

User Manual

DA1458x Software Platform
Reference

UM-B-051

Abstract

This document describes the software platform for the SmartBond™ DA1458x Product Family,
specifically for the DA14580/581/583 devices, as supported by the new v5.x SDK series. It presents
the overall system architecture, components, Application Programming Interfaces (APIs) as well as
the development tool chain, environment and process.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 2 of 170 © 2022 Renesas Electronics

Contents

Abstract .. 1

Contents ... 2

Figures .. 12

Tables ... 12

1 Terms and Definitions ... 14

2 References ... 15

3 Introduction .. 16

3.1 Target Audience .. 16

3.2 How to Use This Document .. 16

3.3 Device Modes ... 17

3.3.1 Single Mode Devices ... 17

3.3.2 Dual Mode Devices .. 17

3.4 Main Building Blocks ... 17

3.5 Hardware Configurations .. 17

3.5.1 Integrated Processor ... 17

3.5.2 External Processor .. 17

3.6 Network Modes ... 18

3.6.1 Broadcasting .. 18

3.6.2 Connecting ... 18

3.7 Profiles .. 19

3.7.1 Generic Profiles ... 19

3.7.2 Use-Case-Specific Profiles .. 19

3.7.2.1 SIG-Defined GATT-Based Profiles .. 20

3.7.2.2 Vendor-Specific Profiles .. 20

3.7.3 Generic Access Profile Layer .. 20

3.7.4 Generic Attribute Profile Layer .. 21

3.8 Protocol Stack ... 21

3.9 Controller ... 22

3.9.1 Physical Layer (PHY) ... 22

3.9.2 Link Layer (LL) ... 22

3.9.2.1 Bluetooth Device Address ... 23

3.9.2.2 Advertising and Scanning .. 23

3.9.3 Host Controller Interface – Controller side .. 24

3.10 Host ... 24

3.10.1 Host Controller Interface – Host Side .. 24

3.10.2 Logical Link Control and Adaptation Protocol ... 24

3.10.3 Attribute Protocol ... 24

3.10.4 Security Manager ... 25

3.10.5 Application ... 25

3.11 DA1458x System on Chip Platform .. 26

3.11.1 Overview .. 26

3.11.2 ARM Cortex-M0 CPU .. 26

3.11.2.1 Features ... 26

3.11.3 Memory .. 27

3.11.3.1 ROM .. 27

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 3 of 170 © 2022 Renesas Electronics

3.11.3.2 OTP ... 27

3.11.3.3 System SRAM ... 27

3.11.3.4 Retention RAM .. 28

3.11.4 BLE Core and Radio Transceiver .. 28

3.11.4.1 Features ... 28

3.11.5 Peripheral Interfaces .. 28

3.11.5.1 UARTs ... 28

3.11.5.2 SPI+ ... 28

3.11.5.3 I2C ... 29

3.11.5.4 ADC ... 29

3.11.5.5 Quadrature Decoder .. 29

3.11.5.6 Keyboard Controller ... 29

3.11.6 Timers .. 29

3.11.6.1 General Purpose Timers ... 29

3.11.6.2 Wake-Up Timer .. 29

3.11.6.3 Watchdog Timer .. 30

3.11.7 Clock and Reset .. 30

3.11.8 Power Management (PMU) ... 30

3.11.9 SmartBond™ DA1458x Product Family Devices .. 30

3.11.9.1 DA14580 .. 30

3.11.9.2 DA14581 .. 30

3.11.9.3 DA14583 .. 30

4 DA1458x Software Platform Overview .. 31

4.1 System Software and Main Loop .. 31

4.2 Peripheral and Radio Drivers .. 31

4.3 Real Time Kernel .. 31

4.4 Bluetooth Low Energy Software .. 32

4.5 Application Software ... 32

4.6 Memory Organization .. 32

4.7 Supported Hardware Configurations ... 33

4.7.1 Integrated Processor ... 33

4.7.2 External Processor .. 33

4.8 Development Environment .. 34

5 Real Time Kernel ... 35

5.1 Overview ... 35

5.2 Scheduler .. 35

5.3 Tasks ... 35

5.4 Dynamic Memory Allocation ... 36

5.5 Messages .. 36

5.6 Timer ... 37

6 Bluetooth Low Energy Software .. 38

6.1 Overview ... 38

6.2 GAP ... 39

6.3 BLE Data Services .. 40

6.3.1 GATT ... 40

6.3.2 ATTDB ... 41

6.4 Bluetooth LE Profiles ... 41

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 4 of 170 © 2022 Renesas Electronics

7 System Software ... 42

7.1 Main Loop and Sleep Modes .. 42

7.1.1 Sleep Modes .. 42

7.1.2 Wake-Up Events .. 42

7.1.3 Main Loop .. 43

7.2 System API ... 44

7.2.1 Main Loop Callbacks ... 44

7.2.2 Sleep API ... 45

7.2.3 Serial Logging Interface API .. 46

7.2.4 BLE Statistics API .. 46

7.2.5 Development Mode API ... 46

7.2.5.1 GPIO Reservation .. 46

7.2.5.2 Assert, NMI and Hard Fault Handlers .. 47

7.2.6 Advanced Features API ... 47

7.2.6.1 Wake-Up and External Processor Configuration 47

7.2.6.2 True Random Number Generator (TRNG) 47

7.2.6.3 Boost Output Voltage (DCDC_VBAT3V) ... 47

7.2.6.4 Near Field Control .. 48

7.2.6.5 AES Crypto .. 48

7.2.6.6 Co-Existence ... 48

8 Application Software ... 49

8.1 Overview ... 49

8.2 API ... 49

8.2.1 Message API ... 50

8.2.2 Mid Layer API .. 50

8.2.3 Easy API .. 50

8.2.4 app_<profile> API .. 51

8.2.5 App Entry Point API ... 51

8.2.6 User Callback API .. 51

8.2.7 Default Handlers .. 52

9 Memory Organization .. 53

9.1 Overview ... 53

9.2 Memory Map ... 53

9.3 ARM Scatter File ... 55

10 Peripheral Drivers ... 56

10.1 Overview ... 56

10.2 UART... 56

10.2.1 How to Use this Driver ... 56

10.2.2 Initialization and Configuration .. 57

10.2.3 Function Reference ... 58

10.2.3.1 uart_init .. 58

10.2.3.2 uart_flow_on .. 58

10.2.3.3 uart_flow_off .. 59

10.2.3.4 uart_finish_transfers .. 59

10.2.3.5 uart_write ... 59

10.2.3.6 uart_read ... 59

10.2.4 Definitions .. 60

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 5 of 170 © 2022 Renesas Electronics

10.3 GPIO ... 62

10.3.1 How to Use this Driver ... 62

10.3.2 Initialization and Configuration .. 63

10.3.3 Interrupt Handling .. 63

10.3.4 Function Reference: Initialization and Configuration Functions 64

10.3.4.1 GPIO_init ... 64

10.3.4.2 GPIO_SetPinFunction ... 64

10.3.4.3 GPIO_ConfigurePin ... 65

10.3.4.4 GPIO_SetActive ... 65

10.3.4.5 GPIO_SetInactive .. 65

10.3.4.6 GPIO_GetPinStatus... 66

10.3.4.7 GPIO_ConfigurePinPower ... 66

10.3.5 Function Reference: Interrupt Handling Functions .. 66

10.3.5.1 GPIO_EnableIRQ .. 66

10.3.5.2 GPIO_ResetIRQ .. 66

10.3.5.3 GPIO_RegisterCallback .. 67

10.3.6 Definitions .. 67

10.4 Analog to Digital Converter ... 69

10.4.1 How to Use this Ddriver ... 69

10.4.2 Initialization and Configuration .. 69

10.4.3 Function Reference: Initialization and Configuration Functions 70

10.4.3.1 adc_calibrate ... 70

10.4.3.2 adc_init .. 70

10.4.3.3 adc_enable_channel ... 70

10.4.3.4 adc_disable .. 70

10.4.4 Function Reference: ADC Sampling Functions ... 71

10.4.4.1 adc_get_sample .. 71

10.4.4.2 adc_get_vbat_sample ... 71

10.4.5 Definitions .. 71

10.5 Serial Peripheral Interface (SPI) driver ... 72

10.5.1 How to Use this Driver ... 72

10.5.2 Initialization and Configuration .. 72

10.5.3 Function Reference: Initialization and Configuration Functions 73

10.5.3.1 spi_init .. 73

10.5.3.2 SPI modes ... 73

10.5.3.3 setSpiBitmode .. 74

10.5.3.4 spi_release .. 74

10.5.4 Function Reference: Sending and Receiving Functions 74

10.5.4.1 spi_access ... 74

10.5.4.2 spi_transaction ... 75

10.5.4.3 spi_cs_low ... 75

10.5.4.4 spi_cs_high .. 75

10.5.5 Definitions .. 76

10.6 Quadrature Decoder ... 77

10.6.1 How to Use this Driver ... 77

10.6.1.2 Usage with Polling ... 77

10.6.1.3 Usage with Interrupts ... 77

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 6 of 170 © 2022 Renesas Electronics

10.6.1.4 Initialization and Configuration .. 77

10.6.1.5 Reading Quadrature Decoder Counters .. 78

10.6.2 Function Reference: Initialization and Configuration Functions 78

10.6.2.1 quad_decoder_init ... 78

10.6.2.2 quad_decoder_release .. 78

10.6.2.3 quad_decoder_register_callback ... 79

10.6.2.4 quad_decoder_enable_irq ... 79

10.6.2.5 quad_decoder_disable_irq .. 79

10.6.3 Function Reference: Quadrature Decoder Counter Reading Functions 79

10.6.3.1 quad_decoder_get_x_counter ... 79

10.6.3.2 quad_decoder_get_y_counter ... 80

10.6.3.3 quad_decoder_get_z_counter ... 80

10.6.4 Definitions .. 80

10.6.5 Defines in the Application for the QUADRATURE DECODER Driver 81

10.7 Wake-Up Timer ... 82

10.7.1 How to Use this Driver ... 82

10.7.2 Available Functions .. 82

10.7.3 Function Summary ... 82

10.7.4 Function Reference ... 83

10.7.4.1 wkupct_register_callback .. 83

10.7.4.2 wkupct_enable_irq ... 83

10.7.4.3 wkupct_disable_irq .. 83

10.7.5 Definitions .. 84

10.7.6 Defines in the Application for the WAKEUP TIMER Driver 84

10.8 PWM Timers ... 85

10.8.2 How to Use this Driver ... 85

10.8.3 Common Functions (TIMER0, TIMER2) .. 86

10.8.4 TIMER0 functions (PWM0, PWM1) ... 86

10.8.5 TIMER2 functions (PWM2, PWM3, PWM4) .. 86

10.8.6 Function Summary ... 87

10.8.6.1 Common Functions (TIMER0, TIMER2).. 87

10.8.6.2 TIMER0 Functions ... 87

10.8.6.3 TIMER2 Functions ... 87

10.8.7 Function Reference: Common Functions (TIMER0, TIMER2) 88

10.8.7.1 set_tmr_enable .. 88

10.8.7.2 set_tmr_div .. 88

10.8.8 Function Reference: TIMER0 Functions ... 89

10.8.8.1 timer0_init .. 89

10.8.8.2 timer0_start .. 89

10.8.8.3 timer0_stop .. 89

10.8.8.4 timer0_release ... 90

10.8.8.5 timer0_set_pwm_on_counter .. 90

10.8.8.6 timer0_set_pwm_high_counter ... 90

10.8.8.7 timer0_set_pwm_low_counter ... 90

10.8.8.8 timer0_set .. 90

10.8.8.9 timer0_enable_irq .. 91

10.8.8.10 timer0_disable_irq ... 91

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 7 of 170 © 2022 Renesas Electronics

10.8.8.11 timer0_register_callback .. 91

10.8.9 Function Reference: TIMER2 Functions ... 91

10.8.9.1 timer2_enable .. 91

10.8.9.2 timer2_set_hw_pause ... 91

10.8.9.3 timer2_set_sw_pause .. 92

10.8.9.4 timer2_set_pwm_frequency .. 92

10.8.9.5 timer2_init .. 92

10.8.9.6 timer2_stop .. 92

10.8.9.7 timer2_set_pwm2_duty_cycle ... 93

10.8.9.8 timer2_set_pwm3_duty_cycle ... 93

10.8.9.9 timer2_set_pwm4_duty_cycle ... 93

10.8.10 Definitions .. 94

10.9 SysTick Timer ... 95

10.9.1 How to Use this Driver ... 95

10.9.2 Available Functions .. 95

10.9.3 Function Summary ... 95

10.9.4 Function Reference ... 96

10.9.4.1 systick_register_callback ... 96

10.9.4.2 systick_start() ... 96

10.9.4.3 systick_stop() ... 96

10.9.4.4 systick_value() ... 96

10.9.4.5 systick_wait() ... 96

10.9.5 Definitions .. 97

10.9.6 Global Variables and Constants .. 97

10.10 SPI Flash Driver .. 98

10.10.1 How to Use this Driver ... 98

10.10.2 Initialization and Configuration .. 98

10.10.3 Controlling Write Access.. 98

10.10.4 Status Register Access.. 98

10.10.5 Reading ... 98

10.10.6 Writing .. 99

10.10.7 Erasing ... 99

10.10.8 Data protection .. 99

10.10.9 Function Reference: Initialization and Configuration Functions 100

10.10.9.1 spi_flash_auto_detect .. 100

10.10.9.2 spi_flash_init .. 100

10.10.9.3 spi_flash_set_write_enable ... 100

10.10.9.4 spi_flash_write_enable_volatile ... 100

10.10.9.5 spi_flash_write_disable ... 101

10.10.9.6 spi_flash_read_status_reg .. 101

10.10.9.7 spi_flash_write_status_reg .. 101

10.10.10 Function Reference: Flash Read Functions .. 102

10.10.10.1 spi_flash_read_data .. 102

10.10.11 Function Reference: Flash Write Functions .. 102

10.10.11.1 spi_flash_page_program ... 102

10.10.11.2 spi_flash_write_data .. 102

10.10.11.3 spi_flash_page_fill ... 103

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 8 of 170 © 2022 Renesas Electronics

10.10.11.4 spi_flash_fill ... 103

10.10.12 Function Reference: Flash Erase Functions ... 103

10.10.12.1 spi_flash_block_erase ... 103

10.10.12.2 spi_flash_chip_erase ... 104

10.10.12.3 spi_flash_chip_erase_forced ... 104

10.10.13 Function Reference: Power Management Functions .. 104

10.10.13.1 spi_flash_power_down .. 104

10.10.13.2 spi_flash_release_from_power_down ... 104

10.10.14 Function Reference: Data Protection Functions .. 105

10.10.14.1 spi_flash_configure_memory_protection 105

10.10.15 Function Reference: Miscellaneous Functions .. 106

10.10.15.1 spi_read_flash_memory_man_and_dev_id 106

10.10.15.2 spi_read_flash_unique_id .. 106

10.10.15.3 spi_read_flash_jedec_id .. 106

10.10.16 Definitions .. 107

10.10.17 Global Variables and Constants .. 109

10.11 I2C EEPROM Driver ... 110

10.11.1 How to Use this Driver ... 110

10.11.2 Initialization and Configuration .. 110

10.11.3 Reading ... 110

10.11.4 Writing .. 110

10.11.5 Function Reference: Initialization and Configuration Functions 111

10.11.5.1 i2c_eeprom_init ... 111

10.11.5.2 i2c_eeprom_release .. 111

10.11.6 Function Reference: EEPROM Read Functions ... 112

10.11.6.1 i2c_eeprom_read_byte .. 112

10.11.6.2 i2c_eeprom_read_data .. 112

10.11.7 Function Reference: EEPROM Write Functions ... 113

10.11.7.1 i2c_eeprom_write_byte ... 113

10.11.7.2 i2c_eeprom_write_page .. 113

10.11.7.3 i2c_eeprom_write_data ... 113

10.11.8 Definitions .. 114

10.11.9 Preprocessor definitions in the application for the I2C EEPROM driver 114

10.12 Battery Level ... 115

10.12.1 How to use this driver .. 115

10.12.2 Function reference ... 115

10.12.2.1 battery_get_lvl ... 115

10.12.3 Definitions .. 115

11 Development Environment ... 116

11.1 Overview ... 116

11.2 Software Development Kit (SDK) Structure .. 116

11.2.1 root Directory ... 116

11.2.2 binaries Directory ... 117

11.2.3 config Directory .. 117

11.2.4 doc Directory .. 117

11.2.5 projects Directory ... 117

11.2.5.1 host_apps Directory ... 117

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 9 of 170 © 2022 Renesas Electronics

11.2.5.2 target_apps Directory .. 118

11.2.6 sdk Directory .. 121

11.2.6.1 app_modules Directory .. 121

11.2.6.2 ble_stack Directory .. 121

11.2.6.3 common_project_files Directory .. 122

11.2.6.4 platform Directory .. 122

11.2.7 utilities Directory .. 122

Appendix A Memory Mapping and Non-Volatile Data Storage ... 123

A.1 Exchange Memory Mapping Possibilities ... 123

A.2 Non-Volatile Data Storage .. 124

Appendix B Interfacing to SPI Flash and I2C EEPROM Devices .. 125

B.1 Supported SPI Flash Memory Devices ... 125

B.2 Supporting Other SPI Flash Devices .. 125

B.2.1 Introduction .. 125

B.2.2 Command Set .. 125

B.2.3 How to Proceed ... 126

B.2.3.1 Device Is Highly Compatible .. 126

B.2.3.2 Device Has Some Degree of Compatibility 127

B.2.3.3 Device Is Not Compatible .. 127

B.3 Using Other I2C EEPROM devices .. 127

Appendix C Application Software APIs ... 129

C.1 Mid Layer API .. 129

C.1.1 app_disconnect_msg_create ... 129

C.1.2 app_disconnect_msg_send ... 129

C.1.3 app_connect_cfm_msg_create ... 129

C.1.4 app_connect_cfm_msg_send .. 129

C.1.5 app_advertise_start_msg_create .. 130

C.1.6 app_advertise_start_msg_send .. 130

C.1.7 app_gapm_cancel_msg_create .. 130

C.1.8 app_gapm_cancel_msg_send ... 130

C.1.9 app_advertise_stop_msg_create .. 130

C.1.10 app_advertise_stop_msg_send ... 131

C.1.11 app_param_update_msg_create ... 131

C.1.12 app_advertise_stop_msg_send ... 131

C.1.13 app_connect_start_msg_create .. 131

C.1.14 app_connect_start_msg_send .. 131

C.1.15 app_gapm_configure_msg_create .. 132

C.1.16 app_gapm_configure_msg_send .. 132

C.1.17 app_gapc_bond_cfm_msg_create .. 132

C.1.18 app_gapc_bond_cfm_msg_send .. 132

C.1.19 app_gapc_bond_cfm_pairing_rsp_msg_create .. 132

C.1.20 app_gapc_bond_cfm_pairing_rsp_msg_send .. 133

C.1.21 app_gapc_bond_cfm_tk_exch_msg_create .. 133

C.1.22 app_gapc_bond_cfm_tk_exch_msg_send .. 133

C.1.23 app_gapc_bond_cfm_csrk_exch_msg_create .. 133

C.1.24 app_gapc_bond_cfm_csrk_exch_msg_send .. 133

C.1.25 app_gapc_bond_cfm_ltk_exch_msg_create ... 134

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 10 of 170 © 2022 Renesas Electronics

C.1.26 app_gapc_bond_cfm_ltk_exch_msg_send ... 134

C.1.27 app_gapc_encrypt_cfm_msg_create .. 134

C.1.28 app_gapc_encrypt_cfm_msg_send ... 134

C.1.29 app_gapc_security_request_msg_create.. 134

C.1.30 app_gapc_security_request_msg_send .. 135

C.1.31 app_gapm_reset_msg_create ... 135

C.1.32 app_gapm_reset_msg_send ... 135

C.1.33 app_gapm_reset_op .. 135

C.1.34 app_disconnect_op .. 135

C.1.35 app_connect_confirm_op .. 136

C.1.36 app_advertise_undirected_start_op .. 136

C.1.37 app_advertise_directed_start_op .. 136

C.1.38 app_advertise_stop_op ... 137

C.1.39 app_param_update_op ... 137

C.1.40 app_param_update_op_us .. 137

C.1.41 app_gapm_configure_op ... 138

C.1.42 app_gapm_configure_op_us ... 139

C.1.43 app_security_request_op .. 139

C.1.44 app_gapc_bond_cfm_pairing_rsp_op ... 140

C.1.45 app_gapc_bond_cfm_tk_exch_op ... 140

C.1.46 app_gapc_bond_cfm_csrk_exch_op ... 141

C.1.47 app_gapc_bond_cfm_ltk_exch_op .. 141

C.1.48 app_gapc_encrypt_cfm_op ... 141

C.2 Easy API ... 142

C.2.1 conhdl_to_conidx ... 142

C.2.2 conidx_to_conhdl ... 142

C.2.3 app_easy_gap_disconnect .. 142

C.2.4 app_easy_gap_confirm ... 142

C.2.5 app_easy_gap_undirected_advertise_start .. 143

C.2.6 app_easy_gap_directed_advertise_start... 143

C.2.7 app_easy_gap_non_connectable_advertise_start .. 143

C.2.8 app_easy_gap_advertise_stop .. 143

C.2.9 app_easy_gap_undirected_advertise_with_timeout_start 143

C.2.10 app_easy_gap_advertise_with_timeout_stop ... 144

C.2.11 app_easy_gap_undirected_advertise_get_active ... 144

C.2.12 app_easy_gap_directed_advertise_get_active ... 144

C.2.13 app_easy_gap_param_update_start ... 144

C.2.14 app_easy_gap_param_update_get_active ... 144

C.2.15 app_easy_gap_start_connection_to .. 145

C.2.16 app_easy_gap_start_connection_to_set ... 145

C.2.17 app_easy_gap_start_connection_to_get_active ... 145

C.2.18 app_easy_gap_dev_config_get_active ... 145

C.2.19 app_easy_gap_dev_configure .. 145

C.2.20 app_easy_security_pairing_rsp_get_active .. 146

C.2.21 app_easy_security_tk_get_active ... 146

C.2.22 app_easy_security_csrk_get_active .. 146

C.2.23 app_easy_security_ltk_exch_get_active ... 146

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 11 of 170 © 2022 Renesas Electronics

C.2.24 app_easy_security_encrypt_cfm_get_active .. 146

C.2.25 app_easy_security_set_tk ... 147

C.2.26 app_easy_security_set_ltk_exch_from_sec_env .. 147

C.2.27 app_easy_security_set_ltk_exch ... 147

C.2.28 app_easy_security_set_encrypt_req_valid ... 147

C.2.29 app_easy_security_set_encrypt_req_invalid... 148

C.2.30 app_easy_security_send_pairing_rsp ... 148

C.2.31 app_easy_security_tk_exch .. 148

C.2.32 app_easy_security_csrk_exch .. 148

C.2.33 app_easy_security_ltk_exch ... 148

C.2.34 app_easy_security_encrypt_cfm ... 149

C.2.35 app_easy_security_request_get_active .. 149

C.2.36 app_easy_security_request ... 149

C.2.37 app_easy_timer ... 149

C.2.38 app_easy_timer_cancel ... 149

C.2.39 app_easy_timer_modify .. 150

C.2.40 app_easy_timer_cancel_all ... 150

Appendix D Supporting Custom Profiles .. 151

D.1 Custom Profile API .. 151

D.1.1 app_custs1_create_db .. 151

D.1.2 app_custs2_create_db .. 151

D.1.3 app_custs1_enable .. 151

D.1.4 app_custs2_enable .. 151

D.2 Configuration Header Files ... 152

Appendix E Advanced Features APIs ... 153

E.1 How to Select the Low Power Clock ... 153

E.2 True Random Number Generator (TRNG) ... 154

E.2.1 trng_acquire ... 154

E.3 DCDC_VBAT3V API ... 156

E.3.1 syscntl_set_dcdc_vbat3v_level ... 156

E.4 Near Field API ... 157

E.4.1 rf_nfm_enable .. 157

E.4.2 rf_nfm_disable ... 157

E.4.3 rf_nfm_is_enabled ... 157

E.5 Crypto API ... 158

E.5.1 aes_init .. 158

E.5.2 aes_operation .. 158

E.5.3 aes_set_key ... 160

E.5.4 aes_enc_dec ... 160

E.5.5 AES_set_key ... 161

E.5.6 AES_convert_key .. 161

E.5.7 AES_decrypt .. 161

E.5.8 AES_cbc_decrypt .. 161

E.6 Coexistence API .. 162

E.6.1 wlan_coex_init ... 162

E.6.2 wlan_coex_enable ... 162

E.6.3 wlan_coex_reservations .. 162

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 12 of 170 © 2022 Renesas Electronics

E.6.4 wlan_coex_prio_criteria_add ... 162

E.6.5 wlan_coex_prio_criteria_del .. 163

E.7 Preferred RF settings .. 163

E.8 Packet Error Rate (PER) ... 164

E.8.1 metrics_packet_rx_func ... 164

Appendix F Development Environment Known Issues ... 165

F.1 Issues When Opening Your Project in Keil for the First Time ... 165

F.1.1 Keil IDE Crashes When Clicking on “J-LINK/J-TRACE Cortex” Settings 165

F.1.2 Possible Causes .. 165

F.1.3 Affected Versions of Keil uVision ... 165

F.1.4 Circumstances of the Error .. 165

F.1.5 Proposed Solution ... 165

F.2 Keil 5 ARMCM0 device is not recognized by J-Link ... 166

F.3 Keil 5 IDE Reports Flash Download Failure.. 167

Appendix G Support for Custom Handling of ATT Read Requests ... 168

Revision History .. 169

Figures

Figure 1: Integrated vs. External Processor BLE Hardware Configurations 18
Figure 2: BLE Protocol Stack Layers .. 22
Figure 3: Link Layer States.. 23
Figure 4: DA1458x System on Chip Platform Main Blocks ... 26
Figure 5: Software Architecture ... 31
Figure 6: Integrated Processor HW Configuration .. 33
Figure 7: External Processor HW Configuration ... 34
Figure 8: Bluetooth Low Energy Software ... 38
Figure 9: The Main Loop ... 43
Figure 10: Application Architecture ... 49
Figure 11: Easy API Design Pattern .. 50
Figure 12: Case 23 RAM Memory Map ... 54
Figure 13: Peripherals Driver Architecture .. 56
Figure 14: root Directory Structure .. 116
Figure 15: binaries Directory Structure .. 117
Figure 16. projects Directory Structure .. 117
Figure 17: host_apps Directory Structure .. 117
Figure 18: target_apps Directory Structure ... 118
Figure 19: Project Directory Example Layout .. 120
Figure 20: src Directory Example Layout .. 120
Figure 21: sdk Directory Structure ... 121
Figure 22: common_project_files Directory Structure ... 122
Figure 23: utilities Directory Structure ... 122
Figure 24: Memory Configurations (0..11) ... 123
Figure 25: Memory Configurations (12..23) ... 123
Figure 26: Custom Profile User Configuration... 152

Tables

Table 1. Bluetooth Low Energy Software API ... 39
Table 2: Callback Functions .. 44
Table 3: Sleep API Functions .. 45
Table 4: Serial Logging API Functions .. 46
Table 5: SPI Flash Memory Devices Directly Supported by the SPI Flash Driver 125

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 13 of 170 © 2022 Renesas Electronics

Table 6: Commands of Currently Supported SPI Flash Memory Devices .. 125

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 14 of 170 © 2022 Renesas Electronics

1 Terms and Definitions

ADC Analog to Digital Converter

AES Advanced Encryption Standard

BLE Bluetooth low energy

BR Basic Rate

DA1458x DA1458x SoC Platform of Product Family of devices, for this document
specifically referring to the DA14580/581/583 devices

CPU Central Processing Unit

EDR Enhanced Data Rate

GAP Generic Access Profile

GATT Generic Attribute Profile

GFSK Gaussian Frequency-Shift Keying

GPIO General Purpose Input/Output

GTL Generic Transport Layer

HCI Host Controller Interface

HW Hardware

I2C Inter Integrated Circuit (interface)

ISM Industrial, Scientific, and Medical (frequency band)

L2CAP Logical Link Control and Adaptation Protocol

LDO Low Drop-Out (regulator)

LL Link Layer

MAC Media Access Control (network address)

NMI Non-Maskable Interrupt

NVDS Non-Volatile Data Storage

OTP One Time Programmable (memory)

PCB Printed Circuit Board

PHY PHYsical layer

RAM Random Access Memory

ROM Read-Only Memory

SDIO Secure Digital Input/Output

SDK Software Development Kit

SIG (Bluetooth) Special Interest Group

SoC System on Chip

SPI Serial Peripheral Interface

SPOTA Software Patching Over the Air

SPOTAR Software Patching Over the Air Receiver

SRAM Static Random Access Memory

SUOTA Software Upgrade Over the Air

SW Software

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

WFI Waiting For Interrupt

WLAN Wireless Local Area Network

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 15 of 170 © 2022 Renesas Electronics

2 References

[1] DA14580 Datasheet, Dialog Semiconductor.

[2] DA14581 Datasheet, Dialog Semiconductor.

[3] DA14583 Datasheet, Dialog Semiconductor.

[4] RW-BLE Host Interface Specification (RW-BLE-HOST-IS), Riviera Waves.

[5] RW-BLE Host Software (RW-BLE-HOST-SW-FS), Riviera Waves.

[6] RealView Development Suite Getting Started Guide, ARM Ltd.

[7] UM-B-048, Getting Started with DA1458x Development Kits - Basic, User manual, Dialog
Semiconductor.

[8] UM-B-049, Getting Started with DA1458x Development Kits - Pro, User manual, Dialog
Semiconductor.

[9] Bluetooth Specification Version 4.1, Bluetooth SIG.

[10] Riviera Waves Kernel (RW-BT-KERNEL-SW-FS), Riviera Waves.

[11] GAP Interface Specification (RW-BLE-GAP-IS), Riviera Waves.

[12] GATT Interface Specification (RW-BLE-GATT-IS), Riviera Waves.

[13] ATTDB Interface Specification (RW-BLE-ATTDB-IS), Riviera Waves.

[14] Proximity Profile Interface Specification (RW-BLE-PRF-PXP-IS), Riviera Waves.

[15] UM-B-050, DA1458x Software Developer’s Guide, User manual, Dialog Semiconductor.

[16] UM-B-008, DA14580_581_583 Production test tool, User manual, Dialog Semiconductor.

[17] UM-B-013, DA14580/581 External processor interface over SPI, User manual, Dialog
Semiconductor.

[18] UM-B-007, DA14580 Software Patching over the Air (SPOTA), User manual, Dialog
Semiconductor.

[19] UM-B-011, DA14580/581 Memory file and scatter file, User manual, Dialog Semiconductor.

[20] UM-B-012, DA14580/581 Creation of a secondary boot loader, User manual, Dialog
Semiconductor.

[21] UM-B-008, DA14580/581 Sleep mode configuration, User manual, Dialog Semiconductor.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 16 of 170 © 2022 Renesas Electronics

3 Introduction

The aim of this document is to serve as a reference to the embedded software developer by
providing at start a practical, high-level comprehension for the Bluetooth low energy standard, then
an overview for the system architecture for the DA1458x System on Chip (SoC) family of integrated
circuit (IC) devices, consisting of the DA14580/581/583 and finally both an outline of the DA1458x
software architecture as well as, an as much as possible complete view of its components and
supporting aspects, including development tool chain and environment.

3.1 Target Audience

This is a document for embedded software developers, also called embedded firmware engineers
that are working on developing applications that use any of the SmartBond™ DA1458x Product
Family of devices which are based on the DA1458x System on Chip (SOC) platform.

Developers that are new to the DA1458x System on Chip (SoC) platform are advised to scan through
the whole of this document in order to get familiar with what is covered herein as well as where
specific information is located. Then the developer can spend some time reading through the initial
sections of this reference.

Experienced embedded firmware engineers after going through the contents and some key chapters,
will be prepared to dive deeper into the SDK and its provided example applications. Then they are
advised to look into detailed technical documentation, in order to have a clearer idea of how
applications can be developed and executed on Dialog’s DA1458x Bluetooth® low energy devices
and how to best utilize the capabilities offered by Dialog’s DA1458x SoC platform.

3.2 How to Use This Document

The emphasis for this document is in being a reference, i.e. that the developer does not need to read
through the whole of this document; the key for the reader is to become familiar with the concepts
described herein, so that during development to be able to use the Software Developer’s Guide, to
get the required results.

Embedded software developers that are new to BLE and/or to Dialog’s DA1458x System on Chip
(SoC) platform are advised to review the contents and then read through from section 3.1 to section
4.8, then section 11 to familiarize with the supported development environment. After that they are
advised to read and use document [15]. In case that someone needs to get a better understanding
and wants to delve deeper to a specific subject, he/she can then come back to this document at the
specific chapter that covers this subject in this reference. For deeper analysis, this reference
document points to even more in-depth technical description in an Appendix or other documents that
covers in much more detail the specific subject.

This reference document does not intent to provide a thorough understanding of Bluetooth low
energy, neither it covers the internals of how its data is organized, or how BLE devices communicate
with each other and the key design decisions and trade-offs that one may need to take when
designing BLE supported designs and applications.

It intends however to provide to the software developer enough understanding to Dialog’s DA1458x
platform high-level APIs approach for both BLE and its peripherals as well as the confidence on how
these enable developing faster and better BLE applications when using the DA1458x SoCs.

Bluetooth low energy technology (BLE) was introduced in 2010 as part of the Bluetooth® version 4.0
Core Specification published by the Bluetooth Special Interest Group (SIG). Starting from Version 4.0
onwards, the Bluetooth standard supports two distinct wireless technology systems: the Bluetooth
low energy and the Basic Rate (BR), often referred as Basic Rate/Enhanced Data Rate (BR/EDR).

During the early stages of Bluetooth low energy design, SIG focused towards developing a low
complexity radio standard with the least possible power consumption, offering low bandwidth
optimization, thus enabling low cost applications. In this context, Bluetooth low energy was designed
to transmit very small packets of data each time, while consuming significantly less power than
similar BR/EDR devices. Moreover, its design also supports efficient implementations having a tight
energy and silicon budget, facilitating applications to operate for an extended period of time using a
single coin cell battery.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 17 of 170 © 2022 Renesas Electronics

Note that the following sections are based on the book "Getting Started with Bluetooth Low Energy"
by Kevin Townsend, Carles Cufí, Akiba, Robert Davidson.

3.3 Device Modes

Devices that support both BLE and BR/EDR are referred as dual-mode devices. Typically, inside the
Bluetooth ecosystem a mobile phone or laptop computer is considered a dual-mode device, unless
specifically stated otherwise. Devices that only support BLE are referred to as single-mode devices.

3.3.1 Single Mode Devices

A Single-mode (BLE or Bluetooth Low Energy) device, is only implementing BLE and is able to
communicate with both single-mode and dual-mode devices, however not with devices only
supporting BR/EDR. BLE support is a must-have for single-mode devices to handle incoming
messages and issue a response.

3.3.2 Dual Mode Devices

A Dual-mode BR/EDR/LE, Bluetooth Low Energy Ready device, implements both BR/EDR and BLE
and is able to communicate with any Bluetooth device.

3.4 Main Building Blocks

In the classic Bluetooth standard, the protocol stack consists of two blocks; the Controller and the
Host. In Bluetooth BR/EDR devices, these two are usually implemented separately. However, more
up-to-date Bluetooth devices include an increased number of building blocks. The main building
blocks that exist in almost every Bluetooth device are the following:

● The Application that uses the Bluetooth protocol stack interface to implement a particular use
case.

● The Host that contains the upper layers of the Bluetooth protocol stack.

● The Controller that contains the lower layers of the Bluetooth protocol stack, including the radio.

Bluetooth specifications also offer a standard communication protocol between the host and the
controller called Host Controller Interface (HCI), which allows interoperability between hosts and
controllers when these are developed by different entities.

3.5 Hardware Configurations

These main building blocks can be implemented in a single integrated circuit (IC) or System on Chip
(SoC) device, or they can be split and executed in more than one ICs that are connected through a
suitable communication interface and protocol (UART, USB, SPI, or other).

3.5.1 Integrated Processor

Most sensor applications tend to use the integrated processor (SoC) hardware configuration as it
drives overall system complexity and associated printed circuit board (PCB) realization costs lower.

3.5.2 External Processor

Powerful computing devices like smartphones and tablets usually opt for the external processor, with
the corresponding HCI protocol which may be either proprietary or standard. This approach also
allows additional BLE connectivity with specialized microcontrollers to be integrated without
modifying the overall design.

Figure 1 shows a comparison between the two approaches when Bluetooth is implemented:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 18 of 170 © 2022 Renesas Electronics

Figure 1: Integrated vs. External Processor BLE Hardware Configurations

3.6 Network Modes

BLE devices use two distinct communication methods, each with certain benefits and limitations:
Broadcasting and Connecting. Both methods follow certain procedures established by the Generic
Access Profile (GAP) as described in Section 3.7.

3.6.1 Broadcasting

When using connectionless broadcasting, a BLE device sends data out to any scanning device or
receiver that is within acceptable listening range. Essentially, this mechanism allows a BLE device to
send data out one-way to anyone or anything that is capable of picking up the transmission.

Broadcasting defines two separate roles:

● Broadcaster: Sends non-connectable advertising packets periodically to anyone willing to receive
them.

