R2=10K, C22=10nF	
Table 31: Current consumption during Advertising Mode (R2=10K, C22=10nF) (Note 22)	
Table 32: Current consumption during Connection Mode (R2=10K, C22=10nF) (Note 23)	77

DA14585 Range Extender Reference Application

Company Confidential

1 Terms and Definitions

ADC	Analog to Digital Converter
BLE	Bluetooth [®] Low Energy
BOM	Bill of Materials
dBm	decibel-milliwatts
dBµV/m	decibel-microvolts per meter
EIRP	Effective Isotropic Radiated Power
FEM	Front End Module
FW	Firmware
GPIO	General Purpose Input/ Output
I2C	Inter-Integrated Circuit
IFA	Inverted-F Antenna
LPF	Low Pass Filter
MBd	Megabaud
PA	Power Amplifier
PCBA	Printed Circuit Board Assembled
PCB	Printed Circuit Board
RF	Radio Frequency
RFCU	RF Control Unit
RX	receive(r)
SoC	System on Chip
SPI	Serial Peripheral Interface
ТХ	transmit(ter)

2 References

- [1] UM-B-034, DA14580_581_583 Bluetooth Smart Development Kit Pro_v1.4, User Manual, Dialog Semiconductor.
- [2] SKY66111-11, Datasheet, Skyworks Inc.
- [3] DA14585 Bluetooth 5.0 SoC with Audio Interface, Datasheet, Dialog Semiconductor.
- [4] UM-B-008, DA14580_581_583 Production Line Tool reference CLI_v1.7, User Manual, Dialog Semiconductor.
- [5] AN-B-020, End Product testing and programming guidelines, Application Note, Dialog Semiconductor.
- [6] AN-B-027, Designing Printed Antennas for Bluetooth® Smart, Application Note, Dialog Semiconductor.

3 Introduction

The DA14585 Range Extender (321-13-B) is a reference design based on DA14585 Bluetooth Low Energy 5.0 SoC, where enhanced RF transmitted power is presented. The DA14585 Range Extender board serves as a reference design to potential customers requesting enhanced BLE RF Programmable Output Power up to +9.3 dBm. From physical perspective, the board consists of a 2layer PCBA where the digital and power interfaces of the DA14585 are accessible to the user. This document presents the system, technical specifications, physical dimensions and test results.

Figure 1: PCB of the DA14585 Range Extender (321-13-B)

DA14585 Range Extender Reference Application

4 System Overview

4.1 Features

- Highly integrated DA14585 Bluetooth Low Energy 5.0 SoC
- Can be used stand-alone or as a data pump on a system with an external processor
- Complies to Bluetooth v5.0, ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US) and ARIB STD-T66 (Japan)
- Buck mode operation
- Operating voltage: 1.8 V to 3.6 V
- Maximum BLE transmit output power +9.3 dBm (See Note 1)
- Programmable transmit output power with steps of 2dBm
- Includes two crystal oscillators: 16 MHz (XTAL16M) and 32.738 kHz (XTAL32K)
- Access to processor via JTAG, SPI, UART or I2C interface
- 21 general purpose I/Os with programmable voltage levels
- On-board printed inverted F-type antenna (Figure 4)
- U.FL connector for conducted measurements (Figure 4)
- BLE Radio transceiver (See Note 2):
 - receiver sensitivity better than -91 dBm (See Note 3)
- Supply current (See Note 4):
 - TX: max. current < 17 mA
 - RX: max. current < 6 mA
 - Extended Sleep current: <5 μA
- 34 mm x 42 mm, 2 layer PCBA
- Operating temperature: -40 °C to +85 °C
- Test FW based on 585 SDK 6.0.6
- Note 1 Conducted power
- Note 2 FCC part 15.247, 15.209 compliance.
- **Note 3** Dirty transmitter: ON, 1500 packets, payload PRBS9 length 37bytes.
- **Note 4** Normal operation, using SDK proximity reporter application, TX output power +9.3 dBm, peak values.

© 2022 Renesas Electronics

Company Confidential

RENESAS

Parameter	Value
TX Output Power	BYPASS: -1.5 dBm
	ZERO_DBM: 0 dBm
	TWO_DBM: +2 dBm
	FOUR_DBM :+4 dBm
	SIX_DBM: +6 dBm
	EIGHT_DBM: +8 dBm
	MAX_POWER: +9.3 dBm
RX Sensitivity(See Note 3)	better than -91 dBm
	BYPASS< 6 mA
	ZERO_DBM<10.5 mA
Maximum current consumption in TX mode	TWO_DBM<11.5 mA
	FOUR_DBM <12.5 mA
	SIX_DBM<13.5 mA
	EIGHT_DBM<15 mA
	MAX_POWER <17 mA
Maximum current consumption in RX mode	< 6 mA
Average current consumption during sleep mode	< 5 μΑ

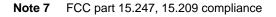
Note 6 Peak Maximum Ratings

9 of 79

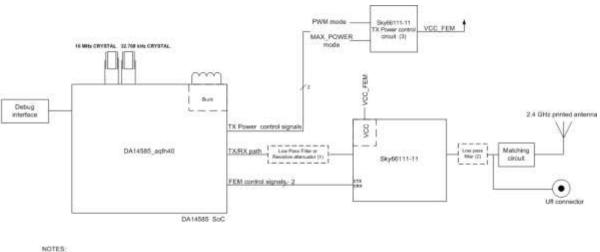
4.2 System Description

The system consists of DA14585 SoC in aQFN40 package (see Ref.[3]), the SKY66111-11 RF Front End Module (see Ref. [2]), external crystals of 16 MHz and 32.768 kHz, a discrete low pass filter and an external circuit that controls the power supply of the SKY66111-11. The radio front end is connected to a PCB trace antenna.

The power amplifier is controlled by CTRL_TX and CTRL_RX control signals. CTRL_TX is generated from pin P0_1 and CTRL_RX is generated from pin P0_2 of DA14585 SoC. On pin P0_1 and P0_2 the internal Radio_TXEN and Radio_RXEN signals are allocated by software.


An external TX power control circuit is used for adjusting the voltage level of SKY66111-11 VCC power supply pin. By adjusting VCC the output power of the PA can be regulated. Two control signals generated from pins P2_1 and P2_7 drive the external power control circuit.

The system can be configured to operate in three different modes:


- Programmable Output Power Mode: 0 to +8dBm in steps of 2 dBm
- Maximum Output Power Mode: +9.3 dBm
- Bypass Mode: -1.5 dBm

External connections provide access to Supply, DC/DC configuration, available Peripheral IO, Test, Software Development and OTP Programming.

The amplifier circuit is the SKY66111-11 from Skyworks. The CTX pin is used as the TX control signal and amplifier bias voltage. CTX pin is connected to the amplifier BIAS pin via resistor RBIAS. The resistor value is adjusted in order to get the maximum allowed output power (+9.3dBm, see Note 7).

A system overview is shown in Figure 2.

NOTES: (1) Low Pass Filter or Resistive pad attenuation is possible (2) Low pass filter (3) Control circuit for power regulation using PWM or max, power (3)

Figure 2: Block Diagram of Range Extender (321-13-B)

llser	Manual	
0361	Manual	

4.3 System Interface

DA14585 Range Extender daughterboard is plugged into header J4 of the DA14580 PRO-Dev.Kit Motherboard, as shown in Figure 3.

The PRO-motherboard provides UART and JTAG (SWD) interfaces to the DA14585, current measurement circuitry, as well as breakout headers (J5, J7) for the available GPIOs and general purpose user peripherals. For more details on the functionality and specifications of the motherboard, refer to user manual UM-B-034 (see Ref. [1]).

The system is powered via the Debug USB port (J12). The daughterboard can also be independently programmed, using an external battery connected on the board coin cell connector (see Section 5 for more details). The layout and main features of the daughterboard are shown in Figure 4.

Figure 3: DA14585 Range Extender (321-13-B) on a DA14580 PRO-Dev.Kit Motherboard

Figure 4: Layout of the DA14585 Range Extender daughterboard

User Manual	
-------------	--

Revision 1.2

5 System Power Supply

There are three options for powering the system when using the DA14580 PRO-Dev.Kit Motherboard.

- The PRO motherboard's voltage regulator (VDD_3V3_PERF, see Ref. [1]), which is powered from USB (J12).
- A coin cell battery on the PRO motherboard (BT1).
- A coin cell battery on the daughterboard of DA14585 Range Extender.

The power source is selectable with jumper header J11 from PRO Dev.Kit to either coin cell on PRO Dev.Kit or USB (Figure 3).

The different configurations for each of the power schemes using the DA14580 PRO-Dev.Kit Motherboard are described in Table 2.

Power Scheme	Indication DA14580 Power	J11	USB
Motherboard LDO	USB	1-2	Power + programming
Coin cell Battery mounted on motherboard (BT1)	BAT	2-3	Programming
Coin cell Battery mounted on daughterboard	-	open	Programming

⚠

Warning: If the coin cell on the daughterboard is used then jumper J11 should be left open.

6 Bluetooth[®] Low Energy SoC

The DA14585 integrated circuit (see Ref.[3]), is an optimized version of the DA14580, offering a reduced boot time and supporting up to 8 connections. It has a fully integrated radio transceiver and baseband processor for Bluetooth® Low Energy. It can be used as a standalone application processor or as a data pump in hosted systems.

The Bluetooth Low Energy firmware includes the L2CAP service layer protocols, Security Manager (SM), Attribute Protocol (ATT), the Generic Attribute Profile (GATT) and the Generic Access Profile (GAP). All profiles published by the Bluetooth SIG as well as custom profiles are supported.

The transceiver interfaces directly to the antenna and is fully compliant with the Bluetooth 5.0 standard.

The DA14585 has dedicated hardware for the Link Layer implementation of Bluetooth Low Energy and interface controllers for enhanced connectivity capabilities.

The DA14585 is based on an ARM Cortex M0 CPU and provides 0.9dMIPS/MHz. It is used for assisting the Bluetooth LE protocol implementation, as well as providing processing power for calculations or data fetched, that may be required by the application. Finally, it is used for housekeeping, including control of the system's power scheme.

It has a 128KB ROM containing the Bluetooth Smart protocol stack as well as the boot code sequence, a 64 kB OTP (One-Time Programmable) memory array, used to store the application code and 94kB total RAM. Storage of this data ensures secure and quick configuration of the BLE Core after the system wakes up. Every cell can be powered on or off according to the application needs for retention area when in Extended Sleep mode.

User Manual	Revision 1.2	19-Jan-2022

RENESAS

The DA14585 has an audio interface that comprises three separate blocks: a PDM block, a PCM/I2S block and a Sample Rate Converter (SRC block) with DMA support.

The main debug port for the DA14585 is the JTAG. JTAG consists of two signals, SWDIO and SWCLK.

The external digital interfaces available for the module are:

- 2 UARTs with hardware flow control up to 1 MBd
- SPI+™ interface
- I2C bus at 100 kHz or 400 kHz
- 3-axis capable Quadrature Decoder

There is also a 4-channel 10-bit ADC; it is available externally on the module.

The module includes 25 GPIOs (including JTAG signals) that are externally available. The interfaces are multiplexed with the GPIOs and can be enabled by appropriate programming.

The DA14585 SoC has a complete power management function integrated with Buck or Boost DC-DC converter and separate LDOs for the different power domains of the system. For this module, the DC-DC converter is configured as a Buck converter (C2, L1 and C3).

The DA14585 SoC is available in three packages: WLCSP34, QFN40 and QFN48. In this reference application the QFN40 is used.

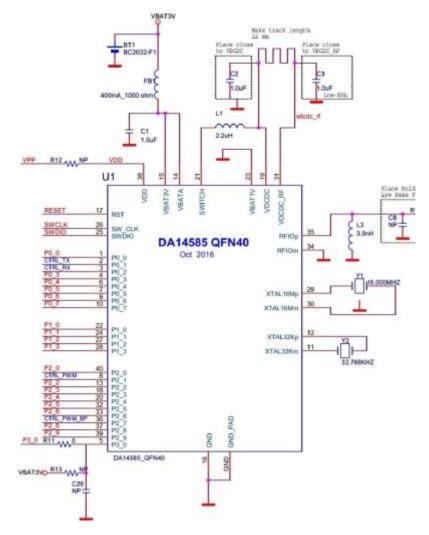


Figure 5:DA14585 QFN40 SoC DA14585 Range Extender

User Manual	Revision 1.2	

l

7 RF Front End

This part of the design is implementing the amplification of the RF transmitted signal while the transmitted harmonics as well as the TX spurious emissions remain within the FCC/ ETSI specification.

The operation of the RF Front End Module (FEM) is controlled by the DA14585 SoC. During the operation of the FEM there are two available RF paths:

- TX path through the amplifier
- TX/RX bypass path

The amplifier path is enabled during transmission. The RF signal passes through the PA, the low pass filter and the RF matching network. In the bypass path, the RF signal received at the antenna is driven directly to the BLE transceiver. The bypass path can be also used from the TX. In this case the PA of the FEM is not used. Insertion loss in the reception mode is 0.9dBm (see Ref. [2]).

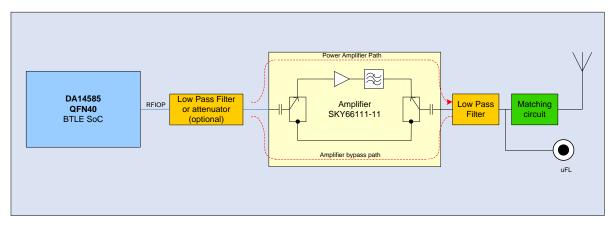
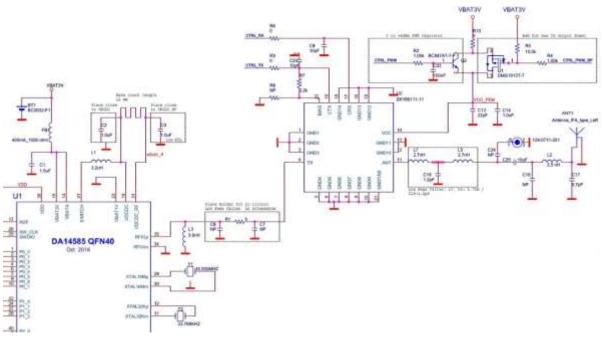
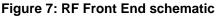




Figure 6: RF Front End signal paths

User Manual	Revision 1.2	19-Jan-2022

7.1 Power amplifier

The amplifier circuit is the SKY66111-11 from Skyworks (see Ref.[2]). The SKY66111-11 is a fully integrated RF Front End Module (FEM) designed for Smart Energy applications. The device provides a PA and digital controls compatible with 1.7 V to 5 V CMOS levels. The basic characteristics for the SKY66111-11 are:

- TX Power:10 dBm
- TX current: 10mA
- RX sensitivity: SoC+1 (see Note 8)
- RX current: 1 µA
- Sleep current< 1 µA
- Supply operation:1.8 to 5 V
- CTX and CRX control signals
- RX bypass
- One antenna port

Note 8 The FEM presents around 1dBm insertion loss when receiving signals than the SoC alone.

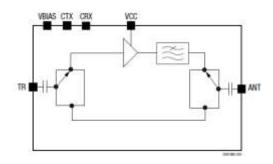


Figure 8: SKY66111-11 Power Amplifier

The SKY66111-11 CTX pin is used as the TX control signal and amplifier bias voltage while CRX pin is used as the RX control signal.

The SKY66111-11 BIAS pin supplies the bias to the internal PA. By varying the voltage at this pin, PA operating parameters including gain, supply current, and efficiency can be adjusted. The desired bias voltage can also be generated by connecting BIAS to the GPIO controlling CTX with a resistor. In the current design, the BIAS pin is connected to the CTX via resistor R7, providing a constant voltage of VBIAS=1.8 V when the PA is enabled. The resistor value is adjusted so that the maximum +9.3 dBm output power is achieved.

More information regarding the output power adjustment of the PA can be found in SKY66111-11 datasheet (see Ref. [2]).

Company Confidential

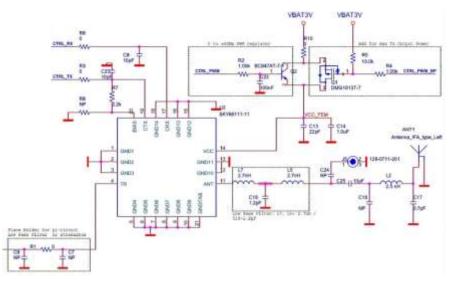


Figure 9: SKY66111-11 Front End Module - overview

7.2 Control Signals

7.2.1 **RF Control Signals**

The SKY66111-11 is controlled by CTX and CRX control signals. Their functionality is explained in Table 3.

Table 3: Tru	uth Table for	SKY66111-11
--------------	---------------	-------------

Mode	СТХ	CRX	BIAS
Sleep mode	0	0	0
Receive (RX) mode	0	1	0
Transmit (TX) mode	1	0	1 (See Note 9)
Non- permissible state (See Note 10)	1	1	Х

Note 9 Analog voltage control for PA output power.

Note 10 This state will enable both the TX and RX paths. It is not permitted to operate in this state.

These control signals are extracted by the DA14585 BLE diagnostic port, as they have to be synchronized with the radio on/ off of the DA14585 SoC.

In general, three different radio control signals can be extracted from DA14585 SoC:

- extrc_txen or radcntl_txen that can be used as TX_En control signal for the RF front end
- extrc_rxen or radcntl_rxen that can be used as RX_En control signals for the RF front end. Also extrc_txen inverted or radcntl_txen inverted can be used (See Note 11).
- event_in_process that can be used for wlan co-existence signal

Note 11 As long as BLE radio is active, FEM does not enter Sleep Mode.

DA14585 Range Extender Reference Application

The signals are extracted using the BLE diagnostic port. To do so, the following registers need to be programmed:

- BLE_DIAGCNTL_REG, BLE_DIAGCNTL2_REG where the diagnostic ports to be enabled are defined
- BLE_ DIAGCNTL3_REG where the desired control signals will be forwarded to the BLE diagnostic ports

BLE_DIAGONTL_REG (0x40000050)

Bit	Mode	Type	Symbol	Description	Reset
31	the state	reg_rw	DIAG3_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	OxD
29.24	17W	reg_rw	DIAG3	Only relevant when DIAG3_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG3.	Cod
23	t/w	reg_rw	DIAG2_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	0x0
21:16	12W	reg_rw	DIAG2	Only relevant when DIAG2_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG2.	0x0
15	8756	reg_rw	DIAG1_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	ChiD
13.5	1741	reg_rw	DIAG1	Only relevant when DIAG1_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG1.	0x0
7	77W	reg_rw	DIAG0_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	OxD
5:0	17W	reg_rw	DIAGO	Only relevant when DIAG0_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG0.	ChilD

Figure 10: BLE_DIAGCNTL_REG (0x40000050) register specification

Bit	Mode	Type	Symbol	Description	Reset
31	t/w	reg_rw	DIAG7_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	0x0
30	-	reg_ro	6)	Reserved	CxD
29.24	1740	reg_rw	DIAG7	Only relevant when DIAG7_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG7.	0x0
23	E/W	reg_rw	DIAG6_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	Ox0
22	-	900 ID	5	Reserved	OxG
21.16	EW/	reg_rw	DIAG6	Only relevant when DIA/G6_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIA/G6.	Ox0
15	1740	reg_rw	DIAG5_EN	Disable diagnostic port 0 output. All outputs are set to 0x0. T Enable diagnostic port 0 output.	Ox0
14	- C	reg_ro	(i)	Reserved	(0x0)
13.8	17W	reg_rw	DIAG5	Only relevant when DIAG5_EN= 1 Selection of the outputs that must be driven to the diagnostic port BLE_DIAG6.	OxB
7	r/w	reg_rw	DIAG4_EN	 Disable diagnostic port 0 output. All outputs are set to 0x0. Enable diagnostic port 0 output. 	OwD
6		ireg_ro		Reserved	(DxD)
5:0	67W	reg_rw	DIAG4	Only relevant when DIAG4_EN = 1. Selection of the outputs that must be driven to the diagnostic port BLE_DIAG4.	0x0

Figure 11: BLE_DIAGCNTL2_REG (0x4000020C) register specification

84	Mode	Туре	Symbol	Description	Reset
31	e/w	Feg_rw	DIAG7_INV	If set, then the specific diagnostic bit will be inverted.	0x0
0.28	etier .	reg rw	DIAG7 BIT	Selects which bit from the DIAG7 word will be forwarded to bit 7 of the BLE Diagnostic Port	0×0
7	174	reg_rw	D(AG6_INV	If set, then the specific diagnostic bit will be inverted.	0×0
16:24	x7w	reg_rw	DiAG6_BIT	Selects which bit from the DIAG6 word will be forwarded to bit 6 of the BLE Diagnostic Port.	(Dori)
23	rfw	reg_rw	DIAG5_INV	If set, then the specific diagnostic bit will be inverted.	0x0
2.20	17W	reg_rw	DIAG5_BIT	Selects which bit from the DIAG5 word will be forwarded to bit 5 of the BLE Diagnostic Port.	0x0
19	ster.	reg rw	DIAG4 INV	If set, then the specific diagnostic bit will be inverted.	Ox0
8.16	TW	reg_rw	DIAG4_BIT	Selects which bit from the DIAG4 word will be forwarded to bit 4 of the BLE Diagnostic Port.	0x0
15	p/w	reg_rw	DIAG3_INV	If set, then the specific diagnostic bit will be inverted.	0x0
14.12	rfw	reg_rw	DIAG3_BIT	Selects which bit from the DIAG3 word will be forwarded to bit 3 of the BLE Diagnostic Port.	(CxD)
11	1710	reg_rw	DIAG2_INV	If set, then the specific diagnostic bit will be inverted.	0x0
10.3	\$7W	reg rw	DIAG2 BIT	Selects which bit from the DIAG2 word will be forwarded to bit 2 of the BLE Diagnostic Port.	Ox0
7	r/w	reg_rw	DiAG1_INV	If set, then the specific diagnostic bit will be inverted.	0x0
5.4	p/w	rég_rw	DIAG1_BIT	Selects which bit from the DIAG1 word will be forwarded to bit 1 of the BLE Diagnostic Port.	0x0
3	the	reg_rw	DIAG0_INV	If set, then the specific diagnostic bit will be inverted.	0x0
2.0	17W	reg_rw	DIAG8_BIT	Selects which bit from the DIAG0 word will be forwarded to bit 0 of the BLE Diagnostic Port.	0x0

Figure 12: BLE_DIAGCNTL3_REG (0x40000210) register specification

BLE diagnostics can be used only with P 0[0:7] and P1 [0:3] of DA14585 SoC.

User Manual

Revision 1.2

7.2.2 Power Control Signals

An external circuit is used for adjusting the voltage level of SKY66111-11 VCC power supply pin. By adjusting VCC the output power of the PA can be regulated.

In general, the system can be configured to operate in three different modes:

- 1. **Programmable Output Power Mode**: a PWM signal with programmable duty cycle is driving the external circuit. The system operates in the range of 0 to +8dBm defined by the duty cycle used.
- 2. **Maximum Output Power Mode**: the system operates at maximum power as defined by the RBIAS.
- 3. Bypass Mode: the PA is bypassed.

To configure modes 1 and 2, the following two control signals are used:

- CTRL_PWM: a PWM generated from DA14585 SoC with programmable duty cycle. Uses timer0.
- CTRL_PWM_BP: normal GPIO configured low or high

For the configuration of the Bypass mode CTX, CRX inverted signals are used (See Note 12).

The signal configuration for each of the modes described can be seen in Table 4.

 Table 4: Power control Signals Configuration

Mode	CTRL_PWM	CTRL_PWM_BP	СТХ	CRX
Programmable Output Power Mode	PWM	1	1	0
Maximum Power Mode	0	0	1	0
Bypass mode	Input pull-down	0	0 (See Note 12)	1 (See Note 12)

Note 12 CTX, CRX are configured as normal GPIO and not extracted from diagnostic port. CTX is configured LOW and CRX HIGH during transmission.

7.3 GPIO setup

A suggested pin assignment for extracting the necessary RF control signals (CTX, CRX) from the diagnostic port is described in Table 5.

In the current implementation the extrc_txen_inverted signal is used for controlling CRX. The implementation improves the receiver characteristics as the FEM remains active during BLE radio active time.

Table 5: Suggested pin assignment for	extracting all RF control signals
---------------------------------------	-----------------------------------

Function	Signals used	Diagnostic port settings			DA14585 assigned pins	
		BLE_DIAGC	BLE_DIAGCNTL_REG BLE_DIAGCNTL3_REG			
		DIAG PORT	DIAG[x]	DIAG[x]_BIT	DIAG[x]_INV	
PA_TX Enable	Extrc_txen	DIAG1	0x28	3	0	P0_1
PA_RX Enable	Extrc_txen	DIAG2	0x28	3	1	P0_2
Wlan_coexist (See Note 13)	Event_in_process	DIAG3	0x03	4	0	P1_3

Heer	Manual
User	Manual

DA14585 Range Extender Reference Application

Note 13 Used for coexistence purposes, optional use for the RF controls

For the power control signals any two available GPIOs can be used. It is suggested though, for the PWM signal to use a GPIO that is not close to the RF output of the DA14585 SoC.

In the current system the GPIOs described in Table 6 are used.

Table 6: GPIO setup of FEM power control signals

Control Signals Name	GPIOs	Operation
CTRL_PWM	P2_1	PWM active
CTRL_PWM_BP	P2_7	Maximum power mode

7.4 Filtering

The low pass filter is placed after the amplifier matching network to suppress the harmonics generated due to the amplifier's nonlinearity. The filter presents low losses in the 2.4 GHz to 2.5 GHz frequency range (max. loss: 0.5 dB). The ripple on the pass band was chosen equal to 0.1dB.

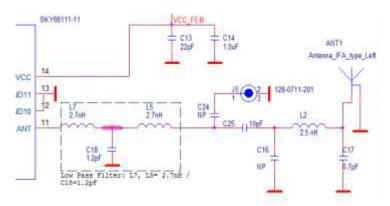


Figure 13: Low Pass Filter (L7&L5=2.7nH, C18=1.2pF)

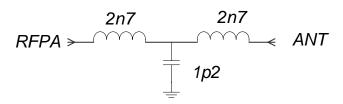


Figure 14: T-shaped, 3-poles, Low Pass Filter

The filter is a T- type Chebyshev 3rd order low pass filter. The filter configuration is presented in Figure 14.

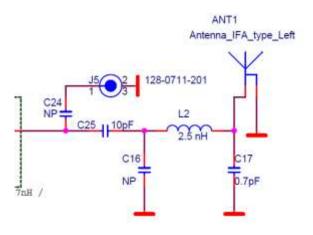
Component value:

2.7nH: LQP15MN2N7B02D / Murata

1.2pF: GJM1555C1H1R2CB01D/ Murata

User	Mar	leux
USCI	IVIAI	iuai

7.5 Antenna


DA14585 SoC provides a single ended RFIO port, matched to 50 Ohm. The RF port consists of RFIOp and RFIOm pins, where RFIOm is connected to ground. A copper trace with impedance of 50 Ohm interconnects the RF port and the RFIN of SKY66111-11.

SKY66111-11 provides one antenna output. At this port a printed Inverted F Antenna (IFA) is used.

Figure 15: Printed Inverted F Antenna geometry

A Pi-network composed of C16, L2 and C17 is available for matching purposes. For the current design the matching components values for optimum power transfer are: C17= 0.7pF and L2=2.5nH.

Figure 16: Matching network for printed antenna

Company Confidential

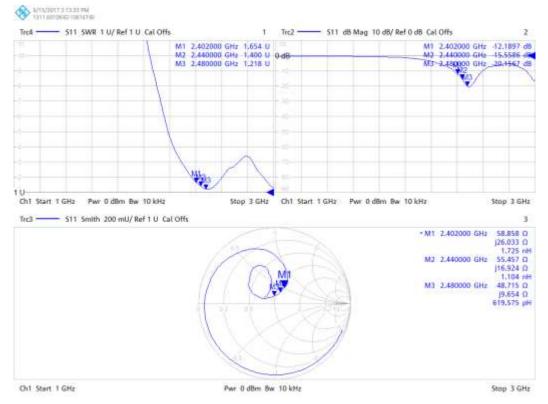


Figure 17: S parameters of Printed IFA and Matching Network

Antenna Gain measurements were performed in an anechoic chamber. The maximum gain was measured at 2.1 dBi.

Table 7: Antenna gain

Parameter	G(dBi)
Maximum gain	2.1

User	Manual
0.001	manaai

Company Confidential

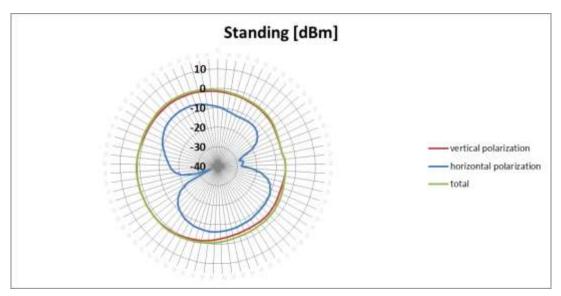


Figure 18: Radiation diagram for the board placed vertically

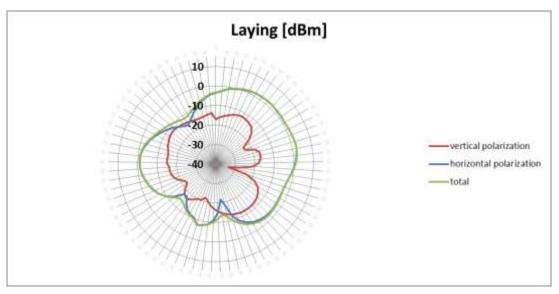


Figure 19: Radiation diagram for the board placed horizontally

7.6 Resistive attenuator (optional)

Between DA14585 SoC and SKY66111-11 a resistive attenuator circuit can be added if needed. Components of C7, C8 and R1 must then be replaced by suitable resistors to achieve the desired attenuation, while matching the 50 impedance. In the present design no extra attenuation was used at the input of the PA.

8 TX Output Power Control Circuit

By modifying the voltage level of VCC pin for a fixed VBIAS level, the TX output power of SKY66111-11 can change as shown in Figure 20 (see Ref. [2]). In the current design VBIAS=1.8V.