● Observer: Repeatedly scans the pre-set frequencies to receive any non-connectable advertising
packets.

Broadcasting is the only way for a device to transmit data to more than one peer at a time. These
broadcasted data are sent out by using the advertising features of BLE.

3.6.2 Connecting

For bi-directional data transmission in BLE a connection needs to be present. A connection in BLE is
nothing more than an established, periodical exchange of data at certain specific points in time
(connection events) between the two BLE peers involved in it. Typically, the data are exchanged only
between the two BLE connection peers, and no other device is involved. Connections define two
separate roles:

● Central (master): Repeatedly scans the pre-set BLE frequencies for connectable advertising
packets and, when suitable, initiates a connection. Once the connection is established, the
central manages the timing and initiates the periodical data exchanges.

● Peripheral (slave): A device that sends connectable advertising packets periodically and accepts
incoming connections. Once in an active connection, the peripheral follows the central’s timing
and exchanges data regularly with it.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 19 of 170 © 2022 Renesas Electronics

For a connection to be initiated, the central device picks up the connectable advertising packets from
a peripheral and then sends a request to the peripheral device to establish an exclusive connection
between the two devices. Once the connection is established, the peripheral stops advertising and
the two devices can begin exchanging data in both directions. Although the central is the device that
manages the connection establishment, data can be sent independently by either device during each
connection event, and the roles do not impose restrictions in data throughput or priority. It is therefore
possible for a device to act as a central and a peripheral at the same time, for a central device to be
connected to multiple peripherals as well as for a peripheral device to be connected to multiple
centrals.

Connections provide the ability to organize the data with much finer-grained control over each field or
property through the use of additional protocol layers and, more specifically, the Generic Attribute
Profile (GATT). Data are organized around units called services and characteristics. Moreover,
connections allow for higher throughput and have the ability to establish a secure encrypted link, as
well as negotiation of connection parameters to fit the data model.

A BLE device can have multiple services and characteristics, organized in a meaningful structure.
Services can contain multiple characteristics, each with their own access rights and descriptive
metadata.

3.7 Profiles

The Bluetooth specification clearly separates the concept of Protocol and Profile. This distinction is
made due to the different purposes each concept serves and the overall specifications are divided
into:

● Protocols: They are the building blocks used by all devices conformant to the Bluetooth
specification; protocols are essentially forming the layers that implement the different packet
formats, routing, multiplexing, encoding, and decoding that allow data to be sent effectively
between peers.

● Profiles: Which are vertical slices of functionality defining either basic modes of operation
required by all devices (such as the Generic Access Profile and the Generic Attribute Profile) or
specific use cases (Proximity Profile, Glucose Profile); profiles essentially specify how protocols
should be used to achieve a particular objective, whether generic or specific.

3.7.1 Generic Profiles

Generic profiles are defined by the Bluetooth specification and two of them are fundamental as they
ensure the interoperability between BLE devices from different vendors:

● Generic Access Profile (GAP): Specifies the usage model of the lower-level radio protocols to
define roles, procedures, and modes that allow devices to broadcast data, discover devices,
establish connections, manage connections, and negotiate security levels; GAP is essentially, the
uppermost control layer of BLE. This profile is mandatory for all BLE devices, and all must
comply with it.

● Generic Attribute Profile (GATT): Addresses data exchanges in BLE and specifies the basic data
model and procedures to allow devices to discover, read, write, and push data elements between
them. It is basically, the topmost data layer of BLE.

GAP and GATT are so fundamental to BLE that they are often used as the base for the provision of
application programming interfaces (APIs) that act as the entry point for the application to interact
with the protocol stack.

3.7.2 Use-Case-Specific Profiles

Use-case-specific profiles are usually limited to GATT-based profiles. Largely all of these profiles use
the procedures and operating models of the GATT profile as a base building block for all further
extensions. However, in version 4.1 of the specification, Logical Link Control and Adaptation Protocol
(L2CAP) connection-oriented channels have been introduced, which indicates that GATT-less
profiles are also possible.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 20 of 170 © 2022 Renesas Electronics

3.7.2.1 SIG-Defined GATT-Based Profiles

The Bluetooth SIG further to providing a solid reference framework for the control and data layers of
devices involved in a BLE network, it also provides a predefined set of use-case profiles based on
GATT, that completely cover all procedures and data formats required to implement a wide range of
specific use cases, like the following:

● Find Me Profile: It allows devices to physically locate other devices (for example using a
smartphone to find a BLE enabled keyring, or vice versa).

● Proximity Profile: It detects the presence or absence of nearby devices (beep if an item is
forgotten when leaving an area like a room).

● HID over GATT Profile: It transfers Human Interface Device (HID) data over BLE (for keyboards,
mice, remote controls).

● Glucose Profile: It securely transfers glucose levels over BLE.

● Health Thermometer Profile: It transfers body temperature readings over BLE.

The Bluetooth SIG’s Specification in its Adopted Documents page provides a full list of SIG-approved
profiles (more information at https://www.bluetooth.com/specifications/adopted-specifications). A
developer can also browse directly the list of all currently adopted services for the Bluetooth services
and characteristics at the Bluetooth Developer Portal.

3.7.2.2 Vendor-Specific Profiles

Vendors are allowed by the Bluetooth specification to define their own profiles for use cases that are
not covered by the SIG-defined profiles. Those profiles can be kept private to the two peers involved
in a particular use case (for example, a new sensor accessory and a smartphone application), or they
can also be published by the vendor so that other parties can provide implementations of the profile
based on the vendor-supplied specification. An example of a published vendor-specific profile is
Apple’s iBeacon.

3.7.3 Generic Access Profile Layer

The Generic Access Profile (GAP) layer is responsible for the overall connection functionality; it
handles the device’s access modes and procedures including device discovery, directly interfacing
with the application and/or profiles, and handling device discovery and connection-related services
for the device. In addition, GAP takes care the initiation of security features.

Essentially, GAP can be considered as the BLE topmost control layer, given that it specifies how
devices perform control procedures such as device discovery and secure connection establishment,
in order to ensure interoperability thus allowing data exchange between devices from different
vendors.

GAP specifies four roles that a device can adopt in a BLE network:

● Broadcaster: The device is advertising with specific data, letting any initiating devices know for
example that it is a connectable device. This advertisement contains the device address and
optionally additional data such as the device name.

● Observer: The scanning device, upon receiving the advertisement, sends a “scan request” to the
advertiser. The advertiser responds with a “scan response”. This is the process of device
discovery, after which the scanning device is aware of the presence of the advertising device,
and knows that it is possible to establish a connection with it.

● Central: When initiating a connection, the central must specify a peer device address to connect
to. If an Advertisement is received matching the peer device’s address, the central device will
then send out a request to establish a connection (link) with the advertising device having the
particular connection parameters.

● Peripheral: Once a connection is established, the device will function as a slave if it was the
advertiser and as master if it was the initiator.

Fundamentally, GAP establishes different sets of rules and concepts that regulate and standardize
the low-level operation of devices, in particular:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 21 of 170 © 2022 Renesas Electronics

● The roles and interaction between them.

● The operational modes and transitions across those devices.

● The operational procedures to achieve consistent and interoperable communication.

● All security aspects, including security modes and procedures.

● Additional data formats for non-protocol data.

3.7.4 Generic Attribute Profile Layer

The Generic Attribute Profile (GATT) layer is a service framework that defines all sub-procedures for
using the Attribute Protocol (ATT). It describes in full detail how profile and user data is to be
exchanged over a BLE connection. In contrast to GAP which defines the low-level interactions with
devices, GATT deals only with actual data transfer procedures and formats.

GATT also provides the reference framework for all of the GATT-based profiles as defined by SIG.
Effectively by covering the precise use cases for the profiles, it ensures interoperability between
devices from different vendors; all the standard BLE profiles are therefore based on GATT and must
comply with it to operate correctly, which makes GATT a key section of the BLE specification, since
every data collection that is relevant to applications and users must be formatted, packed, and
transmitted according to its rules.

GATT defines two roles for the interacting BLE devices:

● Client: It sends requests to a server, receives responses and potentially server initiated updates
as well. The GATT client does not know anything in advance about the server’s attributes, so it
must first inquire the presence and nature of those attributes by performing service discovery.
After completing service discovery, it starts reading and writing attributes found in the server, as
well as receiving server-initiated updates. It corresponds to the ATT client.

● Server: It receives requests from a client and issues responses. It also sends server-initiated
updates when configured to do so, and it is the role responsible for storing and making the user
data available to the client, organized in attributes. Every BLE device sold must include at least a
basic GATT server that can respond to client requests, even if only to return an error response. It
corresponds to the ATT server.

It is worth mentioning once again that GATT and GAP roles are completely independent yet
concurrently compatible to each other. For instance, it is possible for both a GAP central and a GAP
peripheral to act as a GATT client or server, or even both at the same time.

GATT uses ATT as a transport protocol for data exchange between devices. This data is organized
hierarchically in sections called services, which group conceptually related pieces of user data called
characteristics.

3.8 Protocol Stack

Similar to all Bluetooth devices from architectural point of view, a single-mode BLE device is divided
into three blocks: controller, host, and application. Each of these basic building blocks is consists of
several layers which make the device operational, tightly integrated in the so-called Protocol Stack,
presented in Figure 2:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 22 of 170 © 2022 Renesas Electronics

Figure 2: BLE Protocol Stack Layers

The following sections provide a description of the aforementioned building blocks along with the
layers each one encompasses.

3.9 Controller

The Controller includes all the lower level functionality necessary for a BLE device to communicate; it
is comprised by the Physical Layer (PHY), the Link Layer (LL) and the controller side of the Host
Controller Interface (HCI).

3.9.1 Physical Layer (PHY)

In the Physical Layer (PHY) a key block among others is the 1 Mbps adaptive frequency-hopping
Gaussian Frequency-Shift Keying (GFSK) radio that is operating in the unlicensed 2.4 GHz
Industrial, Scientific, and Medical (ISM) band.

3.9.2 Link Layer (LL)

The Link Layer (LL) directly interfaces with the PHY; it is the hard real-time constrained layer of the
protocol stack as it has to comply with all the timing requirements defined in the specification. Given
that many of the calculations performed by the LL are computationally expensive, automated
functions are usually implemented in hardware to avoid overloading the Central Processing Unit
(CPU) that runs all software layers in the stack, therefore the LL implementation comes through a
combination of custom hardware and software .The functionality provided by LL usually includes
Preamble, Access Address, and air protocol framing, CRC generation and verification, data
whitening, random number generation and AES encryption and is usually kept isolated from the
higher layers of the protocol stack by an interface that hides this complexity and its real-time
requirements.

The LL principally controls the Radio Frequency (RF) state of the device and manages the link state
of the radio which is how the device connects to other devices. A BLE device can be a master, a
slave, or both depending on the use case and the corresponding requirements. A master is able to
connect to multiple slaves and a slave can be connected to multiple masters. Typically, devices such
as smartphones or tablets tend to act as a master, while smaller, simpler, and memory-constrained
devices such as standalone sensors generally adopt the slave role. A device can only be in one of
the following five states: standby, advertising, scanning, initiating, or connected as shown in Figure 3:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 23 of 170 © 2022 Renesas Electronics

Figure 3: Link Layer States

Advertisers transmit data without being connected, while scanners listen for advertisers. An initiator
is a device that is responding to an advertiser with a connection request. If the advertiser accepts,
both the advertiser and initiator will enter a connected state. When a device is in a connection state,
it will be connected in one of two roles: master or slave. Typically, devices that initiate connections
will be masters and devices that advertise their availability and accept connections will be slaves.
Therefore, the Link Layer defines the following roles:

● Advertiser: A device sending advertising packets.

● Scanner: A device scanning for advertising packets.

● Master: A device that initiates a connection (initiator) and manages it later.

● Slave: A device that accepts a connection request and follows the master’s timing.

These roles can be logically grouped into two pairs: advertiser and scanner (when not in an active
connection) and master and slave (when in a connection).

3.9.2.1 Bluetooth Device Address

The Bluetooth device address is the primary identifier of a Bluetooth device, similar to what an
Ethernet Media Access Control (MAC) address is for network devices. It is a 48-bit (6-byte) number
that uniquely identifies a device among peers. There are two types of device addresses, and a
device is possible to obtain one or both types:

Public device address

This is the equivalent to a fixed, factory-programmed device address as used in BR/EDR devices as
well. It has to be registered with the Institute of Electrical and Electronics Engineers (IEEE)
Registration Authority and should never change throughout the device’s lifetime.

Random device address

This address can either be preprogrammed or dynamically generated at runtime on the device. There
are numerous use cases in which such addresses are useful in BLE.

3.9.2.2 Advertising and Scanning

The BLE specification allows only one packet format and two types of packets, advertising and data.

Advertising packets are used for two purposes, in particular to:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 24 of 170 © 2022 Renesas Electronics

○ broadcast data for applications that do not need the overhead of a full connection
establishment

○ discover slaves and connect with them

Data packets are used for user data transport between the master and the slave devices, in a bi-
directional manner.

Finally, the Link Layer acts as a reliable data bearer since all received packets are checked against a
24-bit Cyclic Redundancy Check (CRC) and retransmissions are scheduled when the error checking
mechanism detects a transmission failure. Since there is no pre-defined retransmission upper bound,
the Link Layer will continuously resent the packet until it is finally acknowledged by the receiver.

3.9.3 Host Controller Interface – Controller side

The Host Controller Interface (HCI) interface at the Controller side, provides a mean of
communication to the host via a standardized interface; the Bluetooth specification defines HCI as a
set of commands and events for the host and the controller to interact with each other, along with a
data packet format and a set of rules for flow control and other procedures. Additionally, the spec
defines several transports, each of which augments the HCI protocol for a specific physical transport
(UART, USB, SDIO, etc.).

3.10 Host

The Host block consists of a set of layers, each with specific role and functionality, the cooperation of
which makes the overall block operational. As shown in Figure 2 these layers are the Logical Link
Control and Adaptation Protocol (L2CAP), the Attribute Protocol (ATT), the Security Manager (SM)
and finally the Generic Attribute Profile (GATT) and Generic Access Profile (GAP).

3.10.1 Host Controller Interface – Host Side

The HCI interface at the Host side provides a mean of communication to the controller via a
standardized interface. Similar to the Controller Side HCI, this layer can be implemented either
through a software API, or over a hardware interface such as UART or SPI.

3.10.2 Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) layer provides data encapsulation
services to the upper layers, thus allowing logical end-to-end communication using data transfer.
Essentially, it serves as a protocol multiplexer that takes multiple protocols from the upper layers and
encapsulates them into the standard BLE packet format and vice versa. L2CAP is also responsible
for package fragmentation and reassembly. During this process large packets originating from the
upper layers of the transmitting side are fitted into the 27-byte maximum payload size of the BLE
packets. The reverse process takes place in the receiving end, where the fragmented large upper
layer packets are reassembled by multiple small BLE packets and transmitted upstream towards the
appropriate upper level entity.

The L2CAP layer is in charge of routing two main protocols: the Attribute Protocol (ATT) and the
Security Manager Protocol (SMP). Moreover, L2CAP can create its own user-defined channels for
high-throughput data transfer, a feature called LE Credit Based Flow Control Mode.

3.10.3 Attribute Protocol

The ATT layer enables a BLE device to provide certain pieces of data, known as attributes, to
another BLE device. In the context of ATT, the device exposing attributes is referred to as the server,
and the peer device interested and working with these attributes is referred to as the client. The Link
Layer state (master or slave) of the device is independent from the ATT role of the device. For
example, a master device may either be an ATT server or an ATT client, while a slave device may
also be either an ATT server or an ATT client. It is also possible for a device to be both an ATT
server and an ATT client simultaneously.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 25 of 170 © 2022 Renesas Electronics

Essentially ATT is a simple client/server stateless protocol based on the attributes presented by a
device. A client requests data from a server, and a server sends data to clients. The protocol is strict
meaning that in case of a pending request, (i.e. no response yet received for an already issued
request), no further requests can be submitted until the response is received and processed. This
applies to both directions independently in the case where two peers are acting both as a client and
server.

Each ATT server contains data organized in the form of attributes, each of which is assigned a 16-bit
attribute handle, called Universally Unique Identifier (UUID), a set of permissions, and finally a value.
Effectively, the attribute handle is a mere identifier used to access an attribute value. The UUID
specifies the type and nature of the data contained in the value. When a client wants to read or write
attribute values from or to a server, it issues a read or write request to the server using the attribute
handle. The server will respond with the attribute value or an acknowledgement. In the case of a read
operation, it is up to the client to parse the value and understand the data type based on the UUID of
the attribute. On the other hand, during a write operation, the client is expected to provide data that is
consistent with the attribute type and the server is free to reject the operation if that is not the case.

3.10.4 Security Manager

The Security Manager (SM) layer defines the means for pairing and key distribution and provides
functions for the other layers of the protocol stack to securely connect and exchange data with
another BLE device. It includes both a protocol and a series of security algorithms that are designed
to provide the BLE protocol stack with the ability to generate and exchange security keys to allow the
peers, to communicate securely over an encrypted link, to trust the identity of the remote device, and
if required, to hide the public Bluetooth Address. It defines two roles:

● Initiator: Always corresponds to the Link Layer master

● Responder: Always corresponds to the Link Layer slave

Moreover, it provides support for the following three procedures:

● Pairing: The procedure by which a security encryption key is generated and manipulated in order
for the device to be able to switch to a secure, encrypted link. This key is temporary and not
stored or available for subsequent connections.

● Bonding: A sequence of pairing followed by the generation and exchange of permanent security
keys, typically stored in non-volatile memory and therefore allowing the creation of a permanent
bond between two devices, which will allow them to quickly set up a secure link in subsequent
connections without having to perform a bonding procedure again.

● Encryption Reestablishment: After a bonding procedure is complete, keys might have been
stored on both sides of the connection. If encryption keys have been stored, this procedure
defines how to use those keys in subsequent connections to re-establish a secure, encrypted
connection without having to go through the pairing (or bonding) procedure again.

Pairing can therefore create a secure link that will only last for the lifetime of the connection, whereas
bonding actually creates a permanent association (also called bond) in the form of shared security
keys that will be used in later connections until either side decides to delete them. Certain
documentation and APIs sometimes use the term pairing with bonding instead of simply bonding,
since a bonding procedure always includes a pairing phase before.

Although it is always up to the initiator to trigger the beginning for a specific security procedure, the
responder can asynchronously request the start of any of the procedures as listed above. There are
no guarantees however for the responder that the initiator will actually adhere to the request,
rendering this to more of an optional rather than a binding request. This security request can logically
be issued only by the slave or the peripheral end of the connection.

3.10.5 Application

The application, like in all other types of systems, is at the highest layer and the one responsible for
containing the logic, user interface, and data handling of everything related to the actual use-case
that the application implements. The architecture of an application is highly dependent on each
particular implementation and in BLE it typically uses the capabilities provided by the BLE profiles.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 26 of 170 © 2022 Renesas Electronics

3.11 DA1458x System on Chip Platform

3.11.1 Overview

Dialog’s SmartBond™ DA1458x Product Family is based on the DA1458x System on Chip Platform.
The DA1458x platform includes a number of blocks as shown in Figure 4.

Figure 4: DA1458x System on Chip Platform Main Blocks

In the following sections a brief overview of the platform’s main building blocks is provided; for
detailed information please refer to the specific device datasheet.

3.11.2 ARM Cortex-M0 CPU

The ARM Cortex-M0 processor is a 32-bit Reduced Instruction Set Computing (RISC) processor with
a von Neumann architecture (single bus interface). It uses an instruction set called Thumb, which
was first introduced and supported in the ARM7TDMI processor; however, several newer instructions
from the ARMv6 architecture as well as a few instructions from the Thumb-2 technology are also
included. Thumb-2 technology extended the previous Thumb instruction set to allow all operations to
be carried out in one CPU state. The instruction set in Thumb-2 includes both 16-bit and 32-bit
instructions; most instructions generated by the C compiler use the 16-bit instructions, and the 32-bit
instructions are used when the 16-bit version cannot carry out the required operations. This results in
high code density and avoids the overhead of switching between two instruction sets. In total, the
Cortex-M0 processor supports only 56 base instructions, although some instructions can have more
than one form. Although the instruction set is small, the Cortex-M0 processor is highly capable
because the Thumb instruction set is highly optimized. Academically, the Cortex-M0 processor is
classified as load-store architecture, as it has separate instructions for reading and writing to
memory, and instructions for arithmetic or logical operations that use registers.

3.11.2.1 Features

● Thumb instruction set. Highly efficient, high code density and able to execute all Thumb
instructions from the ARM7TDMI processor.

● High performance. Up to 0.9 DMIPS/MHz (Dhrystone 2.1) with fast multiplier.

● Built-in Nested Vectored Interrupt Controller (NVIC). This makes interrupt configuration and
coding of exception handlers easy. When an interrupt request is taken, the corresponding

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 27 of 170 © 2022 Renesas Electronics

interrupt handler is executed automatically without the need to determine the exception vector in
software.

● Interrupts can have four different programmable priority levels. The NVIC automatically handles
nested interrupts.

● The design is configured to respond to exceptions (e.g. interrupts) as soon as possible (minimum
16 clock cycles).

● Non-maskable interrupt (NMI) input for safety critical systems.

● Easy to use and C friendly. There are only two modes (Thread mode and Handler mode). The
whole application, including exception handlers, can be written in C without any assembler.

● Built-in System Tick timer for OS support. A 24-bit timer with a dedicated exception type is
included in the architecture, which the OS can use as a tick timer or as a general timer in other
applications without an OS.

● SuperVisor Call (SVC) instruction with a dedicated SVC exception and PendSV (Pendable
SuperVisor service) to support various operations in an embedded OS.

● Architecturally defined sleep modes and instructions to enter sleep. The sleep features allow
power consumption to be reduced dramatically. Defining sleep modes as an architectural feature
makes porting of software easier because sleep is entered by a specific instruction rather than
implementation defined control registers.

● Fault handling exception to catch various sources of errors in the system.

● Support for 24 interrupts.

● Little endian memory support.

● Wake up Interrupt Controller (WIC) to allow the processor to be powered down during sleep,
while still allowing interrupt sources to wake up the system.

● Halt mode debug. Allows the processor activity to stop completely so that register values can be
accessed and modified. No overhead in code size and stack memory size.

● CoreSight technology. Allows memories and peripherals to be accessed from the debugger
without halting the processor.

● Supports Serial Wire Debug (SWD) connections. The serial wire debug protocol can handle the
same debug features as the JTAG, but it only requires two wires and is already supported by a
number of debug solutions from various tools vendors.

● Four (4) hardware breakpoints and two (2) watch points.

● Breakpoint instruction support for an unlimited number of software breakpoints.

● Programmer’s model similar to the ARM7TDMI processor.

● Most existing Thumb code for the ARM7TDMI processor can be reused. This also makes it easy
for ARM7TDMI users, as there is no need to learn a new instruction set.

3.11.3 Memory

The DA1458x SoC platform includes the following internal memory blocks. ROM, OTP, System
SRAM, and Retention RAM.

3.11.3.1 ROM

This is an 84 kB ROM containing the Bluetooth Low Energy protocol stack as well as the boot code
sequence.

3.11.3.2 OTP

This is a 32 kB One-Time Programmable memory array, used to store the application code as well as
Bluetooth Low Energy profiles. It also contains the system configuration and calibration data.

3.11.3.3 System SRAM

This is a 42 kB system SRAM (Sys-RAM) which is primarily used for mirroring the program code from
the OTP when the system wakes/powers up. It also serves as Data RAM for intermediate variables

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 28 of 170 © 2022 Renesas Electronics

and various data that the protocol requires. Optionally, it can be used also as extra memory space for
the BLE TX and RX data structures.

3.11.3.4 Retention RAM

These are 4 special low leakage SRAM cells (2 kB + 2 kB + 3 kB + 1 kB) used to store various data
of the Bluetooth Low Energy protocol as well as the system’s global variables and processor stack
when the system goes into Deep Sleep mode. Storage of this data ensures secure and quick
configuration of the BLE Core after the system wakes up. Every cell can be powered on or off
according to the application needs for retention area when in Deep Sleep mode

3.11.4 BLE Core and Radio Transceiver

The Radio Transceiver implements the RF part of the Bluetooth Low Energy protocol. Together with
the Bluetooth 4.1 PHY layer, this provides a 93 dB RF link budget for reliable wireless
communication. All RF blocks are supplied by on-chip low-drop out-regulators (LDOs). The bias
scheme is programmable per block and optimized for minimum power consumption. The Bluetooth
LE radio comprises the Receiver, Transmitter, Synthesizer, Rx/Tx combiner block, and Biasing
LDOs.

3.11.4.1 Features

● Single ended RFIO interface, 50 matched.

● Alignment free operation.

● -93 dBm receiver sensitivity.

● 0 dBm transmit output power.

● Ultra-low power consumption.

● Fast frequency tuning minimizes overhead.

3.11.5 Peripheral Interfaces

The platform supports a number of peripheral interfaces, namely UARTs, SPI+, I2C, ADC,
Quadrature decoder and Keyboard controller over multiplexed GPIOs.

Drivers are provided for each interface to provide an easier-to-use experience towards the hardware
blocks as the developer does not have to interact with the register programming directly.

On top of the these core interface drivers, a number of sample example drivers enabling
communication with commonly used Bluetooth Low Energy application components like
accelerometers, Flash/EEPROM non-volatile memories, etc. are also provided.

The following sections briefly describe these interfaces.

3.11.5.1 UARTs

The UARTs are compliant to the industry-standard 16550 and can be used for serial communication
with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master
(CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the
destination device. Serial data is also received by the UART and stored for the master (CPU) to read
back. There is no DMA support on the UART block as it contains internal FIFOs. Both UARTs
support hardware flow control signals (RTS, CTS, DTR, DSR).

3.11.5.2 SPI+

A subset of the Serial Peripheral Interface (SPI) is supported and as serial interface it can transmit
and receive 8, 16 or 32 bits in master/slave mode and transmit 9 bits in master mode. The SPI+
interface has enhanced functionality with bidirectional 2x16-bit word FIFOs.

SPI™ is a trademark of Motorola, Inc.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 29 of 170 © 2022 Renesas Electronics

3.11.5.3 I2C

The I2C interface is a programmable control bus that provides support for the communications link
between Integrated circuits in a system. It is a simple two-wire bus with a software-defined protocol
for system control, which is used in temperature sensors and voltage level translators to EEPROMs,
general-purpose I/O, A/D and D/A converters.

3.11.5.4 ADC

The DA1458x platform includes a high-speed ultra-low power 10-bit general purpose Analog-to-
Digital Converter (GPADC). It can operate in unipolar (single ended) mode as well as in bipolar
(differential) mode. The ADC has its own voltage regulator (LDO) of 1.2 V, which represents the full
scale reference voltage.

A conversion has two phases: the sampling phase and the conversion phase. When bit
GP_ADC_CTRL_REG[GP_ADC_EN] is set to ‘1’, the ADC continuously tracks (samples) the
selected input voltage. Writing a '1' at bit GP_ADC_CTRL_REG[GP_ADC_START] ends the
sampling phase and triggers the conversion phase. When the conversion is ready the ADC resets bit
GP_ADC_START and returns to the sampling phase. The conversion itself is fast and takes about
one clock cycle of 16 MHz, though the data handling will require several additional clock cycles
depending on the software code style. The fastest code can handle the data in four clock cycles of 16
MHz, resulting to a highest sampling rate of 16 MHz/5 = 3.3 Msample/s.

3.11.5.5 Quadrature Decoder

This block decodes the pulse trains from a rotary encoder to provide the step and the direction of the
movement of an external device. Three axes (X, Y, Z) are supported. The integrated quadrature
decoder can automatically decode the signals for the X, Y and Z axes of a HID input device,
reporting step count and direction: the channels are expected to provide a pulse train with 90
degrees phase difference; depending on whether the reference channel is leading or lagging, the
direction can be determined This block can be used for waking up the chip as soon as there is any
kind of movement from the external device connected to it.

3.11.5.6 Keyboard Controller

The Keyboard controller can be used for debouncing the incoming GPIO signals when implementing
a keyboard scanning engine. It generates an interrupt to the CPU (KEYBR_IRQ). In parallel, five
extra interrupt lines can be triggered by a state change on a number of selectable GPIOs
(GPIOx_IRQ) as determined by the device package.

3.11.6 Timers

The platform supports general purpose, wake up and a watchdog timer.

3.11.6.1 General Purpose Timers

The Timer block contains 2 timer modules that are software controlled, programmable and can be
used for various tasks.

Timer 0 is a 16-bit general purpose timer with the ability to generate 2 Pulse Width Modulated signals
(PWM0 and PWM1) that have common programming).

Timer 2 is a 14-bit general purpose timer, with the ability to generate 3 Pulse Width Modulated
signals (PWM2, PWM3 and PWM4).

3.11.6.2 Wake-Up Timer

The Wake-up timer can be programmed to wake up the DA1458x device from power down mode
after a preprogrammed number of GPIO events. It features monitoring for GPIO state change, while
implementing debouncing time from 0 ms up to 63 ms. It accumulates external events and compares
their number to a programmed value, and generates an interrupt to the CPU.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 30 of 170 © 2022 Renesas Electronics

3.11.6.3 Watchdog Timer

The Watchdog timer is an 8-bit timer with sign bit that can be used to detect an unexpected
execution sequence caused by a software run-away and can generate a full system reset or a Non-
Maskable Interrupt (NMI).

3.11.7 Clock and Reset

The clock is supported by a Digital Controlled Xtal Oscillator (DXCO), a Pierce configured type of
oscillator designed for low power consumption and high stability. There are two such crystal
oscillators in the system, one at 16 MHz (XTAL16M) and a second at 32.768 kHz (XTAL32K).

Moreover, the DA1458x platform comprises an RST (reset) pad which is active high. It contains an

RC filter for spikes suppression and the typical latency of the RST pad is in the range of 2 s.

3.11.8 Power Management (PMU)

The DA1458x platform has a complete power management function integrated with a Buck DC-DC
converter and separate LDOs for the different power domains of the system.

3.11.9 SmartBond™ DA1458x Product Family Devices

The SmartBond™ DA1458x Product Family devices that are based on the DA1458x System on Chip
family, are the following: DA14580, DA14581, and DA14583.

3.11.9.1 DA14580

The world’s smallest, lowest power and most integrated Bluetooth Low Energy solution. It gives the
developer the freedom to develop efficient Bluetooth 4.1 applications with the longest battery
lifetimes as it offers world leading power consumption figures drawing just 4.9 mA at transmission
and reception, effectively supporting much longer battery lifetime. Moreover, it can run from voltages
as low as 0.9 V, making it ideal for running from single-cell or Zinc-air batteries.

3.11.9.2 DA14581

The world’s smallest, lowest power and most integrated Bluetooth Low Energy solution for A4WP
wireless charging and HCI applications. Offering fast boot time for the Power Receiving Unit (PRU)
and eight connections for the Power Transmitting Unit (PTU) make the DA14581 a perfect solution
for A4WP applications. The optimized code for HCI, which fits into the DA14581’s OTP memory,
enables developers to create a preprogrammed HCI device.

3.11.9.3 DA14583

Adding Flash support the DA14583 device is the most flexible and lowest power Bluetooth Low
Energy solution, as it combines the benefits of the lowest power, smallest size and lowest system
cost Bluetooth Low Energy System-on-Chip with an integrated Flash memory. This offers you to the
developer the flexibility of Software Upgrades Over The Air (SUOTA), enabling devices that are up-
to-date in the field.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 31 of 170 © 2022 Renesas Electronics

4 DA1458x Software Platform Overview

In this section an overview description of the overall platform including the software architecture that
supports the DA1458x SoC Platform is provided. A diagram of the overall software architecture
providing a visual overview of the various layers of software involved is given in Figure 5. The
following paragraphs of this document provide a high level description of the functionality provided by
each layer and the APIs that each layer exposes to the application programmer.

SDK
Application

User
Application

GATT
Services

GATT Clients

Profiles

GATT

Host

GAPGAPMGAPC

L2CAP

SMP

GAP

prf utils

S/W BLE Controller

ATT

Peripheral & Radio
Drivers

Kernel

Main loop &
System Software

LL Manager

ATTDB

Figure 5: Software Architecture

4.1 System Software and Main Loop

At system start up the main function initializes the system and gets into the main loop. The key
concept is simple. Check if the BLE is active and if it is provide CPU time to the kernel scheduler to
process all pending messages and events. Inquire then the user application if it has non-message
related tasks to perform. If both kernel and user application have nothing more to execute, transition
quickly into low power mode and wait for an interrupt to start again. The main loop is not indented to
be altered by the user application.

A set of callbacks are provided by which the application gets notified about the state of the main loop.
We often use the term asynchronous execution for these callbacks to distinguish them from other
events and callbacks that are generated from within the kernel scheduler, which we refer to as
synchronous execution. The application can partially control the main loop with the return value of
the callbacks or by setting the sleep settings accordingly. It is important to understand here, that the
Kernel scheduler is called from within the main loop when the BLE is active. If we do not grant control
back to the main loop or if the BLE is inactive, the processing of the kernel messages will be delayed.

4.2 Peripheral and Radio Drivers

The system software incorporates a number of drivers for the peripheral devices, the radio and some
hardware specific blocks of the BLE. Application programmers are able to use the peripheral drivers,
however the rest of the drivers are to be used only by the kernel and BLE controller software.

4.3 Real Time Kernel

The DA1458x software platform utilizes a small and efficient Real Time Kernel licensed from Riviera
Waves. Almost the complete BLE Stack and most of the application makes use of the services

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 32 of 170 © 2022 Renesas Electronics

offered by the Real Time Kernel. The kernel offers task, message, events and dynamic memory
capabilities. The tasks communicate with messages which are pushed in a queue whenever a task is
trying to send a message to another task. Timers and other hardware events also push events in a
queue. Whenever the kernel scheduler is called from the main loop it pops messages and events out
of the queues according to their priority and invokes the relevant handler, triggering the execution of
the different tasks. The execution continues until the queues are empty.

4.4 Bluetooth Low Energy Software

The BLE software implements the Bluetooth® Low Energy protocol as specified in Version 4.1 of the
Bluetooth® standard and is fully compliant with this standard. It is a single-mode BLE implementation,
therefore there is no support for the Basic Rate / Enhanced Data Rate protocol (BR/EDR).

The basic parts of the BLE software consists of the Host and Controller related software.

Each layer (ATT, GATT, GAP etc.) of the stack is instantiated as multiple different tasks. The radio
events are captured by the drivers and fed to the low level software of the BLE controller. The event
handlers spawn messages that trigger the protocol layers. If user action or user notification is
required this sequence of messages will dispatch messages to the application or profile task. On the
reverse direction, if the user application wants to perform a specific operation it dispatches messages
to the lower layers, beginning a sequence of messages that may reach, depending to the operation,
the BLE controller and the radio.

On top of the Host, a library of ready to use profiles and some profile utilities are provided to simplify
application development. Programmers should interface to the profile, GATT and GAP modules to
perform all of the functionality required by a BLE application.

4.5 Application Software

Although the message API provided is powerful and complete it poses some restrictions on how fast
and how easy one can build an application. To address this issue in the software release 5.0.x we
introduce a new layer depicted as SDK Application, which collects part of the common functionality
required to build an application in a library exposing a number of APIs and helper functions. Care has
been taken to hide the task management and message management as much as possible from the
user and provide a function/callback-like API.

4.6 Memory Organization

To achieve minimum power consumption the DA1458x contains different type of memories each
suited better for certain operations. The DA1458x SoC platform contains an embedded 32 kB One-
Time-Programmable (OTP) memory for storing the application code and the Bluetooth profiles used.
In this, the last bytes of the OTP are used to store configuration and calibration data. 1458x also
supports storing the application in external non-volatile memories such as serial flashes or eeprom
devices. The protocol stack and the kernel are stored in a dedicated ROM. Application runs on a
42kB System RAM. Application code and data are copied from

Also available is a Low leakage Retention RAM used to store sensitive data and connection
information while in Deep Sleep mode.

The memory block sizes are listed below:

● 84 kB ROM. Contains Boot ROM code and Bluetooth Low Energy protocol related code.

● 32 kB One-Time-Programmable (OTP). At power up or reset of the DA1458x, the primary boot
code (ROM code) checks if the OTP memory is programmed and if it is, it proceeds with
mirroring the OTP contents to System RAM and it programs execution.

● 128 kB Flash (DA14583 only). At power up or reset of the DA14583, the primary boot code (ROM
code) loads the secondary Bootloader (from OTP memory or FLASH) and the Secondary
Bootloader proceeds with copying the FLASH image to System RAM and it programs execution

● 42 kB System SRAM.

● 8 kB Retention SRAM

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 33 of 170 © 2022 Renesas Electronics

4.7 Supported Hardware Configurations

4.7.1 Integrated Processor

The straightforward approach to develop application with the DA1458x family is the integrated
processor configuration. All SW components, lower layers (controller), higher layers (host), profiles
and the complete application run on the DA14580/581/583 as a single chip solution. This
configuration is well suited for many low to mid complexity applications. Please check the complete
list of reference designs provided by Dialog on the Customer Support site to understand the
complexity of the applications that can be supported.