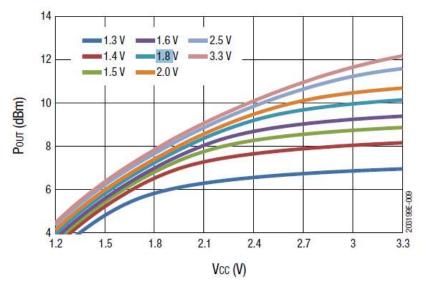


Figure 20: SKY66111-11 POUT VS VCC & VBIAS (PIN=-1dBm)

In order to achieve a configurable TX output power, an external circuit consisting of NPN transistor (Q2) and a p-FET (Q1) is used to control the power supply level of SKY66111-11. A PWM signal, CTRL_PWM, generated by the DA14585 SoC at frequency of 160 kHz, is filtered by R2/C22. The filtered voltage drives Q2 NPN transistor which produces VCC up to 2.2V for the SKY66111-11 based on the PWM duty cycle. The power regulation to be achieved is from 0 to +8 dBm in steps of 2dB.

CTRL_PWM_BP control signal is used to control the operation of Q1 p-FET and configure VCC to maximum level of 3.0V for maximum power operation.

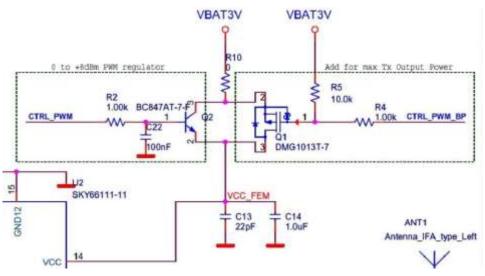


Figure 21: Power regulation circuit

User Manual

DA14585 Range Extender Reference Application

Using the two control signals described above, allows the SKY66111-11 to be operated in two different modes:

ICENESAS

Company Confidential

- Maximum Output Power Mode: +9.3dBm
- Programmable Output Power Mode: 0 to +8dBm

An extra mode, of bypassing the SKY66111-11, is also possible by configuring CTX, CRX signals.

- Bypass Power Mode: where the PA is bypassed
- For more details please see section 7.2.2.

As far as the PWM operation, the TX output power versus duty cycle at normal temperature was measured. The results can be seen in Figure 22.

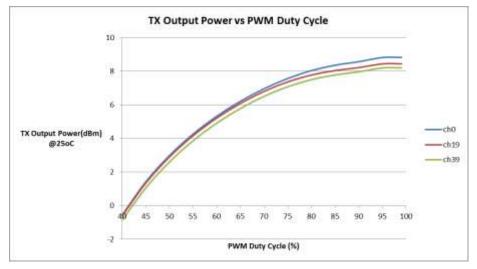


Figure 22: TX Output Power using PWM mode, 3 channels

The duty cycle values used to get power steps of 2dBm from 0 to +8dBm using the PWM can be seen in Table 8. In the same table the typical values of the TX output power for each power level as well as accuracy are also included.

Maximum power and bypass operation mode values can also be seen in the same Table (Table 8).

For more on power distribution tendency over channels please see Section 13.1.2.

Table 8: SKY66111-11 TX Output Power Typical values and Accuracy over PWM Duty Cycle	
(Note 14)	

Power Mode	PWM Operation	Duty Cycle (%)	TYPICAL VALUE (dBm)	Accuracy (dB)
BYPASS	No	-	-1.65	±0.2
ZERO_DBM	Yes	42	-0.02	±0.4
TWO_DBM	Yes	48	2.07	±0.4
FOUR_DBM	Yes	55	3.94	±0.4
SIX_DBM	Yes	65	5.9	±0.3
EIGHT_DBM	Yes	82	7.88	±0.2
MAX_POWER	No	-	8.89	±0.2

```
User Manual
```

Revision 1.2

Company Confidential

Note 14 The typical values listed in the table represent statistic average values across all 40 channels. Bursts of 10 packets, packet length 37 and the pattern were "01010101".

DA14585 Range Extender Reference Application

Company Confidential

The utilized duty cycle is from 40% and above resulting in powers in the range of 0 to +8dBm and VCC voltages in the range of 0.6 to 1.8V.

In Figure 23 the TX output power dependence and VCC voltage level changes over PWM duty cycle can be seen.

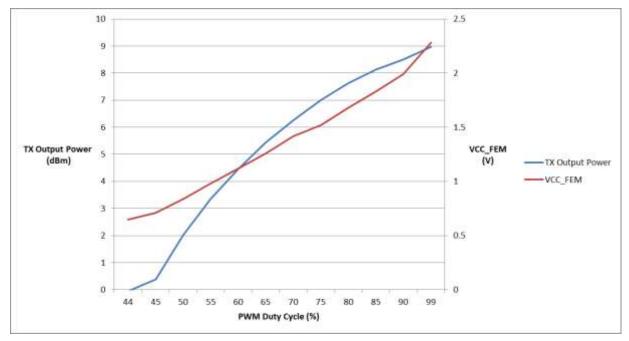


Figure 23: PWM Duty Cycle vs TX Output Power and VCC

In Table 9 the changes in VCC of SKY66111-11 for all power steps can be found.

Power Mode	VCC (Volts)	VBIAS (Volts)
BYPASS	3.0	0
ZERO_DBM	0.6	1.8
TWO_DBM	0.8	1.8
FOUR_DBM	1.0	1.8
SIX_DBM	1.4	1.8
EIGHT_DBM	1.8	1.8
MAX_POWER	3.0	1.8

9 Crystals

DA14585 SoC has two crystal oscillators, one at 16 MHz (XTAL16M) and a second at 32.768 kHz (XTAL32K). The 32.768 kHz oscillator has no trimming capabilities and is used as the clock of the Extended Sleep mode. The 16 MHz oscillator can be trimmed.

For ensuring best operation of the DA14585 Range Extender, the 16MHz XTAL must be trimmed. The frequency is trimmed by two on-chip variable capacitor banks. Both capacitor banks are controlled by the same register.

For trimming the XTAL apply procedure described on AN-B-020: End product testing and programming guidelines (see Ref.[5]).

The crystals used are specified in Table 10 and Table 11.

Table 10: Y1 16 MHz Crystal Characteristics

Reference Designator	Value
Part Number	7M-16.000MEEQ-T
Frequency	16 MHz
Accuracy	±10 ppm
Load Capacitance (CL)	10 pF
Shunt Capacitance (C ₀)	3 pF
Equivalent Series Resistance (ESR)	100 Ω
Drive Level (P _D)	50 μW

Table 11: Y2 32 kHz Crystal Characteristics

Reference Designator	Value
Part Number	9HT11-32.768KDZB-T
Frequency	32.768 kHz
Accuracy	±20 ppm
Load Capacitance (CL)	6 pF
Shunt Capacitance (C ₀)	1.3pF
Equivalent Series Resistance (ESR)	90 kΩ
Drive Level (P _D)	0.5 μW

10 Reference Design Pin Assignment

The pin assignment for the DA14585 Range Extender is shown in Table 12.

Table 12: DA14585 aQFN40 Pin Assignment

GPIO Name	aQFN40 Function	Range Extender Function	Comments
P0_0	GPIO	Not assigned	
P0_1	GPIO	CTRL_TX	FEM CTX control signal
P0_2	GPIO	CTRL_RX	FEM CRX control signal
P0_3	GPIO	Not assigned	
P0_4	GPIO	Not assigned	
P0_5	GPIO	Not assigned	
P0_6	GPIO	Not assigned	
P0_7	GPIO	Not assigned	
P1_0	GPIO	Not assigned	
P1_1	GPIO	Not assigned	
P1_2	GPIO	Not assigned	
P1_3	GPIO	Not assigned	
P2_0	GPIO	Not assigned	
P2_1	GPIO	CTRL_PWM	Programmable Output Power control signal
P2_2	GPIO	Not assigned	
P2_3	GPIO	Not assigned	
P2_4	GPIO	Not assigned	
P2_5	GPIO	Not assigned	
P2_6	GPIO	Not assigned	
P2_7	GPIO	CTRL_PWM_BP	Maximum Power operation control signal
P2_8	GPIO	Not assigned	
P2_9	GPIO	Not assigned	
P3_0	GPIO	Not assigned	
-	SWDIO	SWDIO	
-	SW_CLK	SW_CLK	
-	XTAL16Mp	XTAL16Mp	
-	XTAL16Mm	XTAL16Mm	
-	XTAL32kp	XTAL32kp	
-	XTAL32km	XTAL32km	
-	RST	RST	

User Manual

Revision 1.2

11 Development mode - Peripheral Pin Mapping

On the following table the pins used for development/ testing are described.

SoC Pin #	DA14585 assigned Pins	Function	SoC Pin #	DA14585 assigned Pins	Function
1	P0_0	Available External Use	21	SWITCH	Connection for the external DCDC-converter inductor.
2	P0_1	FEM Tx Enable	22	P1_0	Available External Use
3	P0_2	FEM Rx Enable	23	VBAT1V	
4	P0_3	Available External Use	24	P1_1	Available External Use
5	P3_0	Available External Use	25	SWDIO	SWDIO
6	P0_4	UART TX	26	SW_CLK	SWCLK
7	P0_5	UART RX	27	P1_2	Available External Use
8	P2_1	FEM Power Control Signal - PWM	28	P1_3	Wlan_coexistence (optional)/ Available External Use
9	P0_6	Available External Use	29	XTAL16Mp	
10	P0_7	Available External Use	30	XTAL16Mm	
11	XTAL32Km		31	VDCDC_RF	
12	XTAL32Kp		32	P2_5	Available External Use
13	P2_2	Available External Use	33	P2_6	Available External Use
14	VBATA		34	RFIOm	
15	VBAT3V		35	RFIOp	
16	GND		36	P2_7	FEM Power Control Signal- Max Power
17	RST	RESET	37	P2_8	Available External Use
18	P2_3	Available External Use	38	VDD	
19	VDCDC		39	P2_9	Available External Use
20	P2_4	Available External Use	40	P2_0	Available External Use
*Note	e: For interfacin	g external SPI data Flash. See c (Se	hapter 4.4.3 e <mark>Ref.[3]</mark>)	BootROM Seq	uence of DA14585_datasheet

Table 13: Development/ testing mode pin mapping

User Manual

12 PCB Assembly

A 2-layer FR4 PCB with 1.6mm standard thickness is used. The PCB size is 34x42mm and follows the 58x daughterboard form factor. All available GPIOs are accessible via the card edge connector (PCI-E). Schematic and BOM are presented in the following sections.

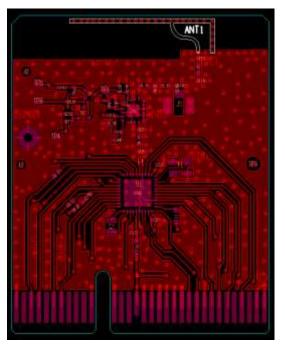
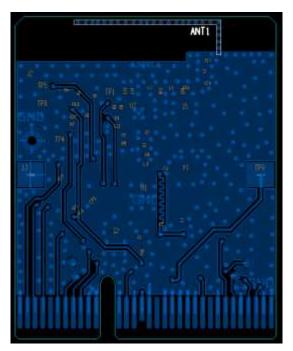
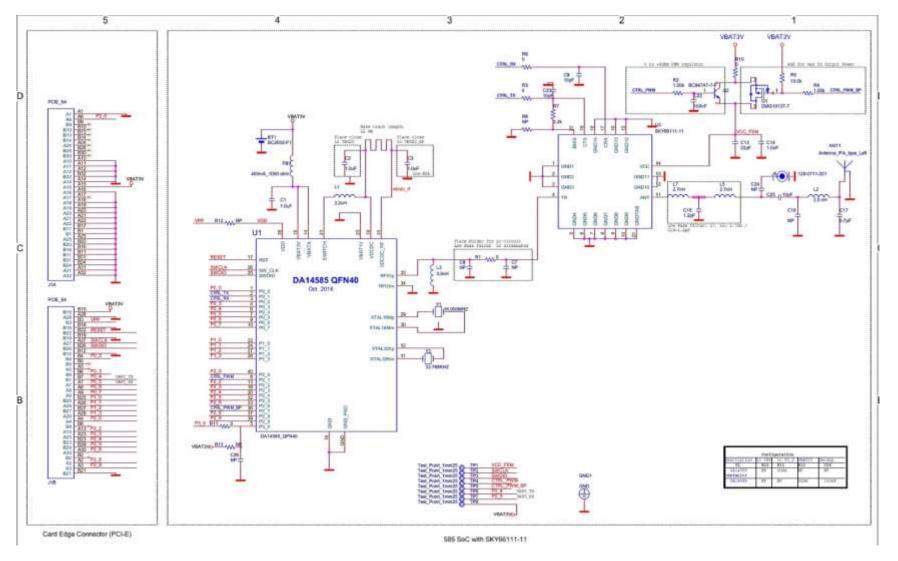


Figure 24: Top view of PCBA




Figure 25: Bottom view of PCBA

Company Confidential

DA14585 Range Extender Reference Application

User Manual

Revision 1.2

19-Jan-2022

Company Confidential

RENESAS

12.2 Bill of Materials

Table 14: Bill of Materials

Ref.	Value	Description	Manuf.	MPN	Footprint
C1 C2 C3 C14	1.0uF	CAP CER 1UF 10V X5R 20% 0402 -RoHS	Murata	GRM155R61A105ME15D	C1005
C9 C23 C25	10pF	CAP CER 10PF 50V 2% NP0 0402	Murata	GRM1555C1H100GA01D	Z1005
C13	22pF	CAP CER 22PF 50V C0G 0402 -RoHS	Murata	GRM1555C1H220JA01J	C1005
C17	0.7pF	CAP CERAMIC 0.7pF 50volts C0G +/-0.1pF 0402 -RoHS	Murata	GJM1555C1HR70BB01D	C1005
C18	1.2pF	CAP CERAMIC 1.2PF 50V C0G 0402 -RoHS	Murata	GJM1555C1H1R2CB01D	C1005
C22	100nF	CAP CER .1UF 16V X7R 0402	Murata	GRM155R71C104KA88D	C1005
R1 R3 R6 R10 R11	0	RES 0.0 OHM 1/16W 0402 - RoHS	Vishay	CRCW04020000Z0ED	R1005
R2 R4	1.00k	RES 1.0 Kohm 1/16W 5% 0402 -RoHS	Vishay	CRCW04021K00JNED	R1005
R5	10.0k	RES 10.0 Kohm 1/16W 1% 0402 -RoHS	Vishay/ Dale	CRCW040210K0FKED	R1005
R7	2.2k	RES 2.2 Kohm 1/16watt 1% 50V 0402 -RoHS	Vishay/ Dale	CRCW04022K20FKED	R1005
L1	2.2uH	INDUCTOR Power 2.2uH, 500mA, 400MHz (0603)	Taiyo Yuden	BRL1608T2R2M	L1608
L2	2.5nH	INDUCTOR RF 2.5nH ±0.05nH 220mA DCr:0.3 ohm (0402)	Murata Electronics	LQP15MN2N5W02D	L1005
L3	3.9nH	CHIP INDUCTOR 3.9nH, 400mA 300 mOhm Max 0201 (0603 Metric)	Murata Electronics	81-LQP03TN3N9C02D	L0603mm
L5 L7	2.7nH	INDUCTOR RF 2.7nH ±0.1nH 220MA DCr:0.30ohm (0402)	Murata Electronics	LQP15MN2N7B02D	L1005_L
FB1	400mA_1000 ohm	EMI FB General Lines 1 Kohm±25% 400mA DCr:0.50 ohm (0603)	Murata Electronics	BLM18AG102SN1D	L1608
Q1	DMG1013T-7	MOSFET P-Channel 20V 0.46A SOT-523	Diodes Inc.	DMG1013T-7	SOT50P16 0X90-3N
Q2	BC847AT-7-F	TRANS NPN 45V 0.1A SOT- 523-3 -RoHS	Diodes Inc.	BC847AT-7-F	SOT523
U1	DA14585_QFN 40	IC BLE RF 4.2 SoC with Audio Interface qfn40 5X5mm	Dialog Semiconduc tor	DA14585-00000AT2	QFN40P50 0X500X90- 41L

DA14585 Range Extender Reference Application

Company Confidential

Ref.	Value	Description	Manuf.	MPN	Footprint
U2	SKY66111-11	IC Low-Power Bluetooth Low Energy Front-End Module, Output: +10 dBm	Skyworks Solutions, Inc.	SKY66111-11	RF_SKY66 111-11
J5	128-0711-201	RF Connectors / UMC RCPT STR 50 OHM SMD	Johnson	128-0711-201	RF_128- 0711-201
Y1	16.000MHZ	CRYSTAL 16.000MHZ 10PF SMT	TXC	7M-16.000MEEQ-T	xtal3200x2 500x70

DA14585 Range Extender Reference Application

Company Confidential

13 BLE Measurements

13.1 Basic Performance Measurements

All measurements reported here use the following parameters:

Operating Conditions:

- T = 25 °C
- VBAT = 3 V

Equipment:

- Signal analyzer: Rohde & Schwarz FSV Spectrum analyzer
- R&S CBT CBT go PC testing software
- Agilent N6705B DC power analyzer Keysight 14585A Control and Analysis Software

Tools:

- SmartSnippets Toolbox v5.0.0.1808
- SmartSnippets Studio v2.0.0.952

Test Procedure:

- Continuous packet transmission mode was used for R&S CBT measurements.
- For current measurements proximity reporter application was used. The current was measured during advertisement, connection and sleep intervals.

Test Configuration:

Tests were performed for all power levels.

Measurements:

- Receiver sensitivity (section 13.1.1)
- Transmitter output power (section 13.1.2)
- Current consumption (section 13.1.3)

DA14585 Range Extender Reference Application

13.1.1 Receiver Sensitivity

13.1.1.1 Test Description

For this test the BLE RX sensitivity of DA14585 Range Extender (321-13-B) was measured.

13.1.1.2 Test Setup

The DA14585 Range Extender was mounted on a PRO-motherboard. The R&S[®] CBT Bluetooth[®] Tester from Rohde & Schwarz was used. An RF cable assembly was connected from J5 RF connector (through an attenuator) to the R&S CBT Bluetooth Tester. In order to evaluate the RF sensitivity, prod test firmware was used. The results from the measurement are reported below.

The RX tests were performed using payload length: 37 bytes.

13.1.1.3 Test Results

The conducted RF sensitivity with dirty transmitter disabled shows that the sensitivity is better than -92 dBm for all channels (except known channels) for maximum payload of 37 bytes (See Note 15).

The conducted RF sensitivity with dirty transmitter enabled shows that the sensitivity is better than -91 dBm for all channels (except known channels) for maximum payload of 37 bytes (See Note 15).

Note 15 Channels 7, 15, 23, 31 and 39 are susceptible to system harmonics and may present degraded sensitivity.

	RX Sensitivity (dBm)			
Power Level (dBm)	Channel 0	Channel 19	Channel 39	
BYPASS	-93.2	-92.8	-92.4	
0	-93	-93	-92.4	
+2	-93	-92.9	-92.4	
+4	-93.10	-93	-92.5	
+6	-93	-92.9	-92.4	
+8	-93.10	-92.9	-92.3	
+9.3	-93	-93	-92.4	

Table 15: RX Sensitivity for all power levels, Dirty Transmitter OFF (Note 16)

Note 16 Packets 1500, Payload: PRBS 9, Length: 37, Dirty Transmitter Off.

Table 16: RX Sensitivity for all power levels, Dirty Transmitter ON (Note 17)

	RX Sensitivity (dBm)			
Power Level (dBm)	Channel 0	Channel 19	Channel 39	
BYPASS	-92.10	-92	-91.3	
0	-92.1	-91.9	-91.2	
+2	-92	-91.9	-91.5	
+4	-92.2	-91.9	-91.4	
+6	-92.2	-92.1	-91.5	
+8	-92.2	-92	-91.5	
+9.3	-92	-91.8	-91.3	

Note 17 Packets 1500, Payload: PRBS 9, Length: 37, Dirty Transmitter On.

lleor	Manual
0361	Manual

100

DA14585 Range Extender Reference Application

	RENES	AS
--	-------	----

Company Confidential

Test Name and Condition	Lower Limit	Upper Limit	Measured Value	P/
RX Level @ Ch: 00, PER: 29.20%, Count: 09			-93.00 dBm	1
RX Level @ Ch: 01, PER: 30.73%, Count: 05			-93.00 dBm	1
RX Level @ Ch: 02, PER: 31.53%, Count: 05			-93.00 dBm	1
X Level @ Ch: 03, PER: 29.33%, Count: 09			-92.90 dBm	1
RX Level @ Ch: 04, PER: 28.87%, Count: 04			-92.80 dBm	1
RX Level @ Ch: 05, PER: 31.20%, Count: 17		1	-93.00 dBm	1
RX Level @ Ch: 06, PER: 31.33%, Count: 09			-92.90 dBm	1
RX Level @ Ch: 07, PER: 32.67%, Count: 15			-92.60 dBm	1
RX Level @ Ch: 08, PER: 31.07%, Count: 12		1	-92.80 dBm	1
RX Level @ Ch: 09, PER: 31.60%, Count: 05	1	1	-93.00 dBm	1
RX Level @ Ch: 10, PER: 31.67%, Count: 04			-92.80 dBm	1
X Level @ Ch: 11, PER: 29.93%, Count: 11			-92.80 dBm	1
RX Level @ Ch: 12, PER: 31.27%, Count: 04			-92.80 dBm	1
RX Level @ Ch: 13, PER: 32.80%, Count: 08	8	1	-93.00 dBm	1
RX Level @ Ch: 14, PER: 31.00%, Count: 09	(j. 1		-92.80 dBm	1
RX Level @ Ch: 15, PER: 32.07%, Count: 09			-89.50 dBm	1
RX Level @ Ch: 16, PER: 32.47%, Count: 08			-93.00 dBm	1
RX Level @ Ch: 17, PER: 30.27%, Count: 09	1		-92.90 dBm	1
XX Level @ Ch: 18, PER: 30.20%, Count: 16	é.	1	-92.80 dBm	1
RX Level @ Ch: 19, PER: 32.20%, Count: 05			-93.00 dBm	1
RX Level @ Ch: 20, PER: 29.87%, Count: 04	2		-92.80 dBm	1
X Level @ Ch: 21, PER: 29.93%, Count: 09			-92.90 dBm	1
RX Level @ Ch: 22, PER: 29.40%, Count: 12	5		-92.70 dBm	1
X Level @ Ch: 23, PER: 29.53%, Count: 11	Ę	1	-92.50 dBm	1
RX Level @ Ch: 24, PER: 32.07%, Count: 06			-92.90 dBm	1
RX Level @ Ch: 25, PER: 31.67%, Count: 09			-92.80 dBm	1
X Level @ Ch: 26, PER: 29.40%, Count: 11			-92.70 dBm	1
X Level @ Ch: 27, PER: 32.47%, Count: 09			-92.80 dBm	1
RX Lovel @ Ch: 28, PER: 30.07%, Count: 17			-92.80 dBm	1
RX Level @ Ch: 29, PER: 29.87%, Count: 12			-92.80 dBm	1
RX Level @ Ch: 30, PER: 29.53%, Count: 08		8	-92.60 dBm	1
RX Level @ Ch: 31, PER: 31.40%, Count: 11			-89.50 dBm	1
RX Level @ Ch: 32, PER: 29.87%, Count: 05	2		-92.60 dBm	1
RX Level @ Ch: 33, PER: 29.93%, Count: 09	1	-	-92.70 dBm	1
RX Level @ Ch: 34, PER: 29.00%, Count: 05			-92.60 dBm	1
RX Level @ Ch: 35, PER: 29.53%, Count: 05			-92.60 dBm	1
RX Level @ Ch: 36, PER: 31.80%, Count: 09		1	-92.70 dBm	1
RX Level @ Ch: 37, PER: 28.87%, Count: 05			-92.60 dBm	1
RX Level @ Ch: 38, PER: 31,80%, Count: 05			-92.60 dBm	1
RX Level @ Ch: 39, PER: 30.80%, Count: 07			-92.40 dBm	1

Figure 26: RX Sensitivity, Dirty Transmitter OFF, Payload: PRBS9, Length: 37, MAX_POWER

User Manual

DA14585 Range Extender Reference Application

Company Confidential

Test Name and Condition	Lower Limit	Upper Limit	Measured Value	P/
RX Level @ Ch: 00, PER: 30,13%, Count: 10		N 33	-92.00 dBm	1
RX Level @ Ch: 01, PER: 29.60%, Count: 12			-92.10 dBm	~
RX Level @ Ch: 02, PER: 30.40%, Count: 06			-92.00 dBm	~
RX Level @ Ch: 03, PER: 31.67%, Count: 06			-92.00 dBm	1
RX Level @ Ch: 04, PER: 31.20%, Count: 07			-92.20 dBm	1
RX Level @ Ch: 05, PER: 28.93%, Count: 11			-92.00 dBm	1
RX Level @ Ch: 06, PER: 29.40%, Count: 08			-91.80 dBm	1
RX Level @ Ch: 07, PER: 31.07%, Count: 07		1 1	-91.50 dBm	1
RX Level @ Ch: 08, PER: 28.87%, Count: 10			-91.80 dBm	1
RX Level @ Ch: 09, PER: 30.33%, Count: 06			-92.00 dBm	1
RX Level @ Ch: 10, PER: 29.53%, Count: 09			-91.70 dBm	1
RX Level @ Ch: 11, PER: 28.80%, Count: 08			-91.60 dBm	1
RX Level @ Ch: 12, PER: 29.73%, Count: 11			-91.90 dBm	1
RX Level @ Ch: 13, PER: 30.60%, Count: 10	-		-91.80 dBm	1
RX Level @ Ch: 14, PER: 29.87%, Count: 09			-91.90 dBm	1
RX Level @ Ch: 15, PER: 32.27%, Count: 10		9 H	-87.40 dBm	1
RX Level @ Ch: 16, PER: 31.20%, Count: 09		-	-92.10 dBm	1
RX Level @ Ch: 17, PER: 30.87%, Count: 11			-92.00 dBm	~
RX Level @ Ch: 18, PER: 30.47%, Count: 10		1	-92.10 dBm	1
RX Level @ Ch: 19, PER: 28.87%, Count: 11			-91.80 dBm	1
RX Level @ Ch: 20, PER: 29.27%, Count: 09			-91.90 dBm	1
RX Level @ Ch: 21, PER: 28.87%, Count: 09		0	-91.90 dBm	1
RX Level @ Ch: 22, PER: 30.80%, Count: 10			-91.80 dBm	1
RX Level @ Ch: 23, PER: 28.87%, Count: 06			-91.40 dBm	1
RX Level @ Ch: 24, PER: 30.80%, Count: 11			-91.80 dBm	1
RX Level @ Ch: 25, PER: 29.20%, Count: 10			-91.90 dBm	~
RX Level @ Ch: 26, PER: 29.13%, Count: 08			-91.80 dBm	1
RX Level @ Ch: 27, PER: 31,53%, Count: 08			-91.80 dBm	1
RX Level @ Ch: 28, PER: 31.13%, Count: 10			-91.80 dBm	1
RX Level @ Ch: 29, PER: 31.60%, Count: 06			-92.00 dBm	1
RX Level @ Ch: 30, PER: 29.27%, Count: 09			-91.60 dBm	1
RX Level @ Ch: 31, PER: 31.80%, Count: 08		1 11	-87.60 dBm	1
RX Level @ Ch: 32, PER: 30.47%, Count: 08			-91.80 dBm	1
RX Level @ Ch: 33, PER: 32.07%, Count: 08			-91.80 dBm	1
RX Level @ Ch: 34, PER: 31.00%. Count: 10			-91.70 dBm	1
RX Level @ Ch: 35, PER: 29.73%, Count: 08		-	-91.60 dBm	1
RX Level @ Ch: 36, PER: 29.20%, Count: 08			-91.60 dBm	1
RX Level @ Ch: 37, PER: 31.20%, Count: 09			-91.60 dBm	1
RX Level @ Ch: 38, PER: 31.87%, Count: 08			-91.60 dBm	1
RX Level @ Ch: 39, PER: 29.80%, Count: 12			-91.30 dBm	1
Avg. Step Count @ 40 tests with totally 356 steps			8.90	1

Figure 27: RX Sensitivity, Dirty Transmitter, Payload: PRBS9, Length: 37, MAX_POWER

User Manual

Revision 1.2

13.1.2 Transmitter Output Power

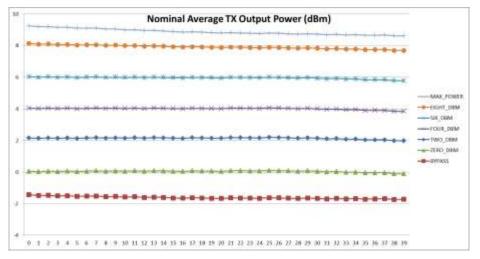
13.1.2.1 Test Description

In this test the Nominal Average TX output power (conducted) of DA14585 Range Extender was measured.

13.1.2.2 Test Setup

The DA14585 Range Extender was mounted on a PRO-motherboard. In order to evaluate the TX output power, $prod_test$ firmware was used. Conducted transmitted output power was measured by using the R&S® CBT Bluetooth® Tester. An RF cable assembly was connected from J5 RF connector (through an attenuator) to the R&S CBT Bluetooth Tester.

- Bursts of 10 packets were transmitted by the DA14585.
- The packet length was 37 and the pattern was "01010101".
- Three channels were recorded: channels 0, 19 and 39.


13.1.2.3 Test Results

Measurements were performed on a number of samples for all power levels.

	Nomina	Accuracy (dBm)		
Power Level (dBm)	Channel 0	Channel 0 Channel 19 Channel 39		
BYPASS	-1.4	-1.65	-1.7	±0.2
0	0.05	0.06	-0.1	±0.2
+2	2.16	2.16 2.15 1.97		±0.2
+4	4	4	3.8	±0.2
+6	6	5.9	5.7	±0.2
+8	8.12	7.88	7.68	±0.2
MAX_POWER	+9.31	+8.91	+8.7	±0.2

Table 17: Nominal Average TX Power (Note 18)

Note 18 Bursts: 10, Payload: PRBS 9, Length: 37.

Figure 28: Nominal Average TX Output Power per channel vs all power levels

DA14585 Range Extender Reference Application

13.1.3 Current Consumption

13.1.3.1 Test Description

In this test the current consumption of DA14585 Range Extender during advertising, connection and sleep was measured for all power levels. The power consumption presented in this chapter is not optimized for the PWM mode. For PWM optimizations please refer to Appendix B.

13.1.3.2 Test Setup

The board used in the test presented optimal RF performance. The integrated printed antenna was used to perform the measurements.