Profiles

Host

S/W BLE Controller

Peripheral & Radio
Drivers

Kernel

Main loop & System
Software

Application

DA1458x

Figure 6: Integrated Processor HW Configuration

4.7.2 External Processor

In cases where an external processor is present or in mid and high complexity applications, the
DA1458x can be used as a BLE interface controlled from an external processor via a proprietary
protocol called Generic Transport Layer (GTL). The DA1458x can accommodate the link layer, the
host protocols and the profiles and the external processor will implement the application functionality.
The two components will communicate via GTL over a serial link which can be either UART or SPI.
More information on the external processor configuration as well as an example application can be
found in Ref. [17].

http://www.dialog-semiconductor.com/support

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 34 of 170 © 2022 Renesas Electronics

Profiles

Host

S/W BLE Controller

Peripheral & Radio
Drivers

Kernel

Main loop & System
Software

Generic Host Controller Interface (GTL)

DA1458x

External MCU

GTL over UART/SPI

Customer Application

Generic Host Controller Interface (GTL)

Figure 7: External Processor HW Configuration

4.8 Development Environment

The 5.x series software platform enables development via a Software Development Kit (SDK) that is
supported by a number of other tools which aim at assisting the designers and programmers develop
new application for the DA1458x family of devices. The projects are based on and supported by the
ARM Keil µVision IDE/Debugger, ARM C/C++ Compiler, and essential middleware components, Keil
IDE and the Keil build tools. The DA1458x can be interfaced with ARM Segger JTAG cables
something that is fully supported by the Keil environment.

To assist with the quick evaluation and programming of the DA1458x chip, Dialog provides a power
full graphical tool called SmartSnippets Toolbox. SmartSnippets Toolbox enables connection to the
DA1458x devices via UART or JTAG to program the on-chip OTP or even external Flash/EEPROM.
A very powerful tool that is included in the SmartSnippets Toolobox to use with the standard Dialog
development kits is the Power profiler. The user can track real time the power consumption of the
board, set software marker and correlate board consumption with events happening during the
execution of the software.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 35 of 170 © 2022 Renesas Electronics

5 Real Time Kernel

5.1 Overview

The DA145x software platform utilizes a small and efficient Real Time Kernel licensed from Riviera
Waves. The kernel offers the following features:

● Task creation and state transition.

● Message exchange between tasks.

● Timer management.

● Dynamic memory allocation.

● BLE events scheduling and handling.

5.2 Scheduler

The core of the kernel is a scheduler running in the main loop of the application. The scheduler
checks if an event is set and services the pending events by calling the corresponding handler. The
event may be a BLE or timer event, a message between two tasks.

Scheduler obtains any timing information from BLE core HW. Main loop code ensures that kernel
scheduler is not executed while the HW module of BLE core is not in sleep mode.

The implementation of the kernel resides in ROM memory area; hence the source code files are not
included in SDK distribution. The definitions of the API types and the prototypes of API functions can
be found in the following header files.

● ke_task.h - Kernel task management and creation API.

● ke_msg.h - Message handling API.

● ke_mem.h - Dynamic memory allocation API.

● ke_timer.h - Timer creation and deletion API.

5.3 Tasks

Each standalone software module, i.e. BLE stack layers/GATT profiles/Host application etc., of the
DA1458x SDK is instantiates as a kernel’s task. The task usually is created at system initialization.
The maximum supported number of tasks in a single BLE application is 23.

 A task is defined by the task ID number which is a unique identifier per task and a task descriptor
structure. The type of the structure is struct ke_task_desc, defined in ke_task.h. The members of

the task descriptor determine the message handlers for each state of the application, the default
message handlers, the placeholder of the current task state, the highest valid state of the task and
the maximum number of task instances.

The task is created by calling the ke_task_create()function. The task ID and descriptor are passed

in function parameters.

The state of the task is changed by calling ke_task_set(). The current state of the task is returned

by ke_state_set().

All the API functions and types of kernel task creation and management are declared in the
ke_task.h header file.

● Types

○ ke_msg_handler – Message handler structure

○ ke_state_handler – List of message handlers for a specific or default state.

○ ke_task_desc - Task descriptor.

● Functions

○ ke_task_create() – Creates a new task.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 36 of 170 © 2022 Renesas Electronics

○ ke_state_set() – Sets the state of the task.

○ ke_state_get() – Returns the current state of the task.

5.4 Dynamic Memory Allocation

The kernel provides an API to the application code for dynamic memory allocation in the heap
memories of the kernel. There are four heap memory areas defined in DA1458x kernel:

● KE_MEM_ENV – Used for environmental variables memory allocation

● KE_MEM_ATT_DB – Used for ATT protocol databases, i.e. services, characteristics, attributes

● KE_MEM_KE_MSG – Used for kernel messages memory allocation

● KE_MEM_NON_RETENTION – General purpose heap memory. If the allocated memory space in this

heap is non zero, at a certain point of time then entry in deep sleep mode is not allowed.

The size of the heap memories is determined by the selected sleep mode memory map configuration
and the heap memory size configuration parameters in case of deep sleep mode memory map
configuration is selected. For further reading regarding SDK configuration reader should refer to [21].

Dynamic memory allocation in any of these heaps is performed by calling the ke_malloc() function.

The size and the selection of the heap memory are passed in the parameters of the function. If the
memory space in the selected heap memory is insufficient then kernel memory management code
will try to allocate the requested memory space in another heap. If memory allocation is failed in all of
the heap memories kernel will issue a system software reset.

The API functions provided by the kernel are:

● ke_malloc() – Allocate the requested memory space.

● ke_free() – Free the allocate memory space at the requested memory address.

5.5 Messages

The kernel provides a mechanism for message exchanging between tasks. The messages
exchanged by the kernel has specific format. The format is determined by the struct ke_msg type

defined in ke_msg.h. The ke_msg structure includes the following members.

● Id: A 16-bit unsigned integer containing the message identifications. The ten least significant bits

form a sequential number unique among the messages of the task. In the six most significant bits
contain the ID of the task, to ensure the uniqueness of the message identification in the system.
The Macro KE_BUILD_ID can be used to build message IDs compliant to this convention.

● dest_id: Task ID of the destination task of the message.

● src_id: Task ID of the source task of the message.

● param_len: Size of the message data contained in param.

● param: The placeholder of the data of message. The type of the structure member is a one

position table of 32-bit unsigned integer. However the size of the allocated memory space is
determined by the heap memory, allocated by the message memory allocation function and it is
equal to param_len.

The transmission of a message is done in three steps:

1. Allocation of a message structure by the sender task. The message allocation is performed by
calling one of the following macros:

○ KE_MSG_ALLOC: Allocates space in KE_MEM_KE_MSG heap memory for the message. Message

ID, source and destination task IDs and the type of the data of the message are passed in the
parameters of the function. Function calculates the memory space to allocate based on the
type of the data. Returns a pointer to the start of data of the allocated message.

○ KE_MSG_ALLOC_DYN: Similar to KE_MSG_ALLOC. Additional memory size to the size of data type

is passed in an additional parameter.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 37 of 170 © 2022 Renesas Electronics

2. Filling of the message parameters. The code of the source task should fill in the data of the
message.

3. Message structure is pushed in the kernel.

The message is sent to the destination task by calling ke_msg_send(). The pointer returned by

KE_MSG_ALLOC or KE_MSG_ALLOC_DYN must be passed in the parameter of the function. If the message

is allocated but not sent, ke_msg_free() must be called to free the allocated memory space.

The reception of a message sent to a task is implemented by defining a message handler function
(structure ke_msg_handler) in the task descriptor of the message (ke_task_desc). A state handler

should return KE_MSG_CONSUMED when the message is consumed by the destination task and

KE_MSG_NO_FREE when the message is forwarded to another task. Function ke_msg_forward() must

be used for this operation.

5.6 Timer

The DA1458x kernel provides timer services to create and delete a timer event. The time reference
of kernel timers is the BLE_GROSS_TIMER of the BLE HW core. The precision of the BLE_GROSS_TIMER

timer is 10 ms. The task requested the timer event will be notified for the expiration of the timer by
receiving a message. The message ID is equal to the timer ID used for timer creation, hence timer ID
must be a valid message ID, as described in section 5.5. A timer handler function must be also
defined in the list of task handlers. Kernel timers are one-shot timers.

● API functions

○ app_timer_set() – This is a wrapper of ke_timer_set(). Timer ID, task ID and timeout in

units of 10 ms. The maximum valid timeout is 30000, which corresponds to a 5 min period.

○ ke_timer_delete() – Deletes an active kernel timer.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 38 of 170 © 2022 Renesas Electronics

6 Bluetooth Low Energy Software

In this section the Bluetooth Low Energy layers of the software architecture are described.

6.1 Overview

Figure 8 presents a diagram of the Bluetooth Low Energy software architecture.

SDK
Application

User
Application

GATT Services GATT Clients

Profiles

GATT

Host

GAPGAPMGAPC

L2CAP

SMP

GAP

prf utils

ATTATTDB

Figure 8: Bluetooth Low Energy Software

The BLE software implements the Bluetooth® Low Energy protocol as specified in Version 4.1 of the
Bluetooth standard and is fully compliant with this standard. It is a single-mode BLE implementation,
which means that there is no support for the Basic Rate/Enhanced Data Rate protocol (BR/EDR).

Most of the BLE controller of the DA1458x is implemented in hardware. On top of the controller the
Host is implemented with all the required layers. The L2CAP and SMP are internal layers within the
stack and are not intended for direct access from the application, although this is possible. Most of
the ATT layer should not be accessed from the application directly, since its functionality is provided
through GATT. The attribute database API may be used to implement profile related functionality.

The GAP and GATT layers are built on top of the ATT and SMP. Those two layers form the
borderline of the Host with the application. The majority of the operations can be performed using
those two APIs. To further assist the development, DA1458x SDKs provide a library of ready to use
profile implementations. Those profiles make use of the GATT and ATT APIs and a set of helper
functions gathered within the prf_utils.c. The profiles expose a message API and a set of function

calls to the application.

The code of the Host is precompiled and burned into ROM while the profile implementation and the
prf_utils.c are provided in source code, compiled with the application and run in RAM. The

symbols of the ROM are exposed into the rom_symdef.txt file and linked with the user application

during the build process.

The arrows in Figure 8 designate the APIs that can be used by a user application. Moreover these
are also listed in Table 1 as a reference.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 39 of 170 © 2022 Renesas Electronics

Table 1. Bluetooth Low Energy Software API

API API Files Comments

ATT Database attm_db.h

attm_util.h

attm_db_128.h

Please refer to ATTDB Interface Specification (RW-BLE-

ATTDB-IS), Riviera Waves.

GAP Manager gapm.h

gapm_task.h

gapm_util.h

Please refer to GAP Interface Specification (RW-BLE-

GAP-IS), Riviera Waves.

GAP Controller gapc.h

gapc_task.h

Please refer to GAP Interface Specification (RW-BLE-

GAP-IS), Riviera Waves.

GATT Manager gattm.h

gattm_task.h

Please refer to GATT Interface Specification (RW-BLE-

GATT-IS), Riviera Waves.

GATT Controller gattc.h

gattc_task.h

Please refer to GATT Interface Specification (RW-BLE-

GATT-IS), Riviera Waves.

Profile Utilities prf_utils.h

prf_utils_128.h

prf_types.h

Please refer to the header files in the code.

<Profiles> <profile_short>.h

< profile_short >_task.h

Please refer to the header files in the code and the

documents provided for every profile in the support site.

To locate the relevant header file, you need to find the
short name for every profile. For example the short name
for the battery service client is basc while for the battery
server bass. For a complete list of all the profiles please
refer to the support site or look under the sdk_profiles in

the empty template project.

Custom Profile custs1_task.h

custs1.h

custs2_task.h

custs2.h

Please refer to the header files in the code.

The following sections describe the role and usage of the various APIs. For more information please
refer to the documents that describe each layer.

6.2 GAP

The RW-BLE Generic Access Profile (GAP) defines the basic procedures related to the discovery
and link management of Bluetooth devices. Furthermore, it defines procedures related to the use of
different LE security modes and levels. For a detailed description of the API refer to [11].

The RW-BLE GAP provides complete and substantial support of the LE GAP:

● Four Roles – central, peripheral, broadcaster and scanner.

● Broadcast and Scan.

● Modes – Discovery, Connectivity, Bonding.

● Security with Authentication, Encryption and Signing.

● Link Establishment and Detachment.

● Random and Static Addresses.

● Privacy Features.

● Pairing and Key Generation.

The RW-BLE GAP is divided into two parts: the GAP Manager (GAPM) and the GAP Controller
(GAPC). The GAP Manager manages all application requests that are not related to an established

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 40 of 170 © 2022 Renesas Electronics

link. The GAP Controller (called GAPC) on the other hand is created upon a connection to a peer
device and deleted when the connection is terminated.

The GAP Manager initialization takes place in the system_init() function. When the GAP entity has

been initialized and is ready to provide services to the upper layers, it dispatches the
GAPM_DEVICE_READY_IND message. This message is handled internally in the GAP application

module. The GAP module responds by configuring the GAP Manager to a specific role, sending a
GAPM_SET_DEV_CONFIG message. Upon completion of the GAP Manager configuration the device is

ready to initialize the databases, and then according to the selected role perform operations such as
scanning and advertising to establish connections with other peers.

For example, in order to start advertising, the GAPM_START_ADVERTISE_CMD message is compiled and

sent to the GAPM. A message is allocated using the KE_MSG_ALLOC macro, e.g.:

struct gapm_start_advertise_cmd* cmd = KE_MSG_ALLOC(GAPM_START_ADVERTISE_CMD,

TASK_GAPM, TASK_APP, gapm_start_advertise_cmd);

The message is filled with the necessary data:

cmd->op.code = GAPM_ADV_UNDIRECT;

cmd->op.addr_src = GAPM_PUBLIC_ADDR;

cmd->intv_min = APP_ADV_INT_MIN;

cmd->intv_max = APP_ADV_INT_MAX;

cmd->channel_map = APP_ADV_CHMAP;

cmd->info.host.mode = GAP_GEN_DISCOVERABLE;

and is then sent to the GAPM task. The result is to start an undirected advertising operation.

Please refer to [11] for a complete list of the supported messages and operations of the GAPM.

When a remote peer tries to connect to the device, the GAP Controller will report the peer’s request
with the GAPC_CONNECTION_REQ_IND to the application. Since the stack is now referring to a specific

connection, the messages will now be delivered from/to the related GAP Controller. The application
GAP handler will respond to this request with the desired security requirements and it will try to
establish a secure or non-secure connection with the peer according to the requirements. The
security management protocol messages arrive to the application through the GAP Controller. Upon
establishing a secure connection, the device is connected and it can start using the available profile
services. Each service may have its own security requirement and establishing a connection with
adequate security will expose the services to the peer.

Please refer to [11] for a complete list of the supported messages and operations of the GAPC.

6.3 BLE Data Services

After establishing the connection with the peer device the GAP related operations are only to
manage certain aspects of the connection such as change connection parameters, security level or
dropping the connection. The data services of a BLE connection are provided through the database.
The BLE stack provides to the application numerous APIs to manage and exchange data with local
and remote databases. Those are the GATT Manager and GATT Controller API. Alternatively the
programmer can also make use of the Attribute database API (ATTDB) directly instead of going
through GATT to add and manage services and characteristics in the database. The reason behind
this is to produce smaller and efficient code. User can use either approach, through GATT or directly
to ATTDB.

6.3.1 GATT

Similar to GAP, GATT consists of two modules: the GATT Manager and the GATT Controller. The
GATT Manager is not related to a specific connection and it is instantiated once to provide a
message API used to manage the internal attribute database. The GATT Manager is placed between
the profile or the application and the ATT Manager and conveys messages between them. It provides
service and attribute operations such as adding services and characteristics to the database, setting
and getting permission level and setting and getting values to attributes.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 41 of 170 © 2022 Renesas Electronics

The GATT controller is related to a specific BLE connection instance. The interface is used in both
client and server roles. In a client role the interface is used to discover, read and write attributes of
peer devices and to receive notifications or indications. In a server role, this interface is notified when
modification of the database is requested by the peer device, and to send indications or notifications.

For a detailed description of the GATT Controller please refer to [12].

6.3.2 ATTDB

Instead of using the GATT Manager API, the user can directly access the native attribute database
API. The ATTDB API provides functions to add elements in the database (services and attributes),
choose the position of the element in the database, hide/show attributes as well as manage the
permissions and their value. For a detailed description of the ATTDB supported functions please
refer to attm_db.h, attm_db_128.h and attm_util.h files and in [13].

6.4 Bluetooth LE Profiles

The SDK provides implementations of various profiles each with its own profile specific API exposed
to the application. Please check the dialog support website for the most updated list of the profiles
supported from the SDK. There are two distinct roles: the server role and the client role. The server
exposes a profile database on the local device. A client reads, writes and manages the database of
remote device.

Every profile server implements generic and profile specific functionality. The generic part includes:

● The profile database description, with all the services and attributes.

● The profile initialization function to create the profile task.

● The database creation handler that creates the database when the application task issues the
relevant message.

● The profile enable handler that enables the database when the application task issues the
relevant message.

● The profile disconnect handler that takes care of profile housekeeping operations when the
connection drops.

Depending on the profile, the profile specific part may include update of specific attributes with or
without notification and handling and verification of write attempts from peer devices.

Similar principles apply for the client profile as well. The client will include a description of the
services expected, functions and message handlers to initialize, enable the client, housekeep the
discovery results and handlers for errors and disconnections. Depending on the specific profile
special handlers for read and write operation and reception of notifications may exist, tied to specific
attributes. For detailed information please refer to the available documents for every profile located in
the support site, or browse through the <profile_short>.h and < profile_short >_task.h header files.

The SDK provides a useful set of helper functions to access the GATT and ATTDB services. They
are located in the prf_utils.h and are used frequently in the existing profile code. For detailed
information please refer to prf_utils.h.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 42 of 170 © 2022 Renesas Electronics

7 System Software

The system software of the DA1458x SDK consists of the following modules:

● Main function and main loop of the application.

● Sleep and power management software.

● BLE events IRQ handlers.

● Patched functions of the ROM code.

● BLE stack and system configuration.

● Finally, the system software exports a number of APIs to application code to facilitate control of
sleep mode, execution of application software in main loop and provide development/debug
capabilities.

7.1 Main Loop and Sleep Modes

7.1.1 Sleep Modes

This document describes the software architecture of the sleep modes of DA14580/581/583. The
various modes of operation of the chip are:

● Active mode.

● Extended Sleep mode.

● Deep Sleep mode.

In Active mode, the system domain (ARM processor, SysRAM, ROM, etc.), the radio (including Radio
and Bluetooth Low Energy core) and the peripheral domains (UART1/2, I2C, SPI, etc.) are active.

In Extended Sleep mode, the system domain except the SysRAM, the radio domain and the
peripheral domain are powered down and the XTAL16M clock is stopped. The SysRAM is still
powered to retain data but is not accessible. The Always ON (AON) power domain is active to keep
data in the retention RAMs and to supply power to the blocks that can wake the system up, i.e.
wakeup timer, quadrature decoder and the BLE timer.

In Deep Sleep mode, to reduce power consumption even further, the SysRAM is also powered down.
The status of the other power domains is the same as in Extended Sleep mode.

7.1.2 Wake-Up Events

When in any of the above mentioned sleep modes, DA14580/581/583 can be woken up in two ways:

1. Synchronously, via the BLE timer which can be programmed to wake up the system in order to
serve a BLE event and

2. Asynchronously, via the Wakeup Timer and Quadrature Decoder if triggered by an external event
(input).

In a BLE application, DA14580/581/583 could be set to either of the above mentioned sleep modes.
For an advertising event, connection event or other wireless communication event, DA14580/581
needs to be woken up and go to Active mode in order to send/receive packets over a BLE wireless
link. Since these events are time based, the BLE timer is used to wake up the system, including the
BLE core, the radio, the ARM processor and the rest of the blocks. In this case, the following
convention is used: “The system is woken up synchronously with the BLE core”.

When in Extended/Deep sleep mode, DA14580/581/583 can also be woken up by an external event
and after waking up the ARM processor can perform some functions. However, at that moment it
may not yet be the time for a BLE communication event, e.g. a connection event and thus the BLE
and the radio can remain in power off state. In this case, the following convention is used: “The
system is woken up asynchronously with the BLE core”.

If the system is woken up asynchronously then any requests for transmission of messages to kernel
tasks (and, eventually, over the Bluetooth wireless link) cannot be performed immediately and must
be synchronized to the BLE core. This is because the stack is built in such a way that the handling of

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 43 of 170 © 2022 Renesas Electronics

message events requires the BLE core to be active so that timing information from the BLE core is
available. This timing information is not available when the BLE core is powered down.

7.1.3 Main Loop

In the SDK release 5.0.2 (or later) the main loop has be refactored to make it easier to understand for
the programmer. Although the application programmer should not alter the main loop since it is
considered part of the SDK, most of the programmers will want to go through the main loop
execution to understand the application flow.

Figure 9: The Main Loop

The main loop consists of two parts. The first part is executed while the CPU is active and for as long
as the kernel or the application wants the CPU to remain active. In the second part of the main loop
the program attempts to go into power down mode. It will try to shut down the BLE hardware and
then the rest of the peripherals and set the CPU in a low power state while waiting for interrupt (WFI),
either from some external pin or a BLE programmed event.

In the active part of the main loop, the kernel will be granted control with a call to rwip_schedule()

and it will keep the control for as long as messages and events need to be handled. The call to
rwip_schedule()happens in schedule_while_ble_on() since the kernel requires the BLE hardware

to be active to process messages. Within schedule_while_ble_on() the application is also granted

control through the user_app_main_loop_callbacks.app_on_ble_powered function pointer. The

application can force the main loop to stay within the schedule_while_ble_on() given that the BLE

remains active according to the return value of app_on_ble_powered. If both application and kernel

allow scheduler_while_ble_on() to return, the control will be granted again to the application via the

app_asynch_proc() function and the user_app_main_loop_callbacks.app_on_system_powered

function pointer. This is required when the application wants the main loop to remain in an active
state while the BLE is powered off. The return value of app_on_system_powered controls in a similar

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 44 of 170 © 2022 Renesas Electronics

way to the while loop. If the application decides that nothing else should be done the software will try
to go into a power down state.

During this state the application will be granted control three times before going into sleep: once just
before starting the power down sequence (user_app_main_loop_callbacks.app_before_sleep),

once to validate the sleep before closing down the peripherals (user_app_main_loop_callbacks.

app_before_sleep) and finally just before the WFI() is called for the final housekeeping jobs

(user_app_main_loop_callbacks. app_going_to_sleep).

The application will be called when the main loop resumes via user_app_main_loop_callbacks.

app_resume_from_sleep and the software will return to the first part of the main loop and the cycle

will start again.

7.2 System API

7.2.1 Main Loop Callbacks

The system software API exports a number of application callback functions called in the main
function of SDK projects. The application callback functions are defined by struct

arch_main_loop_callbacks type variable user_app_main_loop_callbacks in the

user_callbacks_config.h header file. In case there is no application task to run in any of the

callback functions of the structure, a NULL function should be assigned to the callback member.

Table 2: Callback Functions

Function Name Description Timing

Constraints

1 app_on_init() Called at system start up. Application tasks related to

application initialization can be called here.
None

2 app_on_ble_powered() Called if BLE core is active. It is usually used for sending
messages to kernel tasks generated from asynchronous
events that have been processed in

app_on_system_powered().

Note: By default the watchdog timer is reloaded and
resumed when the system wakes up. The user has to take
into account the watchdog timer handling (keep it running,

freeze it, reload it, resume it, etc.).

Medium

3 app_on_system_powered() Called if system domain (processor is active) while BLE
core can be in sleep mode. Usually used for processing of
asynchronous events at “user” level. The corresponding
ISRs should be kept as short as possible and the

remaining processing should be done at this point.

Note: By default the watchdog timer is reloaded and
resumed when the system wakes up. The user has to take
into account the watchdog timer handling (keep it running,

freeze it, reload it, resume it, etc.).

Medium

4 app_before_sleep() Used for updating the state of the application based on the

latest status just before sleep checking starts.
Medium

5 app_validate_sleep() Used to allow cancelling the entry to Extended or Deep
sleep based on the current application state. The BLE and
the Radio are still powered off but the other of the power

domains stay active.

Hard

6 app_going_to_sleep() Used for application specific tasks just before entering the

low power mode.
Hard

7 app_resume_from_sleep() Used for application specific tasks immediately after

exiting the low power mode.
Hard

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 45 of 170 © 2022 Renesas Electronics

7.2.2 Sleep API

The system software provides a Sleep API to the application to modify the mode of operation (Active,
Extended sleep, Deep sleep). The API is defined in the arch_sleep.h header file and provides

access to the functions listed in Table 3.

Table 3: Sleep API Functions

API Function Description

1 void arch_disable_sleep(void) Disables all sleep modes. The system is either in idle or

active state.

2 void arch_set_extended_sleep(void) Activates extended sleep mode.

3 void arch_set_deep_sleep(void) Activates deep sleep mode.

4 uint8_t arch_get_sleep_mode(void) Returns the current mode of operation.

0: Sleep is disabled

1: Extended sleep

2: Deep sleep

5 void arch_force_active_mode(void) If sleep is on then it is disabled. The current sleep mode
(before setting it to Active) is stored in order to be able to

restore it, if needed.

6 void arch_restore_sleep_mode(void) Restores the previous sleep mode (if any) that was
changed with a call to app_force_active_mode(). The
application must not have modified the sleep mode in the

meantime.

7 void arch_ble_ext_wakeup_on(void) Put BLE into permanent sleep waiting a forced wakeup.
After waking up from an external event, if the system has to
wake BLE up then it must restore the default mode of
operation by calling app_ble_ext_wakeup_off() or the BLE

won't be able to wake up in order to serve BLE events!

8 void arch_ble_ext_wakeup_off(void) Restore BLE cores' operation to default mode. In this
mode, the BLE core will wake up every 10sec even if no
BLE events are scheduled. If an event has been scheduled

earlier, then the BLE core will wake up sooner to serve it.

9 bool arch_ble_ext_wakeup_get(void) Returns the current mode of operation of the BLE core:

false: default mode

true: permanent sleep, external wake-up is

required.

10 bool arch_ble_force_wakeup(void) If the BLE core is sleeping (permanently or not), this
function wakes it up. A call to arch_ble_ext_wakeup_off()

should follow in case of permanent sleep.

11 uint8_t arch_last_rwble_evt_get(void) Returns a value that informs about the last BLE or radio
interrupt that has occurred. The values returned by this
function are defined in last_ble_evt enumeration in
arch_sleep.h. It can be used to synchronise asynchronous
tasks, which are executed in previously described hooks,

with BLE or radio events.

Note that the arch_sleep.c module monitors the number of calls to arch_force_active_mode() (the

counter is incremented) and to arch_restore_sleep_mode() (the counter is decremented). In order

for arch_restore_sleep_mode() to actually enable sleep mode, the counter must be zero! This

means that the application must ensure that arch_restore_sleep_mode() is called (at least) as

many times as arch_force_active_mode(). If the application is split into different modules, this rule

applies to each module separately.

Finally, note that the Debugger cannot be used in any of the sleep modes because it has to be
turned off in order to allow powering down the System power domain.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 46 of 170 © 2022 Renesas Electronics

7.2.3 Serial Logging Interface API

The system software provides a Serial Logging Interface API. The programmer can use this interface
for logging purposes or to communicate with external systems via the UART. The API is defined in
the arch_console.h header file. It provides access to the functions listed in Table 4.

Table 4: Serial Logging API Functions

API Function Description

1 void arch_puts(const char *s); Put string function. Push the string s to the UART queue.

2 int arch_printf(const char *fmt, ...); Printf function. Place the formatted output into the UART

queue.

3 void arch_printf_process(void); This function is called periodically from the main loop to

push the contents of the queue into the UART.

Before using the serial output the user should enable the API by defining the CFG_PRINTF flag.

Additionally, the user should select the proper UART device by defining the CFG_PRINTF_UART2 flag

or not and including the proper driver in the sdk_driver group of the project.

7.2.4 BLE Statistics API

The system software provides a simple API to collect statistics about a given connection. When
enabled with the CFG_BLE_METRICS, code is added in the receive interrupts that counts the errors

during the communication of the device with a remote peer. The data are kept in a global structure of
the following type:

typedef struct

{

 uint32_t rx_pkt;

 uint32_t rx_err;

 uint32_t rx_err_crc;

 uint32_t rx_err_sync;

}arch_ble_metrics_t;

The user can get the pointer to this structure by calling the arch_ble_metrics_get() function and

reset the contents by calling the arch_ble_metrics_reset() function.

7.2.5 Development Mode API

To track common mistakes and to ease development, the SDK software provides a configuration flag
the programmer can use to enable the development debug mode, called CFG_DEVELOPMENT_DEBUG.

This flag should be disabled for production software. If enabled the following features are available:

● The SysRAM is never powered down in Deep sleep mode, allowing the developers to run
applications in Deep sleep without the need to program the OTP.

● A validation is provided that the GPIO pins are not used for more than one function.

● Breakpoints upon Hard Fault, NMI and assert conditions are automatically issued to help the
developer attach the Debugger and trace the cause of the error.

7.2.5.1 GPIO Reservation

In development debug mode, before issuing an operation through the GPIO driver, the application
should reserve the GPIO pin using the RESERVE_GPIO(name, port, pin, func) function. Trying to

reserve a pin that has already been reserved or trying to use an unreserved pin will halt the
application with a breakpoint.

The GPIO reservation feature can be disabled even in development-debug mode by defining the
GPIO_DRV_PIN_ALLOC_MON_DISABLED flag to reserve memory resources.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 47 of 170 © 2022 Renesas Electronics

7.2.5.2 Assert, NMI and Hard Fault Handlers

In development debug mode, the ASSERT_ERROR() and ASSERT_WARNING() macros are defined as

breakpoints. Upon detecting erroneous condition the program will halt and the user can attach the
debugger and figure out what caused the error. In production mode, (CFG_DEVELOPMENT_DEBUG is

undefined), the ASSERT_WARNING() does nothing while the ASSERT_ERROR() will cause the program to

stay in a while(1) loop waiting for a watchdog reset.

Similar to the ASSERT logic, both Hard Fault and NMI handlers are set as breakpoints in
development mode and will cause a reset in production mode.

In the case of development mode, both handlers will keep a copy of the processor state in the
retention RAM before issuing the breakpoint. The state information saved consists of the following
register values R0-R3, R12, LR, PC, PSR, SP, CFSR, HFSR, AFSR, MMAR, BFAR. The user can
look into the state information to try and trace which command has issued the NMI or Hard Fault.

The NMI handler will save the state in address 0x81850 and Hard Fault handler in address 0x81800.

7.2.6 Advanced Features API

For details see Appendix E.

7.2.6.1 Wake-Up and External Processor Configuration

In the external processor applications, the device should be able to wake up the external processor
when a message is sent via the GTL, and to be woken up from the external processor, when the host
application requires it. This feature is controlled by two configuration flags:

● CFG_EXTERNAL_WAKEUP: Defining this flag enables the DA1458x to be woken up by the external

processor running the host application, by toggling the state of a pin.

● CFG_WAKEUP_EXT_PROCESSOR: Defining this flag enables pulsing a pin during a GTL transmission.

The pin and parameters used to wake up the DA1458x are defined in file user_periph_setup.h with

the following definitions: EXTERNAL_WAKEUP_GPIO_PORT, EXTERNAL_WAKEUP_GPIO_PIN and

EXTERNAL_WAKEUP_GPIO_POLARITY. The pin used to signal to the external host that a GTL message is

sent is defined with the EXT_WAKEUP_PORT and EXT_WAKEUP_PIN definitions in the same header file.

7.2.6.2 True Random Number Generator (TRNG)

The programmer can get a 128-bit random number by calling the function trng_acquire(), which is

defined as follows:

void trng_acquire(uint8_t *trng_bits_ptr)

The 128-bit (16 byte) random number is returned in the trng_bits_ptr pointer. To enable the True

Random Number Generator you need to define the CFG_TRNG flag. A random number is generated at

system initialization and used to seed the C standard library random number generator.

7.2.6.3 Boost Output Voltage (DCDC_VBAT3V)

In the case of a boost voltage configuration, a function syscntl_set_dcdc_vbat3v_level() has been

provided to set the output voltage of the boost converter. This function is defined as follows:

void syscntl_set_dcdc_vbat3v_level(enum SYSCNTL_DCDC_VBAT3V_LEVEL level)

This function will set the output level according to the following enumeration:

enum SYSCNTL_DCDC_VBAT3V_LEVEL

{

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V4 = 4, // 2.4 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V5 = 5, // 2.5 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V62 = 6, // 2.62 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V76 = 7, // 2.76 V

};

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 48 of 170 © 2022 Renesas Electronics

7.2.6.4 Near Field Control

The output power for all the active connections can be controlled to further minimize power
consumption. The following functions are provided:

● void rf_nfm_enable(void): Enables Near Field mode.

● void rf_nfm_disable(void): Disables Near Field mode.

● bool rf_nfm_is_enabled(void): Checks if Near Field mode is enabled (true) or not (false).

7.2.6.5 AES Crypto

The DA1458x SoCs come with an AES encryption hardware engine. The engine is used from the
stack but can also be invoked from the user if required. The communication must be done through a
synchronous (over message) way to ensure that the use of the API will not conflict with operations
invoked from the stack. A software-only implementation of the AES is also provided, which a
programmer can use as an alternative. Please refer to Appendix E.5 for more information.

7.2.6.6 Co-Existence

A set of functions has been provided for handling the WLAN co-existence. Two WLAN incoming
inputs are supported and a BLE priority output. Functions are provided to handle priority per
connection and Bluetooth state. Please refer to Appendix E.6 for more information.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 49 of 170 © 2022 Renesas Electronics

8 Application Software

8.1 Overview

Messages are generated from different layers of the BLE stack and the profile code to signal events
to the application task. The application on the other hand generates messages and sends them to
the stack to begin numerous operations.

There are two distinct directions for the messages.

● Messages from the stack and the profiles to the application task.

● Messages from the application task to the stack and the profiles.

Although the message API provided is powerful and complete it poses some restrictions on how fast
an application can be built and the minimum amount of knowledge about the system required to build
even a simple application. To address this issue in the 5.0.x SDK, part of the common functionality
required to build an application has been collected in a library, which exposes a number of APIs and
helper functions. Care has been taken to hide the task management and message management as
much as possible from the user and to provide a function/callback like API.

In addition, most of the parameters required to perform operations have been turned into constants
that are defined in the user space. A set of working constants are predefined for the user in the
template project.

8.2 API

Figure 10 shows a detailed diagram of the application architecture, consisting of two parts:

● SDK Application: This part is defined in the SDK and implements the library functionality.

● User Application: This part contains configuration constants and callback definitions and is
provided from the template. It configures the operation of the SDK application library. The source
code of the actual user application resides here.

SDK
Application

Profile API

User
Application

user_profile
callbacks

user_app
callbacks

app_process
catch_rest

callback app_easy_msg
utils

app_easy_timer

app_entry_point

ap
p

_<
p

ro
fi

le
>_

ta
sk

ap
p

_t
as

k.

se
cu

ri
ty

_m
o

d
u

le

app_<profile>

GAP API ke_timer APIke_msg API

app_mid

app_easy app_easy_security

app_security

Profile API GAP API SMP API

d
ef

au
lt

_h
an

d
le

rs

default_handler
configuration

user_module
configuration

user
configuration

user profile
configuration

user custom profile
configuration

user custom profile
configuration

Figure 10: Application Architecture

As mentioned earlier, there are two message directions. The API description starts with the possible
ways the User Application can send messages toward the stack and the profiles. Next it describes
the available ways the User Application can get messages from other tasks and profiles.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 50 of 170 © 2022 Renesas Electronics

8.2.1 Message API

The standard and most versatile way of executing operations in the stack and profiles is by using the
message API. This includes the standard message allocation and message sending functions of the
kernel together with the message list supported from every task. The message list and the data
structure of each message are usually defined in the file <destination_task>_task.h. Please refer

to the relevant documents of each task (gapm, gapc, gatt, etc.) for further details.

Whenever a function is not provided from the app_mid.h and app_easy.h APIs, described later in this

document, the user can use the message API.

8.2.2 Mid Layer API

The Mid Layer API is a light stateless set of macros to describe how the most common operations for
the gap and security are performed. It describes the generation of a specific message, the filling of
the message with data and the dispatch of the message to the required task. The idea behind it is to
provide a function API rather than a message API. The following pattern is used:

● <message pointer*> app_<message_name>_msg_create(): Allocates a message and fills in the

correct destination task.

● void app_<message_name>_msg_send(<message pointer*>): Sends the message.

● void <operation>_op(parameters): Performs a complete operation. The <operation>_op

function usually creates a message, fills the message with the required data as provided from the
caller through the parameters, and dispatches the message.

The complete Mid Layer API is described in the app_mid.h file.

8.2.3 Easy API

The Easy API concept tries to reduce the burden of the application programmer concerning message
handling, task handling and special sequences that are required to correctly perform some actions in
the stack or kernel.

The Easy API also addresses the fact that the majority of the data used in the messages are
constants at compile time. Asking the programmer to provide all of the constants when performing a
function call is cumbersome and produces larger code. Moreover, there are a lot of these constants
that need to be defined even for the simplest of applications, making it challenging for a novice
programmer to quickly bring his program into an operational state.

For this reason most if not all of the constants are predefined in the user application space from the
template and accessed from the Easy API at compile time. The programmer can quickly bring up his
application and then alter the default behavior. Usually altering the behavior only requires changing
the proper constant parameters and recompiling the code. As a plus, the small number of parameters
used in the function calls of the Easy API provides better readable code and better visibility to the
programmer.

The design pattern used for the Easy API is shown in Figure 11.

msg_pointer*

app_easy_<operation>_get_active

app_easy_<operation>_msg_create

app_easy_<operation>

User configuration data

SDK Application

User Application

Figure 11: Easy API Design Pattern

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 51 of 170 © 2022 Renesas Electronics

Every app_easy_<operation> exposed to the user has a static app_easy_<operation>_msg_create

function and a pointer (msg_pointer). When the user calls the app_easy_<operation> function, the

relevant msg_create function is called. The message create function will check if the msg_pointer

points to a message that has already been created for this operation or not. If a message is already
there, it will return the existing message to the app_easy_<operation> function. If no message exists

it will create a new one, fill it with constant data provided from the user configuration data files and
assign it to the msg_pointer. The app_easy_<operation> will send the message and clear the

msg_pointer.

This means that every time the app_easy_<operation> either a new message is created or the

existing message is sent and automatically consumed. To support dynamic configuration of the
messages the app_easy_<operation>_get_active function is provided. This function will call the

message create function and return the pointer to the active message. This way the user application
can alter the message dynamically.

To save memory space, there are operations that may share the msg_pointer, for example the

different app_easy_<type>_advertise operations.

8.2.4 app_<profile> API

For some of the profiles provided with the SDK an additional application layer exists, which exposes
the create database, initialization and profile specific operation functions. Please refer to the relevant
header file for the list of functions supported for each profile.

8.2.5 App Entry Point API

In SDK 5.0.2 we have introduced a new piece of software that handles the messages arriving in the
application task. This module is called app_entry_point.c. The messages arriving to the

app_entry_point_handler will be delivered to all the included application modules of the SDK until a

module acknowledges that the message has been handled, in which case the application entry point
will return the state of the message as it has been reported, to the kernel scheduler.

In case a message has not been handled by any module, it will be delivered to the application
through the app_process_catch_rest_cb function pointer where the user can hook his message

handler. The messages arriving at the user space are always considered consumed and cannot be
saved or forwarded.

Together with the app_entry_point_handler and the app_process_catch_rest_cb function pointer,

the app_entry_point.c module also exposes a set of EXCLUDE_DLG_<MODULE> options defined in

user_modules_config.h. These options can be used to disable specific message handlers of the

SDK to receive the messages in the user application space via the app_process_catch_rest_cb.

This allows the user to override or extend the functionality of the existing SDK modules without
having to touch any SDK files.

8.2.6 User Callback API

The SDK provides numerous modules that are hooked on the entry point to handle messages sent to
the application task. The primary function of the modules is to transform the received messages into
events, which are exposed to the user application space as function pointers with meaningful names
and parameters. There are also modules that implement a lot of application functionality, such as the
app_spotar_task.c. The modules following this pattern are the gap, security, and all the existing

app_<profile>_task.c modules.

The library looks for the value of the pointers in the user_callback_config.h. There the user can

assign a new function of his application to be called upon a specific event. The gap and security
function pointers are grouped in the user_app_callbacks structure, while the profile related pointers

(for profiles with an app_<profile>_task.c) are grouped in the user_profile_callbacks structure.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 52 of 170 © 2022 Renesas Electronics

struct app_callbacks{

 void (*app_on_connection) (const uint8_t, struct gapc_connection_req_ind const *);

 void (*app_on_disconnect) (struct gapc_disconnect_ind const *); //app disconnect

 void (*app_on_update_params_rejected) (const uint8_t);

 void (*app_on_update_params_complete)(void);

 void (*app_on_set_dev_config_complete)(void);

 void (*app_on_adv_undirect_complete) (const uint8_t);

 void (*app_on_adv_direct_complete) (const uint8_t);

 void (*app_on_db_init_complete)(void);

 void (*app_on_scanning_completed)(void);

 void (*app_on_adv_report_ind)(struct gapm_adv_report_ind const *);

 void (*app_on_connect_failed)(void);

 void (*app_on_pairing_request) (uint8_t const, struct gapc_bond_req_ind const *);

 void (*app_on_tk_exch_nomitm) (uint8_t const, struct gapc_bond_req_ind const *);

 void (*app_on_irk_exch)(struct gapc_bond_req_ind const *);

 void (*app_on_csrk_exch) (uint8_t const, struct gapc_bond_req_ind const *);

 void (*app_on_ltk_exch) (uint8_t const, struct gapc_bond_req_ind const *);

 void (*app_on_pairing_succeded)(void);

 void (*app_on_encrypt_ind) (const uint8_t);

 void (*app_on_mitm_passcode_req) (const uint8_t);

 void (*app_on_encrypt_req_ind) (uint8_t const, struct gapc_encrypt_req_ind const *);

};

8.2.7 Default Handlers

Simple BLE peripheral applications to a large extent share common functionality. They should
advertise and respond to specific requests from the central device to establish a connection. To
minimize the amount of code that is required from an application programmer to start an application,
a library of Default Handler functions has been created. These functions are already hooked from the
template project in the user callbacks, giving a working peripheral device without writing a single line
of code. The programmer can then alter the functionality, overriding the default functionality.

The default handlers have their own configuration options and function hooks as well. The user can
configure the advertise operation scenario or the security request scenario of the peripheral as
implemented by the default handlers, in the user_default_hnd_conf file. He can also override the

advertise operation totally in the user_default_app_operations structure.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 53 of 170 © 2022 Renesas Electronics

9 Memory Organization

9.1 Overview

The DA1458x contains an embedded One Time Programmable (OTP) memory for storing Bluetooth
profiles as well as custom application code. The qualified Bluetooth® Low Energy protocol stack is
stored in a dedicated ROM. Low leakage Retention RAM is used to store sensitive data and
connection information while in Deep Sleep mode. The memory block sizes are as follows:

● 84 kB ROM. Contains Boot ROM code and Bluetooth Low Energy protocol related code.

● 32 kB One-Time-Programmable (OTP). At power up or reset of the DA1458x, the primary boot
code (ROM code) checks if the OTP memory is programmed and if it is, it proceeds with
mirroring the OTP contents to System RAM and it programs execution.

● 128 kB Flash (DA14583 only). At power up or reset of the DA14583, the primary boot code (ROM
code) loads the secondary Bootloader (from OTP memory or FLASH) and the Secondary
Bootloader proceeds with copying the FLASH image to System RAM and it programs execution.

● 42 kB System SRAM.

● 8 kB Retention SRAM.

9.2 Memory Map

The BLE Core requires access to a memory space named “Exchange Memory” to store control
structures and frame buffers. The mapping of the BLE Core address space to the System Bus
address space is controlled via the register field GP_CONTROL_REG[EM_MAPPING] (see Ref. [1]).
In the SDK application examples, Case 23 is selected and the programming of the register is in the
file sdk\platform\arch\boot\rvds\system_ARMCM0.c:

SetBits32(GP_CONTROL_REG, EM_MAP, 23);

Note that the memory mapping choice needs to be passed in to the Keil (J-Link) debugger via the
initialization file sdk\common_project_files\misc\sysram_case23.ini so that the debugger can use

the correct memory mapping. In this file the following line provides this information:

E long 0x50003308 = 0x2e

Figure 12 illustrates the address mapping for Case 23 which is used in all example applications of
the SDK. See Appendix A.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 54 of 170 © 2022 Renesas Electronics

0x2000.0000

0x2000.9800

0x2000.A000

0x2000.A800

0x0008.0000

0x0008.0800

0x0008.2000

0x2000.C000

0x0008.3000

Case 23
(BLE EM: 12 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

RetRAM4

1 kB

RetRAM2

3 kB

RetRAM3

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 2

38 kB

~~

~~

~~

~~

~~

~~

Figure 12: Case 23 RAM Memory Map

As shown in Figure 12, areas 0x0 to 0x7FFFF and 0x83000 to 0x1FFFFFFF are reserved and cannot
be used. In 0x80000 to 0x81FFF the Retention RAM is located. Above it, at 0x82000 to 0x82FFF
there is 4 kB of RAM space that is not retained when the chip goes into Deep Sleep mode.

From 0x20000000 to 0x200097FF there is 38 kB of RAM space (SysRAM). Some areas in this
memory space are reserved and cannot be used by the user. These are:

● Vector table, placed at 0x20000000.

● Jump table, placed at 0x20000160.

● Timeout table, placed at 0x200002C0.

● NVDS storage, placed at 0x20000340.

● ROM code data, placed at 0x20009000.

In the remaining memory space (~37 kB) the application’s code and data can be placed. Note that
the size of the code and the initialized data is limited by the OTP size of 32 kB. There is also space
left in the area 0x80000 to 0x82FFF for data storage. For more details refer to [19].

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 55 of 170 © 2022 Renesas Electronics

9.3 ARM Scatter File

The scatter file instructs the Linker where to place code and data. It is comprised of Load Region
descriptors and Execution Region descriptors.

A Load Region instructs the linker where to place code and data and the initialization code for
loading the code and data. Before the code reaches main_func() in arch_main.c, the initialization

code is executed. During initialization code and data will be copied, if necessary, from the Load
Regions to the Execution Regions. When for example a Flash memory is used to store code and
data, this architecture allows for the seamless transfer of data and code areas to the system RAM.

For DA1458x this functionality is not required since copying from OTP, during system power-up or
when exiting Deep Sleep mode, is done by the BootROM code and this procedure is completely
transparent to the application code. Therefore the Load Regions in the DA1458x’s scatter files match
their respective Execution Regions, at least for the memory range from 0x20000000 to 0x200097FF.

The rest of the Load Regions should contain only zero initialized data. The area 0x80000 to 0x82FFF
should be declared as containing data that do not have to be initialized (UNINIT). Since this area is
zeroed when the chip boots, zero initialized data can be placed in here. Data compression must be
disabled for all regions.

Scatter files for the example applications can be found at sdk\common_project_files\scatterfile.

For a detailed explanation of the Scatter file and the various sections of the code and how the
memory map is changing depending on the sleep mode, refer to [19].

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 56 of 170 © 2022 Renesas Electronics

10 Peripheral Drivers

10.1 Overview

The DA1458x Bluetooth® Low Energy SoC Platform supports several peripherals on different
interfaces. To support them the DA1458x Software Platform provides the following driver
architecture.

GPIO
Driver

Application

Accelerometer
Driver

SPI
Driver

UART
Driver

SPI FLASH
Driver

ADC
Driver

Battery
Driver

Quadrature,
Timers

EEPROM
I2C

Driver

Sample Drivers

CORE
Drivers

Figure 13: Peripherals Driver Architecture

The DA1458x SDK comes with a core driver for each interface (GPIO, SPI, UART, ADC, Quadrature,
and Timers) together with several sample drivers (Accelerometer, SPI Flash, EEPROM I2C, Battery
Level). Note that even though the source code for all drivers is provided in the SDK to aid debugging,
modifying the core drivers is not recommended.

Note: Upon system wakeup from Extended Sleep or Deep Sleep mode, the device initialization and
configuration functions have to be called again. The dedicated location to implement these calls is
the periph_init() function in periph_setup.c.

The following sections first describe the core driver for each interface (GPIO, SPI, UART, ADC,
Quadrature and Timers) and then the sample drivers, listing the various functions that support them.

10.2 UART

This driver is used to provide the necessary abstraction to the applications when access to the UART
is required. It is used in the provided example Bluetooth Low Energy applications. You can use the
various functions of the UART driver library’s API as is, or compile additional layers to wrap the
provided functionality.

The source code for this driver is located in: sdk\platform\driver\uart.

10.2.1 How to Use this Driver

● Enable the UART peripheral clock, setting the appropriate bit in CLK_PER_REG.

● Initialize the UART, using uart_init().

● Set the RTS signal to Active (LOW), using uart_flow_on().

● Set the RTS signal to Inactive (HIGH), using uart_flow_off().

● Wait until all transfers are finished, using uart_finish_transfers().

● Read from the UART, using uart_read().

● Write to the UART, using uart_write().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 57 of 170 © 2022 Renesas Electronics

CAUTION

Do not call any UART functions to initiate UART transactions until after the system has booted up completely
(system execution has reached the main loop). The XTAL16M clock has to be stabilized before any UART

transaction takes place, either after power-up or after wake-up from sleep.

10.2.2 Initialization and Configuration

● uart_init()

● uart_flow_on()

● uart_flow_off()

● uart_finish_transfers()

● uart_read()

● uart_write()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 58 of 170 © 2022 Renesas Electronics

10.2.3 Function Reference

The following sections provide the function reference for the UART driver.

10.2.3.1 uart_init

Function name void uart_init(uint8_t baud_rate, uint8_t mode)

Function description Initializes the UART to default values.

Parameters baud_rate UART_BAUDRATE_115K2

mode

Bit 7: Set always to zero.

Bit 6: UART Break Control Bit. Setting this bit to 1, causes a break condition to be
transmitted to the receiving device: the serial output is forced to the spacing (logic

0) state.

Bit 5: Reserved (must be 0).

Bit 4: Even Parity Select. This is used to select between even and odd parity, when
parity is enabled (Parity Enable = 1). If set to 1, an even number of logic 1s is
transmitted or checked. If set to 0, an odd number of logic 1s is transmitted or

checked.

Bit 3: Parity Enable. This bit is used to enable and disable parity generation and

detection in transmitted and received serial character respectively:

 0: parity disabled

 1: parity enabled

Bit 2: Number of Stop Bits. This is used to select the number of stop bits per

character that the peripheral transmits and receives.

 0: 1 stop bit

 1: 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop

bits

Bits 1, 0: Data Length Select. This is used to select the number of data bits per

character that the peripheral transmits and receives:

 00: 5 bits

 01: 6 bits

 10: 7 bits

 11: 8 bits

Example. mode = 0x3: {no parity, 1 stop bit, 8 bits data length} settings are applied.

Return values None

Notes

10.2.3.2 uart_flow_on

Function name void uart_flow_on(void)

Function description Enables the UART RTS signal (active LOW).

Parameters None

Return values None

Notes The RTS pad, if configured, is set to active (LOW). Please, note that with Auto Flow
Control Enabled, the RTS signal is also gated with the receiver FIFO threshold

trigger (RTS is inactive-high when above the threshold).

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 59 of 170 © 2022 Renesas Electronics

10.2.3.3 uart_flow_off

Function name void uart_flow_off(void)

Function description Disables the UART RTS signal (active LOW).

Parameters None

Return values None

Notes The RTS pad, if configured, will be driven LOW (active).

10.2.3.4 uart_finish_transfers

Function name void uart_finish_transfers(void)

Function description Waits until all UART transfers have finished.

Parameters None

Return values None

Notes Waits while any of the bits Transmitter Empty and Transmit Holding Register Empty

of the UART_LSR_REG register is set.

10.2.3.5 uart_write

Function name void uart_write(uint8_t *bufptr, uint32_t size, void (*callback)

(uint8_t))

Function description Writes one or more bytes of data to the UART.

Parameters bufptr Pointer to the buffer.

size Count of bytes to send.

callback Set to NULL.

Example: uart_write(buffer1[], 12, NULL) will send 12 bytes from buffer1 to

the UART.

Return values None

Notes

10.2.3.6 uart_read

Function name void uart_read(uint8_t *bufptr, uint32_t size, void (*callback)

(uint8_t))

Function description Reads one or more bytes of data from the UART.

Parameters bufptr Pointer to the buffer.

size Count of bytes to read.

callback Set to NULL.

Example: uart_write(buffer1[], 12, NULL) will read 12 bytes from the UART to

buffer1.

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 60 of 170 © 2022 Renesas Electronics

10.2.4 Definitions

#define UART_BAUDRATE_115K2 9

/// Baudrate used on the UART

#ifndef CFG_ROM

 #define UART_BAUDRATE UART_BAUDRATE_115K2

#else //CFG_ROM

 #define UART_BAUDRATE UART_BAUDRATE_460K8

#endif //CFG_ROM

#if (UART_BAUDRATE == UART_BAUDRATE_921K6)

 #define UART_CHAR_DURATION 11

#else

#define UART_CHAR_DURATION (UART_BAUDRATE * 22)

#endif // (UART_BAUDRATE == UART_BAUDRATE_921K6)

/// Generic enable/disable enum for UART driver

enum

{

 /// uart disable

 UART_DISABLE = 0,

 /// uart enable

 UART_ENABLE = 1

};

/// Character format

enum

{

 /// char format 5

 UART_CHARFORMAT_5 = 0,

 /// char format 6

 UART_CHARFORMAT_6 = 1,

 /// char format 7

 UART_CHARFORMAT_7 = 2,

 /// char format 8

 UART_CHARFORMAT_8 = 3

};

/// Stop bit

enum

{

 /// stop bit 1

 UART_STOPBITS_1 = 0,

 /* Note: The number of stop bits is 1.5 if a

 * character format with 5 bit is chosen */

 /// stop bit 2

 UART_STOPBITS_2 = 1

};

/// Parity bit

enum

{

 /// even parity

 UART_PARITYBIT_EVEN = 0,

 /// odd parity

 UART_PARITYBIT_ODD = 1,

 /// space parity

 UART_PARITYBIT_SPACE = 2, // The parity bit is always 0.

 /// mark parity

 UART_PARITYBIT_MARK = 3 // The parity bit is always 1.

};

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 61 of 170 © 2022 Renesas Electronics

/// Error detection

enum

{

 /// error detection disabled

 UART_ERROR_DETECT_DISABLED = 0,

 /// error detection enabled

 UART_ERROR_DETECT_ENABLED = 1

};

/// status values

enum

{

 /// status ok

 UART_STATUS_OK,

 /// status not ok

 UART_STATUS_ERROR

};

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 62 of 170 © 2022 Renesas Electronics

10.3 GPIO

The various functions of the GPIO driver library are described in this section. This driver is used to
provide the necessary abstraction to the applications when access to the GPIOs is required.
Furthermore, it guarantees that each GPIO is used only from one module (or place) at a time.

For the monitoring of the GPIO assignment, the assumption is made that this functionality is required
only during the Development phase. Thus, any variables used for this purpose are not required in the
final version that will be burned in the OTP and no valuable memory space will be consumed.

Based on the above, a 64-bit variable is used for the monitoring of the GPIO assignment. The first
16-bits of this variable are assigned to Port 0, the next 16-bits to Port 1 and so on. Each bit
represents one GPIO pin of a port. This variable is placed in the retention memory and preserved
during Deep Sleep mode.

Each module that needs to use a GPIO pin must first reserve it. The reservations are made inside
the source file periph_setup.h (function GPIO_reservations()) using the macro RESERVE_GPIO().
This macro is defined in gpio.h as:

#define RESERVE_GPIO(name, port, pin, func) /

 { GPIO[##port##][##pin##] = (GPIO[##port##][##pin##] != 0) ? (-1) : 1; };

The parameters name and func are used only to provide a readable declaration. This macro will set a
member of the GPIO[] array (that corresponds to this GPIO pin) to 1 when it is free, or to -1 when it
has already been reserved.

Upon initialization the function GPIO_init() (gpio.c) is called. This function will first check for multiple
reservations of the same GPIO pin (halting at a breakpoint when one is found) and then set the 64-bit
GPIO_status variable, according to the reservations that have been made in gpio_pindefs.h.

This GPIO_status variable will then be checked at the entry of any of the API functions to find out
whether the GPIO, for which the function is being called, has been previously reserved. When it was
not reserved, a breakpoint will be asserted.

The functionality described so far is available only when the DEVELOPMENT_DEBUG flag is set to
1. Since breakpoints result in Hard Fault interrupts when no debugger is attached, the code snippet
MUST be left out in the final version by setting the flag DEVELOPMENT_DEBUG to 0.

Of course, direct access to GPIOs without using this API must be avoided. There is no way to
prevent such a coding approach, but one should keep in mind that any visibility offered by this driver
will be lost and there will be no guarantee that the same GPIO is not used in multiple places and,
possibly, for not the same purpose.

The source code for this driver is located in: sdk\platform\driver\gpio.

10.3.1 How to Use this Driver

Typical Use

● Populate function GPIO_reservations() in periph_setup.h: Add a RESERVE_GPIO() macro

instruction with the proper arguments, for each GPIO pin you wish to use.

● Populate function set_pad_functions() in periph_setup.h: Add a call to function

GPIO_ConfigurePin() with the proper arguments, for each GPIO pin you wish to use.

After verifying that the pin has been previously reserved, the desired functionality and
direction/electrical configuration is set up.

● Set the logic state of a properly configured pin to HIGH, using GPIO_SetActive().

● Set the logic state of a properly configured pin to LOW, using GPIO_SetInactive().

● Get the logic state of a properly configured pin, using GPIO_GetPinStatus().

● Configure any of the five available GPIOx_IRQ to trigger by a logic level or edge on a selectable

GPIO, using GPIO_EnableIRQ().

● Reset a GPIOx_IRQ interrupt, using GPIO_ResetIRQ().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 63 of 170 © 2022 Renesas Electronics

● Register a custom callback function to be called when the interrupt is triggered, using
GPIO_RegisterCallback().

Other Functionality

● Initialize the GPIO driver, using GPIO_init(). This function is called during system startup.

● Set the desired direction of a pin (input/output), its electrical configuration (pull-up/pull-down/
high-z) and its functionality (GPIO/various peripherals’ pin), using GPIO_SetPinFunction().

This function is called from GPIO_ConfigurePin().

● Select the power rail from which a pin is powered, using GPIO_ConfigurePinPower().

DA14583 Specific Functionality

When the __DA14583__ preprocessor flag is defined the GPIO driver initialization function

GPIO_init() shall automatically reserve the pins which are assigned to the internal SPI Flash

memory (provided that the DEVELOPMENT_DEBUG flag is also defined to 1). However the GPIO driver

will not configure these pins automatically and it is the application’s responsibility to configure them.
An application will typically add the following code in function set_pad_functions() in order to
configure the pins assigned to the internal SPI Flash memory:

GPIO_ConfigurePin(GPIO_PORT_2, GPIO_PIN_3, OUTPUT, PID_SPI_EN, true);

GPIO_ConfigurePin(GPIO_PORT_2, GPIO_PIN_0, OUTPUT, PID_SPI_CLK, false);

GPIO_ConfigurePin(GPIO_PORT_2, GPIO_PIN_9, OUTPUT, PID_SPI_DO, false);

GPIO_ConfigurePin(GPIO_PORT_2, GPIO_PIN_4, INPUT, PID_SPI_DI, false);

10.3.2 Initialization and Configuration

● GPIO_init()

● GPIO_SetPinFunction()

● GPIO_ConfigurePin()

● GPIO_SetActive()

● GPIO_SetInactive()

● GPIO_GetPinStatus()

● GPIO_ConfigurePinPower()

10.3.3 Interrupt Handling

● GPIO_EnableIRQ()

● GPIO_ResetIRQ()

● GPIO_RegisterCallback()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 64 of 170 © 2022 Renesas Electronics

10.3.4 Function Reference: Initialization and Configuration Functions

10.3.4.1 GPIO_init

Function name void GPIO_init(void)

Function description Checks for multiple reservations of the same GPIO pin. Initializes the GPIO_status

variable. Called at system start-up.

Parameters None

Return values None (a breakpoint is triggered in case of duplicate assignment of a pin)

Notes Active only during development (DEVELOPMENT_DEBUG = 1). Deactivate for release, to

preserve memory space.

10.3.4.2 GPIO_SetPinFunction

Function name void GPIO_SetPinFunction(int port, int pin, GPIO_PUPD mode,

GPIO_FUNCTION function)

Function description Sets the pin type (input, input pull-up or pull-down, output) and the pin function

(GPIO, UART1_RX, etc.).

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

mode The GPIO pin direction/electrical configuration:

 INPUT: input high-z

 INPUT_PULLUP: input with pull-up resistor enabled

 INPUT_PULLDOWN: input with pull-down resistor enabled

 OUTPUT: output

function The function of the pin (assignment to internal peripherals):

 PID_GPIO, PID_UART1_RX, PID_UART1_TX, PID_UART2_RX,

 PID_UART2_TX, PID_SPI_DI, PID_SPI_DO, PID_SPI_CLK,

 PID_SPI_EN, PID_I2C_SCL, PID_I2C_SDA, PID_UART1_IRDA_RX,

 PID_UART1_IRDA_TX, PID_UART2_IRDA_RX, PID_UART2_IRDA_TX,

 PID_ADC, PID_PWM0, PID_PWM1, PID_BLE_DIAG, PID_UART1_CTSN,

 PID_UART1_RTSN, PID_UART2_CTSN, PID_UART2_RTSN, PID_PWM2,

 PID_PWM3, PID_PWM4

Return values None

Notes PID_ADC is available only on P0_0 to P0_3.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 65 of 170 © 2022 Renesas Electronics

10.3.4.3 GPIO_ConfigurePin

Function name void GPIO_ConfigurePin(int port, int pin, GPIO_PUPD mode, GPIO_FUNCTION

function, const bool high)

Function description Combined function to set the pin type and function (like GPIO_SetPinFunction()

does) and the state of the pin. Can be used for output pins to first set them to the

desired state and then configure them as outputs.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

mode The GPIO pin direction/electrical configuration:

 INPUT: input high-z

 INPUT_PULLUP: input with pull-up resistor enabled

 INPUT_PULLDOWN: input with pull-down resistor enabled

 OUTPUT : output

function The function of the pin (assignment to internal peripherals):

 PID_GPIO, PID_UART1_RX, PID_UART1_TX, PID_UART2_RX,

 PID_UART2_TX, PID_SPI_DI, PID_SPI_DO, PID_SPI_CLK,

 PID_SPI_EN, PID_I2C_SCL, PID_I2C_SDA, PID_UART1_IRDA_RX,

 PID_UART1_IRDA_TX, PID_UART2_IRDA_RX, PID_UART2_IRDA_TX,

 PID_ADC, PID_PWM0, PID_PWM1, PID_BLE_DIAG, PID_UART1_CTSN,

 PID_UART1_RTSN, PID_UART2_CTSN, PID_UART2_RTSN, PID_PWM2,

 PID_PWM3, PID_PWM4

high The desired logic level of the pin.

Return values None

Notes

10.3.4.4 GPIO_SetActive

Function name void GPIO_SetActive(int port, int pin)

Function description Sets the GPIO as logic HIGH.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

Return values None

Notes The GPIO must have been previously configured as output. No check of the

configuration of the pin is done in this function.

10.3.4.5 GPIO_SetInactive

Function name void GPIO_SetInactive(int port, int pin)

Function description Sets the GPIO as logic LOW.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

Return values None

Notes The GPIO must have been previously configured as output. No check of the

configuration of the pin is done in this function.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 66 of 170 © 2022 Renesas Electronics

10.3.4.6 GPIO_GetPinStatus

Function name bool GPIO_GetPinStatus(int port, int pin)

Function description Gets the logic state of this GPIO pin.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

Return values TRUE when the pin is logic HIGH, else FALSE.

Notes The GPIO must have been previously configured as input. No check of the

configuration of the pin is done in this function.

10.3.4.7 GPIO_ConfigurePinPower

Function name void GPIO_ConfigurePinPower(GPIO_PORT port, GPIO_PIN pin,

GPIO_POWER_RAIL power_rail)

Function description Selects the power rail from which a pin is powered.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

power_rail The desired power rail:

 (GPIO_POWER_RAIL_3V, GPIO_POWER_RAIL_1V)

Return values None

Notes

10.3.5 Function Reference: Interrupt Handling Functions

10.3.5.1 GPIO_EnableIRQ

Function name void GPIO_EnableIRQ(GPIO_PORT port, GPIO_PIN pin, IRQn_Type irq, bool

low_input, bool release_wait, uint8_t debounce_ms)

Function description Configures the GPIO interrupt generator to trigger by a logic level or edge on one of

the selectable GPIOs.

Parameters port The GPIO port (GPIO_PORT_n).

pin The GPIO pin (GPIO_PIN_n).

irq The GPIO IRQ to configure (IRQn_Type).

low_input TRUE: generates an IRQ when the input is logic LOW

 FALSE: generates an IRQ when the input is logic HIGH.

release_wait TRUE: waits for key release after interrupt was reset (edge).

debounce_ms Duration of a de-bounce phase before the IRQ is generated.

Return values None

Notes

10.3.5.2 GPIO_ResetIRQ

Function name void GPIO_ResetIRQ(IRQn_Type irq)

Function description Resets a GPIOn_IRQ interrupt.

Parameters irq The GPIO IRQ to reset (IRQn_Type).

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 67 of 170 © 2022 Renesas Electronics

10.3.5.3 GPIO_RegisterCallback

Function name void GPIO_RegisterCallback(IRQn_Type irq, GPIO_handler_function_t

callback)

Function description Registers a custom callback function to be called when the interrupt is triggered.

Parameters irq The GPIO IRQ to configure (IRQn_Type).

callback The custom callback function to be called when the interrupt is

 triggered (GPIO_handler_function_t).

Return values None

Notes The GPIOn_IRQ is cleared before entering the callback function, by the driver’s
common GPIOn handler (GPIOn_Handler).

Sample callback function:

 void my_callback_function(void)

 {

 // user code here

 }

10.3.6 Definitions

typedef enum {

 INPUT = 0,

 INPUT_PULLUP = 0x100,

 INPUT_PULLDOWN = 0x200,

 OUTPUT = 0x300,

} GPIO_PUPD;

typedef enum {

 GPIO_PORT_0 = 0,

 GPIO_PORT_1 = 1,

 GPIO_PORT_2 = 2,

 GPIO_PORT_3 = 3,

 GPIO_PORT_3_REMAP = 4,

} GPIO_PORT;

typedef enum {

 GPIO_PIN_0 = 0,

 GPIO_PIN_1 = 1,

 GPIO_PIN_2 = 2,

 GPIO_PIN_3 = 3,

 GPIO_PIN_4 = 4,

 GPIO_PIN_5 = 5,

 GPIO_PIN_6 = 6,

 GPIO_PIN_7 = 7,

 GPIO_PIN_8 = 8,

 GPIO_PIN_9 = 9,

} GPIO_PIN;

typedef enum {

 PID_GPIO = 0,

 PID_UART1_RX,

 PID_UART1_TX,

 PID_UART2_RX,

 PI_UART2_TX,

 PID_SPI_DI,

 PID_SPI_DO,

 PID_SPI_CLK,

 PID_SPI_EN,

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 68 of 170 © 2022 Renesas Electronics

 PID_I2C_SCL,

 PID_I2C_SDA,

 PID_UART1_IRDA_RX,

 PID_UART1_IRDA_TX,

 PID_UART2_IRDA_RX,

 PID_UART2_IRDA_TX,

 PID_ADC,

 PID_PWM0,

 PID_PWM1,

 PID_BLE_DIAG,

 PID_UART1_CTSN,

 PID_UART1_RTSN,

 PID_UART2_CTSN,

 PID_UART2_RTSN,

 PID_PWM2,

 PID_PWM3,

 PID_PWM4,

} GPIO_FUNCTION;

//

// Macro for pin definition structure

// name: usage and/or module using it

// func: GPIO, UART1_RX, UART1_TX, etc.

//

#if DEVELOPMENT_DEBUG

#define RESERVE_GPIO(name, port, pin, func) { GPIO[##port##][##pin##] =

(GPIO[##port##][##pin##] != 0) ? (-1) : 1;GPIO_status |=

((uint64_t)GPIO[##port##][##pin##] << ##pin##) << (##port## * 16);}

#else

#define RESERVE_GPIO(name, port, pin, func) {}

#endif

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 69 of 170 © 2022 Renesas Electronics

10.4 Analog to Digital Converter

The following section lists the various functions of the ADC driver library. The source code for this
driver is located in: sdk\platform\driver\adc.

10.4.1 How to Use this Ddriver

● Calibrate the ADC module using adc_calibrate().

● Enable the ADC module and configure it, using adc_init().

● Enable the desired ADC channel, using adc_enable_channel().

● Get a sample from the enabled ADC channel, using adc_get_sample().

● Get a sample from one of the battery ADC channels, using adc_get_vbat_sample().

● Upon completion, if desired, disable the ADC, using adc_disable().

10.4.2 Initialization and Configuration

● adc_calibrate()

● adc_init()

● adc_enable_channel()

● adc_get_sample()

● adc_disable()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 70 of 170 © 2022 Renesas Electronics

10.4.3 Function Reference: Initialization and Configuration Functions

10.4.3.1 adc_calibrate

Function name void adc_calibrate(void)

Function description Calibrates the ADC module and stores the calibration offsets in registers
GP_ADC_OFFP_REG and GP_ADC_OFFN_REG. When the system uses Sleep
mode, this function always has to be called before using the ADC, since the
calibration registers are not retained. When the system is not using Sleep mode this

function can be called once at system start-up.

Parameters None

Return values None

Notes

10.4.3.2 adc_init

Function name void adc_init (uint16_t mode, uint16_t sign, uint16_t attn)

Function description Initializes the ADC peripheral according to the parameters.

Parameters mode

 0: differential mode

 GP_ADC_SE (0x800): single ended mode

sign

 0: Default

 GP_ADC_SIGN (0x400): conversion with opposite sign at input and

 output to cancel internal offset of the ADC and low frequencies

attn

 0: No attenuation

 GP_ADC_ATTN3X: 3x attenuation

Return values None

Notes

10.4.3.3 adc_enable_channel

Function name void adc_enable_channel (uint16_t input_selection)

Function description Enables the ADC channel specified in the parameter.

Parameters input_selection Inpt channel. Must pass one of the definitions starting

 with ADC_CHANNEL_ in adc.h. See section 10.4.5.

Return values None

Notes The device must have been initialized, using adc_init().

10.4.3.4 adc_disable

Function name void adc_disable(void)

Function description Disables the ADC module.

Parameters None

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 71 of 170 © 2022 Renesas Electronics

10.4.4 Function Reference: ADC Sampling Functions

10.4.4.1 adc_get_sample

Function name int adc_get_sample(void)

Function description Reads an ADC sample. The ADC must have been initialized using adc_init() and

a valid channel must have been set using adc_enable_channel().

Parameters None

Return values None

Notes The developer is responsible for handling this value with respect to the attenuation
(attn) selected in adc_init().

10.4.4.2 adc_get_vbat_sample

Function name int adc_get_vbat_sample(bool sample_vbat1v)

Function description Reads an ADC sample of the battery voltage from ADC_CHANNEL_VBAT1V or
ADC_CHANNEL_VBAT3V. The ADC must have been initialized using adc_init().

Parameters sample_vbat1v

 TRUE: use channel ADC_CHANNEL_VBAT1V

 FALSE: use channel ADC_CHANNEL_VBAT3V

Return values The ADC sample for the selected battery channel.

Notes

10.4.5 Definitions

ADC_channels

#define ADC_CHANNEL_P00 0

#define ADC_CHANNEL_P01 1

#define ADC_CHANNEL_P02 2

#define ADC_CHANNEL_P03 3

#define ADC_CHANNEL_AVS 4

#define ADC_CHANNEL_VDD_REF 5

#define ADC_CHANNEL_VDD_RTT 6

#define ADC_CHANNEL_VBAT3V 7

#define ADC_CHANNEL_VDCDC 8

#define ADC_CHANNEL_VBAT1V 9

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 72 of 170 © 2022 Renesas Electronics

10.5 Serial Peripheral Interface (SPI) driver

The following section lists the various functions of the SPI driver library that handle the initialization,
configuration and release of the SPI module, the control of the chip select (CS) line and the data
transfer over the SPI.

The source code for this driver is located in: sdk\platform\driver\spi.

10.5.1 How to Use this Driver

● Enable the SPI block and configure its parameters, using spi_init().

● Activate the Chip Select line, using spi_set_cs_low().

● Make a sequence of SPI transfers (send and receive), using spi_access() for each transfer.

● Select the desired SPI bit mode using setSpiBitmode().

● Deactivate the Chip Select line, using spi_set_cs_high().

● For a simple SPI transaction (1 read-write cycle for the selected bit mode) you can use
spi_transaction(). This function includes driving the Chip Select line.

● Disable the SPI module, using spi_release().

10.5.2 Initialization and Configuration

● spi_init()

● spi_release()

● setSpiBitmode()

● spi_set_cs_low()

● spi_set_cs_high()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 73 of 170 © 2022 Renesas Electronics

10.5.3 Function Reference: Initialization and Configuration Functions

10.5.3.1 spi_init

Function name void spi_init(SPI_Pad_t *cs_pad_param, SPI_Word_Mode_t bitmode,

SPI_Role_t role, SPI_Polarity_Mode_t clk_pol, SPI_PHA_Mode_t pha_mode,

SPI_MINT_Mode_t irq, SPI_XTAL_Freq_t freq)

Function description Initializes the SPI block and configures the driver according to the parameters.

First the SPI module is disabled, then the status register is updated with the
selected parameters and finally the module is enabled again. When the SPI block is

disabled, the RX/TX buffers are reset.

Parameters cs_pad_param Port and pin of the Chip Select (/CS) pad for the target SPI slave.

bitmode Selects the transfer word length.

 SPI_MODE_8BIT: 8-bit mode

 SPI_MODE_16BIT: 16-bit mode

 SPI_MODE_32BIT: 32-bit mode

 SPI_MODE_9BIT: 9-bit mode

role Selects the master/slave role.