The following instruments were used for the test:

- 3 V, 400 mA power source
- Agilent N6705B DC Power Analyzer
- Thermostreamer

The current profiles were evaluated using proximity reporter demo firmware with embedded PA control. During this test the Advertising, Connection and Extended Sleep modes were evaluated.

A two minutes capture was taken using Agilent Power Analyzer for each power mode.

Results from all power levels are presented in Table 18, Table 19 and Table 20.

13.1.3.3 Test Results

Advertising Mode

For this measurement the DUT was supplied by 3 V. FW was downloaded using JTAG programmer and then it was disconnected from the motherboard.

Table 18: Current consumption during Advertising Mode (Note 19)

Power Level (dBm)	Average charge per active state per interval (uC)	Average current for capture (uA)	Peak current (mA)	Peak power (uW)
BYPASS	12.59	10.86	5.61	0.02
0	21.30	16.70	10.05	0.03
+2	24.53	18.87	10.90	0.03
+4	25.75	19.64	11.86	0.04
+6	24.37	19.20	13.27	0.04
+8	26.03	19.82	14.29	0.04
+9.3	23.23	18.40	15.43	0.05

Note 19 Power supply= 3V, T=25°C, advertising interval=1500ms, adv_pdu=9 bytes, intervals captured=80.

Connection Mode

For this measurement the DUT was supplied by 3 V. FW was downloaded using JTAG programmer and then it was disconnected from the motherboard. Connection with an iPhone 4S was established with 400ms connection interval.

Table 19: Current consumption during Connection Mode (Note 20)

Power Level (dBm)	Average charge per active state per interval (uC)	Average current for capture (uA)	Peak current (mA)	Peak power (uW)
BYPASS	7.81	22.06	5.68	0.02
0	11.26	30.75	10.03	0.03
+2	11.47	31.28	10.80	0.03
+4	11.58	31.53	11.51	0.03
+6	11.32	30.90	12.68	0.04
+8	10.32	28.38	14.19	0.04
+9.3	9.03	25.13	15.34	0.05

Note 20 Power supply= 3C, T=25°C, connection interval=400ms, mtu= 23 bytes, intervals captured=300.

Sleep Mode

For this measurement the DUT was supplied by 3 V. FW was downloaded using JTAG programmer and then it was disconnected from the motherboard. Sleep current was measured between both adverting and connection intervals.

Table 20: Current	consumption during	g Sleep Mode
-------------------	--------------------	--------------

	Average sleep current per interval (uA)Average sleep current padvertisingconnection		I _{PEAK} (uA)
Power Level (dBm)			
BYPASS	2.50	2.54	4.48
0	2.55	2.61	4.39
+2	2.54	2.61	4.39
+4	2.54	2.58	4.48
+6	2.53	2.59	4.28
+8	2.54	2.52	4.27
+9.3	2.52	2.56	4.94

13.2 BLE FCC Measurements

13.2.1 Maximum Output Power and Antenna Gain (Transmitter)

13.2.1.1 Test Specification

For systems using digital modulation in the 2400 MHz to 2483.5 MHz band: 1 W (30 dBm). The EIRP shall not exceed 4 W (36 dBm) (Canada).

13.2.1.2 Test Setup

In order to evaluate the maximum output power, the SDK prod_test was used. The boards under test were set into continuous wave modulation transmit mode, using the following command (see Ref.[4]):

Syntax: prodtest -p <COM PORT NUMBER> start cont tx <FREQUENCY> <PAYLOAD TYPE>

An RF cable was connected from J5 RF connector to the spectrum analyzer. Three channels were tested: channels CH00=2402 MHz, CH19=2440 MHz and CH39=2480 MHz.

13.2.1.3 Test Results

The maximum peak conducted power was measured using the method according to point 9.1.1 of Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) operating under 15.247.

Maximum output power: see next plots.

Maximum declared antenna gain: 2.1 dBi.

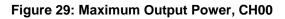
Table 21: Maximum (Peak) Output Power (dBm), RBIAS = 2.2k, CH00, CH19, CH39

Parameter (dBm)	CH00 – 2402 MHz	CH19 – 2440 MHz	CH39 – 2480 MHz	Accuracy (dBm)
Maximum conducted power	+9.37	+8.89	+8.62	±0.2
Maximum EIRP power	+11.47	+10.99	+10.72	±0.2

Company Confidential

T Spectrum Ref Level 16.00 dBm Offset 11.50 dB 👄 RBW 2 MHz Att 15 dB 👄 SWT 250 ms 👄 VBW 10 MHz Mode Auto Sweep ●1Pk Max M1[1] 9.37 dBr м1 2.402109130 GH 10 dBm 0 dBm -18 dBm -20 dBm -30 dBm -40 dBm· -50 dBm--60 dBm -70 dBm -80 dBm CF 2.402 GHz 8000 pts Span 6.0 MHz 3.11.2017 15:17:10 Measuring...

Date: 13.NOV.2017 15:17:11



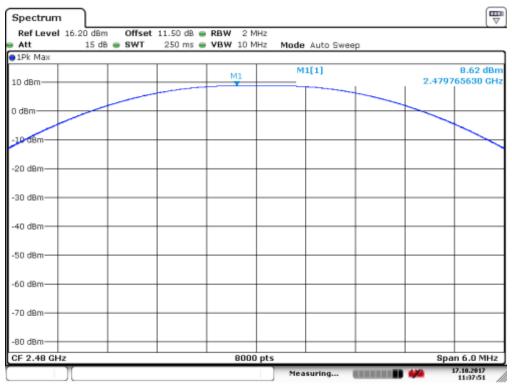


Figure 30: Maximum Output Power, CH19

DA14585 Range Extender Reference Application

Company Confidential

Date: 17.OCT.2017 11:37:51

Figure 31: Maximum Output Power, CH39

User Manual

DA14585 Range Extender Reference Application

13.2.2 Emissions Limitations Conducted (Transmitter)

13.2.2.1 Test Specification

In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in 100 kHz bandwidth within the band that contains the highest level of the desired power. If the transmitter complies with the conducted power limits based on the RMS averaging over a time interval, the attenuation required shall be 30 dB instead of 20 dB.

13.2.2.2 Test Setup

In order to evaluate the harmonic level production, the SDK prod_test was used. The boards under test were set into continuous wave modulation transmit mode, using the following command (see Ref.[4]):

Syntax: prodtest -p <COM PORT NUMBER> start cont tx <FREQUENCY> <PAYLOAD TYPE>

An RF cable was connected from J5 RF connector to the spectrum analyzer. Three channels were tested: channels CH00=2402 MHz, CH19=2440 MHz and CH39=2480 MHz.

13.2.2.3 Test Results

Table 22: Measured Reference Level

Parameter (dBm)	CH00 – 2402 MHz	CH19 – 2440 MHz	CH39 – 2480 MHz
Reference Level	8.32	7.86	7.62
Limit (20 dB below peak)	-11.68	-12.14	-12.38

Table 23: Conducted TX Harmonics at CH00, CH19, CH39

Parameter (dBm)	CH00 – 2402 MHz	CH19 – 2440 MHz	CH39 – 2480 MHz
2nd harmonic power	-58.03	-49.63	-59.03
3rd harmonic power	-65.67	-54.93	-64.61
4th harmonic power	-	-	-64.74
5th harmonic power	-	-56.25	-64.38

Lowest frequency: 2402 MHz

All peaks are more than 20 dB below the limit.

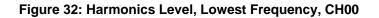
Middle frequency: 2440 MHz

All peaks are more than 20 dB below the limit.

Highest frequency: 2480 MHz

All peaks are more than 20 dB below the limit.

User	Manual	
0301	manaan	



DA14585 Range Extender Reference Application

Company Confidential

Spect	rum									Ē
Ref L	evel	16.20 dBr 15 d	n Offset B 🖷 SWT		 RBW 100 k VBW 300 k 		e Auto S	Sweep		
●1Pk M	ax									
10 dBm	+	MI					13[1]			-65.67 dBm 7.2060 GHz 8.32 dBm
0 d8m-			-				1	9	-Ϋ́	2.3970 GHz
-10 d8n	a		-	-	-		-			
-20 dBn	n	_			-		-	-		-
-30 dBn	n				-		-	-	-	
-40 dBr	n							-	-	-
-50 dBn	n	_		-M2						_
-6P dBo	na fre	mund	- Anther and I age a	- Contraction 🖓 🐨	remain march and		-			
-70 dBn	n		-			the state of the s		and a state of the	white	a state of the second
-80 dBn	n				-		-	-	-	-
Start 3	0.0 M	Hz			1000	pts			S	top 13.0 GHz
Marker	ý.				50	· · · · · · · · · · · · · · · · · · ·				20 20
Type	Ref	Trc	X-valu	and the second se	Y-value		tion	Ft	inction Res	ult
M1	1 1	1		97 GHz	8,32 dBn					
M2 M3		1		04 GHz	-58.04 dBn -65.67 dBn					
		11				Me	asuring			17,10,2617

Date: 17.OCT.2017 11:48:34

Company Confidential

Spectrum Ref Level 16.20 dBm Offset 11.50 d8 - RBW 100 kHz 250 ms 🖶 VBW 300 kHz Att 15 dB 👄 SWT Mode Auto Sweep 1Pk Max M5[1] -64.38 dBn 24 10 dBm 12.4000 GH: M1[1] 7.86 dBn 0 dBm 2.4800 GH -10 dBm -20 dBm -30 dBm 40 d8m -50 dBm M2 -60 d9h T. . annied. hamen -70 dBm -80 dBm CF 6.515 GHz 1000 pts Span 12.97 GHz Marker Type | Ref | Trc | X-value Y-value Function **Function Result** 2.48 GHz M1 7.86 dBm 4.96 GHz -59.03 dBm M2 1 M3 7.44 GHz 64.61 dBm M4 9.92 GHz -64.74 dBm MAG 12.4 GHz -64.38 dBm 17.10.2017 Measuring... Exclusion # 444 13:55:56

Date: 17.OCT 2017 13:55:56

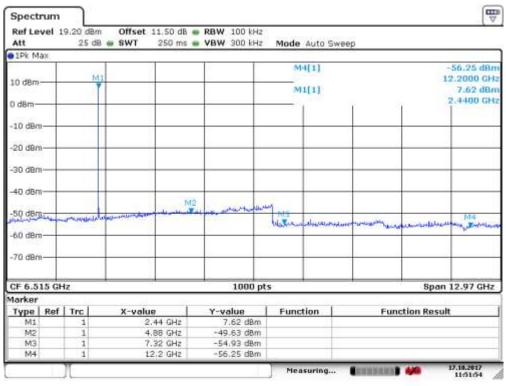


Figure 33: Harmonics Level, Lowest Frequency, CH19

Date: 17.OCT.2017 11:51:54

Figure 34: Harmonics Level, Lowest Frequency, CH39

lleor	Manual
0301	manual

Company Confidential

Verdict: All measurements comply with the limits specified in FCC 15.247, Subclause (d).

DA14585 Range Extender Reference Application

13.2.3 Band Edge Compliance Radiated (Transmitter)

13.2.3.1 Test Specification

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

Limits: 54 dBµV/m AVG

74 dBµV/m Peak

13.2.3.2 Test Setup

Measurement of the radiated band edge compliance. The DA14585 Range Extender is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The DA14585 Range Extender is set to single channel mode and the transmit frequency CH00=2402 MHz for the lower restricted band and CH39=2480 MHz for the upper restricted band. Measurement distance is 3m.

In order to evaluate the emissions in the restricted bands for the upper and lower channel, the SDK prod_test was used. The boards under test were set into continuous wave modulation transmit mode, using the following command (see Ref.[4]):

Syntax: prodtest -p <COM PORT NUMBER> start cont tx <FREQUENCY> <PAYLOAD TYPE>

13.2.3.3 Test Results

Table 24: Band edge compliance radiated

Scenario	Band edge compliance radiated	
Modulation	GFSK	
Lower restricted band	51.2 dBµV/m (Peak) 39.6 dBµV/m (AVG)	
Upper restricted band	60.9 dBμV/m (Peak) 49.3 dBμV/m (AVG)	

- 0

Company Confidential

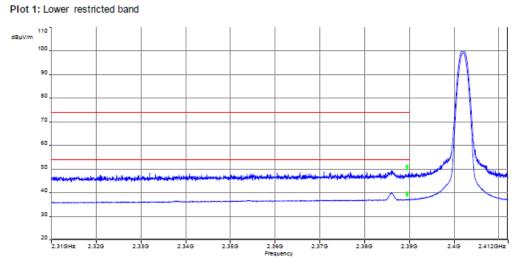


Figure 35: Radiated Emissions in Lower Restricted Band, CH00

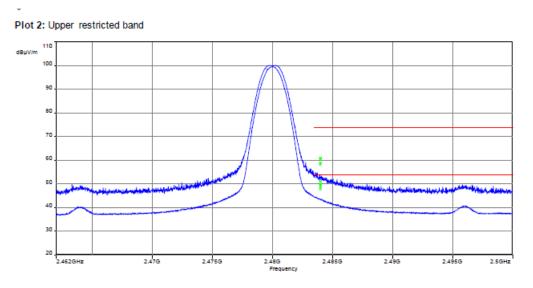


Figure 36: Radiated Emissions in Upper Restricted Band, CH39

13.2.4 Band Edge Compliance Conducted (Transmitter)

13.2.4.1 Test Specification

Measurement of the radiated band edge compliance with a conducted test setup. Limit: -41.26 dBm

13.2.4.2 Test Setup

In order to evaluate the band edge emission levels for the upper and lower channels, the SDK prod_test was used. The boards under test were set into continuous wave modulation transmit mode, using the following command (see Ref.[4]):

Syntax: prodtest -p <COM PORT NUMBER> start cont tx <FREQUENCY> <PAYLOAD TYPE>

An RF cable was connected from J5 RF connector to the spectrum analyzer. The DA14585 Range Extender is set to single channel mode and the transmit frequency CH00=2402 MHz for the lower restricted band and CH39=2480 MHz for the upper restricted band.

13.2.4.3 Test Results

Table 25: Band edge compliance conducted

Scenario	Band edge compliance [dBm] (excluded antenna gain)	
Modulation	GFSK	
Max. lower band edge power	-52.1	
Max. upper band edge power	-42.8	

DA14585 Range Extender Reference Application

Company Confidential

Att 10 dB	SWT 32.1 ms .	VBW 300 kHz	Mode Sweep		
-10 dBm-			M1[1]		-61.84 d8n 2.3895000008 GH
-20 dBm		_			
-30 dem					
40 dBm					
50 dBm-					
eg dem	punder and guarder	and states and	Martin Station	12 rd	the dwe de proversion
-70 dBm					
-80 d8m				+ +	
-90 dBm					
-100 dBm		32001	ots		Stop 2.39 GHz
Start 2.388 GHz	N. (*1	32001	pts		Stop 2.39 GHz

Date: 15 NOV 2017 17:46:46

Ref Level ~2.00 dBm Att 10 dB	Offset 8.00 dB e SWT 32.1 ms e		Mode Sweep	
1Pk Max				
-10 dBm-			MILIJ	-51.12 dBn 2.4840000000 GH
-20 dBm				
-30 d8m				
-40 dBm-				
Coloris de Louis de Louis	MI CARDON PLANET	the state of the local	the same in the state of the	Minister and a state and
-60 d8m				
-70 dBm				
-80 d8m				
-90 d8m				
-100 dBm		32001 pt	ts.	Stop 2.4855 GHz
Marker				
Type Ref Trc	X-value 2.464 GHz	-51.12 dBm	Function Band Power	Function Result -42.81 dBm

Date: 15 NOV 2017 17:49:04

Figure 38: Conducted Emissions in Upper Band Edge, CH39

Verdict: All measurements comply with the limits specified in FCC 15.247, Subclause (d).