 SPI_ROLE_MASTER: Master mode

 SPI_ROLE_SLAVE: Slave mode

clk_pol Clock phase.

 SPI_CLK_IDLE_POL_LOW: SPI_CLK is initially LOW

 SPI_CLK_IDLE_POL_HIGH: SPI_CLK is initially HIGH

pha_mode Clock polarity.

 SPI_PHA_MODE_0

 SPI_PHA_MODE_1

Note: When the clock phase equals the clock polarity (pha_mode = clk_pol), data

is captured on the clock's rising edge, otherwise it is captured on the clock's falling

edge.

irq Interrupt request enable/disable.

 SPI_MINT_DISABLE: Disable SPI interrupt (SPI_INT_BIT) to the ICU

 SPI_MINT_ENABLE: Enable SPI interrupt (SPI_INT_BIT) to the ICU

freq Select the SPI_CLK clock frequency in master mode.

 SPI_XTAL_DIV_8 = (XTAL)/ (CLK_PER_REG * 8)

 SPI_XTAL_DIV_4 = (XTAL) / (CLK_PER_REG * 4)

 SPI_XTAL_DIV_2 = (XTAL) / (CLK_PER_REG * 2)

 SPI_XTAL_DIV_14 = (XTAL) / (CLK_PER_REG * 14)

Return values None

Notes

10.5.3.2 SPI modes

SPI mode Clock polarity

(clk_pol)

Clock phase

(pha_mode)

Clock edge for

data sampling

0 SPI_CLK_IDLE_POL_LOW SPI_PHA_MODE_0 rising edge

1 SPI_CLK_IDLE_POL_LOW SPI_PHA_MODE_1 falling edge

2 SPI_CLK_IDLE_POL_HIGH SPI_PHA_MODE_0 falling edge

3 SPI_CLK_IDLE_POL_HIGH SPI_PHA_MODE_1 rising edge

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 74 of 170 © 2022 Renesas Electronics

10.5.3.3 setSpiBitmode

Function name void setSpiBitmode (SPI_Word_Mode_t spiBitMode)

Function description Selects the SPI word length.

First the SPI module is disabled, then the SPI control register (SPI_CTRL_REG) is
updated to set the selected bit mode and finally the module is enabled again. When

the SPI block is disabled, the RX/TX buffers are reset.

Parameters spiBitMode Selects the word length.

 SPI_MODE_8BIT = 8-bit mode

 SPI_MODE_16BIT = 16-bit mode

 SPI_MODE_32BIT = 32-bit mode

 SPI_MODE_9BIT = 9-bit mode

Return values None

Notes

10.5.3.4 spi_release

Function name void spi_release(void)

Function description Disables the SPI block by resetting the SPI_ON bit of the SPI Control Register
(SPI_CTRL_REG) and resetting the SPI_ENABLE bit of the Peripheral divider

register (CLK_PER_REG).

Parameters None

Return values None

Notes

10.5.4 Function Reference: Sending and Receiving Functions

10.5.4.1 spi_access

Function name uint32_t spi_access(uint32_t dataToSend)

Function description Writes dataToSend to the SPI and reads the received data value. Prior to a transfer,

the SPI module has to be initialized using spi_init().

The function first extracts the selected word length for the current SPI configuration.
Then it writes the SPI Rx/Tx register(s) (SPI_RX_TX_REG0 and also
SPI_RX_TX_REG1 in case of 32-bit and 9-bit modes). Next, the function polls the

SPI Control Register, waiting for the transfer to complete.

Upon completion of the transfer (SPI Control Register: SPI_INT_BIT = 1), the
function reads the received data from the SPI Rx/Tx register(s), clears the interrupt

bit and returns the received data.

Parameters dataToSend Data to be written.

Return values Received data.

Notes The function reads the value of the status register to determine the word length

(8/16/32/9 bits) of the configuration.

The state of the /CS line is not altered by this function, so it can be called multiple
times in conjunction with spi_cs_low() and spi_cs_high() to form a complex SPI

transaction. For a simple complete SPI transaction, see section 10.5.4.2.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 75 of 170 © 2022 Renesas Electronics

10.5.4.2 spi_transaction

Function name uint32_t spi_transaction(uint32_t dataToSend)

Function description Writes dataToSend to the SPI in a simple complete transaction and reads the

received data value. Prior to a transaction, the SPI module has to be initialized
using spi_init().

The function first sets the /CS line to LOW (active), then calls spi_access to perform

the data transfer and finally sets the /CS line to HIGH (inactive).

Parameters dataToSend Data to be written.

Return values Received data

Notes See section 10.5.4.1 (spi_access).

10.5.4.3 spi_cs_low

Function name inline void spi_cs_low(void)

Function description Sets the chip select line (/CS) to LOW (active). This signals the beginning of an SPI
transaction. Prior to using this function, the SPI module has to be initialized using
spi_init().

Parameters None

Return values None

Notes Uses the spi_driver_cs_pad structure which is initialized with the /CS port and pin

numbers in the spi_init() function.

10.5.4.4 spi_cs_high

Function name inline void spi_cs_high(void)

Function description Sets the chip select line (/CS) to HIGH (inactive). This signals the end of an SPI
transaction. Prior to using this function, the SPI module has to be initialized using
spi_init().

Parameters None

Return values None

Notes Uses the spi_driver_cs_pad structure which is initialized with the /CS port and the

pin numbers in the spi_init() function.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 76 of 170 © 2022 Renesas Electronics

10.5.5 Definitions

SPI block configuration

typedef enum SPI_WORD_MODES{

 SPI_MODE_8BIT,

 SPI_MODE_16BIT,

 SPI_MODE_32BIT,

 SPI_MODE_9BIT,

}SPI_Word_Mode_t;

typedef enum SPI_ROLES{

 SPI_ROLE_MASTER,

 SPI_ROLE_SLAVE,

}SPI_Role_t;

typedef enum SPI_POL_MODES{

 SPI_CLK_IDLE_POL_LOW,

 SPI_CLK_IDLE_POL_HIGH,

}SPI_Polarity_Mode_t;

typedef enum SPI_PHA_MODES{

 SPI_PHA_MODE_0,

 SPI_PHA_MODE_1,

}SPI_PHA_Mode_t;

typedef enum SPI_MINT_MODES{

 SPI_MINT_DISABLE,

 SPI_MINT_ENABLE,

}SPI_MINT_Mode_t;

typedef enum SPI_FREQ_MODES{

 SPI_XTAL_DIV_8,

 SPI_XTAL_DIV_4,

 SPI_XTAL_DIV_2,

 SPI_XTAL_DIV_14,

}SPI_XTAL_Freq_t;

typedef struct

{

 GPIO_PORT port;

 GPIO_PIN pin;

}SPI_Pad_t;

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 77 of 170 © 2022 Renesas Electronics

10.6 Quadrature Decoder

The following section lists the various functions of the QUADRATURE DECODER driver library.
These functions implement the various operations to support the interfacing to a rotary encoder of up
to three axes (X, Y, Z) plus the initialization, configuration and release of the driver interface.

The source code for this driver is located in: sdk\platform\driver\wkupct_quadec.

10.6.1 How to Use this Driver

Important Notes:

1. When the wakeup timer, the quadrature decoder or both are used in the application, the
preprocessor directives WKUP_ENABLED and/or QUADEC_ENABLED respectively must be defined in

the application, to allow for the inclusion of essential parts of the code.

2. When upon reception of an interrupt from the wakeup timer or the quadrature decoder, the
system wakes up from Sleep mode and should resume the functionality of the peripherals, the
following lines must be included in the wakeup handler function(s) that were registered using
wkupct_register_callback() and/or quad_decoder_register_callback():

 // Init System Power Domain blocks: GPIO, WD Timer, Sys Timer, etc.

 // Power up and init Peripheral Power Domain blocks,

 // and finally release the pad latches.

 if(GetBits16(SYS_STAT_REG, PER_IS_DOWN))

 periph_init();

The QUADRATURE DECODER driver provides one function for the initialization and configuration of
the quadrature decoder, quad_decoder_init(), and one to disable it, quad_decoder_release().

For working with interrupts, the driver provides a function to register a callback function,
quad_decoder_register_callback(), a function to enable the IRQ, quad_decoder_enable_irq()

and a function to disable the IRQ, quad_decoder_disable_irq().

10.6.1.1 Usage with Polling

● Enable and initialize the quadrature block using quad_decoder_init().

● Poll quadrature decoder counter values using quad_decoder_get_x_counter(),

quad_decoder_get_y_counter() and quad_decoder_get_z_counter().

● Release the quadrature decoder driver using quad_decoder_release().

10.6.1.2 Usage with Interrupts

● Register a callback function to be called from within the WKUP_QUADEC_Handler, when interrupt is

sourced from the quadrature decoder, using quad_decoder_register_callback().

● In the callback function, placed in the application code, the quadrature decoder counter values for
x, y, z are passed as parameters for further processing.

● Set up and enable the interrupts for the quadrature decoder, using quad_decoder_enable_irq().

● After the setup, optionally disable the quadrature decoder IRQ, using disable_quadec_irq().

Caution: The IRQ will be disabled only if it has not also been enabled by the Wakeup Timer.

● Release the quadrature decoder driver, using quad_decoder_release().

Note: This function also calls disable_quadec_irq().

10.6.1.3 Initialization and Configuration

● void quad_decoder_init()

● quad_decoder_register_callback()

● quad_decoder_release()

● quad_decoder_enable_irq()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 78 of 170 © 2022 Renesas Electronics

● quad_decoder_disable_irq()

10.6.1.4 Reading Quadrature Decoder Counters

● quad_decoder_get_x_counter()

● quad_decoder_get_y_counter()

● quad_decoder_get_z_counter()

10.6.2 Function Reference: Initialization and Configuration Functions

10.6.2.1 quad_decoder_init

Function name void quad_decoder_init(QUAD_DEC_INIT_PARAMS_t *quad_dec_init_params)

Function description Initializes the quadrature decoder according to the specified parameters.

Parameters quad_dec_init_params Pointer to parameter structure.

chx_port_sel Selection of port X pads (CHX_PORT_SEL_t struct).

chy_port_sel Selection of port Y pads (CHY_PORT_SEL_t struct).

chz_port_sel Selects port Z pads (CHZ_PORT_SEL_t struct).

qdec_clockdiv The number of system clock cycles per which the decoding logic

 samples the data input on the channel lines.

Return values None

Notes

10.6.2.2 quad_decoder_release

Function name void quad_decoder_release(void)

Function description Disables the quadrature decoder.

This function resets the pin assignment of the quadrature decoder to
QUAD_DEC_CHXA_NONE_AND_CHXB_NONE, QUAD_DEC_CHYA_NONE_AND_CHYB_NONE and

QUAD_DEC_CHZA_NONE_AND_CHZB_NONE.

Finally, it sets bit QUAD_ENABLE of the CLK_PER_REG register to 0, to disable the

quadrature decoder. Also, it calls the function disable_quadec_irq().

Parameters None

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 79 of 170 © 2022 Renesas Electronics

10.6.2.3 quad_decoder_register_callback

Function name void quad_decoder_register_callback(uint32_t* callback)

Function description Registers a callback function to be called by the interrupt handler of the

WKUP_QUADEC_IRQn, when the interrupt source is the quadrature decoder.

Parameters callback Pointer to the callback function.

Return values None

Notes The callback function must be of the following type:

void my_quad_decoder_user_callback_function(int16_t qdec_xcnt_reg,

int16_t qdec_ycnt_reg, int16_t qdec_zcnt_reg)

10.6.2.4 quad_decoder_enable_irq

Function name void quad_decoder_enable_irq(uint8_t event_count)

Function description Setup and enable the interrupts for the quadrature decoder.

Any pending WKUP_QUADEC_IRQn interrupt is cleared, the count of quadrature
decoder events to trigger an interrupt is set, the QD_IRQ_MASK is reset and the

WKUP_QUADEC_IRQn is enabled.

Parameters event_count The count of quadrature decoder events to trigger an interrupt.

Return values None

Notes

10.6.2.5 quad_decoder_disable_irq

Function name wkupct_quadec_error_t quad_decoder_disable_irq(void)

Function description Unregisters the quadrature controller from the use of the WKUP_QUADEC_IRQn
interrupt requests and calls the wkupct_quad_disable_IRQ() function to disable the

interrupts for the quadrature decoder and the wakeup timer, only when no

registration from the wakeup timer is active.

Parameters None

Return values WKUPCT_QUADEC_ERR_OK: No error.

WKUPCT_QUADEC_ERR_RESERVED: The wakeup timer was previously registered for

 WKUP_QUADEC_IRQn.

Notes

10.6.3 Function Reference: Quadrature Decoder Counter Reading Functions

10.6.3.1 quad_decoder_get_x_counter

Function name inline int16_t quad_decoder_get_x_counter(void)

Function description Retrieves the current value of the QDEC_XCNT_REG register, which holds the

counter for the X channel of the quadrature decoder.

Parameters None

Return values The current value of the QDEC_XCNT_REG register.

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 80 of 170 © 2022 Renesas Electronics

10.6.3.2 quad_decoder_get_y_counter

Function name inline int16_t quad_decoder_get_y_counter(void)

Function description Retrieves the current value of the QDEC_YCNT_REG register, which holds the

counter for the Y channel of the quadrature decoder.

Parameters None

Return values The current value of the QDEC_YCNT_REG register.

Notes

10.6.3.3 quad_decoder_get_z_counter

Function name inline int16_t quad_decoder_get_z_counter(void)

Function description Retrieves the current value of the QDEC_ZCNT_REG register, which holds the

counter for the Z channel of the quadrature decoder.

Parameters None

Return values The current value of the QDEC_ZCNT_REG register.

Notes

10.6.4 Definitions

typedef void (*quad_encoder_handler_function_t)(int16_t qdec_xcnt_reg, int16_t

qdec_ycnt_reg, int16_t qdec_zcnt_reg);

typedef enum

{

 QUAD_DEC_CHXA_NONE_AND_CHXB_NONE = 0,

 QUAD_DEC_CHXA_P00_AND_CHXB_P01 = 1,

 QUAD_DEC_CHXA_P02_AND_CHXB_P03 = 2,

 QUAD_DEC_CHXA_P04_AND_CHXB_P05 = 3,

 QUAD_DEC_CHXA_P06_AND_CHXB_P07 = 4,

 QUAD_DEC_CHXA_P10_AND_CHXB_P11 = 5,

 QUAD_DEC_CHXA_P12_AND_CHXB_P13 = 6,

 QUAD_DEC_CHXA_P23_AND_CHXB_P24 = 7,

 QUAD_DEC_CHXA_P25_AND_CHXB_P26 = 8,

 QUAD_DEC_CHXA_P27_AND_CHXB_P28 = 9,

 QUAD_DEC_CHXA_P29_AND_CHXB_P20 = 10

}CHX_PORT_SEL_t;

typedef enum

{

 QUAD_DEC_CHYA_NONE_AND_CHYB_NONE = 0<<4,

 QUAD_DEC_CHYA_P00_AND_CHYB_P01 = 1<<4,

 QUAD_DEC_CHYA_P02_AND_CHYB_P03 = 2<<4,

 QUAD_DEC_CHYA_P04_AND_CHYB_P05 = 3<<4,

 QUAD_DEC_CHYA_P06_AND_CHYB_P07 = 4<<4,

 QUAD_DEC_CHYA_P10_AND_CHYB_P11 = 5<<4,

 QUAD_DEC_CHYA_P12_AND_CHYB_P13 = 6<<4,

 QUAD_DEC_CHYA_P23_AND_CHYB_P24 = 7<<4,

 QUAD_DEC_CHYA_P25_AND_CHYB_P26 = 8<<4,

 QUAD_DEC_CHYA_P27_AND_CHYB_P28 = 9<<4,

 QUAD_DEC_CHYA_P29_AND_CHYB_P20 = 10<<4

}CHY_PORT_SEL_t;

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 81 of 170 © 2022 Renesas Electronics

typedef enum

{

 QUAD_DEC_CHZA_NONE_AND_CHZB_NONE = 0<<8,

 QUAD_DEC_CHZA_P00_AND_CHZB_P01 = 1<<8,

 QUAD_DEC_CHZA_P02_AND_CHZB_P03 = 2<<8,

 QUAD_DEC_CHZA_P04_AND_CHZB_P05 = 3<<8,

 QUAD_DEC_CHZA_P06_AND_CHZB_P07 = 4<<8,

 QUAD_DEC_CHZA_P10_AND_CHZB_P11 = 5<<8,

 QUAD_DEC_CHZA_P12_AND_CHZB_P13 = 6<<8,

 QUAD_DEC_CHZA_P23_AND_CHZB_P24 = 7<<8,

 QUAD_DEC_CHZA_P25_AND_CHZB_P26 = 8<<8,

 QUAD_DEC_CHZA_P27_AND_CHZB_P28 = 9<<8,

 QUAD_DEC_CHZA_P29_AND_CHZB_P20 = 10<<8

}CHZ_PORT_SEL_t;

typedef struct

{

 CHX_PORT_SEL_t chx_port_sel;

 CHY_PORT_SEL_t chy_port_sel;

 CHZ_PORT_SEL_t chz_port_sel;

 uint16_t qdec_clockdiv;

 uint8_t qdec_events_count_to_trigger_interrupt;

}QUAD_DEC_INIT_PARAMS_t;

typedef enum

{

 WKUPCT_QUADEC_ERR_RESERVED = -1,

 WKUPCT_QUADEC_ERR_OK = 0,

} wkupct_quadec_error_t;

typedef enum

{

 RESERVATION_STATUS_FREE = 0,

 RESERVATION_STATUS_RESERVED,

} reservation_status_t;

typedef void (*quad_encoder_handler_function_t)(int16_t qdec_xcnt_reg, int16_t

qdec_ycnt_reg, int16_t qdec_zcnt_reg);

10.6.5 Defines in the Application for the QUADRATURE DECODER Driver

The following preprocessor directive must be defined in the application, in order to include the
necessary parts of the code:

QUADEC_ENABLED

See section 10.6.1, important note 1).

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 82 of 170 © 2022 Renesas Electronics

10.7 Wake-Up Timer

The following sections list the various functions of the WAKEUP TIMER driver library. These
functions support the configuration of the Wakeup Interrupt Controller (WIC).

The source code for this driver is located in: sdk\platform\driver\wkupct_quadec.

10.7.1 How to Use this Driver

Important Notes:

1. When the wakeup timer, the quadrature controller or both are used in an application, the
preprocessor directives: WKUP_ENABLED and/or QUADEC_ENABLED respectively must be
defined in the application, to allow for the inclusion of essential parts of the code.

2. When upon reception of an interrupt from the wakeup timer or the quadrature decoder, the
system wakes up from Sleep mode and should resume the functionality of the peripherals, the
following lines must be included in the wakeup handler function(s) that were registered using
wkupct_register_callback() and/or quad_decoder_register_callback():

 // Init System Power Domain blocks: GPIO, WD Timer, Sys Timer, etc.

 // Power up and init Peripheral Power Domain blocks,

 // and finally release the pad latches.

 if(GetBits16(SYS_STAT_REG, PER_IS_DOWN))

 periph_init();

Register a callback function that is called from the driver’s WKUP_QUADEC_IRQn interrupt handler,
using wkupct_register_callback().

Enable the WKUP_QUADEC_IRQn interrupt request with the wakeup parameters, using
wkupct_enable_irq().

10.7.2 Available Functions

● wkupct_register_callback()

● wkupct_enable_irq()

● wkupct_disable_irq()

10.7.3 Function Summary

wkupct_register_callback(): Registers a callback function that is called from the driver’s

WKUP_QUADEC_IRQn interrupt handler.

wkupct_enable_irq(): Registers the wakeup timer for use of WKUP_QUADEC_IRQn interrupt

requests and enables the WKUP_QUADEC_IRQn with the desired wakeup parameters.

wkupct_disable_irq(): Unregisters the wakeup timer from the use of WKUP_QUADEC_IRQn

interrupt requests and calls the wkupct_quad_disable_IRQ() function to disable the interrupts for the

quadrature decoder and the wakeup timer.
Caution: The IRQ will be disabled only if it has not also been enabled by the quadrature decoder.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 83 of 170 © 2022 Renesas Electronics

10.7.4 Function Reference

10.7.4.1 wkupct_register_callback

Function name void wkupct_register_callback(uint32_t* callback)

Function description Registers a callback function that is called from the driver’s WKUP_QUADEC_IRQn

interrupt handler.

Parameters callback The user-defined callback function.

Return values None

Notes A local pointer to this function is stored in the retention memory area.

10.7.4.2 wkupct_enable_irq

Function name void wkupct_enable_irq(uint32_t sel_pins, uint32_t pol_pins, uint16_t

events_num, uint16_t deb_time)

Function description Enables and configures the wakeup timer and enables the WKUP_QUADEC_IRQn.

Parameters sel_pins Select enabled inputs (0: disabled, 1: enabled):

 Bits 0 to 7: port 0

 Bits 8 to 15: port 1

 Bits 16 to 23: port 2

 Bits 24 to 31: port 3

pol_pins Input pin polarity (0: active HIGH, 1: active LOW).

 Bits 0 to 7: port 0

 Bits 8 to 15: port 1

 Bits 16 to 23: port 2

 Bits 24 to 31: port 3

events_num Number of events before wakeup interrupt. (max. value: 255).

deb_time Debouncing time (max. value: 0x3F).

Return values None

Notes

10.7.4.3 wkupct_disable_irq

Function name wkupct_quadec_error_t wkupct_disable_irq(void)

Function description Unregisters the wakeup timer from the use of the WKUP_QUADEC_IRQn interrupt
requests and calls the wkupct_quad_disable_IRQ() function to disable the
interrupts for the quadrature decoder and the wakeup timer, only when no

registration from the quadrature decoder is active.

Parameters None

Return values WKUPCT_QUADEC_ERR_OK: No error.

WKUPCT_QUADEC_ERR_RESERVED: The wakeup timer was previously registered for

 WKUP_QUADEC_IRQn.

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 84 of 170 © 2022 Renesas Electronics

10.7.5 Definitions

enum

{

 SRC_WKUP_IRQ = 0x01,

 SRC_QUAD_IRQ,

};

typedef enum

{

 WKUPCT_QUADEC_ERR_RESERVED = -1,

 WKUPCT_QUADEC_ERR_OK = 0,

} wkupct_quadec_error_t;

typedef enum

{

 RESERVATION_STATUS_FREE = 0,

 RESERVATION_STATUS_RESERVED,

} reservation_status_t;

typedef void (*wakeup_handler_function_t)(void);

10.7.6 Defines in the Application for the WAKEUP TIMER Driver

The following preprocessor directive must be defined in the application, in order to include the
necessary parts of the code:

WKUP_ENABLED

See section 10.7.1, important note 1.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 85 of 170 © 2022 Renesas Electronics

10.8 PWM Timers

The following sections list the various functions of the PWM TIMERS driver library. These functions
implement the various operations to support the configuration and operation of the TIMER0 and
TIMER2 drivers:

TIMER0

● Controls the PWM signals PWM0 and PWM1 which is always the complementary of PWM0.

● If needed, the interrupt SWTIM_IRQn can be configured to be triggered in intervals configured
separately.

TIMER2

● Controls the PWM signals PWM2, PWM3 and PWM4 which all use the same frequency with
individually configured duty cycles.

● If needed, the interrupt SWTIM_IRQn can be enable to be triggered, in intervals that are
separately configurable.

The source code for this driver is located in: sdk\platform\driver\pwm.

10.8.1 How to Use this Driver

This section contains instructions on the initialization, use and release of the PWM TIMERS library.

Important notes:

1. The user application is responsible for the correct configuration of any pads that are to be driven
by the PWM0, PWM1 (TIMER0) and PWM2, PWM3, PWM4 (TIMER2) signals.
For example, a line of the format:
 GPIO_ConfigurePin(GPIO_PORT_0, GPIO_PIN_1, OUTPUT, PID_PWM0, true);

will configure pin P0_1 to be driven by the PWM0 signal.

2. The TIMER0/TIMER2 peripheral clock must be enabled for both TIMER0 and TIMER2, using
set_tmr_enable().

TIMER0

● Enable the TIMER0/TIMER2 peripheral clock, using set_tmr_enable().

● To use the 16 MHz clock source, select the TIMER0/TIMER2 clock division factor, using
set_tmr_div(). This setting does not apply in the case of the 32 kHz clock source.

● Initialize the PWM with the desired PWM mode, TIMER0 “on” time division option (Note: This
only affects the “on” time) and clock source selection settings, using timer0_init().

● Set the TIMER0 “on”, “high” and “low“ times, using timer0_set().

To use interrupts:

● In the application, define a (callback) function of the form:
void pwm_user_callback_function(void)

Important note: Always keep the code size in this function to the bare minimum, in order to keep
the application responsive.

● Register this callback function (will be called by the interrupt handler of SWTIM_IRQn), using
timer0_register_callback().

● Enable SWTIM_IRQn, using timer0_enable_irq().

● Start TIMER0, using timer0_start().

● Stop TIMER0, using timer0_stop().

● Optionally, disable the TIMER0/TIMER2 peripheral clock, using set_tmr_enable().

Caution: When disabling the common peripheral clock, TIMER2 will also cease to run.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 86 of 170 © 2022 Renesas Electronics

● Optionally, disable SWTIM_IRQn, using timer0_disable_irq().

TIMER2

● Enable the TIMER0/TIMER2 peripheral clock, using set_tmr_enable().

● Set the TIMER0/TIMER2 clock division factor, using set_tmr_div().

Note: This setting is common to both TIMER0 and TIMER2.

● Initialize PWM with the desired hw_pause behavior, sw_pause setting, using timer2_init().

● Set the duty cycle for the desired PWM signal(s), using timer2_set_pwm2_duty_cycle(),

timer2_set_pwm3_duty_cycle() and timer2_set_pwm4_duty_cycle().

● When initialized with sw_pause enabled, release the sw_pause, using timer2_set_sw_pause().

In any case, the timer starts.

● Stop the timer, enabling sw_pause again when desired, using timer2_set_sw_pause().

● Stop and disable the timer, using timer2_stop().

● Optionally, disable the TIMER0/TIMER2 peripheral clock, using set_tmr_enable().

Caution: When disabling the common peripheral clock, TIMER0 will also cease to run.

10.8.2 Common Functions (TIMER0, TIMER2)

● set_tmr_enable()

● set_tmr_div()

10.8.3 TIMER0 functions (PWM0, PWM1)

● timer0_init()

● timer0_start()

● timer0_stop()

● timer0_release()

● timer0_set_pwm_on_counter()

● timer0_set_pwm_high_counter()

● timer0_set_pwm_low_counter()

● timer0_set()

● timer0_enable_irq()

● timer0_disable_irq()

● timer0_register_callback()

10.8.4 TIMER2 functions (PWM2, PWM3, PWM4)

● timer2_enable()

● timer2_set_hw_pause()

● timer2_set_sw_pause()

● timer2_set_pwm_frequency()

● timer2_init()

● timer2_stop()

● timer2_set_pwm2_duty_cycle()

● timer2_set_pwm3_duty_cycle()

● timer2_set_pwm4_duty_cycle()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 87 of 170 © 2022 Renesas Electronics

10.8.5 Function Summary

10.8.5.1 Common Functions (TIMER0, TIMER2)

set_tmr_enable(): Enables the peripheral clock to both TIMER0 and TIMER2.

set_tmr_div(): Sets the division factor for the peripheral clock (not applicable for 32 kHz clock

source).

10.8.5.2 TIMER0 Functions

timer0_init(): Initializes TIMER0. The PWM mode of operation, the TIMER0 “on” time clock

division option and the clock source are selected here.

timer0_start(): Starts TIMER0, if it has been initialized using timer0_init().

timer0_stop(): Stops TIMER0.

timer0_release(): Same as timer0_stop().

timer0_set_pwm_on_counter(): Sets the value of TIMER0 “on(ON)” counter. This is the counter that

controls the intervals between SWTIM_IRQn interrupts.

timer0_set_pwm_high_counter(): Sets the value of TIMER0 “high(M)” counter.

timer0_set_pwm_low_counter(): Sets the value of TIMER0 “low(N)” counter.

timer0_set: Sets the values of the “on(ON)”, “high(M)” and “low(N)” counters, in a single function

call.

timer0_enable_irq(): Enables the SWTIM_IRQn IRQ.

timer0_disable_irq(): Disables the SWTIM_IRQn IRQ.

timer0_register_callback(): Registers a user defined callback function that is called from the

SWTIM_IRQn interrupt handler of the driver.

Important note: Always keep the code size in this function to the bare minimum, in order to keep the
application responsive.

10.8.5.3 TIMER2 Functions

timer2_enable(): Enables/disables TIMER2.

timer2_set_hw_pause(): Enables/disables the hw pause feature of TIMER2.

timer2_set_sw_pause(): Enables/disables the sw pause feature of TIMER2.

timer2_set_pwm_frequency(): Sets the pwm frequency of TIMER2.

timer2_init(): Enables/disables the hw_pause and the sw_pause features of TIMER2 and sets the

PWM frequency of TIMER2, in a single function call.

timer2_stop(): Stops TIMER2.

timer2_set_pwm2_duty_cycle(): Sets the duty cycle of PWM2.

timer2_set_pwm3_duty_cycle(): Sets the duty cycle of PWM3.

timer2_set_pwm4_duty_cycle(): Sets the duty cycle of PWM4.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 88 of 170 © 2022 Renesas Electronics

10.8.6 Function Reference: Common Functions (TIMER0, TIMER2)

10.8.6.1 set_tmr_enable

Function name void set_tmr_enable(CLK_PER_REG_TMR_ENABLE_t clk_per_reg_tmr_enable)

Function description Enables the peripheral clock to both TIMER0 and TIMER2.

Parameters clk_per_reg_tmr_enable

 CLK_PER_REG_TMR_DISABLED Disables the peripheral clock.

 CLK_PER_REG_TMR_ENABLED Enables the peripheral clock.

Return values None

Notes

10.8.6.2 set_tmr_div

Function name void set_tmr_div(CLK_PER_REG_TMR_DIV_t per_tmr_div)

Function Description Sets the division factor for the peripheral clock.

Parameters per_tmr_div

 CLK_PER_REG_TMR_DIV_1 Clock peripheral division factor is 1.

 CLK_PER_REG_TMR_DIV_2 Clock peripheral division factor is 2.

 CLK_PER_REG_TMR_DIV_4 Clock peripheral division factor is 4.

 CLK_PER_REG_TMR_DIV_8 Clock peripheral division factor is 8.

Return values None

Notes Not applicable for 32 kHz clock source. Affects TIMER0 when clocked from 16 MHz

clock and TIMER2 always.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 89 of 170 © 2022 Renesas Electronics

10.8.7 Function Reference: TIMER0 Functions

10.8.7.1 timer0_init

Function name void timer0_init(TIM0_CLK_SEL_t tim0_clk_sel , PWM_MODE_t pwm_mode,

TIM0_CLK_DIV_t tim0_clk_div)

Function description Initializes TIMER0.

Parameters pwm_mode

 PWM_MODE_ONE: The PWM signal will be always HIGH during the “high time”.

 PWM_MODE_CLOCK_DIV_BY_TWO: The PWM signals are not HIGH during the

 “high time” but output a clock in that stage.

The frequency is based on the 16 MHz peripheral clock (also when 32 kHz clock is
used as timer clock source), divided by the value set with timer0_init, but divided by

two to get a 50 % duty cycle.

For example, when a factor of 8 has been selected, the clock that will be observed
during the “high times” of PWM0 and PWM1, will have a frequency of:

(16 MHz / 8) / 2 = 1 MHz, irrespective of the selected clock source for TIMER0.

tim0_clk_div TIMER0 “on” time (on duration) division factor.

Note: This parameter affects only the PWM “on” time. It also affects the intervals

between SWTIM_IRQn interrupts.

 TIM0_CLK_NO_DIV The internal “on” counter is clocked by the same clock

 as TIMER0.

 TIM0_CLK_DIV_BY_10 The internal “on” counter is clocked by 1/10 of the clock

 used for TIMER0.

tim0_clk_sel Selects the clock source user for TIMER0.

 TIM0_CLK_32K The 32 kHz clock source is used.

 TIM0_CLK_FAST The 16 MHz clock source is used.

Return values None

Notes

10.8.7.2 timer0_start

Function name void timer0_start(void)

Function description Starts TIMER0, when it has been previously initialized.

Parameters None

Return values None

Notes The timer must have been initialized using timer0_init().

10.8.7.3 timer0_stop

Function name void timer0_stop(void)

Function description Stops TIMER0.

Parameters None

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 90 of 170 © 2022 Renesas Electronics

10.8.7.4 timer0_release

Function name void timer0_release(void)

Function description Stops TIMER0. Same function as timer0_stop().

Parameters None

Return values None

Notes Exists for compliance to the driver architecture nomenclature.

10.8.7.5 timer0_set_pwm_on_counter

Function name void timer0_set_pwm_on_counter(uint16_t pwm_on)

Function description Sets the PWM “ON” counter value.

Parameters pwm_on The PWM “ON” counter value to set.

Return values None

Notes Is directly related to the value of the tim0_clk_div parameter in timer0_init().

10.8.7.6 timer0_set_pwm_high_counter

Function name void timer0_set_pwm_high_counter(uint16_t pwm_high)

Function description Sets the PWM “HIGH” counter value.

Parameters pwm_high The PWM “HIGH” counter value to set.

Return values None

Notes

10.8.7.7 timer0_set_pwm_low_counter

Function name void timer0_set_pwm_low_counter(uint16_t pwm_low)

Function description Sets the PWM “LOW” counter value.

Parameters pwm_low The PWM “LOW” counter value to set.

Return values None

Notes

10.8.7.8 timer0_set

Function name void timer0_set(uint16_t pwm_on, uint16_t pwm_high, uint16_t pwm_low)

Function description Sets the PWM “ON”, “HIGH” and “LOW” counter values in a single function call.

Parameters pwm_on The PWM “ON” counter value to set.

pwm_high The PWM “HIGH” counter value to set.

pwm_low The PWM “LOW” counter value to set.

Return values None

Notes Please refer to the sections describing functions timer0_set_pwm_on_counter(),

timer0_set_pwm_high_counter() and timer0_set_pwm_low_counter().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 91 of 170 © 2022 Renesas Electronics

10.8.7.9 timer0_enable_irq

Function name void timer0_enable_irq(void)

Function description Enables the SWTIM_IRQn interrupt request.

Parameters None

Return values None

Notes

10.8.7.10 timer0_disable_irq

Function name void timer0_disable_irq(void)

Function description Disables the SWTIM_IRQn interrupt request.

Parameters None

Return values None

Notes

10.8.7.11 timer0_register_callback

Function name void timer0_register_callback(timer0_handler_function_t* callback)

Function description Registers a callback function that is called from the body of the SWTIM_IRQn IRQ

handler in the driver.

Parameters callback The user callback function.

Return values None

Notes The user callback function must be of type timer0_handler_function_t.

10.8.8 Function Reference: TIMER2 Functions

10.8.8.1 timer2_enable

Function name void timer2_enable(TRIPLE_PWM_ENABLE_t triple_pwm_enable)

Function description Enables/disables TIMER2.

Parameters triple_pwm_enable

 TRIPLE_PWM_DISABLED TIMER2 is disabled.

 TRIPLE_PWM_ENABLED TIMER2 is enabled.

Return values None

Notes Disabling TIMER2 does not disable the TIM clock, as this is shared with TIMER0.

10.8.8.2 timer2_set_hw_pause

Function name void timer2_set_hw_pause(TRIPLE_PWM_HW_PAUSE_EN_t hw_pause_en)

Function description Enables/disables the “pause_by_hw” TIMER2 feature, that allows for the hardware
to disable the TIMER2 PWM, for instance during radio transmission and reception,
to reduce interference (bit HW_PAUSE_EN of register TRIPLE_PWM_CTRL_REG).

Parameters hw_pause_en

 HW_CAN_NOT_PAUSE_PWM_2_3_4 Hardware cannot pause TIMER2.

 HW_CAN_PAUSE_PWM_2_3_4 Hardware can pause TIMER2.

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 92 of 170 © 2022 Renesas Electronics

10.8.8.3 timer2_set_sw_pause

Function name void timer2_set_sw_pause(TRIPLE_PWM_SW_PAUSE_EN_t sw_pause_en)

Function description Pauses/resumes TIMER2 operation (bit SW_PAUSE_EN of register

TRIPLE_PWM_CTRL_REG).

Parameters sw_pause_en

 PWM_2_3_4_SW_PAUSE_DISABLED TIMER2 is paused by software.

 PWM_2_3_4_SW_PAUSE_ENABLED TIMER2 operation resumes.

Return values None

Notes

10.8.8.4 timer2_set_pwm_frequency

Function name void timer2_set_pwm_frequency(uint16_t triple_pwm_frequency)

Function description Sets the internal counter reload value that controls the TIMER2 frequency.

Parameters triple_pwm_frequency The value that will be automatically reloaded to the

 counter that determines the TIMER2 frequency.

Example: When this value is 500d and the per_tmr_div parameter in function

set_tmr_div() is CLK_PER_REG_TMR_DIV_8, the TIMER2 frequency (PWM2, PWM3,

PWM4) will be: (16 MHz / 8) / 500d = 4 kHz.

Return values None

Notes

10.8.8.5 timer2_init

Function name void timer2_init(TRIPLE_PWM_HW_PAUSE_EN_t hw_pause_en,

TRIPLE_PWM_SW_PAUSE_EN_t sw_pause_en, uint16_t triple_pwm_frequency)

Function description Initializes TIMER2 parameters in a single function call.

Parameters hw_pause_en

 HW_CAN_NOT_PAUSE_PWM_2_3_4 Hardware cannot pause TIMER2.

 HW_CAN_PAUSE_PWM_2_3_4 Hardware can pause TIMER2.

sw_pause_en

 PWM_2_3_4_SW_PAUSE_DISABLED TIMER2 is paused by software.

 PWM_2_3_4_SW_PAUSE_ENABLED TIMER2 operation resumes.

triple_pwm_frequency The value that will be automatically reloaded to the

 counter that determines the TIMER2 frequency.

Example: When this value is 500d and the per_tmr_div parameter in function

set_tmr_div() is CLK_PER_REG_TMR_DIV_8, the TIMER2 frequency (PWM2, PWM3,

PWM4) will be: (16 MHz / 8) / 500d = 4 kHz.

Return values None

Notes The parameters can also be set individually, using the dedicated driver functions.

10.8.8.6 timer2_stop

Function name void timer2_stop(void)

Function description Stops TIMER2. Same function as timer2_enable(TRIPLE_PWM_DISABLED).

Parameters None

Return values None

Notes Disabling TIMER2 does not disable the TIM clock, as this is shared with TIMER0.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 93 of 170 © 2022 Renesas Electronics

10.8.8.7 timer2_set_pwm2_duty_cycle

Function name void timer2_set_pwm2_duty_cycle(uint16_t pwm2_duty_cycle)

Function description Sets the internal counter reload value that controls the TIMER2 PWM2 duty cycle.

Parameters pwm2_duty_cycle The reload value used by the internal counter that

 determines the TIMER2 PWM2 duty cycle.

Example: When the pwm_frequency parameter of the function

timer2_set_pwm_frequency()is 500d and the pwm2_duty_cycle parameter is 100 d,

the duty cycle will be 100 / 500 = 20 %.

Return values None

Notes

10.8.8.8 timer2_set_pwm3_duty_cycle

Function name void timer2_set_pwm3_duty_cycle(uint16_t pwm3_duty_cycle)

Function description Sets the internal counter reload value that controls the TIMER2 PWM3 duty cycle.

Parameters pwm3_duty_cycle The reload value used by the internal counter that

 determines the TIMER2 PWM3 duty cycle.

Return values None

Notes Related to the pwm_frequency parameter. See example in function

timer2_set_pwm2_duty_cycle().

10.8.8.9 timer2_set_pwm4_duty_cycle

Function name void timer2_set_pwm4_duty_cycle(uint16_t pwm4_duty_cycle)

Function description Sets the internal counter reload value that controls the TIMER2 PWM4 duty cycle.

Parameters pwm4_duty_cycle The reload value used by the internal counter that

 determines the TIMER2 PWM4 duty cycle.

Return values None

Notes Related to the pwm_frequency parameter. See example in function

timer2_set_pwm2_duty_cycle().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 94 of 170 © 2022 Renesas Electronics

10.8.9 Definitions

typedef enum

{

 PWM_MODE_ONE,

 PWM_MODE_CLOCK_DIV_BY_TWO

} PWM_MODE_t;

typedef enum

{

 TIM0_CLK_DIV_BY_10,

 TIM0_CLK_NO_DIV

} TIM0_CLK_DIV_t;

typedef enum

{

 TIM0_CLK_32K,

 TIM0_CLK_FAST

} TIM0_CLK_SEL_t;

typedef enum

{

 TIM0_CTRL_OFF_RESET,

 TIM0_CTRL_RUNNING

} TIM0_CTRL_t;

typedef enum

{

 CLK_PER_REG_TMR_DISABLED,

 CLK_PER_REG_TMR_ENABLED,

} CLK_PER_REG_TMR_ENABLE_t;

typedef enum

{

 CLK_PER_REG_TMR_DIV_1,

 CLK_PER_REG_TMR_DIV_2,

 CLK_PER_REG_TMR_DIV_4,

 CLK_PER_REG_TMR_DIV_8

} CLK_PER_REG_TMR_DIV_t;

typedef enum

{

 HW_CAN_NOT_PAUSE_PWM_2_3_4,

 HW_CAN_PAUSE_PWM_2_3_4

} TRIPLE_PWM_HW_PAUSE_EN_t;

typedef enum

{

 PWM_2_3_4_SW_PAUSE_DISABLED,

 PWM_2_3_4_SW_PAUSE_ENABLED

} TRIPLE_PWM_SW_PAUSE_EN_t;

typedef enum

{

 TRIPLE_PWM_DISABLED,

 TRIPLE_PWM_ENABLED

} TRIPLE_PWM_ENABLE_t;

typedef void (timer0_handler_function_t)(void);

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 95 of 170 © 2022 Renesas Electronics

10.9 SysTick Timer

The following sections list the various functions of the SysTick TIMER driver library. The source code
for this driver is located in: sdk\platform\driver\systick.

10.9.1 How to Use this Driver

● Register a callback function that is called from the driver’s SysTick_Handler() interrupt handler,

using systick_register_callback().

● Enable the timer and select whether an interrupt will be generated when the timer counts down to
0, using systick_start().

● Read the current value of the timer, using systick_value().

● Disable the timer and clear its value, using systick_stop().

● Generate an accurate inline delay with a single function call, using systick_wait().

10.9.2 Available Functions

● systick_register_callback()

● systick_start()

● systick_stop()

● systick_value()

● systick_wait()

10.9.3 Function Summary

systick_register_callback(): Registers a callback function that is called from the driver’s

SysTick_Handler() interrupt handler.

systick_start(): Enables the timer and selects whether an interrupt will be generated when the

timer counts down to 0.

systick_stop(): Disables the timer and clears its value.

systick_value(): Reads the current value of the timer.

systick_wait(): Creates a delay without having to manually start the timer, create a callback

function or poll for a value of 0 and then stop the timer.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 96 of 170 © 2022 Renesas Electronics

10.9.4 Function Reference

10.9.4.1 systick_register_callback

Function name void systick_register_callback(systick_callback_function_t callback)

Function description Registers a callback function that is called from the driver’s SysTick_Handler()

exception handler.

Parameters callback The user-defined callback function.

Return values None

Notes A pointer to this function is stored in the systick_callback_function global

variable.

10.9.4.2 systick_start()

Function name void systick_start(uint32_t ticks, bool exception)

Function description Enables the SysTick timer and selects whether an exception request will be

generated when the timer counts down to 0.

Parameters ticks The duration of the countdown.

exception Enables generating an exception request when the SysTick timer

 counts down to 0.

 TRUE SysTick exception request is enabled.

 FALSE SysTick exception request is disabled.

Return values None

Notes

10.9.4.3 systick_stop()

Function name void systick_stop(void)

Function description Disables the SysTick timer and clears its Value register.

Parameters None

Return values None

Notes

10.9.4.4 systick_value()

Function name uint32_t systick_value(void)

Function description Reads the current value of the SysTick timer.

Parameters None

Return values The current value of the timer.

Notes

10.9.4.5 systick_wait()

Function name void systick_wait(uint32_t ticks)

Function description Creates a delay without having to manually start the timer, create a callback

function or poll for a value of 0 and then stop the timer.

Parameters ticks The duration of the delay.

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 97 of 170 © 2022 Renesas Electronics

10.9.5 Definitions

typedef void (*systick_callback_function_t)(void);

10.9.6 Global Variables and Constants

systick_callback_function_t systick_callback_function = NULL;

bool systick_core_clock = true;

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 98 of 170 © 2022 Renesas Electronics

10.10 SPI Flash Driver

The following sections list the various functions and data structures of the SPI Flash driver library,
which enables the use of various SPI Flash memory devices through a uniform API.

Although a number of SPI Flash devices is directly supported by the driver (see Appendix B),
support for other devices can be added by the user (for instructions see Appendix B.2). This driver
uses the SPI functions included in the SPI Driver libraries (spi.c).

The source code for this driver is located in: sdk\platform\driver\spi_flash.

10.10.1 How to Use this Driver

In order to work with an SPI Flash memory device, the following parameters must be known:

● The size of the memory array in bytes

● The page size that the memory device uses. SPI Flash memory devices are internally organized
in pages of a fixed size.

For the directly supported devices (see Appendix B) these parameters can automatically be retrieved
upon automatic detection of the device (see function spi_flash_auto_detect()).

10.10.2 Initialization and Configuration

Before using the SPI Flash driver, after the initial power up or wakeup of the application, the SPI
Flash driver has to be (re-)initialized in the following sequence:

1. Ensure that the application has configured the SPI related pads correctly (normally using the
periph_init() function).

2. Initialize the SPI interface using spi_flash_init().

3. Attempt automatic detection of the SPI Flash device, using spi_flash_auto_detect(). The

device parameters (spi_flash_size, spi_flash_page_size) are retrieved automatically.

4. Initialize the Flash memory with the spi_flash_size and spi_flash_page_size parameters,

using spi_flash_init().

10.10.3 Controlling Write Access

● Set the Write Enable Latch (WEL) bit of the SPI Flash status register to 1, using
spi_flash_set_write_enable().

● Enable the write operation for the volatile bits of the SPI Flash status register, using
spi_flash_write_enable_volatile().

● Reset the Write Enable Latch (WEL) bit of the SPI Flash status register to 0, using
spi_flash_write_disable().

10.10.4 Status Register Access

● Read the SPI Flash status register, using spi_flash_read_status_reg().

● Write the SPI Flash status register, using spi_flash_write_status_reg().

10.10.5 Reading

● Read data from the SPI Flash memory array, using spi_flash_read_data().

● Read the Manufacturer/Device ID of the SPI Flash device, using
spi_read_flash_memory_man_and_dev_id().

● Read the Unique ID Number of the SPI Flash device, using spi_read_flash_unique_id().

● Read the JEDEC ID of the SPI Flash device, using spi_read_flash_jedec_id().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 99 of 170 © 2022 Renesas Electronics

10.10.6 Writing

● Write within a page of the SPI Flash, using spi_flash_page_program().

● Write any amount of data to the SPI Flash, using spi_flash_write_data().

10.10.7 Erasing

● Erase either a sector (4 kB), a 32 kB block or a 64 kB block of the SPI Flash, using
spi_flash_block_erase().

● Try to erase the whole SPI Flash memory array, using spi_flash_chip_erase(). Any protected

blocks of the memory will not be erased by this function.

● Erase the whole SPI Flash memory array, using spi_flash_chip_erase_forced(). Before the

erasure of the SPI Flash memory array, all protection schemes are removed, thus ensuring that
the whole memory array gets erased.

10.10.8 Data protection

Set the desired protection scheme of the device (which blocks of the memory become read-only, if
any), using spi_flash_configure_memory_protection().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 100 of 170 © 2022 Renesas Electronics

10.10.9 Function Reference: Initialization and Configuration Functions

10.10.9.1 spi_flash_auto_detect

Function name int8_t spi_flash_auto_detect(void)

Function description Allows the automatic detection of the SPI Flash device based on its JEDEC ID,

provided it is one of the directly supported devices.

Parameters None

Return values The index of the detected SPI Flash device:

1: W25X10

2: W25X20

3: AT25DF011/ AT25DS011)

4: MX25V1006E_JEDEC_ID

SPI_FLASH_AUTO_DETECT_NOT_DETECTED

Notes For a list of the currently supported devices, refer to Appendix B.1.

10.10.9.2 spi_flash_init

Function name int8_t spi_flash_init(void)

Function description Initializes the SPI Flash driver and stores the parameters of the SPI Flash device in

variables of the SPI Flash driver.

Parameters None

Return values ERR_OK, ERR_TIMEOUT

Notes This function does not initialize the SPI interface. This has to be done using
spi_init().

10.10.9.3 spi_flash_set_write_enable

Function name int8_t spi_flash_set_write_enable(void)

Function description Sets the Write Enable bit (WEL) in the SPI Flash Status Register.

This function drives the /CS line LOW, writes the Write Enable instruction code and
then drives the /CS line HIGH. Before returning, the function polls the SPI Flash

Status Register to ensure that the WEL bit has been set.

Parameters None

Return values ERR_OK, ERR_TIMEOUT

Notes The WEL bit must be set prior to every write or erase instruction. This provision is
embedded in the user functions provided by the SPI Flash driver. Before any write
operation takes place, these functions call spi_flash_set_write_enable(). In case

write access cannot be achieved, a timeout occurs.

10.10.9.4 spi_flash_write_enable_volatile

Function name void spi_flash_write_enable_volatile(void)

Function description Enables writing of the non-volatile bits of the SPI Flash Status Register. This

function must be called prior to a Write Status Register instruction.

Parameters None

Return values None

Notes This function does not set the Write Enable Latch (WEL) bit.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 101 of 170 © 2022 Renesas Electronics

10.10.9.5 spi_flash_write_disable

Function name void spi_flash_write_disable(void)

Function description Resets the Write Enable bit (WEL) in SPI Flash Status Register.

This function drives the /CS line LOW, writes the Write Disable instruction code and
then drives the /CS line HIGH. Before returning, the function polls the SPI Flash

Status Register to ensure that the WEL bit has been reset.

Parameters None

Return values None

Notes The WEL bit is automatically reset after power-up and upon completion of a write or
erase instruction. This function can be used to reset the WEL bit before calling
spi_flash_write_status_reg().

10.10.9.6 spi_flash_read_status_reg

Function name uint8_t spi_flash_read_status_reg(void)

Function description Reads the value of the SPI Flash Status Register.

This function drives the /CS line LOW, writes the Read Status Register instruction

code, reads the value of the Status Register and then drives the /CS line HIGH.

Parameters None

Return values The SPI Flash Status Register value

Notes This function may be called at any time, even while a write or erase cycle is in
progress. This allows the BUSY status bit to be checked to determine when the
cycle is complete and whether the device can accept another instruction. The SPI

Flash Status Register can be read continuously.

10.10.9.7 spi_flash_write_status_reg

Function name void spi_flash_write_status_reg(uint8_t status)

Function description Writes an 8-bit value to the SPI Flash Status Register.

This function issues a Write Enable instruction, then writes the Write Status
Register instruction code and finally inputs the value to be written into the SPI Flash

Status Register.

Parameters status 8-bit value to be written to the status register.

Return values None

Notes Only non-volatile SPI Flash Status Register bits (7, 5, 3 and 2) can be written.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 102 of 170 © 2022 Renesas Electronics

10.10.10 Function Reference: Flash Read Functions

10.10.10.1 spi_flash_read_data

Function name uint32_t spi_flash_read_data(uint8_t *rd_data_ptr, uint32_t address,

uint32_t size)

Function description Reads a specified amount of data from the SPI Flash memory.

Parameters *rd_data_ptr Pointer to the memory position where the read data will be stored.

address Address of the first element to be read.

size Size of the data block to be read.

Return values Bytes actually read or ERR_TIMEOUT in case of failure.

Notes If the size parameter exceeds the SPI Flash memory size available after the

address, this function will read only the available size.

10.10.11 Function Reference: Flash Write Functions

10.10.11.1 spi_flash_page_program

Function name int32_t spi_flash_page_program(uint8_t *wr_data_ptr, uint32_t address,

uint16_t size)

Function description Writes a specified amount of data to a page of the SPI Flash memory. The memory

locations must have been erased (0xFF).

This function sends a Write Enable instruction and then the Page Program
instruction. After the transmission of all data to be written, the function polls the SPI

Flash Status Register to determine the completion of the Page Program instruction.

Parameters *wr_data_ptr Pointer to the memory position where the data to be written

 resides.

address Address where the first element will be written.

size Size of the data block to be written (1 to spi_flash_page_size

 bytes) as set during initialization.

Return values Bytes actually written or ERR_TIMEOUT in case of failure.

Notes When an entire page has to be programmed, the address must be a multiple of the
page size. Otherwise, the addressing will wrap to the beginning of the page and the
respective data will be overwritten. A partial page (fewer bytes than the page size)

can be programmed without having any effect on other bytes within the same page.

When the size parameter exceeds the SPI Flash memory page size available after

the address, this function will only write the available size.

10.10.11.2 spi_flash_write_data

Function name int32 spi_flash_write_data(uint8_t *wr_data_ptr, uint32_t address,

uint32_t size)

Function description Writes a specified amount of data to the SPI Flash memory. This function uses
spi_flash_page_program().

Parameters *wr_data_ptr Pointer to the memory position where the data to be written

 resides.

address Address where the first element will be written.

size Size of the data block to be written.

Return values Bytes actually written.

Notes When the size parameter exceeds the SPI Flash memory size available after the

address, this function will only write the available size.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 103 of 170 © 2022 Renesas Electronics

10.10.11.3 spi_flash_page_fill

Function name int32_t spi_flash_page_fill(uint8_t value, uint32_t address, uint16_t

size)

Function description Fills a range within a page of the SPI Flash memory with a 1-byte value. The

memory locations must have been erased (0xFF).

This function sends a Write Enable instruction and then the Page Program
instruction. After the transmission of all data to be written, the function polls the SPI

Flash Status Register to determine the completion of the Page Program instruction.

Parameters value The 1-byte value with which the memory range will be filled.

address: Starting address of the range to fill.

size Size of the range to be filled (1 to spi_flash_page_size bytes)

 as set during initialization.

Return values Bytes actually written or ERR_TIMEOUT in case of failure.

Notes When an entire page has to be programmed, the address must be a multiple of the
page size. Otherwise, the addressing will wrap to the beginning of the page and the
respective data will be overwritten. A partial page (fewer bytes than the page size)

can be programmed without having any effect on other bytes within the same page.

When the size parameter exceeds the SPI Flash memory page size available after

the address, this function will write only the available size.

10.10.11.4 spi_flash_fill

Function name int32 spi_flash_fill(uint8_t value, uint32_t address, uint32_t size)

Function description Fills a range of the SPI Flash memory with a 1-byte value. This function uses
spi_flash_page_fill().

Parameters value The 1-byte value to which the memory range will be filled.

address Starting address of the range to fill.

size Size of the range to be filled.

Return values Bytes actually written.

Notes When the size parameter exceeds the SPI Flash memory size available after the

address, this function will only write up to the available size.

10.10.12 Function Reference: Flash Erase Functions

10.10.12.1 spi_flash_block_erase

Function name int8_t spi_flash_block_erase(uint32_t address, SPI_erase_module_t
spiEraseModule)

Function description Erases the sector (4 kB), the 32 kB block or the 64 kB block to which the specified

address belongs.

Parameters address Address belonging to the sector or block to be erased.

spiEraseModule Memory block size to be erased.

 SECTOR_ERASE Erase 4 kB sector to which address belongs.

 BLOCK_ERASE_32 Erase 32 kB block to which address belongs.

 BLOCK_ERASE_64 Erase 64 kB block to which address belongs.

Return values ERR_OK, ERR_TIMEOUT

Notes This function does not verify the erasure.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 104 of 170 © 2022 Renesas Electronics

10.10.12.2 spi_flash_chip_erase

Function name int8_t spi_flash_chip_erase (void)

Function description Erases the whole SPI Flash memory, except any protected blocks.

Parameters None

Return values ERR_OK, ERR_TIMEOUT

Notes

10.10.12.3 spi_flash_chip_erase_forced

Function name int8_t spi_flash_chip_erase_forced (void)

Function description Erases the whole SPI Flash memory, after disabling all protection schemes.

Parameters None

Return values ERR_OK, ERR_TIMEOUT, ERR_UNKNOWN_FLASH_TYPE

Notes Only for the supported types of Flash memory modules.

10.10.13 Function Reference: Power Management Functions

10.10.13.1 spi_flash_power_down

Function name int32_t spi_flash_power_down(void)

Function description Sends the Power-Down instruction to the SPI Flash memory. In power-down mode,
all function calls except spi_flash_release_from_power_down() are ignored.

Parameters None

Return values ERR_OK, ERR_TIMEOUT

Notes Only for the supported types of SPI Flash memory modules.

10.10.13.2 spi_flash_release_from_power_down

Function name int32_t spi_flash_release_from_power_down(void)

Function description Sends the Release from Power-Down instruction to the SPI Flash memory.

Parameters None

Return values ERR_OK, ERR_TIMEOUT

Notes Only for the supported types of SPI Flash memory modules.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 105 of 170 © 2022 Renesas Electronics

10.10.14 Function Reference: Data Protection Functions

10.10.14.1 spi_flash_configure_memory_protection

Function name int32_t spi_flash_configure_memory_protection(uint8_t

spi_flash_memory_protection_setting)

Function description Configures the memory protection scheme to be applied to the SPI Flash memory.

Parameters spi_flash_memory_protection_setting The memory protection to be applied.

For the W25X10 memory device:

W25x10_MEM_PROT_NONE Whole memory array is unprotected.

W25x10_MEM_PROT_UPPER_HALF Upper half of the memory is protected.

W25x10_MEM_PROT_LOWER_HALF Lower half of the memory is protected.

W25x10_MEM_PROT_ALL Whole memory array is protected.

For the W25X20 memory device:

W25x20_MEM_PROT_NONE Whole memory array is unprotected.

W25x20_MEM_PROT_UPPER_QUARTER Upper quarter of the memory is
protected.

W25x20_MEM_PROT_UPPER_HALF Upper half of the memory is protected.

W25x20_MEM_PROT_LOWER_QUARTER Lower quarter of the memory is
protected.

W25x20_MEM_PROT_LOWER_HALF Lower half of the memory is protected.

W25x20_MEM_PROT_ALL Whole memory array is protected.

For the AT25DF011/ AT25DS011 memory device:

AT25Dx011_MEM_PROT_NONE Whole memory array is unprotected.

AT25Dx011_MEM_PROT_ENTIRE_MEMORY_

PROTECTED

Whole memory array is protected.

Return values ERR_OK, ERR_TIMEOUT, ERR_UNKNOWN_FLASH_VENDOR

Notes Only for the supported types of Flash memory modules. When the device is not
recognized, ERR_UNKNOWN_FLASH_VENDOR is returned.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 106 of 170 © 2022 Renesas Electronics

10.10.15 Function Reference: Miscellaneous Functions

10.10.15.1 spi_read_flash_memory_man_and_dev_id

Function name int16_t spi_read_flash_memory_man_and_dev_id(void)

Function description Reads the Manufacturer/Device ID of the SPI Flash memory.

Parameters None

Return values The Manufacturer/Device ID or 0 (in case of a time out).

Notes

10.10.15.2 spi_read_flash_unique_id

Function name uint64_t spi_read_flash_unique_id(void)

Function description Reads the Unique ID number of the SPI Flash memory.

Parameters None

Return values The Unique ID number or 0 (in case of a time out).

Notes

10.10.15.3 spi_read_flash_jedec_id

Function name int32_t spi_read_flash_jedec_id(void)

Function description Reads the JEDEC ID of the SPI Flash memory.

Parameters None

Return values The JEDEC ID or 0 (in case of a time out).

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 107 of 170 © 2022 Renesas Electronics

10.10.16 Definitions

#define SPI_FLASH_DEVICES_SUPPORTED_COUNT (3)

// 1. W25X10CL

#define SPI_FLASH_DEVICE_INDEX_W25X10 0

#define W25X10_MAN_DEV_ID 0xEF10

#define W25X10_JEDEC_ID 0xEF3011

#define W25X10_JEDEC_ID_MATCHING_BITMASK 0xFFFFFF

#define W25X10_TOTAL_FLASH_SIZE 0x20000

#define W25X10_PAGE_SIZE 0x100

#define W25x10_MEM_PROT_NONE 0

#define W25x10_MEM_PROT_UPPER_HALF 4

#define W25x10_MEM_PROT_LOWER_HALF 36

#define W25x10_MEM_PROT_ALL 8

// 2. W25X20CL

#define SPI_FLASH_DEVICE_INDEX_W25X20 1

#define W25X20_MAN_DEV_ID 0xEF11

#define W25X20_JEDEC_ID 0xEF3012

#define W25X20_JEDEC_ID_MATCHING_BITMASK 0xFFFFFF

#define W25X20_TOTAL_FLASH_SIZE 0x40000

#define W25X20_PAGE_SIZE 0x100

#define W25x20_MEM_PROT_NONE 0

#define W25x20_MEM_PROT_UPPER_QUARTER 4

#define W25x20_MEM_PROT_UPPER_HALF 8

#define W25x20_MEM_PROT_LOWER_QUARTER 36

#define W25x20_MEM_PROT_LOWER_HALF 40

#define W25x20_MEM_PROT_ALL 12

// Parameters common to both W25X10 and W25X20

#define W25x_MEM_PROT_BITMASK 0x2C

// 3. AT25DN011, AT25DF011

#define SPI_FLASH_DEVICE_INDEX_AT25Dx011 2

#define AT25Dx011_JEDEC_ID 0x1F4200

#define AT25Dx011_JEDEC_ID_MATCHING_BITMASK 0xFFFF00

#define AT25Dx011_TOTAL_FLASH_SIZE 0x20000

#define AT25Dx011_PAGE_SIZE 0x100

#define AT25Dx011_MEM_PROT_BITMASK 4

#define AT25Dx011_MEM_PROT_NONE 0

#define AT25Dx011_MEM_PROT_ENTIRE_MEMORY_PROTECTED 4

// 4. MX25V1006E

#define SPI_FLASH_DEVICE_INDEX_MX25V1006E 3

#define MX25V1006E_MAN_DEV_ID 0xC210

#define MX25V1006E_JEDEC_ID 0xC22011

#define MX25V1006E_JEDEC_ID_MATCHING_BITMASK 0xFFFFFF

#define MX25V1006E_TOTAL_FLASH_SIZE 0x20000

#define MX25V1006E_PAGE_SIZE 0x100

#define MX25V1006E_MEM_PROT_BITMASK 0x0C

#define MX25V1006E_MEM_PROT_NONE 0

#define MX25V1006E_MEM_PROT_ENTIRE_MEMORY_PROTECTED 0x0C

typedef struct

{

uint32_t jedec_id; // JEDEC ID (3 bytes)

uint32_t jedec_id_matching_bitmask; // bitmask of the JEDEC ID to derive //

matching

 uint32_t flash_size; // the total size in bytes

 uint32_t page_size; // the page size in bytes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 108 of 170 © 2022 Renesas Electronics

 uint8_t memory_protection_bitmask; // the memory protection-related bits

 // of the status register

uint8_t memory_protection_unprotected; // the 'entire memory unprotected'

// status register value

} SPI_FLASH_DEVICE_PARAMETERS_BY_JEDEC_ID_t;

typedef enum SPI_ERASE_MODULE

{

 BLOCK_ERASE_64 = 0xd8,

 BLOCK_ERASE_32 = 0x52,

 SECTOR_ERASE = 0x20,

} SPI_erase_module_t;

#define MAX_READY_WAIT_COUNT 200000

#define MAX_COMMAND_SEND_COUNT 50

/* Status Register Bits */

#define STATUS_BUSY 0x01

#define STATUS_WEL 0x02

#define STATUS_BP0 0x04

#define STATUS_BP1 0x08

#define STATUS_TB 0x20

#define STATUS_SRP 0x80

#define ERR_OK 0

#define ERR_TIMEOUT -1

#define ERR_NOT_ERASED -2

#define ERR_PROTECTED -3

#define ERR_INVAL -4

#define ERR_ALIGN -5

#define ERR_UNKNOWN_FLASH_VENDOR -6

#define ERR_UNKNOWN_FLASH_TYPE -7

#define ERR_PROG_ERROR -8

/* commands */

#define WRITE_ENABLE 0x06

#define WRITE_ENABLE_VOL 0x50

#define WRITE_DISABLE 0x04

#define READ_STATUS_REG 0x05

#define WRITE_STATUS_REG 0x01

#define PAGE_PROGRAM 0x02

#define QUAD_PAGE_PROGRAM 0x32

#define CHIP_ERASE 0xC7

#define ERASE_SUSPEND 0x75

#define ERASE_RESUME 0x7a

#define POWER_DOWN 0xb9

#define HIGH_PERF_MODE 0xa3

#define MODE_BIT_RESET 0xff

#define REL_POWER_DOWN 0xab

#define MAN_DEV_ID 0x90

#define READ_UNIQUE_ID 0x4b

#define JEDEC_ID 0x9f

#define READ_DATA 0x03

#define FAST_READ 0x0b

#define SPI_FLASH_AUTO_DETECT_NOT_DETECTED (-1)

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 109 of 170 © 2022 Renesas Electronics

10.10.17 Global Variables and Constants

// local copy of FLASH setup parameters

int16_t spi_flash_device_index;

const SPI_FLASH_DEVICE_PARAMETERS_BY_JEDEC_ID_t *spi_flash_detected_device;

uint32_t spi_flash_size;

uint32_t spi_flash_page_size;

const SPI_FLASH_DEVICE_PARAMETERS_BY_JEDEC_ID_t

SPI_FLASH_KNOWN_DEVICES_PARAMETERS_LIST[] =

{

{W25X10_JEDEC_ID, W25X10_JEDEC_ID_MATCHING_BITMASK, W25X10_TOTAL_FLASH_SIZE,

W25X10_PAGE_SIZE, W25x_MEM_PROT_BITMASK, W25x10_MEM_PROT_NONE},

{W25X20_JEDEC_ID, W25X20_JEDEC_ID_MATCHING_BITMASK, W25X20_TOTAL_FLASH_SIZE,

W25X20_PAGE_SIZE, W25x_MEM_PROT_BITMASK, W25x20_MEM_PROT_NONE},

{AT25Dx011_JEDEC_ID, AT25Dx011_JEDEC_ID_MATCHING_BITMASK, AT25Dx011_TOTAL_FLASH_SIZE,

AT25Dx011_PAGE_SIZE, AT25Dx011_MEM_PROT_BITMASK, AT25Dx011_MEM_PROT_NONE},

 {MX25V1006E_JEDEC_ID, MX25V1006E_JEDEC_ID_MATCHING_BITMASK,

MX25V1006E_TOTAL_FLASH_SIZE, MX25V1006E_PAGE_SIZE, MX25V1006E_MEM_PROT_BITMASK,

MX25V1006E_MEM_PROT_NONE},

};

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 110 of 170 © 2022 Renesas Electronics

10.11 I2C EEPROM Driver

The following sections list the various functions of the I2C EEPROM driver library. These functions
implement the various operations of an I2C EEPROM (e.g. Microchip 24AA02, ST M24M01-R), such
as initialization, configuration and release of the I2C controller. For guidelines on using a new I2C
EEPROM device, see Appendix B.3.

The source code for this driver is located in: sdk\platform\driver\i2c_eeprom.

10.11.1 How to Use this Driver

● Enable the I2C module and configure it, using i2c_eeprom_init().

● Read a random byte from the I2C EEPROM, using i2c_eeprom_read_byte().

● Read a desired amount of data from the I2C EEPROM, using i2c_eeprom_read_data().

● Write a random byte to the I2C EEPROM, using i2c_eeprom_write_byte().

● Write a page to the I2C EEPROM, using i2c_eeprom_write_page().

● Write a specified amount of data to the I2C EEPROM, using i2c_eeprom_write_data().

● Upon completion, if desired, disable the I2C, using i2c_eeprom_release().

10.11.2 Initialization and Configuration

● i2c_eeprom_init()

● i2c_eeprom_release()

10.11.3 Reading

● i2c_eeprom_read_byte()

● i2c_eeprom_read_data()

10.11.4 Writing

● i2c_eeprom_write_byte()

● i2c_eeprom_write_page()

● i2c_eeprom_write_data()

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 111 of 170 © 2022 Renesas Electronics

10.11.5 Function Reference: Initialization and Configuration Functions

The I2C EEPROM driver provides one function for the initialization and configuration of the I2C
module, i2c_eeprom_init(), and one function to disable the I2C module, i2c_eeprom_release().

10.11.5.1 i2c_eeprom_init

Function name void i2c_eeprom_init(uint16_t dev_address, uint8_t speed, uint8_t

address_mode, uint8_t address_size)

Function description Initializes the I2C EEPROM according to the specified parameters.

The I2C module is first disabled, then the control register is updated with the

selected parameters and finally the module is enabled again.

Parameters dev_address I2C slave address (device specific).

speed I2C interface speed.

 I2C_STANDARD Standard (100 kbit/s)

 I2C_FAST Fast (400 kbit/s)

address_mode I2C addressing mode.

 I2C_7BIT_ADDR 7-bit addressing

 I2C_10BIT_ADDR 10-bit addressing

address_size Size of the I2C EEPROM address.

 I2C_1BYTE_ADDR 1-byte address

 I2C_2BYTES_ADDR 2-byte address

 I2C_3BYTES_ADDR 3-byte address

Return values None

Notes The I2C module is configured as bus master, with ‘send restart conditions’ enabled

(by default).

10.11.5.2 i2c_eeprom_release

Function name void i2c_eeprom_release(void)

Function description Disables the I2C module.

This function resets the I2C_ENABLE register and resets the I2C_ENABLE bit of the

Peripheral divider register (CLK_PER_REG).

Parameters None

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 112 of 170 © 2022 Renesas Electronics

10.11.6 Function Reference: EEPROM Read Functions

10.11.6.1 i2c_eeprom_read_byte

Function name i2c_error_code i2c_eeprom_read_byte(uint16_t address, uint8_t *byte)

Function description Reads the byte that is stored at a specific address in the I2C EEPROM.

This function first repeatedly makes a dummy access to poll the I2C Transmit Abort
Source Register, until an acknowledgement (ACK) indicates that the I2C EEPROM
is not busy executing another operation. Then the function writes the address to the
I2C Rx/Tx Data Buffer, followed by a read command. Next, the function polls the
I2C Receive FIFO Level Register, waiting for the read byte. As soon as the level on
the I2C Receive FIFO Level Register is greater than 0, the function reads the byte

that resides in the I2C Rx/Tx Data Buffer.

Parameters address The memory location of the byte to be read.

*byte The byte to be read.

Return values The error code.

Notes

10.11.6.2 i2c_eeprom_read_data

Function name i2c_error_code i2c_eeprom_read_data(uint8_t *rd_data_ptr,uint16_t

address, uint16_t size, uint32_t *bytes_read)

Function description Reads a specified amount of data from a starting address of the I2C EEPROM.

This function first repeatedly makes a dummy access to polls the I2C Transmit
Abort Source Register, until an acknowledgement (ACK) indicates that the I2C
EEPROM is not busy executing another operation. Then the function writes the
starting address to the I2C Rx/Tx Data Buffer, followed by as many read commands
as the given size. Next, the function polls the I2C Receive FIFO Level Register,
waiting for the read bytes. As soon as the level on the I2C Receive FIFO Level
Register is greater than 0, the function reads the data received from the I2C Rx/Tx

Data Buffer.

Parameters *rd_data_ptr Pointer to the memory position where the read data will be stored.

address Address of the first element to be read.

size Size of the data block to be read.

*bytes_read Number of the bytes actually read.

Return values The error code.

Notes When the size parameter exceeds the EEPROM size available after the given
address, this function will read only the available size. The read process is done in

chunks of 64 bytes, due to the Rx FIFO limitation.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 113 of 170 © 2022 Renesas Electronics

10.11.7 Function Reference: EEPROM Write Functions

10.11.7.1 i2c_eeprom_write_byte

Function name i2c_error_code i2c_eeprom_write_byte(uint16_t address, uint8_t byte)

Function description Writes a byte to a specific address in the I2C EEPROM.

This function first repeatedly makes a dummy access to polls the I2C Transmit
Abort Source Register, until an acknowledgement (ACK) indicating that the I2C
EEPROM is not busy executing another operation. Then the function writes the

specified address to the I2C Rx/Tx Data Buffer, followed by the byte to be written.

Parameters address Address where the element will be written.

byte Byte to be written.

Return values The error code.

Notes

10.11.7.2 i2c_eeprom_write_page

Function name i2c_eeprom_write i2c_eeprom_write_page(uint8_t* wr_data_ptr , uint32_t

address , uint16_t size, uint32_t *bytes_written)

Function description Writes a specified amount of data to a page of the I2C EEPROM.

Parameters *wr_data_ptr Pointer to the memory location of the data to be written.

address Address where the first element will be written.

size Size of the data block to be written (1 to I2C_EEPROM_PAGE).

*bytes_writen Number of the bytes actually written.

Return values The error code.

Notes When an entire page has to be programmed, the address must be a multiple of the
page size. Otherwise, the addressing will wrap to the beginning of the page and the
respective data will be overwritten. A partial page (fewer bytes than the page size)

can be programmed without having any effect on other bytes within the same page.

When the size parameter exceeds the EEPROM page size available after the

address, this function will only write the available size.

10.11.7.3 i2c_eeprom_write_data

Function name uint32_t i2c_eeprom_write_data(uint8_t *wr_data_ptr,uint32_t address,

uint16_t size)

Function description Writes a specified amount of data to the I2C EEPROM. This function uses the
i2c_eeprom_write_page() function.

This function first checks whether the size parameter exceeds the available size
from the address to the end of the EEPROM. Then it calculates and writes the
amount of the bytes from address to the end of the corresponding EEPROM page.

Next, it performs as many page writes as needed until the size has been written.

Parameters *wr_data_ptr Pointer to the memory position of the data to be written.

address Address where the first element will be written.

size Size of the data block to be written.

*bytes_written Number of bytes actually written.

Return values The error code.