Lloor	Manual
USEI	Manual

13.2.5 Spurious Emissions Radiated above 1GHz

13.2.5.1 Test Specification

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

Table 26: TX spurious emissions radiated limits

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance(m)
Above 960	54.0 (Average)	3
Above 960	74.0 (Peak)	3

13.2.5.2 Test Setup

Measurement of the radiated spurious emissions in transmit mode. The DA14585 Range Extender is set to single channel mode and the transmit frequencies is CH00=2402 MHz. The measurement is performed in the mode with the highest output power. The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

13.2.5.3 Test Results

Table 27: TX spurious emissions radiated

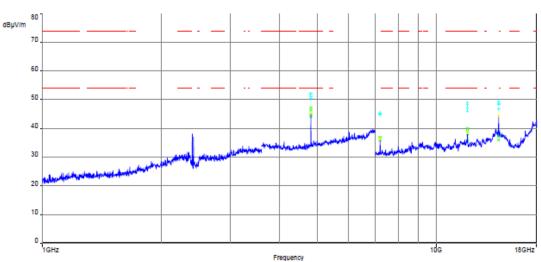

Frequency (MHz)	TX spurious emissions radiated		
CH00	Detector	Level(dBµV/m)	
4804	Peak	52.3	
	AVG	47.2	
7206	Peak	45.4	
	AVG	36.8	
12012	Peak	48.9	
	AVG	39.9	
14414	Peak	49.4	
	AVG	38.9	

Table 28: RX spurious emissions radiated

RX spurious emissions radiated [dBµV/m]			
F [MHz]	Detector	Level [dBµV/m]	
4806	Peak	52.4	
4000	AVG	47.3	

Plots: Transmitter mode

Plot 1: 1 GHz to 18 GHz, TX mode, 2402 MHz, vertical & horizontal polarization

Plot 2: 1 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

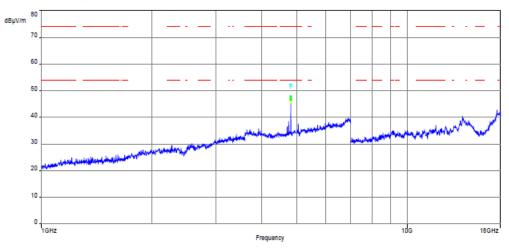


Figure 40: RX spurious emissions radiated, CH00

14 PCB Design Guidelines

14.1 Antenna Selection

The use of the printed antenna described in this reference design (see Figure 41) is optional. A number of other printed antennas with different characteristics are also available at AN-B-027 (see Ref.[6]). It is recommended to make an exact copy of the one of the reference designs, if the available board space permits such a solution. All recommended antenna designs are matched to 50 Ohms.

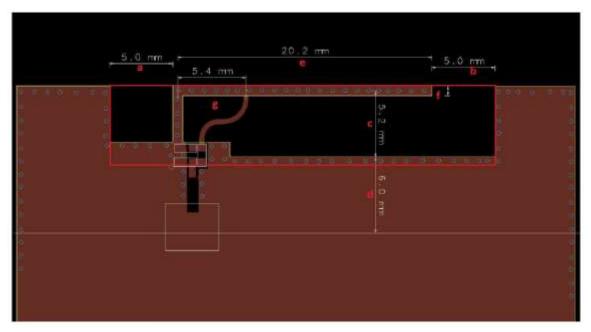


Figure 41: Full size IFA used in DA14585 Range Extender with dimensions

The red outline indicates the antenna footprint, i.e. required allocation of PCB space. The footprint of the antenna is available on request in DXF format.

Legend (see Figure 41):

- Clearance between antenna arm and GND plane left a.
- Clearance between antenna arm and GND plane right b.
 - For narrow PCBs (a) and (b) will coincide with board edges
 - The two GND pieces left and right of the antenna are NOT required for correct antenna operation
- Clearance between antenna arm and GND plane below c.
- Minimum GND plane size required for correct operation of the antenna d.
- Antenna width e.
 - The antenna is implemented on top and bottom layers and stitched together using vias
 - The feeding line (from indicated matching components) is implemented on top layer only
- Antenna trace width (0.6 mm) f.
- Feed point position g.

If the available board space is limited for the printed antenna a chip or ceramic antenna could be a good solution. This antenna type allows small size solutions at the desired frequencies. The tradeoff compared to printed antenna is that it adds BOM and mounting cost.

User Manual

Revision 1.2

Company Confidential

Also, chip antennas with no tuning often have a resonance frequency above 2.5GHz and the return loss at 2.45GHz is very poor. Therefore the antenna must be always fine-tuned for optimum performance. Finally efficiency is not exceptionally high, typically in the range of 10-50%. The reduced size comes with cost at both performance and pricing. Some parameters that suffer are:

- Reduced efficiency (or gain)
- Shorter range
- Smaller useful bandwidth
- More critical tuning

In case that some other antenna is selected it is suggested to check the peak antenna gain in comparison to the selected operation power level in terms of regulatory compliance (FCC/ETSI standards).

Antenna Types	Pros	Cons
Printed antenna	Very low cost	Require bigger available pcb area
	Good performance	Antenna performance and tuning
	Large bandwidth	sensitive to PCB design
	Simple low profile structure	Tuning susceptible to metal
	Suitable for size- optimized pcb in stable environment	structures or human contact
	Accurate and reliable manufacturing process	
Chip/ ceramic antenna	Separate component	Higher cost
	Come to small sizes	Medium performance
	Less detuned due to proximity to components	Matching function of PCB size and shape of GND
	Less susceptible to environmental or human contact	

Table 29: Antenna types comparison

14.2 RF layout design

Guidelines to consider for the general RF layout work are the following (for more details see Ref.[6]):

14.2.1 Radio IC

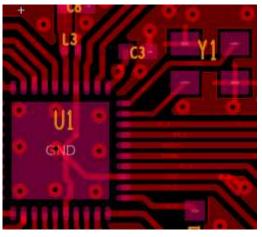


Figure 42: DA14585 Range Extender board layout snapshot

• Active components operating at high frequency should have the layout as compact as possible.

• Always provide a solid grounding to the radio IC. Use as many vias as possible to create a solid GND under the IC itself and connect it to inner (if any) and bottom GND layers.

• Place the XTAL used as reference for the RF carrier (16 MHz for the DA14585) as close as possible to the IC. This minimizes any additional capacitive load on the input pins and reduces the chance of crosstalk and interference with other signals on the board.

Company Confidential

14.2.2 RF transmission lines

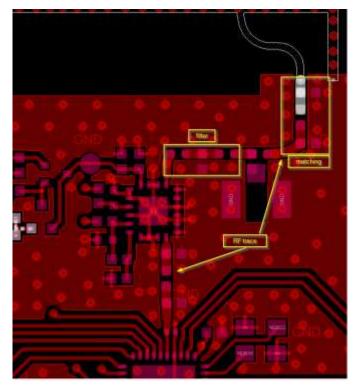


Figure 43: Placement of filter and matching network

- Place radio matching components and any RF filters as close as possible to the radio.
- Minimize transmission line length between radio IC and antenna
- Place antenna matching components as close as possible to the feeding point of the antenna
- The characteristic impedance of the transmission line should match the required radio impedance (50 Ohms for the DA14585)

14.2.3 RX Spurious Emissions

RX spurious emissions come from the RF device when it is in receive mode. This is a common effect in radios and the maximum level on these emitted frequencies is set in regulatory standards. The level of these spurious emissions depends on the actual output from the device, but layout design factors can contribute significantly.

General advices in order to keep the spurious in the limits for an end product are the following:

Decoupling capacitors

Proper decoupling is important for optimum performance and regulatory issues.

- Place decoupling capacitors on same layer as active component and in proximity to the pin it is supposed to decouple
- Route power into the decoupling capacitor and then into the active component
- All decoupling capacitors should have vias placed close to the capacitor ground pad to ensure a short path to the ground plane.

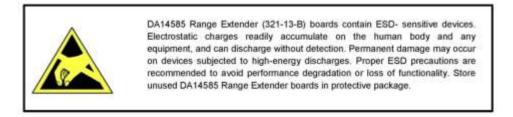
PCB layout

•

- Connect the ground plane on the different layer with several vias.
- The lowest impedance return path is in a plane directly underneath the signal trace since this provides the lowest inductance path. A spurious emission problem could occur when there are

discontinuities in the current return path. These discontinuities cause the return current to flow in larger loops, which increases the radiation from the board.

- Local decoupling is less hindered by parasitic impedance of board trace and shorter traces create a smaller antenna to radiate the unwanted tones. Avoid long traces.
- For complex designs it is proposed to provide solid ground planes using internal layers.



15 Safety Information

The DA14585 Range Extender Bluetooth® Low Energy (BLE) daughterboard is intended for use as a development platform for hardware or software in a laboratory environment. The board is an open system design, which does not include a shielded enclosure. The equipment is intended to operate in the operating supply voltages and temperatures specified in this guide.

The DA14585 Range Extender consists of a PCB which comply V-0 flammability class and the power supply used shall comply with clause 2.5 of EN 60950-1 standard.

The equipment has not the necessary enclosure to protect the operator against the electrical shocks, fire enclosure, and mechanical risks. Dialog Semiconductor recommends that "additional equipment must be supplied to provide the necessary protection according to the EN 60950-1 Standard".



Figure 44: Safety Information of DA14585 Range Extender

General Safety Instructions

ESD Protection

ESD can damage boards and associated components. Dialog Semiconductor recommends that the user perform procedures only at an ESD workstation. If an ESD workstation is not available, use appropriate ESD protection by wearing an antistatic wrist strap attached to the chassis ground (any unpainted metal surface) on the board when handling parts.

Handling Boards

DA14585 Range Extender boards are sensitive to ESD. Hold the board only by its edges. Place it on a grounded, static-free surface. Use a conductive foam pad if available. Do not slide the board over any surface.

Battery Care and Use

The boards don't contain any battery. However, there is a place for mounting battery holder for adding CR2032 battery. Dialog Semiconductor recommends:

- The use of correct size and type of battery specified in the user manual. Any bad use of battery is under user responsibility.
- Follow user manual guide to properly power up the board when mounted on DA14580 PROmotherboard.
- Keep battery contacts surfaces clean.
- Do not short the battery with metal surfaces.
- Do not subject the battery to high temperatures or high humidity.
- Do not recharge battery unless it is marked "rechargeable".

19-Jan-2022

Appendix A Application Software Guide

The following instructions are based on DA14585_SDK_6.0.10. Instructions are valid for Keil 5 projects. Screenshots shown are in Keil 5.

The software driver consists of the necessary functions that need to be used from the range_ext_api.h in order to enable the operation of the SKY66111-11 to an SDK project.

In general, the necessary steps for using 585 SKY66111-11 driver are:

- Inserting the driver to a project
- Set the desired power level for the operation

A.1 Driver Implementation

The driver includes two files:

- sky66111.h
- sky66111.c

SKY66111.h contains the necessary definitions. SKY66111.c file contains the implementation of the basic functions for SKY66111 operation.

A.1.1 SKY66111.h

1. Control pins configuration

```
/* Control pins
26
   /*********
             27
28
28
29 #define CTRL_PWM_PORT
30 #define CTRL_PWM_PIN
31 #define CTRL_PMAX_PORT
32 #define CTRL_FMAX_PIN
32 #define CTRL_FMAX_PIN
                         GPIO_PORT_2
GPIO_PIN_1
                         GPIO_PORT_2
GPIO_PIN_7
33 #define CTX_PORT
                         GPIO_FORT_0
34 #define CTX_PIN
35 #define CRX_PORT
                         GPIO_PIN_I
GPIO_PORT_0
36 #define CRX PIN
                         GPIO PIN 2
```

Figure 45: Control pins configuration in SKY66111.h

2. Power modes definition

38		******/
39	/* Controls FEN output power	*/
40	/* FEM BYPASS : FEM is bypassed, andBm output	*/
41	/* FEM MAXP : FEM at max power output 9.3dBm	*/
42	/* FEM FWM : FEM voltage is controlled by PWM, output power variable according to the following table	*/
43	· · ·	*/
44	/* DUTPUT POWER DUTY CYCLE	+/
45	/* 0 d8n 429	*/
46	/* 2 dbs 1 46%	*/
47	/* 4 dbs 55%	*/
48	/* 6 dBm / 65%	*/
49	/* # dim 1 62%	
42 43 44 45 46 47 48 49 50 51	[/	******/
52	FEN_BYFASS : FTM is bypassed, axdBm cutput	
53	FEM_MAXF I FEM at max power output 9.3dBm	
54	FEM VMM : FEM voltage is controlled by PMM, output power variable according to the following table */	enun range ext modes
56	enum range ext modes	
57		
52 53 54 55 56 57 58 59 60 61	FEM_BYEASS_MODE = 0. FEM_MAXP_MODE. FEM_FMM_MODE	
61	11	

Figure 46: Power modes definition in SKY66111.h

```
User Manual
```


DA14585 Range Extender Reference Application

Company Confidential

3. PWM Duty Cycle Preset Values

65 66 67	0 dBm 2 dBm		42%		
66 67					
			48%		
60	4 dBm		55%		
68	6 dBm		65%		
69	8 dBm		82%		
70					
71	9,3 1	(No	dutycle) MAX_POW	ER	
72	BYPASS		BYPASS		
73	*/				
74	enum duty cycle prese	ts			
75 5					
76	ZERO DBM = 0,				
77	TWO DBM = 2,				
78	FOUR DBM = 4,				
79	SIX_DBM = 6,				
79 80 81	EIGHT_DBM = 8,				
81	MAX POWER,				
82	BYPASS				
83	1;				
84					
85	#define ZERO DBM DC	42			
86	#define TWO DBM DC	48			
87	#define FOUR_DBM_DC	55			
88	#define SIX DBM DC	65			
89	#define EIGHT_DBM_DC	82			
90					
91	#define T PWM DEFAULT	80	100	//PWM period T PWM/16MHz -> set at 6.25us (160kHz)

Figure 47: Definition of PWM duty cycle preset values in SKY66111.h

A.1.2 SKY66111.c

4. Global variables declaration for the api.

28	3/*		
29	. GLOBAL VARIABLE DECLARATIONS		
30	********************************	***************************************	
31	*/		
32			
33	struct range_ext_api range_ext	attribute((section("retention_mem_area0"),	<pre>zero_init)};</pre>
34	uint8 t range ext mode	attribute ((section("retention mem area0"),	sero init));
35	uint16_t range_ext_power	attribute ((section("retention mem_areaD"),	zero_init));
36			영상 주요가 있었다.