Notes The address does not need to be a multiple of I2C_EEPROM_PAGE. When the size

parameter exceeds the EEPROM size available after the address, this function will

only write the available size.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 114 of 170 © 2022 Renesas Electronics

10.11.8 Definitions

enum I2C_SPEED_MODES{

 I2C_STANDARD,

 I2C_FAST,

};

enum I2C_ADDRESS_MODES{

 I2C_7BIT_ADDR,

 I2C_10BIT_ADDR,

};

enum I2C_ADRESS_BYTES_COUNT{

 I2C_1BYTE_ADDR,

 I2C_2BYTES_ADDR,

 I2C_3BYTES_ADDR,

};

typedef enum

{

 I2C_NO_ERROR,

 I2C_7B_ADDR_NOACK_ERROR,

 I2C_INVALID_EEPROM_ADDRESS

} i2c_error_code;

10.11.9 Preprocessor definitions in the application for the I2C EEPROM driver

The following preprocessor directives must be defined to their corresponding values in the
application, in order for the I2C EEPROM driver to handle the various requests.

I2C_EEPROM_SIZE: the size of the EEPROM in bytes.

I2C_EEPROM_PAGE: the EEPROM page size in bytes.

I2C_SPEED_MODE: the I2C interface speed (I2C_STANDARD or I2C_FAST.

I2C_ADDRESS_MODE: the I2C bus addressing mode (I2C_7BIT_ADDR or I2C_10BIT_ADDR).

I2C_ADDRESS_SIZE: the I2C EEPROM address size (I2C_1BYTE_ADDR, I2C_2BYTES_ADDR or

I2C_3BYTES_ADDR).

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 115 of 170 © 2022 Renesas Electronics

10.12 Battery Level

The following sections list the various functions of the BATTERY driver library. These functions
support the measurement and translation of the battery level.

The source code for this driver is located in: sdk\platform\driver\battery.

10.12.1 How to use this driver

Measure the battery level, using battery_get_lvl().

10.12.2 Function reference

10.12.2.1 battery_get_lvl

Function name uint8_t battery_get_lvl(uint8_t batt_type)

Function description Gets the voltage level of the battery.

Parameters batt_type The code of the battery (ies). Used for the correct translation of

 the measured battery level, based on the battery’s characteristics.

Return values The battery level that is measured.

Notes The power configuration (buck/boost mode) is detected automatically. When buck
mode is detected for an AAA type battery, it is assumed that two AAA batteries in

series are used.

Stores a copy of the battery level measurement in the retention memory.

10.12.3 Definitions

// Battery types definitions

#define BATT_CR2032 1 //CR2032 coin cell battery

#define BATT_CR1225 2 //CR1225 coin cell battery

#define BATT_AAA 3 //AAA alkaline battery (boost: 1 cell, buck: 2 cells)

#define BATTERY_MEASUREMENT_BOOST_AT_1V5 (0x340)

#define BATTERY_MEASUREMENT_BOOST_AT_1V0 (0x230)

#define BATTERY_MEASUREMENT_BOOST_AT_0V9 (0x1F0)

#define BATTERY_MEASUREMENT_BOOST_AT_0V8 (0x1B0)

#define BATTERY_MEASUREMENT_BUCK_AT_3V0 (0x6B0)

#define BATTERY_MEASUREMENT_BUCK_AT_2V8 (0x640)

#define BATTERY_MEASUREMENT_BUCK_AT_2V6 (0x5D0)

#define BATTERY_MEASUREMENT_BUCK_AT_2V4 (0x550)

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 116 of 170 © 2022 Renesas Electronics

11 Development Environment

11.1 Overview

This section fist provides an overview for the DA1458x development environment consisting of the:

● ARM Keil µVision IDE/Debugger, ARM C/C++ Compiler, and its essential middleware
components, Keil IDE and the Keil build tools

● ARM Segger JTAG cables and software that is fully supported by the Keil environment

● DA1458x Software Development Kit (SDK)

The development environment is also supported by a number of other utilities and tools such as:

● SmartSnippets Toolbox, which is a framework of PC based tools to control the
DA14580/581/583 development kit, involving an:

○ OTP Programmer: a tool for OTP memory programming

○ UART booter: a tool for downloading hex files to DA14580/581 SRAM over UART

○ SPI and I2C memory programmer: Tool for SPI flash and I2C EEPROM programming

○ Power Profiler: a tool with which the user can track in real time the power consumption of the
board, set software marker and correlate board consumption with events happening during
the execution of software

■ Connection Manager, which is a PC based software tool to control the link layer of the
DA14580/581/583, with the following capabilities:

○ Functional in Peripheral and Central role

○ Set advertising parameters

○ Set connection parameters

○ Reading from Attribute database

○ Perform production test commands

In the following sections the Software Development Kit (SDK) contents and directory structure are
presented.

11.2 Software Development Kit (SDK) Structure

The SDK structure is defined in the following sections.

11.2.1 root Directory

The SDK contains the following main directories.

Figure 14: root Directory Structure

.

├── binaries

├── config

├── doc

├── projects

├── sdk

└── utilities

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 117 of 170 © 2022 Renesas Electronics

11.2.2 binaries Directory

This directory holds the executable binaries of the PC applications stored in host_apps directory as
well as the binary file of the production test tool firmware. These binaries are provided so that the
developer can run/test the applications with no need to compile the projects.

Figure 15: binaries Directory Structure

11.2.3 config Directory

This directory contains the DA1458x configuration file for the SmartSnippets tool.

11.2.4 doc Directory

This directory contains the SDK license files.

11.2.5 projects Directory

This directory contains the various SDK example projects. The projects directory is divided into two
main directories:

● host_apps

● target_apps

Figure 16. projects Directory Structure

11.2.5.1 host_apps Directory

This directory holds example applications that run on an external processor (PC or other CPU).
Actually, it contains the proximity, SPOTA and SUOTA initiator applications that run on PCs and the
application example for the proximity reporter over proprietary SPI interface.

Figure 17: host_apps Directory Structure

.

├── da1458x

│ └── prod_test

└── host

 └── windows

 ├── mkimage

 ├── prod_test_cmds

 ├── proximity

 ├── spota

 └── suota

.

├── host_apps

└── target_apps

.

├── da1458x

│ └── proximity

└── windows

 ├── proximity

 ├── spota

 └── suota

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 118 of 170 © 2022 Renesas Electronics

11.2.5.2 target_apps Directory

This directory holds example applications that run on the DA14580/581/583 SoC. Each project
directory contains Keil project files, along with the specific project’s source code and configuration
files.

Figure 18: target_apps Directory Structure

The ble_examples directory contains DA14580/581/583 SoC BLE application examples for

“Integrated processor” or “External processor” configuration. The ble_examples demonstrate the BLE
functionality of the DA14580/581/583 SoC. The following list describes briefly each BLE example.

● ble_app_barebone, BLE example that demonstrates basic BLE procedures such as advertising,

connection, connection parameters update and implementation of the device information service.
It is based on the “Integrated processor” configuration.

● ble_app_profile, BLE example that demonstrates the same as the ble_app_barebone project,

plus the implementation of a custom service (128-bit UUID) defined by the user. The application
demonstrates only the custom database creation. It is based on the “Integrated processor”
configuration.

● ble_app_peripheral, BLE example that demonstrates the same as the ble_app_profile. The

application also adds some basic interaction over the provided custom service (read/write/notify
values). It is based on the “Integrated processor” configuration.

● ble_app_sleepmode, BLE example that demonstrates the same as the ble_app_profile. The

application adds the use of the sleep mode API, making use of the two available sleep modes –
Extended Sleep and Deep Sleep. It is based on the “Integrated processor” configuration.

● ble_app_security, BLE example that demonstrates the same as the ble_app_profile. The

application adds the various security/privacy features. It is based on the “Integrated processor”
configuration.

.

├── ble_examples

│ ├── ble_app_all_in_one

│ ├── ble_app_barebone

│ ├── ble_app_ota

│ ├── ble_app_peripheral

│ ├── ble_app_profile

│ ├── ble_app_security

│ ├── ble_app_sleepmode

│ ├── prox_monitor_ext

│ ├── prox_reporter

│ ├── prox_reporter_ext

│ └── prox_reporter_ext_spi

├── peripheral_examples

│ ├── adc

│ ├── blinky

│ ├── i2c

│ ├── quadrature_decoder

│ ├── shared

│ ├── spi

│ ├── systick

│ ├── timer0

│ ├── timer2

│ ├── uart

│ └── uart2_async

├── prod_test

│ └── prod_test

└── template

 ├── empty_peripheral_template

 └── empty_template_ext

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 119 of 170 © 2022 Renesas Electronics

● ble_app_ota, BLE example that demonstrates the same as the ble_app_profile. The application

adds the over the air programming feature. It is based on the “Integrated processor”
configuration.

● ble_app_all_in_one, BLE example that combine in one example the features of the previous

ble_app_<example> projects. It is based on the “Integrated processor” configuration.

● prox_monitor_ext, BLE example that demonstrates the proximity monitor service. It also

includes the device information client service. It uses the “External processor” configuration.

● prox_reporter, BLE example that demonstrates the proximity reporter service. It also includes

the device information server service, the battery server service and the software patching over
the air receiver (SPOTAR) service. It uses the “Integrated processor” configuration.

● prox_reporter_ext, BLE example that demonstrates the proximity reporter service. It also

includes the device information server service and the software patching over the air receiver
(SPOTAR) service. It uses the “External processor” configuration.

● prox_reporter_ext_spi, BLE example that demonstrates the proximity reporter service. It also

includes the device information server service and the software patching over the air receiver
(SPOTAR) service. It uses the “External processor” configuration over SPI interface.

The peripheral_examples directory contains DA14580/581/583 SoC peripheral examples. The

examples demonstrate some of the non-BLE functionality of the DA14580/581/583 SoC. The
following list describes briefly each peripheral example.

● adc, analog to digital conversion example.

● blinky, blinks a led.

● i2c, i2c interface example.

● quadrature_decoder, quadrature decoder example.

● shared, shared library for peripheral examples.

● spi, spi interface example.

● systick, SysTick timer control example.

● timer0, timer0 control example.

● timer2, timer2 control example.

● uart, uart communication example.

The prod_test directory contains the DA14580/581/583 SoC production tests examples.

The template directory contains DA14580/581/583 SoC BLE template examples, for “Integrated

processor” or “External processor” configuration. The examples demonstrate the BLE functionality of
the DA14580/581/583 SoC and act as a project template for the user. The following list describes
briefly each BLE example.

● empty_peripheral_template, BLE example that demonstrates basic BLE functionality. It uses

the “Integrated processor” configuration.

● empty_template_ext, BLE example that demonstrates basic BLE functionality. It uses the

“External processor” configuration.

The Keil projects contained in the ble_examples, prod_test and template SDK directories are

based on the following structure.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 120 of 170 © 2022 Renesas Electronics

Figure 19: Project Directory Example Layout

The Keil_5 directory contains the Keil project files,*.uvprojx and *.uvoptx. The out_580, out_581

and out_583 directories are generated by the Keil program each time a project is compiled for the

respective SoC (DA14580/581/583), and contain the compilation output files.

The src directory contains the user’s application source code and header files (e.g.

user_<example>.c, user_<example>.h or more) and three directories: config, custom_profile and

platform. These three directories contain files that must be included in a user project structure. The

names of these files must not be altered by the user.

Note: The custom_profile directory can be omitted when the user does not use a Custom profile in

his application.

Figure 20: src Directory Example Layout

● da1458x_config_advanced.h, holds DA14580/581/583 advanced configuration settings.

● da1458x_config_basic.h, holds DA14580/581/583 basic configuration settings.

● user_callback_config.h, callback functions that handle various events or operations.

● user_config.h, holds advertising parameters, connection parameters, etc.

● user_config_sw_ver.h, holds user specific information about software version.

● user_custs1_def.c, defines the structure of the Custom 1 profile database structure.

.

├── Keil_5

│ ├── *.uvoptx

│ ├── *.uvprojx

│ ├── out_580

│ ├── out_581

│ ├── out_583

└── src

 ├── config

 ├── custom_profile

 ├── platform

 ├── *.c

 └── *.h

.

├── config

│ ├── da1458x_config_advanced.h

│ ├── da1458x_config_basic.h

│ ├── user_callback_config.h

│ ├── user_config.h

│ ├── user_config_sw_ver.h

│ ├── user_modules_config.h

│ ├── user_periph_setup.h

│ └── user_profiles_config.h

├── custom_profile

│ ├── user_custs_config.c

│ ├── user_custs_config.h

│ ├── user_custs1_def.c

│ └── user_custs1_def.h

├── platform

│ └── user_periph_setup.c

├── user_<example>.c

└── user_<example>.h

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 121 of 170 © 2022 Renesas Electronics

● user_custs_config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles

API functions calls.

● user_modules_config.h, defines which application modules are included or excluded from the

user’s application.

● user_periph_setup.h, holds hardware related settings.

● user_profiles_config.h, defines which BLE profiles (Bluetooth SIG adopted or custom ones)

will be included in user’s application.

● user_periph_setup.c, source code file that handles peripheral configuration and initialization.

A detailed description of the aforementioned configuration files is included in Ref. [15].

11.2.6 sdk Directory

This directory holds the core files of the SDK. The directory structure of the core SDK modules is
depicted below.

Figure 21: sdk Directory Structure

11.2.6.1 app_modules Directory

This directory holds the application source and header files.

● api, contains the application header files.

● src, contains applications project specific code for some BLE profiles and handling functions for

BLE operations, like advertising, connection, security/encryption, etc.

11.2.6.2 ble_stack Directory

This directory contains BLE stack related files.

.

├── app_modules

│ ├── api

│ └── src

├── ble_stack

│ ├── controller

│ ├── hcic

│ ├── hcih

│ ├── host

│ ├── profiles

│ ├── rwble

│ └── rwble_hl

├── common_project_files

│ ├── misc

│ └── scatterfiles

└── platform

 ├── arch

 ├── core_modules

 ├── driver

 ├── include

 └── patch_code

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 122 of 170 © 2022 Renesas Electronics

11.2.6.3 common_project_files Directory

This directory contains the following folders plus three configuration header files.

Figure 22: common_project_files Directory Structure

● misc, contains the ROM symbol definition files. This file will be used as input into the linker to

create the final executable. The executable files, as well as the compilation outputs, are saved in
a newly created directory named out_580, out_581 or out_583, depending on the selected SoC.

● scatterfiles, Keil scatter files for the DA14580/581/583 SoC.

The three configuration files are:

● da1458x_periph_setup.h, definitions of the used hardware platform.

● da1458x_scatter_config.h, definitions of the memory layout.

● da1458x_stack_config.h, definitions of the stack.

11.2.6.4 platform Directory

This directory contains the platform specific files for the ARM Cortex-M0 processor and its supported
peripherals (BLE, serial interfaces, GPIOs, etc.).

● arch, contains the system files and the main() application function.

● core_modules, contains core system modules, like the kernel that implements the message

handling, the GTL implementation, the non-volatile data storage manipulation, RF drivers, etc.

● driver, contains all the supported drivers for the ARM Cortex-M0 peripherals.

● include, header files of the core source files.

● patch_code, contains the object files of the patched ROM functions. More information for the

patched functions is given the Release Notes of the SDK distribution.

11.2.7 utilities Directory

This directory holds utilities and tools that supplement the SDK.

Figure 23: utilities Directory Structure

● flash_programmer, Flash programmer for DA14580/581/583 SoC.

● prod_test, production test utility.

● secondary_bootloader, secondary bootlader utility.

● uvproj2Makefile, utility that converts Keil4 project to Makefile.

A detailed description for some of the utilities is included in Ref. [20], Ref. [16] and the relevant
source code.

.

├── misc

├── scatterfiles

├── da1458x_periph_setup.h

├── da1458x_scatter_config.h

└── da1458x_stack_config.h

.

├── flash_programmer

├── mkimage

├── prod_test

├── secondary_bootloader

└── uvproj2Makefile

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 123 of 170 © 2022 Renesas Electronics

Appendix A Memory Mapping and Non-Volatile Data Storage

A.1 Exchange Memory Mapping Possibilities

SysRAM

Page 2

38 kB

0x2000.0000

0x2000.9800

0x2000.A000

0x2000.A800

Case 1
(BLE EM: 2 kB)

(SysRAM: 48 kB)

RetRAM

2 kB

0x0008.0000

0x0008.0800

RetRAM3

2 kB

RetRAM2

3 kB

RetRAM4

1 kB

0x0008.2000

RetRAM

2 kB

Case 2
(BLE EM: 3 kB)

(SysRAM: 47 kB)

Case 3
(BLE EM: 4 kB)

(SysRAM: 46 kB)

RetRAM

2 kB

Case 4
(BLE EM: 5 kB)

(SysRAM: 45 kB)

RetRAM

2 kB

Case 5
(BLE EM:6 kB)

(SysRAM: 44 kB)

RetRAM

2 kB

RetRAM4

1 kB

Case 6
(BLE EM: 7 kB)

(SysRAM: 43 kB)

RetRAM

2 kB

Case 7
(BLE EM: 8 kB)

(SysRAM: 42 kB)

RetRAM

2 kB

RetRAM4

1 kB

RetRAM

2 kB

RetRAM4

1 kB

RetRAM4

1 kB

RetRAM4

1 kB

RetRAM4

1 kB

RetRAM4

1 kB

Case 0

i.e. no remap
(BLE EM: 0 kB)

(SysRAM: 42 kB)

SysRAM

Page 1

2 kB

SysRAM

Page 2

38 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kBRetRAM3

2 kB

RetRAM3

2 kB

RetRAM3

2 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM3

2 kB

RetRAM3

2 kB

RetRAM3

2 kB

RetRAM3

2 kB

0x2000.C000

Case 9
(BLE EM: 4 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

SysRAM

Page 0

2 kB

Case 10
(BLE EM: 5 kB)

(SysRAM: 40 kB)

Case 11
(BLE EM: 6 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 0

2 kB

RetRAM

2 kB

RetRAM4

1 kB

SysRAM

Page 1

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 1

2 kB

RetRAM3

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

0x0008.3000

Figure 24: Memory Configurations (0..11)

0x2000.0000

0x2000.9800

0x2000.A000

0x2000.A800

0x0008.0000

0x0008.0800

0x0008.2000

0x2000.C000

0x0008.3000

Case 12
(BLE EM: 7 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

Case 13
(BLE EM: 8 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

RetRAM4

1 kB

Case 14
(BLE EM: 9 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

Case 15
(BLE EM:10 kB)

(SysRAM: 40 kB)

RetRAM

2 kB

RetRAM4

1 kB

SysRAM

Page 0

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 1

2 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM3

2 kB

RetRAM3

2 kB

Case 17
(BLE EM: 6 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

Case 18
(BLE EM: 7 kB)

(SysRAM: 38 kB)

Case 19
(BLE EM: 8 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

Case 20
(BLE EM: 9 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

Case 21
(BLE EM: 10 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

RetRAM4

1 kB

Case 22
(BLE EM: 11 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

Case 23
(BLE EM: 12 kB)

(SysRAM: 38 kB)

RetRAM

2 kB

RetRAM4

1 kB

RetRAM

2 kB

RetRAM4

1 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kB

RetRAM2

3 kBRetRAM3

2 kB

RetRAM3

2 kB

RetRAM3

2 kB

SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB SysRAM

Page 0

2 kB

SysRAM

Page 1

2 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

SysRAM

Page 2

38 kB

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

~~

Figure 25: Memory Configurations (12..23)

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 124 of 170 © 2022 Renesas Electronics

A.2 Non-Volatile Data Storage

The Non-Volatile Data Storage (NVDS) can be used to keep system configuration settings such as
Bluetooth device address, device name, advertising data, scan response data, etc.

struct nvds_data_struct {

uint32_t NVDS_VALIDATION_FLAG; // define which fields are valid

uint32_t NVDS_TAG_UART_BAUDRATE;// UART baudrate

uint32_t NVDS_TAG_DIAG_SW; // Diagport configuration

uint32_t NVDS_TAG_DIAG_BLE_HW; // Diagport configuration

uint16_t NVDS_TAG_NEB_ID; // Neb Session ID

uint16_t NVDS_TAG_LPCLK_DRIFT; // Low power clock accourancy

uint8_t NVDS_TAG_SLEEP_ENABLE; // Enable sleep mode

uint8_t NVDS_TAG_EXT_WAKEUP_ENABLE; //External wakeup enable

uint8_t NVDS_TAG_SECURITY_ENABLE; //Enable security for BLE application

uint8_t ADV_DATA_TAG_LEN; // Advertise data size

uint8_t SCAN_RESP_DATA_TAG_LEN; // Scan response data size

uint8_t DEVICE_NAME_TAG_LEN; // Device name size

uint8_t NVDS_TAG_APP_BLE_ADV_DATA[32]; // Advertise data

uint8_t NVDS_TAG_APP_BLE_SCAN_RESP_DATA[32]; // Scan response data

uint8_t NVDS_TAG_DEVICE_NAME[62]; // Device name

uint8_t NVDS_TAG_BD_ADDRESS[6]; // Device Bluetooth address

uint16_t NVDS_TAG_BLE_CA_TIMER_DUR; // Default Channel Assessment Timer duration

uint8_t NVDS_TAG_BLE_CRA_TIMER_DUR; // Default Channel Reassessment Timer

duration

uint8_t NVDS_TAG_BLE_CA_MIN_RSSI;// Default Minimal RSSI Threshold

uint8_t NVDS_TAG_BLE_CA_NB_PKT; // Default number of packets to receive for

statistics

uint8_t NVDS_TAG_BLE_CA_NB_BAD_PKT;// Default number of bad packets needed to

remove a channel

};

It is mapped to a constant system RAM position (0x20000340 when the system RAM is mapped to
0x20000000) as shown in the map file of an application Keil project, which corresponds to offset
0x340 in the OTP memory.

nvds_data_storage 0x20000340 in DA14581 project

nvds_data_storage 0x20000350 in DA14580/583 projects

The compilation option READ_NVDS_STRUCT_FROM_OTP can be used to define whether the
NVDS will be read from OTP or will be initialized with hardcoded values by the application software.

The developer can use the OTP NVDS tool of the SmartSnippets toolkit to write the NVDS structure
into OTP memory. The data written in the NVDS area of the OTP memory are copied to the
corresponding system RAM position (0x20000340) during the OTP mirroring process (Ref. [1]).

An alternative way for configuring the Bluetooth Device address (BD address) is offered through the
OTP header, which has priority over the NVDS. The device address can be written to offset 0x7FD4
of the OTP memory using the OTP header tool of SmartSnippets. The software reads the BD
address field of the OTP header (function nvds_read_bdaddr_from_otp() in nvds.c), and when it is

set (non-zero), copies it to the NVDS BD address field (function custom_nvds_get_func() in

nvds.c).

.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 125 of 170 © 2022 Renesas Electronics

Appendix B Interfacing to SPI Flash and I2C EEPROM Devices

B.1 Supported SPI Flash Memory Devices

The Peripheral drivers API directly support the SPI Flash memory devices listed in Table 5.

Table 5: SPI Flash Memory Devices Directly Supported by the SPI Flash Driver

Part Number Manufacturer Total Ssize Page Size

W25X10CL Winbond 1 Mbit 256 B

W25X20CL Winbond 2 Mbit 256 B

AT25DN011

AT25DF011

AT25DS011

Adesto 1 Mbit 256 B

MX25V1006E Macronix 1 Mbit 256 B

B.2 Supporting Other SPI Flash Devices

B.2.1 Introduction

The Peripheral devices driver directly supports the SPI Flash memory devices listed in section B.1.
This section explains how to add support for any other SPI Flash device to the SPI Flash library.

In most cases, the device to be supported will follow some standards (mostly maintained by JEDEC).
The SPI transactions and a basic set of commands are expected to be compatible to the ones used
in the already supported devices.

B.2.2 Command Set

Table 6 shows the commands and their respective opcodes of the currently supported SPI Flash
devices. The last column of the table can be filled with the commands that are listed in the datasheet
of the device under consideration. When multiple opcodes are offered for the same function, care
has to been taken to select the opcode that is compatible with the existing SPI Flash driver API.

Table 6: Commands of Currently Supported SPI Flash Memory Devices

Command description Command POpcode

W25x10CL

W25x20CL

AT25Dx011

(x: F, N or S)
MX25V1006E

Read commands

Read Array 0Bh, 03h 0Bh, 03h 0Bh, 03h

Dual Output Read 3Bh 3Bh 3Bh

Program and Erase commands

Page Erase

81h

Block Erase (4 kB) 20h 20h 20h

Block Erase (32 kB) 52h, D8h (64) 52h, D8h 52h, D8h

Chip Erase 60h, C7h 60h, C7h 60h, C7h

Chip Erase (legacy command)

62h

Byte/Page Program (1 to 256 B) 02h 02h 02h

Protection commands

Write Enable 06h 06h 06h

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 126 of 170 © 2022 Renesas Electronics

Command description Command POpcode

Write Disable 04h 04h 04h

Security commands

Program OTP Security Register

9Bh

Read OTP Security Register

77h

Status Register commands

Read Status Register 05h 05h 05h

Write Status Register Byte 1 01h 01h 01h

Write Status Register Byte 2

31h

Miscellaneous commands

Reset

F0h

Read Manufacturer and Device ID 92h , 90h 9Fh 90h

JEDEC ID 9Fh 9Fh 90h

Read ID (legacy command)

15h

Deep Power-Down B9h B9h B9h

Resume from Deep Power-Down ABh ABh ABh

Ultra-Deep Power-Down

79h

B.2.3 How to Proceed

In order to use the SPI Flash driver efficiently, the level of compatibility of the new device has to be
evaluated.

B.2.3.1 Device Is Highly Compatible

When the new device provides a compatible command set, at least for the functionality that will be
actually used, most likely the device will be adequately supported, with no or just a few modifications.

It is recommended to enable the automatic detection and parameter selection of the device:

Add the new device details in the following structure (in spi_flash.c):

const SPI_FLASH_DEVICE_PARAMETERS_BY_JEDEC_ID_t

SPI_FLASH_KNOWN_DEVICES_PARAMETERS_LIST[] =

{

 {W25X10_JEDEC_ID, W25X10_JEDEC_ID_MATCHING_BITMASK, W25X10_TOTAL_FLASH_SIZE,

W25X10_PAGE_SIZE, W25x_MEM_PROT_BITMASK, W25x10_MEM_PROT_NONE},

 {W25X20_JEDEC_ID, W25X20_JEDEC_ID_MATCHING_BITMASK, W25X20_TOTAL_FLASH_SIZE,

W25X20_PAGE_SIZE, W25x_MEM_PROT_BITMASK, W25x20_MEM_PROT_NONE},

 {AT25Dx011_JEDEC_ID, AT25Dx011_JEDEC_ID_MATCHING_BITMASK,

AT25Dx011_TOTAL_FLASH_SIZE, AT25Dx011_PAGE_SIZE, AT25Dx011_MEM_PROT_BITMASK,

AT25Dx011_MEM_PROT_NONE},

 {MX25V1006E_JEDEC_ID, MX25V1006E_JEDEC_ID_MATCHING_BITMASK,

MX25V1006E_TOTAL_FLASH_SIZE, MX25V1006E_PAGE_SIZE, MX25V1006E_MEM_PROT_BITMASK,

MX25V1006E_MEM_PROT_NONE},

 {MY_DEVICE_JEDEC_ID, MY_DEVICE_JEDEC_ID_MATCHING_BITMASK,

MY_DEVICE_TOTAL_FLASH_SIZE, MY_DEVICE_PAGE_SIZE, MY_DEVICE_MEM_PROT_BITMASK,

MY_DEVICE_MEM_PROT_NONE},

};

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 127 of 170 © 2022 Renesas Electronics

Optionally add preprocessor constants in order to keep the code more readable (in spi_flash.h).

Example:

// 5. MY_DEVICE

#define SPI_FLASH_DEVICE_INDEX_MY_DEVICE 4

#define MY_DEVICE_JEDEC_ID 0x123456

#define MY_DEVICE_JEDEC_ID_MATCHING_BITMASK 0xFFFFFF

#define MY_DEVICE_TOTAL_FLASH_SIZE 0x20000

#define MY_DEVICE_PAGE_SIZE 0x100

#define MY_DEVICE_MEM_PROT_NONE 0

#define MY_DEVICE_MEM_PROT_UPPER_HALF 4

#define MY_DEVICE_MEM_PROT_LOWER_HALF 36

#define MY_DEVICE_MEM_PROT_ALL 8

Note: It is important to set the SPI_FLASH_DEVICE_INDEX_MY_DEVICE to the next available
value. Also, the SPI_FLASH_DEVICES_SUPPORTED_COUNT must be set to the same value.

Example:

#define SPI_FLASH_DEVICE_INDEX_MY_DEVICE 4

#define SPI_FLASH_DEVICES_SUPPORTED_COUNT (4)

The …TOTAL_FLASH_SIZE and …PAGE_SIZE are expressed in bytes.

The …JEDEC_ID is the response to the command 0x9F (read JEDEC ID) and is used to identify the

device automatically.

The …JEDEC_ID_MATCHING_BITMASK is used to select only parts of the JEDEC is for matching.

The …MEM_PROT_BITMASK is used to select the bits of the status register which are responsible for the

memory protection functions.

B.2.3.2 Device Has Some Degree of Compatibility

When the device has some degree of compatibility, the recommended approach is to make a copy of
the existing driver (spi_flash.c, spi_flash.h) and modify the opcodes of the commands in order to
accommodate the necessary changes to support this new device.

B.2.3.3 Device Is Not Compatible

When either the SPI transaction formats deviate considerably from the ones used in the existing SPI
Flash API and/or the command set is highly incompatible, it is recommended to develop a separate
driver to support this new device.

B.3 Using Other I2C EEPROM devices

Adding support for new I2C EEPROM devices mostly involves parameter selection. The following
parameters have to be determined and passed to the i2c_init() function:

● I2C slave address of the device.

● I2C speed: I2C_STANDARD (100 kbit/s) or I2C_FAST (400 kbit/s) depending on the device used and

the hardware design.

● I2C addressing mode: I2C_7BIT_ADDR or I2C_10BIT_ADDR.

● Device address width (in bytes): I2C_1BYTE_ADDR, I2C_2BYTES_ADDR, I2C_3BYTES_ADDR.

The i2c_send_address() function may have to be adapted, in order to accommodate any special

format of addressing. Example:

For the M24M01 device, which is currently supported by selecting the I2C_2BYTES_ADDR configuration

parameter, in order to address the 1 Mbit (17 bit) memory array the 17th address bit (A16) is passed
along with the device address (in i2c_eeprom.c):

SetWord16(I2C_TAR_REG, i2c_dev_address | ((address_to_send & 0x10000) >> 16));

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 128 of 170 © 2022 Renesas Electronics

It is recommended to add a new preprocessor constant (in i2c_eeprom.h):

enum I2C_ADRESS_BYTES_COUNT{

 I2C_1BYTE_ADDR,

 I2C_2BYTES_ADDR,

 I2C_3BYTES_ADDR,

 I2C_MY_CUSTOM_ADDR_SIZE,

};

and to adapt the i2c_send_address() function accordingly:

void i2c_send_address(uint32_t address_to_send)

{

if (mem_address_size == I2C_MY_CUSTOM_ADDR_SIZE)

{

// Code supporting the new device

}

else

{

// Existing code for the rest of the devices

}

}

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 129 of 170 © 2022 Renesas Electronics

Appendix C Application Software APIs

C.1 Mid Layer API

The files for the Mid Layer API are stored in the folder: sdk\app_modules\api.

File Description

app_mid.h API functions

C.1.1 app_disconnect_msg_create

Function name __INLINE struct gapc_disconnect_cmd* app_disconnect_msg_create(uint8_t

connection_idx)

Function description Allocate a disconnect message for a specific connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the disconnect command message.

Notes None

C.1.2 app_disconnect_msg_send

Function name __INLINE void app_disconnect_msg_send(struct gapc_disconnect_cmd *cmd)

Function description Send the disconnect message.

Parameters cmd Pointer to the disconnect message.

Return values None

Notes The function only calls ke_msg_send().

C.1.3 app_connect_cfm_msg_create

Function name __INLINE struct gapc_connection_cfm* app_connect_cfm_msg_create(uint8_t

connection_idx)

Function description Allocate a connect confirmation message for a specific connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the connect confirm message.

Notes None

C.1.4 app_connect_cfm_msg_send

Function name __INLINE void app_connect_cfm_msg_send(struct gapc_connection_cfm*cmd)

Function description Send the connect confirmation message.

Parameters Cmd Pointer to the connect confirmation message.

Return values None

Notes The function only calls ke_msg_send().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 130 of 170 © 2022 Renesas Electronics

C.1.5 app_advertise_start_msg_create

Function name __INLINE struct gapm_start_advertise_cmd*

app_advertise_start_msg_create(void)

Function description Allocate an advertise start message.

Parameters None

Return values Returns the pointer to the advertise start message.

Notes None

C.1.6 app_advertise_start_msg_send

Function name __INLINE void app_advertise_start_msg_send(struct

gapm_start_advertise_cmd* cmd)

Function description Send the advertise start message.

Parameters Cmd Pointer to the advertise start message.

Return values None

Notes The function only calls ke_msg_send().

C.1.7 app_gapm_cancel_msg_create

Function name __INLINE struct gapm_cancel_cmd* app_gapm_cancel_msg_create(void)

Function description Allocate a gap manager cancellation message.

Parameters None

Return values Returns the pointer to the gap manager cancellation message.

Notes None

C.1.8 app_gapm_cancel_msg_send

Function name __INLINE void app_gapm_cancel_msg_send(struct gapm_cancel_cmd* cmd)

Function description Send the gap manager cancellation message

Parameters Cmd Pointer to the gap manager cancellation message

Return values None

Notes The function only calls ke_msg_send().

C.1.9 app_advertise_stop_msg_create

Function name __INLINE struct gapm_cancel_cmd* app_advertise_stop_msg_create(void)

Function description Allocate a gap manager cancellation message.

Parameters None

Return values Returns the pointer to the gap manager cancellation message.

Notes Wrapper of app_gapm_cancel_msg_create() to provide a more meaningful name.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 131 of 170 © 2022 Renesas Electronics

C.1.10 app_advertise_stop_msg_send

Function name __INLINE void app_advertise_stop_msg_send(struct gapm_cancel_cmd* cmd)

Function description Send the gap manager cancellation message.

Parameters cmd Pointer to the gap manager cancellation message

Return values None

Notes Wrapper of app_gapm_cancel_msg_send() to provide a more meaningful name.

The function only calls ke_msg_send().

C.1.11 app_param_update_msg_create

Function name __INLINE struct gapc_param_update_cmd*

app_param_update_msg_create(uint8_t connection_idx)

Function description Allocate a parameter update message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the parameter update message message.

Notes None

C.1.12 app_advertise_stop_msg_send

Function name __INLINE void app_advertise_stop_msg_send(struct gapm_cancel_cmd* cmd)

Function description Send the gap manager cancellation message.

Parameters cmd Pointer to the gap manager cancellation message

Return values None

Notes Wrapper of app_gapm_cancel_msg_send() to provide a more meaningful name.

The function only calls ke_msg_send().

C.1.13 app_connect_start_msg_create

Function name __INLINE struct gapm_start_connection_cmd*

app_connect_start_msg_create(void)

Function description Allocate a start connection message.

Parameters None

Return values Returns the pointer to the start connection message.

Notes The start connection message is used from a central to initiate a connection with a

peripheral.

C.1.14 app_connect_start_msg_send

Function name __INLINE void app_connect_start_msg_send(struct

gapm_start_connection_cmd* cmd)

Function description Send the start connection message.

Parameters cmd Pointer to the start connection message.

Return values None

Notes The start connection message is used from a central to initiate a connection with a
peripheral. The function only calls ke_msg_send().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 132 of 170 © 2022 Renesas Electronics

C.1.15 app_gapm_configure_msg_create

Function name __INLINE struct gapm_set_dev_config_cmd*

app_gapm_configure_msg_create(void)

Function description Allocate a gap manager configuration message.

Parameters None

Return values Returns the pointer to the gap manager configuration message.

Notes None

C.1.16 app_gapm_configure_msg_send

Function name __INLINE void app_gapm_configure_msg_send(struct

gapm_set_dev_config_cmd* cmd)

Function description Send the gap manager configuration message.

Parameters Cmd Pointer to the gap manager configuration message.

Return values None

Notes The function only calls ke_msg_send().

C.1.17 app_gapc_bond_cfm_msg_create

Function name __INLINE struct gapc_bond_cfm* app_gapc_bond_cfm_msg_create (uint8_t

connection_idx)

Function description Allocate a gap bond confirmation message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the gap bond confirmation message.

Notes None

C.1.18 app_gapc_bond_cfm_msg_send

Function name __INLINE void app_gapc_bond_cfm_msg_send (struct gapc_bond_cfm* cmd)

Function description Send the gap bond confirmation message.

Parameters cmd Pointer to the gap bond confirmation message.

Return values None

Notes The function only calls ke_msg_send().

C.1.19 app_gapc_bond_cfm_pairing_rsp_msg_create

Function name __INLINE struct gapc_bond_cfm*

app_gapc_bond_cfm_pairing_rsp_msg_create(uint8_t connection_idx)

Function description Allocate a gap bond pairing response message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the gap bond pairing response message.

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 133 of 170 © 2022 Renesas Electronics

C.1.20 app_gapc_bond_cfm_pairing_rsp_msg_send

Function name __INLINE void app_gapc_bond_cfm_pairing_rsp_msg_send (struct

gapc_bond_cfm* cmd)

Function description Send the gap bond pairing response message.