Figure 48: Global variables declaration in SKY66111.c for the range_ext_api.h

Company Confidential

5. Configure GPIOs for SKY66111 operation

```
48 static void configure_control_pins(void)
49 🚍 {
        /* Select diag signals */
50
51
        SetBits32(BLE DIAGCNTL REG, DIAG1, 0x28);
                                                                   // extrc_txen
        SetBits32(BLE DIAGCNTL REG, DIAG2, 0x28);
                                                                   // rxen=extrc txen inv
52
        //SetBits32(BLE_DIAGCNTL_REG, DIAG3, 0x22);
                                                                   // event_in_process
53
54
55
56
        /* Map to diag port bits */
        SetBits32(BLE_DIAGCNTL3_REG, DIAG1_BIT, 3);
                                                                   // extrc_txen
// rxen=extrc_txen_inv
57
        SetBits32(BLE_DIAGCNTL3_REG, DIAG2_BIT, 3);
58
59
        SetBits32(BLE_DIAGCNTL3_REG, DIAG2_INV, 1);
                                                                   // rxen=extrc txen inv
        //SetBits32(BLE_DIAGCNTL3_REG, DIAG3_BIT, 0);
                                                                   // event_in_process
60
61
62
63
        /* Enable diag ports */
        SetBits32(BLE_DIAGCNTL_REG, DIAG1_EN, 1);
SetBits32(BLE_DIAGCNTL_REG, DIAG2_EN, 1);
64
65
        //SetBits32(BLE DIAGCNTL REG, DIAG3 EN, 1);
66
67
68
        /* Output diag signals to PO GPIOs */
69
70
        SetBits16(P01_MODE_REG, PID , 18);
71
        SetBits16(PO1 MODE REG, PUPD, 3);
                                                                    //TXEN = P0 1
72
        SetBits16(P02 MODE REG, PID , 18);
73
74
        SetBits16(P02_MODE_REG, PUPD, 3);
                                                                    //RXEN = P0 2
75
        //SetBits16(Pl0_MODE_REG, PID , 18);
76
77
        //SetBits16(Pl0 MODE REG, PUPD, 3);
                                                                    //wlan coexistence = P1 0
78 }
```

Figure 49: Configure GPIOs for SKY66111 operation

6. Configure PWM timer0 for SKY66111

```
79
80
   * @brief Configure PWM timer for SKY66111.
   * @param[in] duty_cycle Duty cycle
81
   · @param[in] period
82
                        Period
   * Greturn void
83
   84
85 - */
86 static void timer0_conf_start(uint8_t duty_cycle, uint8_t period)
87 🖽 [
88
      set_tmr_enable(CLK_PER_REG_TMR_ENABLED);
89
      set tmr div(CLK PER REG TMR DIV 1);
      timer0 init(TIMO CLK FAST, PWM MODE ONE, TIMO CLK NO DIV);
90
      timer0_set_pwm_on_counter(0xFFFF);
timer0_set_pwm_high_counter(period*duty_cycle/100);
91
92
93
      timer0_set_pwm_low_counter(period*(period-duty_cycle)/100);
94
      timer0_start();
95
   3
96
```

Figure 50: Function timer0_conf_start();

Company Confidential

7. Reserve GPIO pins for the SKY66111

```
98
     99
     * @brief Reserve GPIO pins for FEM.
     * %param(in) cb
100
                             Callback function called when action is completed
     · greturn void
101
     102
103 - */
104 static void declare_fem_gpios(range_ext_callback cb)
105 =1
        RESERVE_GPIO(CTRL_PWM, CTRL_PWM_PORT, CTRL_FWM_PIN, PID_PWM0);
RESERVE_GPIO(CTRL_PMM BP, CTRL_PMAX_PORT, CTRL_PMAX_PIN, PID_GPIO);
RESERVE_GPIO(CTX, CTX_PORT, CTX_PIN, PID_GPIO);
RESERVE_GPIO(CRX, CRX_PORT, CRX_PIN, FID_GPIO);
                                                                                    // CTRL_PWM = P2_1
// CTRL_PWM_BP = P2_7
// SKY66111 bypass operation
// SKY66111 bypass operation
106
107
801
109
110 }
```

Figure 51: Function declare_fem_gpios();

DA14585 Range Extender Reference Application

Company Confidential

8. Configure FEM and control signals for the specified power levels

```
· Whrief Configures FEM and control signals according to global variable: range_est_power
116
             * #param[in] void
* Bretain void
117
 119
 120
 121
           static void app_range_extender_reinit(void)
 122 -1
 123 |
126 ||
                    switch (range_ext_power)
 125
                           case ZERO DBMI
 126
                                   GPIO_ConfigurePin(CTRL_FWN PORT, CTRL_FWN PIN, OUTFUT, PID_FWN0, true); //FWN pin sotive
GPIO_ConfigurePin(CTRL_FWAX_PORT, CTRL_FWAX_PIN, OUTFUT, FID_GPIO, true); //Max power mode inactive
 128
                                    timer0_conf_start(2EBO_DBH_DC,T_FWH_DEFAULT);
configure_control_pins();
 129
 130
 151
 132
                                    zange_ext_mode = FEM_FWH_MODE;
 134
135
136
                                    breek/
                         CANE TWO DDN:

GPIO ConfigurePin(CTRL_PWM_PORT, CTRL_PWM_PIN, OUTPUT, PID_PWMO, true); //PWM pin solive

GPIO_ConfigurePin(CTRL_PMAX_PORT, CTRL_PMAX_PIN, OUTPUT, PID_GPIO, true); //Naw power mode insolive
 137
139
                                    timer0_conf_start(TWD_DBM_DC,T_FWM_DEFAULT);
 140
                                    configure_control_pins();
                                    range_ext_mode = FEN_FWH_HODE;
bteak;
 142
 143
144
145
                       break;
case POUR_DEM:
GPIO_ConfigurePin(CTRL_FWM_FORI, CTRL_FWM_FIN, OUTFUT, FID_FWMO, true); //FWM pin active
GPIO_ConfigurePin(CTRL_FMAX_FORI, CTRL_FMAX_FIN, OUTFUT, FID_GPIO, true); //Haw power mode innotive
 146
 148
 149
                                    configure_control_pins();
                                   range_ext_mode = FEH_FWH_MODE:
 151
 152
159
                                   break;
                         case SIX DEN:
154
155
156
157
158
159
                                GPIO_ConfigurePin(CTRL_FWH_PORT, CTRL_FWH_FIN, OUTFUT, PID_FWH0, true); //FWH pin seture
GPIO_ConfigurePin(CTRL_FWHX_PORT, CTRL_FWAX_FIN, OUTFUT, PID_GPIO, true); //Max_power_mode insotive
                                 timer0_conf_start(SIN_DSM_DC,T_FWH_DEFAULT);
                                 configure_control_pins();
160
161
162
163
164
165
166
166
166
168
169
                                range_ext_mode = FEH_PWH_NODE)
                         Dreak:
case EIGHT_DHM:
                                GPIO_ConfigureFin(CTRL_FWM_PORT, CTRL_FWM_FIN, GUTFUT, FID_FWM0, true); //FWM pin active
GPIO_ConfigureFin(CTRL_FMAX_FORT, CTRL_FMAX_FIN, GUTFUT, FTD_GPI0, true); //Haw power made inactive
                                 timer0_conf_start(EIGST_DBH_DC,T_FWH_DEFAULT);
                                 configure control pins();
170
171
172
173
174
175
176
177
178
                        tanpe_ext_mode = FEM_FWM_MODE;
kreak;
case MAX_FOMER;
GFIG_ConfigurePin(CTRL_FWM_PORT, CTRL_FWM_FIM, GUIPUT, FID_GFIG, false); //FMM pin inactive
GFIG_ConfigurePin(CTRL_FWM_FORT, CTRL_FMGx_FIM, GUIPUT, FID_GFIG, false); //FMM pin inactive
//FMM pin inactive
                                 configure_control_pins();
                                range_ext_mode = FEN_HAXF_HODE;
100
101
102
103
103
                     break;
                          case BYFASS
                                 GPIO_ConfigureFin(CTRL FMRX_FORT, CTRL_FMRA_FIN, OUTFUT, FID_GFIO, fmlse);///ConfigureFin(CTX_FORT, CTX_FIN, CUTFUT, FID_GFIO, fmlse); //dontrol signal configuration -CTX_low- for SKY66111 bypass
GPIO_ConfigureFin(CEX_FORT, CEX_FIN, CUTFUT, FID_GFIO, fmlse); //control signal configuration -CEX_high- for SKY66111 bypass
105
104
187
188
189
199
                                 range_est_mode = FEN_STPASS_NOOE;
break/
                        defailij
defailij
GDIO_ConfigureFin(CTRL_FWM_FORT, CTRL_FWM_FIN, OUTPUT, FID_GBIO, false); //FWM pin inactive
GDIO_ConfigureFin(CTRL_FWAX_FORT, CTRL_FWAX_FIN, OUTPUT, FID_GBIO, false); //Set max power mode
191
192
193
194
195
                                configure_control_pine();
                                 sange_ext_mode = FEM_MAXP_MODE;
break;
                 3
196
187
```

Figure 52: Function app_range_extender_reinit();

Company Confidential

9. Enable FEM

200	101000000000000000000000000000000000000
201	· Bbrief Enables FEM with the help of app range extender reinit
202	* (param[in] power Fower to he set
203	* Sparam[in] cb Callback function called when action is completed
204	· Breturn wold
205	***************************************
206	L -/
207	static word app_range_extender_enable(uint16_t power, range_ext_callback cb)
208	3(
209	range ext power = power;
210	app range extender reinit();
211	
212	

Figure 53: Function app_range_extender_enable();

10. Disable FEM power control signals during sleep

```
214
215
216

    Btrief Disables FEN and sets control signals to high-r state.
    Bparam[in] cb Callback function called when action is completed

117
     • Øreturn Vold
218
219
     *1
220
    static void app_range_extender_sleep(range_ext_callback cb)
221 E (
222 |
        switch (range_ext_mode)
223
224
            CARE FEN BYPASS HODE:
225
226
               GPI0_ConfigureFin(CTRL_FMAX_FORT, CTRL_FMAX_FIN, OUTFUT, FID_GPI0, true);
GPI0_ConfigureFin(CTRL_FMM_FORT, CTRL_FMM_FIN, OUTFUT, FID_GFI0, false);
                                                                                  //FWM pin inactive (output low)
227
               break;
            Case FEM_MAXP_MODE:
               GPIO_ConfigureFin(CTRL_FMAX_FORT, CTRL_FMAX_FIN, OUTFUT, FID_GPIO, true); //Max_power_mode inactive break;
229
230
           251
232
                                                                                  //FWM pin inactive (output low)
233
               breakr
234
       . 5
235 )
```

Figure 54: Function app_range_extender_sleep();

11. Set the range extender output power

```
221 8/**
                                 222
    223
   * @brief Set the range extender output power.
   * #param[in] power Power to be set
224
225
   * @param[in] cb
                  Callback function called when action is completed
   · Breturn void
226
227
   **********
            228 . 1/
229 static void app set power(uint16 t power, range ext callback cb)
230 日1
231
      timer0 stop();
232
      app_range_extender_enable(power, NULL);
233 1
```

Figure 55: Function app_set_power();

12. Initialization of range_ext_api

Introduction of app_range_extender.reinit() into range_ext_api, enables the range extender with the value set by the user. The TX output power value is kept during sleep time.

Company Confidential

252	<pre>void range_ext_init(strue</pre>	act range_ext_api *api)
253 -		
254	api->init_gpio	<pre>= declare_fem_gpios;</pre>
255	api->enable	<pre>= app_range_extender_enable;</pre>
256	api->disable	<pre>= app_range_extender_sleep;</pre>
257	api->set_power	<pre>= app_set_power;</pre>
258	api->set_fem_rx_mode	e = NULL;
259	api->re_init	<pre>= app_range_extender_reinit;</pre>
260		
261	}	

Figure 56: function range_ext_init();

A.2 Insert driver to proximity reporter project

The example project used to describe the necessary steps here is proximity reporter.

A.2.1 Steps

Step 1: Copy rext_sky66111-11_v1.1 folder in the driver folder of sdk: DA14585_SDK\6.0.10.511\sdk\platform\driver

The folder contains three files:

- sky66111.c (inside sky66111 folder)
- sky66111.h (inside sky66111 folder)
- range_ext_api.h

lame	Date modified	Туре	Size	
adc	8/1/2018 5:18 PM	File folder	22771.1	
battery	8/1/2018 5:18 PM	File folder		
ble	8/1/2018 5:18 PM	File folder		
dma	8/1/2018 5:18 PM	File folder		
gpio	8/1/2018 5:18 PM	File folder		
hw_otpc	8/1/2018 5:18 PM	File folder		
2c_eeprom	8/1/2018 5:18 PM	File folder		
pdm	8/1/2018 5:18 PM	File folder		
reg	8/1/2018 5:18 PM	File folder		
rest_sky66111-11_v1.1	7/19/2019 10:56 AM	File folder		
spi	8/1/2018 5:18 PM	File folder		
spi_flash	8/1/2018 5:18 PM	File folder		
spi_hoi	8/1/2018 5:18 PM	File folder		
syscriti	8/1/2018 5:18 PM	File folder		
systick	8/1/2018 5:18 PM	File folder		
timer	8/1/2018 5:18 PM	File folder		
ting	8/1/2018 5:18 PM	File folder		
Lart	8/1/2018 5:18 PM	File folder		
wkupct_guadec	8/1/2018 5:18 PM	File folder		
e hather				Add
				700

Figure 57: Copy rext_sky66111-11_v1.1 folder into sdk driver

Step 2: Open the project and add sky66111.c in sdk_driver of the keil project Right click 'sdk_driver' and select "Add existing files to Group 'app'". Add sky66111.c

Company Confidential

DA14585 Range Extender Reference Application

PL bLox	eporter_58	5	
🖲 🚨 sdk	boot		
📰 📮 sdk	arch		
e 📮 sdk	driver syschti	Options for Group 'sdk_driver'	Alt+F7
e 🖸	gpio.c	Add New Item to Group 'sdk_driver'	
÷ 🗋	wkupc N	Add Existing Files to Group 'sdk_driver'	
	batter	Remove Group 'sdk_driver' and its Files	
	adc.c	Open Build Log	
÷ 🗓	spi_fia	Rebuild all target files	
÷ 🗈	spi.c	Build Target	F7
e 0 e 0	i2c_ee	Manage Project Items	
₩	trng.c 🖌	Show Include File Dependencies	
· 🗉	uart2.c		

Figure 58: Step 2 of adding sky66111.c to sdk_driver

Step 3: Select target options and add the rext_sky66111-11_v1.1 folder in the compiler include paths.

In the target options, select the C/C++ tab, open the Include Paths and add the paths for:

sky66111.c; \rightarrow $sdk\platform\driver\ rext_sky66111-11_v1.1\sky66111$

range_ext_api.h: \rightarrow sdk\platform\driver\ rext_sky66111-11_v1.1

Options fo	or Target 'prox_reporter_58	P	
evice Targ	et Output Listing User	C/C++ Ami Linker Debug Unites	
Preproces	eor Symbole		
Define			
Undefine	i		
Language	/ Code Generation		
Elecut	le-only Code	T Strict ANSI C Warring	s Al Warrings 🔸
Optimatio	= Level 3 (-03) -	Erum Container always int.	T TremHoor
C Optimi	on for Tenn	F Plan Charts Signed	T No Auto Includes
T Split Li	and Store Multiple	Read-Only Poston Independent	17 C99 Mode
C One E	LF Section per Function	T Read-Write Position Independent	C GNU extensions
include Pathe	SCELCiedk/platform/w	nolude://///wdk/app_modules/apic/////	
Mac Controls	-thumb < -preinclude sta14	58k_config_basic h -previolude da1458k_config_ad	variced hill-preinclude us
Complian control othing	-c10-c -cpu Catex M0-0 7.7.7.7.7.7.dk (platform)/	EVAL D_MCROLE + g-O3 - sposieterwolk + rokde + 7777777774 /edk/spp_modules/apl +	÷

Figure 59: Step 3a, Select target options

Company Confidential

😵 Optior	is for Target 'prox_reporter_585'			\times
Device 1	Farget Output Listing User C/C++ Asm Linker Debug Utilities			
- Prepro	Folder Setup	?	×	
De	Setup Compiler Include Paths:	<u>*</u>	† +	
Unde	.\\\\sdk\platform\driver\systick .\\\\sdk\platform\driver\trug		^	
	.\\\\\sdk\platform\driver\uart .\\\\\sdk\platform\driver\wkupct_quadec			
Optimi:	.\\\\\sdk\platform\driver\ble .\\\\\sdk\platform\driver\emi .\\\\\sdk\platform\driver\intc			-
□ Op				udes
∏ Sp ⊡ Or	.\\\\.sdk\platform\driver\pdm .\\src\config			
	.\.\src \.\.\.\.\sqck\platfom\system_library\include			ons
Inclu Pa	\\.\.\.\third_party\vand \\.\.\.\.\.\third_party\hash 			·
M Contr	\.\.\.\.\sdk\platfom\driver\rext_sky66111-11_v1.1\sky66111 \.\.\.\.\sdk\platform\driver\rext_sky66111-11_v1.1			le usi
Comp			×	^
str	OK Cancel			~
	OK Cancel Defaults			Help

Figure 60: Step 3b, include sky6611.c and range_ext_api.h at the compiler include paths

Step 4: Repeat step 2 and 3 also for timer0.c found in SDK_585\sdk\platform\driver\timer In the target options, select the C/C++ tab, open the Include Paths and add at the end the path for:

timer0.c \rightarrow sdk\platform\driver\timer

Company Confidential

😗 Option	is for Target 'prox_reporter_585'			\times
Device 1	Farget Output Listing User C/C++ Asm Linker Debug Utilities			
- Prepro	Folder Setup	?	×	
Der	Setup Compiler Include Paths:		† f	
Under	.\\\\sdk\platform\driver\trng .\\\\sdk\platform\driver\uart		^	
– Langu	.\\\\\sdk\platform\driver\wkupct_quadec .\\\\\sdk\platform\driver\ble			
Ex Optimi	.\\\\\sdk\platform\driver\emi .\\\\\sdk\platform\driver\intc			-
Optimi:	.\\\\\sdk\platfom\driver\dma			udes
🗆 Sp	.\\\\\sdk\platform\driver\pdm .\\src\config .\\src			
C Or	sic 			ons
Inclu Pai			1.0	ē
M	\.\.\.\sdk\platform\driver\rext_sky66111-11_v1.1 \.\.\.\sdk\platform\driver\timer		-1	le usi
Comp			*	_
con str	OK Cancel			¥
	OK Cancel Defaults			Help

Figure 61: include timer0.c path at the end of compiler include paths

Step 5: In da1458x_config_advanced.h define the CFG_RANGE_EXT parameter. For other projects than proximity reporter this define must be added by user.

222	7
223	/* The Keil scatter file may be provided by the user. If the user provides his own
224	/* to be aware which RAM blocks has to retain. The 4th HAM block is always retaine
225	/* data.
226	/* - CFG RETAIN BAM 1 BLOCK: if defined, the 1st RAM block must be retained.
227	/* - CFG RETAIN RAH 2 BLOCE: if defined, the Ind RAM block must be retained,
228	// - CFG RETAIN RAM 3 BLOCK: if defined, the 3rd RAM block must be retained.
229	7*
230	/* If the CFG_CUSTON_SCATTER_FILE flag is undefined, the system knows which blocks
231	/* default BDW scatter file.
232	/**************************************
233	Funder CFG_CUSTON_SCATTER_FILE
234 [#irder CFG_CUSION_SCATTER_FILE
235	Stafing CFS_RETAIN_RAM_1_BLOCK
236	sorfine CFG_RETAIN_RAH_I_BLOCK
23T	forfine CFG_BETAIN_RAM_3_BLOCE
238	\$endif.
239	-
240	/**************************************
241	/* Code location selection.
242	/* - CPG_CODE_LOCATION_EXT: Code is loaded from SPI flash / IIC EEPROM / UART
243	/* - CFG_CODE_LOCATION_OTP: Code is burned in the OTP
244	/* The above options are mutually exclusive and exactly one of them must be enable
245	/**************************************
246	#define CFG_CODE_LOCATION_EXT
247	Finder CFG CODE LOCATION OTP
248	
249	/
250	/* Uses long range extender (e.g. DEYEelli).
251	/**************************************
252	Finfine CFG_RANGE_EXT
253	
254	

Figure 62: define CFG_RANGE_EXT in da1458x_config_advanced.h

DA14585 Range Extender Reference Application

Company Confidential

Step 6: Use the desired power level value, as described in sky6611.h preset values, as argument in the range_ext.enable(uint16_t value, NULL). The function is called in the following places:

- Arch_system.c
- user_periph_setup.c

Default value is MAX_POWER

850 📄	/*
851	***************************************
852	* BLE initialization
853	***************************************
854 -	*/
855	<pre>init_pwr_and_clk_ble();</pre>
856	
857	<pre>ble_init(_ble_base);</pre>
858	
859 🛱 #i	f (USE_RANGE_EXT)
860	// Enable range extender
861	range_ext.enable(MAX_POWER, NULL);
862 #e	ndif

Figure 63: range_ext.enable() after ble_init() in arch_system.c

```
133 = #ifndef CFG SUOTAR I2C DISABLE
           // Example GPIO configuration for an I2C EEPROM.
134
           GPIO_ConfigurePin(I2C_GPIO_PORT, I2C_SCL_PIN, INPUT, PID_I2C_SCL, false);
GPIO_ConfigurePin(I2C_GPIO_PORT, I2C_SDA_PIN, INPUT, PID_I2C_SDA, false);
135
136
137
      -#endif
138
     #endif //BLE SUOTA RECEIVER
139
140 #if (USE RANGE EXT)
      range_ext.enable(MAX_POWER, NULL);
141
142
      -#endif
143
      }
```

Figure 64: range_ext.enable() at the end of set_pad_functions() in user_periph_setup.c

A.3 Insert driver to prod_test

For inserting the driver to other projects, e.g prod_test, the following steps need to be followed:

1. Repeat steps 1 to 4 described in A.2.

2. For Step 5: add #define CFG_RANGE_EXT in the da1458x_config_advanced.h

3. In the user_periph_setup.c: a) include sky66111.h and b) call range_ext.enable() at the end of set_pad_functions().

4. Repeat Step 6 described in A.2.

Figure 66: Call range_ext.enable() at the end of set_pad_functions() in user_periph_setup.c

User Manual

A.4 Building for different operating modes

In order to build for the different available power levels, the user has to choose between the seven preset values found in sky66111.h and put one as an argument in the range_ext.enable().

- ZERO_DBM for 0 dBm output power
- TWO_DBM for 2 dBm output power
- FOUR_DBM for 4 dBm output power
- SIX_DBM for 6 dBm output power
- EIGHT_DBM for 8 dBm output power
- MAX_POWER for the maximum supported +9.3 dBm output power
- BYPASS for not enabling the sky66111 PA

A.4.1 Example: Building for FOUR_DBM power operation

```
850 白
     /*
      851
      * BLE initialization
852
                    853
      *****
854
     */
855
     init_pwr_and_clk_ble();
856
857
     ble_init(_ble_base);
858
859 # #if (USE RANGE EXT)
860
     // Enable range extender
861
     range ext.enable(FOUR DBM, NULL);
862 #endif
```

Figure 67: Set FOUR_DBM in range_ext.enable() in arch_system.c

```
// set gpio port function mode
110 void set_pad_functions(void)
111 🖂 {
                  _DA14586_
 112 #ifdef
113
             // disallow spontaneous flash wake-up
             GPIO_ConfigurePin(SPI_EN_GPIO_PORT, SPI_EN_GPIO_PIN, OUTPUT, PID_GPIO, true);
114
115
       #endif
 116
 117 # #if (BLE_PROX_REPORTER)
             GPIO_CONFIGUREPIN(GPIO_BUTTON_PORT, GPIO_BUTTON_PIN, INPUT_PULLUP, PID_GPIO, false); // Push Button
118
             GPIO_ConfigurePin(GPIO_ALERT_LED_PORT, GPIO_ALERT_LED_PIN, OUTPUT, PID_GPIO, false); //Alert LED
 119
 120
       #endif
 121 #if (BLE_BATT_SERVER && USE_BAT_LEVEL_ALERT)
             GPIO_ConfigurePin(GPIO_BAT_LED_PORT, GPIO_BAT_LED_PIN, OUTPUT, PID_GPIO, false); //Battery alert LED
 122
123 #endif
 124
 125 #if (BLE SUOTA RECEIVER)
126 #ifndef CFG_SUOTAR_SPI_DISABLE
            GPIO_CONFIGUREPIN(SPI_BLGELE GPIO_PORT, SPI_EN_GPIO_PIN, OUTPUT, PID_SPI_EN, true);
GPIO_ConfigurePin(SPI_CLK_GPIO_PORT, SPI_CLK_GPIO_PIN, OUTPUT, PID_SPI_CLK, false);
GPIO_ConfigurePin(SPI_DO_GPIO_PORT, SPI_DO_GPIO_PIN, OUTPUT, PID_SPI_DO, false);
GPIO_ConfigurePin(SPI_DI_GPIO_PORT, SPI_DI_GPIO_PIN, INPUT, PID_SPI_DI, false);
 127
 128
 129
130
131
       #endif
132
      #ifndef CFG_SUOTAR_I2C_DISABLE
 133
           // Example GPIO configuration for an I2C EEPROM.
GPIO_ConfigurePin(I2C_GPIO_PORT, I2C_SCL_PIN, INPUT, PID_I2C_SCL, false);
GPIO_ConfigurePin(I2C_GPIO_PORT, I2C_SDA_PIN, INPUT, PID_I2C_SDA, false);
134
135
136
 137
       -#endif
 138
       #endif //BLE_SUOTA_RECEIVER
139
 140 #if (USE RANGE EXT)
            range_ext.enable(FOUR_DBM, NULL);
 141
142
      - #endif
 143
       3
144
```

Figure 68: Set FOUR_DBM in range_ext.enable() in user_periph_setup.c

DA14585 Range Extender Reference Application

Company Confidential

mject III Robuild	• @ _] •	gééille	da1458x_config_advanced.h	1.5854	user periph satup.c
12 pr Retschif all target files	1	EE1/**		Contraction of the local division of the loc	
a in an				*********	************************
e 📮 sdk boot					
III 🔤 sdk.arch.			user periph setup.c		
a la sdk driver		Burte	. Providence and a second second		
it 📮 sidk ble		apris apris	f Feripherals setup	and initia	112A1100.
		· Contracts	ight (C) 2012-2017 D	inlin Seni	conductor
and an and a second sec	1	· This			idential, Proprietary Informa
🕀 🍱 sdk_app	10		alog Semiconductor.		
🗰 🔤 sdk_driver_api	13	· · · · ·	1.5		
u 🖾 sdk_app_api	13	<pre>f * <blue< pre=""></blue<></pre>	tooth.supportHdiasen	d.con>	
ili 📮 sdk_arch_api	1				
🖷 🖬 user_config	14				******
a 📮 user_platform	12				
iii iii user_periph_setup.		EI/*			
ie 💷 user_app	11		DE FILES		
	11			*********	******************************
	20				
	23				
			"rwip_config.h"		/ 5W configuration
			"aser_perlph_setup.		/ peripheral configuration
	23		"user profiles conf "opio.h"	Td-0.	
		1 #include		9	/ CAR? initialization
	2		the state		A DEPENDENCE OF A DEPENDENCE O
			"app progr.h"		
	23		"user proxr.h"		
	3(n -	T. S. 2 C Trade de C. S. M		
Project Stooks () Function (A-Tempiani A Sumi				
ed Output					
** Using Compiler "V0.06 upday		older: 'Cr's	ell_ve/AMM/AMMOC/Bin/		
"Tetrodet_sord, tetrat pitter	1057				
mpiling system ARMCNO.c mpiling hardfault handlar.c.					

Figure 69: Build project in order to produce the FOUR_DBM hex file

User Manual

Appendix B Optimizing PWM Current Consumption

For optimized power consumption during PWM mode it is proposed that the Q2 base resistor should be increased from the default value. In order to keep the same time constant of 100us R2=10K and C22=10nF can be used. For other time constants appropriate values should be chosen accordingly. The larger resistor reduces the transistor base current resulting to lower power average power consumption during PWM mode.

For the same TX output power an increase in the duty cycle is necessary (see Table 30).

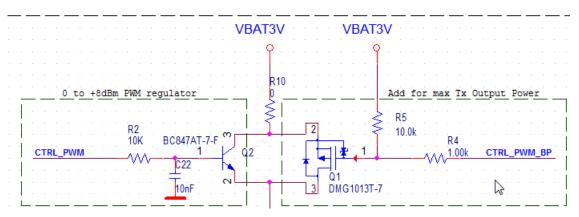


Figure 70: PWM optimized RC circuit

Power Mode PWM Operation Duty Cycle (%) BYPASS No _ ZERO_DBM Yes 47 TWO_DBM Yes 53 FOUR_DBM Yes 63 SIX_DBM Yes 75 EIGHT_DBM Yes 92 MAX_POWER No _

Table 30: SKY66111-11 modified PWM Duty Cycle for R2=10K, C22=10nF

Advertising Mode

For this measurement the DUT was supplied by 3 V. FW was downloaded and the JTAG programmer and then it was disconnected from the motherboard.

Table 31: Current consumption during Advertising Mode (R2=10K, C22=10nF) (Note 22)

	Average charge per active state per interval (uC)	Average current for capture (uA)	Peak current (mA)	Peak power (uW)
Power Level (dBm)				
BYPASS	14.12	13.10	5.54	0.02
0	17.50	15.38	8.55	0.03
+2	18.35	15.91	9.25	0.03
+4	19.23	16.46	9.92	0.03
+6	20.36	17.24	10.97	0.03
+8	22.57	18.72	12.91	0.04
+9.3	25.90	20.93	14.86	0.04

Note 22 Power supply= 3V, T=25°C, advertising interval=1500ms, adv_pdu=9 bytes, intervals captured=80.

Connection Mode

For this measurement the DUT was supplied by 3 V. FW was downloaded and the JTAG programmer was disconnected and connection with an iPhone 4S was established with 400ms connection interval.

	Average charge per active state per interval (uC)	Average current for capture (uA)	Peak current (mA)	Peak power (uW)
Power Level (dBm)				
BYPASS	7.66	22.88	5.55	0.02
0	7.31	22.03	8.40	0.03
+2	7.43	22.28	8.88	0.03
+4	7.32	22.01	9.49	0.03
+6	7.39	22.21	10.54	0.03
+8	7.43	22.29	12.08	0.04
+9.3	8.89	25.98	14.85	0.04

Note 23 Power supply= 3C, T=25°C, connection interval=400ms, mtu=23 bytes, intervals captured=300.

User Manual

Revision History

Revision	Date	Description
1.0	12-Dec-2017	Initial version.
1.1	01-Aug-2019	Update Appendix A Application Software Guide with changes in sky66111 driver. Update SDK revision used to SDK 6.0.10.
1.2	19-Jan-2022	Updated logo, disclaimer, copyright.

Application

Company Confidential

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.