Parameters cmd Pointer to the gap bond pairing response message.

Return values None

Notes The function only calls ke_msg_send().

C.1.21 app_gapc_bond_cfm_tk_exch_msg_create

Function name __INLINE struct gapc_bond_cfm*

app_gapc_bond_cfm_tk_exch_msg_create(uint8_t connection_idx)

Function description Allocate a temporary key exchange message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the gap bond confirmation temporary key exchange

message.

Notes None

C.1.22 app_gapc_bond_cfm_tk_exch_msg_send

Function name __INLINE void app_gapc_bond_cfm_tk_exch_msg_send (struct gapc_bond_cfm*

cmd)

Function description Send the temporary key exchange message.

Parameters cmd Pointer to bond confirmation temporary key exchange message.

Return values None

Notes The function only calls ke_msg_send().

C.1.23 app_gapc_bond_cfm_csrk_exch_msg_create

Function name __INLINE struct gapc_bond_cfm*

app_gapc_bond_cfm_csrk_exch_msg_create(uint8_t connection_idx)

Function description Allocate a Connection Signature Resolving Key (CSRK) exchange message for a

given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the CSRK exchange message.

Notes None

C.1.24 app_gapc_bond_cfm_csrk_exch_msg_send

Function name __INLINE void app_gapc_bond_cfm_csrk_exch_msg_send (struct

gapc_bond_cfm* cmd)

Function description Send the CSRK key exchange message.

Parameters cmd Pointer to the CSRK exchange message.

Return values None

Notes The function only calls ke_msg_send().

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 134 of 170 © 2022 Renesas Electronics

C.1.25 app_gapc_bond_cfm_ltk_exch_msg_create

Function name __INLINE struct gapc_bond_cfm*

app_gapc_bond_cfm_ltk_exch_msg_create(uint8_t connection_idx)

Function description Allocate a Long Term Key (LTK) exchange message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the LTK exchange message.

Notes None

C.1.26 app_gapc_bond_cfm_ltk_exch_msg_send

Function name __INLINE void app_gapc_bond_cfm_ltk_exch_msg_send (struct gapc_bond_cfm*

cmd)

Function description Send the LTK key exchange message.

Parameters cmd Pointer to the LTK exchange message.

Return values None

Notes The function only calls ke_msg_send().

C.1.27 app_gapc_encrypt_cfm_msg_create

Function name __INLINE struct gapc_encrypt_cfm* app_gapc_encrypt_cfm_msg_create

(uint8_t connection_idx)

Function description Allocate an encryption confirmation message for a given connection.

Parameters connection_idx The connection index.

Return values Returns the pointer to the encryption confirmation message.

Notes None

C.1.28 app_gapc_encrypt_cfm_msg_send

Function name __INLINE void app_gapc_encrypt_cfm_msg_send (struct gapc_bond_cfm* cmd)

Function description Send the encryption confirmation message.

Parameters cmd Pointer to the encryption confirmation message.

Return values None

Notes The function only calls ke_msg_send().

C.1.29 app_gapc_security_request_msg_create

Function name __INLINE struct gapc_security_cmd* app_gapc_security_request_msg_create

(uint8_t connection_idx, enum gap_auth auth)

Function description Allocate a security request message for a given connection.

Parameters connection_idx The connection index.

auth The desired authentication level.

Return values Returns the pointer to the encryption confirmation message.

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 135 of 170 © 2022 Renesas Electronics

C.1.30 app_gapc_security_request_msg_send

Function name __INLINE void app_gapc_security_request_msg_send (struct

gapc_security_cmd* cmd)

Function description Send the security request message.

Parameters cmd Pointer to the security request message.

Return values None

Notes The function only calls ke_msg_send().

C.1.31 app_gapm_reset_msg_create

Function name __INLINE struct gapm_reset_cmd* app_gapm_reset_msg_create(void)

Function description Allocate a gap manager reset message.

Parameters None

Return values Returns the pointer to the gap manager reset message.

Notes None

C.1.32 app_gapm_reset_msg_send

Function name __INLINE void app_gapm_reset_msg_send (struct gapm_reset_cmd* cmd)

Function description Send the gap manager reset message.

Parameters cmd Pointer to the gap manager reset message.

Return values None

Notes The function only calls ke_msg_send().

C.1.33 app_gapm_reset_op

Function name __INLINE void app_gapm_reset_op (void)

Function description Reset the gap manager reset.

Parameters None

Return values None

Notes None

C.1.34 app_disconnect_op

Function name __INLINE void app_disconnect_op (uint8_t connection_id, uint8_t reason)

Function description Disconnect from a specific connection for a specific reason.

Parameters connection_id The id of the given connection.

Reason The reason for the disconnection. Could be one of the following:

 CO_ERROR_AUTH_FAILURE,

 CO_ERROR_REMOTE_USER_TERM_CON,

 CO_ERROR_REMOTE_DEV_TERM_LOW_RESOURCES,

 CO_ERROR_REMOTE_DEV_POWER_OFF,

 CO_ERROR_UNSUPPORTED_REMOTE_FEATURE,

 CO_ERROR_PAIRING_WITH_UNIT_KEY_NOT_SUP,

 CO_ERROR_UNACCEPTABLE_CONN_INT.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 136 of 170 © 2022 Renesas Electronics

C.1.35 app_connect_confirm_op

Function name __INLINE void app_connect_confirm_op(uint8_t connection_id, enum

gap_auth auth, enum gap_authz authorize)

Function description Confirm a connection.

Parameters connection_id The id of the given connection.

Auth The authentication requirements.

authorize _id The authorization requirements.

Return values None

Notes None

C.1.36 app_advertise_undirected_start_op

Function name __INLINE void app_advertise_undirected_start_op (enum gapm_own_addr_src

address_src_type, uint16_t interval, uint8_t channel_map, enum

gap_adv_mode advertise_mode,enum adv_filter_policy adv_filt_policy,

uint8_t* advertise_data, uint8_t advertise_data_len, uint8_t*

scan_response_data, uint8_t scan_response_data_len)

Function description Start an advertise undirected operation.

Parameters address_src_type The source address type used during the advertise

 operation.

Interval The advertise interval.

channel_map The channels used during the advertise operation.

advertise_mode The advertising mode: GAP_NON_DISCOVERABLE,
 GAP_GEN_DISCOVERABLE, GAP_LIM_DISCOVERABLE, GAP_BROADCASTER_MODE

adv_filt_policy The advertising filter policy:
 ADV_ALLOW_SCAN_ANY_CON_ANY, ADV_ALLOW_SCAN_WLST_CON_ANY,

 ADV_ALLOW_SCAN_ANY_CON_WLST, ADV_ALLOW_SCAN_WLST_CON_WLST

advertise_data Pointer to an array with the advertise data.

advertise_data_len The length of the advertise data.

scan_response_data Pointer to an array with the scan response data.

scan_response_data_len The length of the scan response data.

Return values None

Notes None

C.1.37 app_advertise_directed_start_op

Function name __INLINE void app_advertise_directed_start_op (enum gapm_own_addr_src

address_src_type, uint16_t interval, uint8_t channel_map, enum

address_type target_address_type, uint8_t* target_address)

Function description Start an advertise directed operation.

Parameters address_src_type The source address type used during the advertise

 operation.

Interval The advertise interval.

channel_map The channels used during the advertise operation.

target_address_type Address type of the target device.

target_address Address of the target device.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 137 of 170 © 2022 Renesas Electronics

C.1.38 app_advertise_stop_op

Function name __INLINE void app_advertise_stop_op(void)

Function description Stop the current advertise operation.

Parameters None

Return values None

Notes None

C.1.39 app_param_update_op

Function name __INLINE void app_param_update_op(uint8_t connection_idx, uint16_t

intv_min, uint16_t intv_max, uint16_t latency, uint16_t

supervision_time_out, uint16_t connection_event_len_min, uint16_t

connection_event_len_max)

Function description Send a parameter update operation (parameters in 1.25 ms time slots).

Parameters connection_idx The id of the connection.

latency The slave latency measured in connection event periods.

intv_min The new preferred minimum connection interval measured in

 1.25 ms slots.

intv_max The new preferred maximum connection interval measured in

 1.25 ms slots.

connection_event_len_min The new preferred minimum connection event

 length measured in 1.25 ms slots.

connection_event_len_max The new preferred maximum connection event

 length measured in 1.25 ms slots.

Return values None

Notes None

C.1.40 app_param_update_op_us

Function name __INLINE void app_param_update_op_us(uint8_t connection_idx, uint32_t

intv_min_us, uint32_t intv_max_us, uint16_t latency, uint32_t

supervision_time_out_us, uint32_t connection_event_len_min_us, uint32_t

connection_event_len_max_us)

Function description Send a parameter update operation (parameters in microseconds).

Parameters connection_idx The id of the connection.

Latency The slave latency measured in connection event periods.

intv_min_us The new preferred minimum connection interval measured in

 microseconds.

intv_max_us The new preferred maximum connection interval measured in

 microseconds.

connection_event_len_min_us The new preferred minimum connection event

 length measured in micro seconds.

connection_event_len_max_us The new preferred maximum connection event

 length measured in micro seconds.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 138 of 170 © 2022 Renesas Electronics

C.1.41 app_gapm_configure_op

Function name __INLINE void app_gapm_configure_op (enum gap_role role, uint8_t* irk,

uint16_t appearance, enum gapm_write_att_perm appearance_write_perm,

enum gapm_write_att_perm name_write_perm, uint16_t max_mtu, uint16_t

connection_intv_min, uint16_t connection_intv_max, uint16_t

connection_latency, uint16_t supervision_timeout, uint8_t flags)

Function description Configure the gap manager (parameters in 1.25 ms time slots).

Parameters role The role of the device:
 GAP_NO_ROLE, GAP_OBSERVER_SCA,

 GAP_BROADCASTER_ADV,

 GAP_CENTRAL_MST,

 GAP_PERIPHERAL_SLV

irk Pointer to an array that contains the device Identity Root

 Key (IRK).

appearance The device appearance.

appearance_write_perm Appearance write permission requirement.

name_write_perm Name write permission requirement.

max_mtu Maximum mtu supported.

connection_intv_min Preferred minimum connection interval measured in

 1.25 ms slots.

connection_intv_max Preferred maximum connection interval measured in

 1.25 ms slots.

connection_latency Preferred slave latency measured in connection events.

supervision_timeout Preferred supervision timeout measured in 10 ms slots.

flags Privacy settings bit field (0b1 = enabled, 0b0 = disabled)

 [bit 0] Privacy Support

 [bit 1] Multiple Bond Support (Peripheral only). Read-only if enabled.

 [bit 2] Reconnection address visible.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 139 of 170 © 2022 Renesas Electronics

C.1.42 app_gapm_configure_op_us

Function name __INLINE void app_gapm_configure_op_us (enum gap_role role, uint8_t*

irk, uint16_t appearance, enum gapm_write_att_perm

appearance_write_perm, enum gapm_write_att_perm name_write_perm,

uint16_t max_mtu, uint32_t connection_intv_min_us, uint32_t

connection_intv_max_us, uint16_t connection_latency, uint32_t

supervision_timeout_us, uint8_t flags)

Function description Configure the gap manager (parameters in microseconds).

Parameters role The role of the device:
 GAP_NO_ROLE,

 GAP_OBSERVER_SCA,

 GAP_BROADCASTER_ADV,

 GAP_CENTRAL_MST,

 GAP_PERIPHERAL_SLV

irk Pointer to an array that contains the device Identity Root

 Key (IRK).

appearance The device appearance.

appearance_write_perm Appearance write permission requirement.

name_write_perm Name write permission requirement.

max_mtu Maximum mtu supported.

connection_intv_min_us Preferred minimum connection interval measured in

 microseconds.

connection_intv_max_us Preferred maximum connection interval measured in

 microseconds.

connection_latency Preferred slave latency measured in connection events.

supervision_timeout_us Preferred supervision timeout measured in

 microseconds.

flags Privacy settings bit field (0b1 = enabled, 0b0 = disabled)

 [bit 0] Privacy Support

 [bit 1] Multiple Bond Support (Peripheral only). Read-only if enabled.

 [bit 2] Reconnection address visible.

Return values None

Notes None

C.1.43 app_security_request_op

Function name __INLINE void app_security_request_op(uint8_t connection_idx, enum

gap_auth auth)

Function description Send a security request.

Parameters connection_idx The id of the connection.

auth The authentication requirements.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 140 of 170 © 2022 Renesas Electronics

C.1.44 app_gapc_bond_cfm_pairing_rsp_op

Function name __INLINE void app_gapc_bond_cfm_pairing_rsp_op (uint8_t connection_idx,

enum gap_io_cap io_capabilities, enum gap_oob oob, enum gap_auth

authentication, uint8_t key_size, enum gap_kdist initiator_key_dist,

enum gap_kdist responder_key_dist, enum gap_sec_req

security_requirements)

Function description Send a security request.

Parameters connection_idx The id of the connection.

io_capabilities Device capabilities:
 GAP_IO_CAP_DISPLAY_ONLY,

 GAP_IO_CAP_DISPLAY_YES_NO,

 GAP_IO_CAP_KB_ONLY,

 GAP_IO_CAP_NO_INPUT_NO_OUTPUT,

 GAP_IO_CAP_KB_DISPLAY.

oob Out of band info:
 GAP_OOB_AUTH_DATA_NOT_PRESENT,

 GAP_OOB_AUTH_DATA_PRESENT

authentication The authentication requirements.

key_size The key size.

initiator_key_dist Initiator key distriburion flags:
 GAP_KDIST_NONE,

 GAP_KDIST_ENCKEY,

 GAP_KDIST_IDKEY,

 GAP_KDIST_SIGNKEY

responder_key_dist Responder key distriburion flags:
 GAP_KDIST_NONE,

 GAP_KDIST_ENCKEY,

 GAP_KDIST_IDKEY,

 GAP_KDIST_SIGNKEY

security_requirements Security definition.

Return values None

Notes None

C.1.45 app_gapc_bond_cfm_tk_exch_op

Function name __INLINE void app_gapc_bond_cfm_tk_exch_op (uint8_t connection_idx,

uint8_t* temporary_key)

Function description Exchange the temporary key.

Parameters connection_idx The id of the connection.

temporary_key Array containing the temporary key.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 141 of 170 © 2022 Renesas Electronics

C.1.46 app_gapc_bond_cfm_csrk_exch_op

Function name __INLINE void app_gapc_bond_cfm_csrk_exch_op (uint8_t connection_idx,

uint8_t* csrk)

Function description Exchange the CSRK key.

Parameters connection_idx The id of the connection.

csrk Array containing the CSRK key.

Return values None

Notes None

C.1.47 app_gapc_bond_cfm_ltk_exch_op

Function name __INLINE void app_gapc_bond_cfm_ltk_exch_op (uint8_t connection_idx,

uint8_t* long_term_key, uint8_t encryption_key_size, uint8_t*

random_number, uint16_t encryption_diversifier)

Function description Exchange the LTK key and parameters.

Parameters connection_idx The id of the connection.

long_term_key Array containing the long term key.

encryption_key_size Encryption key size.

random_number Random number.

encryption_diversifier Encryption diversifier.

Return values None

Notes None

C.1.48 app_gapc_encrypt_cfm_op

Function name __INLINE void app_gapc_encrypt_cfm_op (uint8_t connection_idx, bool

found, uint8_t key_size, uint8_t* long_term_key)

Function description Confirm the success of the encryption.

Parameters connection_idx The id of the connection.

found Confirm that the entry has been found.

key_size Size of the key.

long_term_key The long term key.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 142 of 170 © 2022 Renesas Electronics

C.2 Easy API

The files for the Easy API are stored in the folder: sdk\app_modules\api.

C.2.1 conhdl_to_conidx

Function name __INLINE int8_t conhdl_to_conidx (uint16_t conhdl)

Function description Returns the connection index from the connection handle.

Parameters conhdl The id of the connection handle.

Return values The value of the connection index.

Notes Macro for the gapc_get_conidx.

C.2.2 conidx_to_conhdl

Function name __INLINE int16_t conidx_to_conhdl (uint8_t conidx)

Function description Returns the connection handle value from the connection index.

Parameters conidx The id of the connection index

Return values The value of the connection handle.

Notes Macro for the gapc_get_conhdl.

C.2.3 app_easy_gap_disconnect

Function name void app_easy_gap_disconnect (uint8_t connection_idx)

Function description Send the BLE disconnect command.

Parameters connection_idx The id of the connection index.

Return values None

Notes None

C.2.4 app_easy_gap_confirm

Function name void app_easy_gap_confirm (uint8_t connection_idx, enum gap_auth auth,

enum gap_authz authorize)

Function description Send the gap confirmation message.

Parameters connection_idx The id of the connection index.

auth The authentication requirements.

authorize The authorization requirements.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 143 of 170 © 2022 Renesas Electronics

C.2.5 app_easy_gap_undirected_advertise_start

Function name void app_easy_gap_undirected_advertise_start (void)

Function description Start an undirected advertise operation according to the settings of the active

message.

Parameters None

Return values None

Notes None

C.2.6 app_easy_gap_directed_advertise_start

Function name void app_easy_gap_directed_advertise_start (void)

Function description Start a directed advertise operation according to the settings of the active message.

Parameters None

Return values None

Notes None

C.2.7 app_easy_gap_non_connectable_advertise_start

Function name void app_easy_gap_non_connectable_advertise_start (void)

Function description Start a non-connectable advertise operation to the settings of the active message.

Parameters None

Return values None

Notes None

C.2.8 app_easy_gap_advertise_stop

Function name void app_easy_gap_advertise_stop (void)

Function description Stop the active advertise operation.

Parameters None

Return values None

Notes None

C.2.9 app_easy_gap_undirected_advertise_with_timeout_start

Function name void app_easy_gap_undirected_advertise_with_timeout_start (uint16_t

delay, void (*timeout_callback)(void))

Function description Start an undirected advertise operation according to the settings of the active

message for a specific time. When the advertise finishes callback a user function.

Parameters delay The maximum duration of the advertise operation.

timeout_callback The callback to call if the advertise operation times out.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 144 of 170 © 2022 Renesas Electronics

C.2.10 app_easy_gap_advertise_with_timeout_stop

Function name void app_easy_gap_advertise_with_timeout_stop (void)

Function description Stop the undirected advertise and the timeout timer.

Parameters None

Return values None

Notes None

C.2.11 app_easy_gap_undirected_advertise_get_active

Function name struct gapm_start_advertise_cmd*

app_easy_gap_undirected_advertise_get_active (void)

Function description Get the active advertise message. If None exists allocate a new one and fill it with
the undirected related configuration from user_config.h.

Parameters None

Return values The active message.

Notes None

C.2.12 app_easy_gap_directed_advertise_get_active

Function name struct gapm_start_advertise_cmd*

app_easy_gap_directed_advertise_get_active (void)

Function description Get the active advertise message. If None exists allocate a new one and fill it with
the directed related configuration from user_config.h.

Parameters None

Return values The active message.

Notes None

C.2.13 app_easy_gap_param_update_start

Function name void app_easy_gap_param_update_start (uint8_t connection_idx)

Function description Start a parameter update sequence according to the settings of the active message

for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.14 app_easy_gap_param_update_get_active

Function name struct gapc_param_update_cmd* app_easy_gap_param_update_get_active

(uint8_t connection_idx)

Function description Get the active parameter update message. If None exists allocate a new one
according to the setting in the user_config.h for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 145 of 170 © 2022 Renesas Electronics

C.2.15 app_easy_gap_start_connection_to

Function name void app_easy_gap_start_connection_to (void)

Function description Start a new connection with a peripheral.

Parameters None

Return values None

Notes None

C.2.16 app_easy_gap_start_connection_to_set

Function name void app_easy_gap_start_connection_to_set (uint8_t peer_addr_type,

uint8_t *peer_addr, uint16_t intv)

Function description Set the parameters of a connection_to operation. Set the peer address, its type

and the connection interval to use.

Parameters peer_addr_type The peer address type.

peer_addr The peer address.

intv The connection interval to use.

Return values None

Notes None

C.2.17 app_easy_gap_start_connection_to_get_active

Function name struct gapm_start_connection_cmd*

app_easy_gap_start_connection_to_get_active (void)

Function description Get the active message of the connection_to operation. If None exists create a

new empty one.

Parameters None

Return values The active message.

Notes None

C.2.18 app_easy_gap_dev_config_get_active

Function name struct gapm_set_dev_config_cmd* app_easy_gap_dev_config_get_active

(void)

Function description Get the active gap configure message. If None exists create a new one according
to the settings in user_config.h.

Parameters None

Return values The active message.

Notes None

C.2.19 app_easy_gap_dev_configure

Function name void app_easy_gap_dev_configure (void)

Function description Configure the gap manager according to the settings of the active message.

Parameters None

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 146 of 170 © 2022 Renesas Electronics

C.2.20 app_easy_security_pairing_rsp_get_active

Function name struct gapc_bond_cfm* app_easy_security_pairing_rsp_get_active (uint8_t

connection_idx)

Function description Get the pairing response active message for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

C.2.21 app_easy_security_tk_get_active

Function name struct gapc_bond_cfm* app_easy_security_tk_get_active (uint8_t

connection_idx)

Function description Get the temporary key exchange active message for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

C.2.22 app_easy_security_csrk_get_active

Function name struct gapc_bond_cfm* app_easy_security_csrk_get_active (uint8_t

connection_idx)

Function description Get the CSRK exchange active message for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

C.2.23 app_easy_security_ltk_exch_get_active

Function name struct gapc_bond_cfm* app_easy_security_ltk_exch_get_active (uint8_t

connection_idx)

Function description Get the LTK exchange active message for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

C.2.24 app_easy_security_encrypt_cfm_get_active

Function name struct gapc_encrypt_cfm* app_easy_security_encrypt_cfm_get_active

(uint8_t connection_idx)

Function description Get the encryption confirmation message for a specific connection.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 147 of 170 © 2022 Renesas Electronics

C.2.25 app_easy_security_set_tk

Function name void app_easy_security_set_tk (uint8_t connection_idx, uint8_t *key,

uint8_t keylen)

Function description Set the temporary key in the TK exchange message for a specific connection..

Parameters connection_idx The id of the connection.

key The actual key.

keylen The length of the key

Return values None

Notes None

C.2.26 app_easy_security_set_ltk_exch_from_sec_env

Function name void app_easy_security_set_ltk_exch_from_sec_env (uint8_t

connection_idx)

Function description Fill in the LTK settings for the app_sec_env structure for the specific id.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.27 app_easy_security_set_ltk_exch

Function name void app_easy_security_set_ltk_exch (uint8_t connection_idx, uint8_t*

long_term_key, uint8_t encryption_key_size, uint8_t* random_number,

uint16_t encryption_diversifier)

Function description Set all the LTK settings of the active LTK message.

Parameters connection_idx The id of the connection.

long_term_key The long term key.

encryption_key_size The encryption size.

random_number The random number to use.

encryption_diversifier The encryption diversifier.

Return values None

Notes None

C.2.28 app_easy_security_set_encrypt_req_valid

Function name void app_easy_security_set_encrypt_req_valid (uint8_t connection_idx)

Function description Set the encrypt request message as valid for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 148 of 170 © 2022 Renesas Electronics

C.2.29 app_easy_security_set_encrypt_req_invalid

Function name void app_easy_security_set_encrypt_req_invalid (uint8_t connection_idx)

Function description Set the encrypt request message as invalid for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.30 app_easy_security_send_pairing_rsp

Function name void app_easy_security_send_pairing_rsp (uint8_t connection_idx)

Function description Send the pairing response for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.31 app_easy_security_tk_exch

Function name void app_easy_security_tk_exch (uint8_t connection_idx, uint8_t *key,

uint8_t length)

Function description Send the TK exchange message for a specific connection.

Parameters connection_idx The id of the connection.

*key Pointer to the key that will be sent via the TK exchange message.

length Length of the pass key in octets.

Return values None

Notes The # key can be either a 6-digit (4 octets) pass key or an OOB provided key. The

maximum size of the OOB key is 128-bit (16 octets).

C.2.32 app_easy_security_csrk_exch

Function name void app_easy_security_csrk_exch (uint8_t connection_idx)

Function description Send the CSRK exchange message for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.33 app_easy_security_ltk_exch

Function name void app_easy_security_ltk_exch (uint8_t connection_idx)

Function description Send the LTK exchange message for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 149 of 170 © 2022 Renesas Electronics

C.2.34 app_easy_security_encrypt_cfm

Function name void app_easy_security_encrypt_cfm (uint8_t connection_idx)

Function description Send the encrypt confirmation message for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.35 app_easy_security_request_get_active

Function name struct gapc_security_cmd* app_easy_security_request_get_active (uint8_t

connection_idx)

Function description Get the active security request message.

Parameters connection_idx The id of the connection.

Return values The active message.

Notes None

C.2.36 app_easy_security_request

Function name void app_easy_security_request (uint8_t connection_idx)

Function description Issue a security request for a specific connection.

Parameters connection_idx The id of the connection.

Return values None

Notes None

C.2.37 app_easy_timer

Function name timer_hnd app_easy_timer (const uint16_t delay, void(*fn)(void))

Function description Issue a timer with specific delay and call a callback after the timer expires.

Parameters delay The timer delay in timer slots (10 ms).

fn The callback to call.

Return values The timer handler to use for cancelation or modification of the timer.

Notes None

C.2.38 app_easy_timer_cancel

Function name void app_easy_timer_cancel (const timer_hnd timer_id)

Function description Cancel a specific timer.

Parameters timer_id The handler of the timer to cancel.

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 150 of 170 © 2022 Renesas Electronics

C.2.39 app_easy_timer_modify

Function name timer_hnd app_easy_timer_modify (const timer_hnd timer_id, const

uint16_t delay)

Function description Modify the callback and delay of a specifc timer. The timer will be set with the new

additional delay.

Parameters delay The timer delay in timer slots (10 ms).

fn The callback to call.

Return values Returns the modified timer handler.

Notes None

C.2.40 app_easy_timer_cancel_all

Function name void app_easy_timer_cancel_all (void)

Function description Cancel all active timers.

Parameters None

Return values None

Notes None

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 151 of 170 © 2022 Renesas Electronics

Appendix D Supporting Custom Profiles

The SDK 5.0.2 and later supports the creation of Custom profiles defined by the user. The maximum
number of the supported Custom profiles is limited to two.

D.1 Custom Profile API

The following sections include the Custom profile functions API.

D.1.1 app_custs1_create_db

Function name void app_custs1_create_db (void)

Function description Create custom1 profile database.

Parameters None

Return values None

Notes This function has to be placed as an entry in the cust_prf_funcs[] array, defined

in configuration header file user_custs_config.h. The user can override this entry

and place the callback reference of his function implementation.

D.1.2 app_custs2_create_db

Function name void app_custs2_create_db (void)

Function description Create custom2 profile database.

Parameters void

Return values void

Notes This function has to be placed as an entry in the cust_prf_funcs[] array, defined

in configuration header file user_custs_config.h. The user can override this entry

and place the callback reference of his function implementation.

D.1.3 app_custs1_enable

Function name void app_custs1_enable (uint16_t conhdl)

Function description Enable custom1 profile.

Parameters conhdl Connection handle.

Return values None

Notes This function has to be placed as an entry in the cust_prf_funcs[] array, defined

in configuration header file user_custs_config.h. The user can override this entry

and place the callback reference of his function implementation.

D.1.4 app_custs2_enable

Function name void app_custs2_enable(uint16_t conhdl)

Function description Enable custom2 profile

Parameters conhdl Connection handle.

Return values None/

Notes This function has to be placed as an entry in the cust_prf_funcs[] array, defined in
configuration header file ‘user_custs_config.h’. The user can override this entry and

place the callback reference of his function implementation.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 152 of 170 © 2022 Renesas Electronics

D.2 Configuration Header Files

The following configuration header files have to be modified in order to include a Custom profile in
the user application.

● user_profiles_config.h, declares the header file, either custs1.h or cust2.h, of the Custom

profile to be included in the user application. If the respective header file is not included, any
other configuration relative to the Custom profile will not have any effect in the user application.

● user_custs_config.h, defines the structure of the Custom profile database and the

cust_prf_funcs[] array, which contains the Custom profile API functions calls.

● user_modules_config.h, the following preprocessor definition has to be modified accordingly to

the user application needs. For example:

#define EXCLUDE_DLG_CUSTS1 (0) The Custom1 application profile is included.

The SDK takes care of the Custom1 application profile message handling.

#define EXCLUDE_DLG_CUSTS1 (1) The Custom1 profile application is excluded.

The user application has to take care of the Custom1 application profile message handling.

The following picture marks the aforementioned configuration header files in the Keil project layout.

Figure 26: Custom Profile User Configuration

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 153 of 170 © 2022 Renesas Electronics

Appendix E Advanced Features APIs

E.1 How to Select the Low Power Clock

Support of the RCX clock as low power clock source is added in SDK v5.0.2.

A configuration flag is added in projects da14580_config.h for low power clock source selection:

#define CFG_LP_CLK 0x00

Where:

0x00 is used for XTAL32,

0xAA is used for RCX,

0xFF the low power clock is read from the corresponding field in OTP Header.

A calibration mechanism has been developed to measure the RCX clock frequency changes over
temperature. This mechanism consists of the functions calibrate_rcx20() and read_rcx_freq().

Both functions are implemented in sdk\platform\arch\main\arch_system.c.

When RCX is selected as low power clock, the function calibrate_rcx20() initiates the HW process

to measure the number of XTAL16 ticks (16 MHz) elapsed during the countdown of a specified
number of RCX ticks. RCX evaluation under temperature cycling proved that a calibration process of
20 RCX ticks gives adequate precision in current frequency calculation. Function calibrate_rcx20()

is called in the sleep interrupt handler to start the HW calibration process, while the processor
services the BLE event.

The function read_rcx_freq() checks that the calibration process is completed in HW, reads the

number of XTAL16 clock ticks and calculates the RCX frequency. Function read_rcx_freq() is

called at the end of a BLE connection event right before entering sleep mode. The hardware
calibration is completed at this point, hence there is no extension of the wakeup period.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 154 of 170 © 2022 Renesas Electronics

E.2 True Random Number Generator (TRNG)

This section describes the function trng_acquire() which generates a 128-bit random number. The

function is implemented in the file trng.c in the folder: sdk\platform\driver\trng.

E.2.1 trng_acquire

Function name void trng_acquire (uint8_t *trng_bits_ptr)

Function description Acquires 128-bit random data from the Radio.

Parameters trng_bits_ptr stores the 128-bit number

Return values None

Notes

● Initializes the system and the radio, sets preferred settings and performs calibration of the radio
in rfpt_init().

● Implements Save-Modify-Restore for the preferred settings that will be changed in TRNG mode:

save_TEST_CTRL_REG=GetWord16(TEST_CTRL_REG);

save_RF_ENABLE_CONFIG1_REG=GetWord16(RF_ENABLE_CONFIG1_REG); // LNA off

save_RF_ENABLE_CONFIG2_REG=GetWord16(RF_ENABLE_CONFIG2_REG); // Mixer off

save_RF_DC_OFFSET_CTRL1_RE=GetWord16(RF_DC_OFFSET_CTRL1_REG); // Fixed DC offset

 compensation values for I and Q

save_RF_DC_OFFSET_CTRL2_REG=GetWord16(RF_DC_OFFSET_CTRL2_REG); // Use the manual

 DC offset compensation values

save_RF_ENABLE_CONFIG4_REG=GetWord16(RF_ENABLE_CONFIG4_REG); // VCO_LDO_EN=0,

 MD_LDO_EN=0. You need this for more isolation from the RF input

save_RF_ENABLE_CONFIG14_REG=GetWord16(RF_ENABLE_CONFIG14_REG); // LOBUF_RXIQ_EN=0,

 DIV2_EN=0. This increases the noise floor for some reason. So you get more

 entropy. Need to understand it and then decide...

save_RF_SPARE1_REG=GetWord16(RF_SPARE1_REG); // Set the IFF in REAL transfer

 function, to remove I-Q correlation. But it affects the DC offsets!

save_RF_AGC_CTRL2_REG=GetWord16(RF_AGC_CTRL2_REG); // AGC=0 i.e. max RX gain

● Configures the radio for TRNG mode (modifies some preferred settings, starts RX in overrule):
trng_init();

● Starts acquiring raw IQ RFADC data and then extracts the random bits:

for (i_acq=0; i_acq < 128/(NUM_POINTS*2/16); i_acq++)

{

 trng_get_raw_data((uint32)&rfadc_data[0], NUM_POINTS/2-1); // acquires the raw

 RFADC IQ samples

 bit_cnt=0;

 rnd_byte=0;

 for (i=0;i<=NUM_POINTS_MUL_2_M_4;i=i+16)

 {

 single_rnd_bit = (vq_uint8[i] & 0x01) ^ (vi_uint8[i] & 0x01) ; // This way

 it can pass ALL the NIST tests! This solves a small bias in 1s or 0s

 which appears due to the actual value of the DC offset...

 rnd_byte= rnd_byte | (single_rnd_bit<<bit_cnt++);

 if(bit_cnt==8)

 {

 trng_bits_ptr[byte_idx++] = rnd_byte;

 bit_cnt=0;

 rnd_byte=0;

 }

#if (USE_WDOG)

SetWord16(WATCHDOG_REG, 0xC8);// Reset WDOG! 200*10.24 ms active time for normal mode!

#endif

 }

}

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 155 of 170 © 2022 Renesas Electronics

// Restores the modified registers

SetWord16(TEST_CTRL_REG, save_TEST_CTRL_REG);

SetWord16(RF_OVERRULE_REG,0x0);

SetWord16(RF_ENABLE_CONFIG1_REG,save_RF_ENABLE_CONFIG1_REG); // LNA off

SetWord16(RF_ENABLE_CONFIG2_REG,save_RF_ENABLE_CONFIG2_REG); // Mixer off

SetWord16(RF_DC_OFFSET_CTRL1_REG,save_RF_DC_OFFSET_CTRL1_REG); // Fixed DC offset

 compensation values for I and Q

SetWord16(RF_DC_OFFSET_CTRL2_REG,save_RF_DC_OFFSET_CTRL2_REG); // Use the manual

 DC offset compensation values

SetWord16(RF_ENABLE_CONFIG4_REG,save_RF_ENABLE_CONFIG4_REG); // VCO_LDO_EN=0,

 MD_LDO_EN=0. You need this for more isolation from the RF input

SetWord16(RF_ENABLE_CONFIG14_REG,save_RF_ENABLE_CONFIG14_REG); // LOBUF_RXIQ_EN=0,

 DIV2_EN=0. This increases the noise floor for some reason. So you get more

 entropy. Need to understand it and then decide...

SetWord16(RF_SPARE1_REG, save_RF_SPARE1_REG); // Set the IFF in REAL transfer

 function, to remove I-Q correlation. But it affects the DC offsets!

SetWord16(RF_AGC_CTRL2_REG, save_RF_AGC_CTRL2_REG); // AGC=0 i.e. max RX gain

SetBits16 (CLK_AMBA_REG, OTP_ENABLE, 0); // disables the OTP

The function trng_acquire() needs 1.3 ms to generate the 128-bits random number.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 156 of 170 © 2022 Renesas Electronics

E.3 DCDC_VBAT3V API

The following function has been added in SDK 3.0.8 or later for setting the nominal VBAT3V output
voltage of the boost converter.

E.3.1 syscntl_set_dcdc_vbat3v_level

Function name void syscntl_set_dcdc_vbat3v_level (enum SYSCNTL_DCDC_VBAT3V_LEVEL

level)

Function description Sets the nominal VBAT3V output voltage of the boost converter.

Parameters level DCDC VBAT3V output voltage

Return values None

Notes enum SYSCNTL_DCDC_VBAT3V_LEVEL

{

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V4 = 4, // 2.4 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V5 = 5, // 2.5 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V62 = 6, // 2.62 V

 SYSCNTL_DCDC_VBAT3V_LEVEL_2V76 = 7, // 2.76 V

}

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 157 of 170 © 2022 Renesas Electronics

E.4 Near Field API

The following functions have been added in SDK 3.0.8 for enabling and disabling Near Field mode
(output power -20 dBm).

E.4.1 rf_nfm_enable

Function name void rf_nfm_enable (void)

Function description Enables Near Field mode for all connections.

Parameters None

Return values None

Notes

E.4.2 rf_nfm_disable

Function name void rf_nfm_disable (void)

Function description Disables Near Field mode for all connections.

Parameters None

Return values None

Notes

E.4.3 rf_nfm_is_enabled

Function name bool rf_nfm_is_enabled(void)

Function description Checks if Near Field mode is enabled (true) or not (false).

Parameters None

Return values true Near Field mode enabled

false Near Field mode disabled

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 158 of 170 © 2022 Renesas Electronics

E.5 Crypto API

The files for the Crypto API are stored in the folder: sdk\platform\core_modules\crypto.

File Name Description

aes.c, aes.h Initialization functions, API functions

aes_api.c, aes_api.h Functions for accessing DA14580/581 registers (Native API)

aes_set_key(), aes_enc_dec()

aes_task.c, aes_task.h TASK_AES related functions

sw_aes.c, sw_aes.h,

os_int.h, os_port.h

Software implementation of the AES

Flag USE_AES must be defined in the file da14580_config.h for the Crypto API to be included in a

BLE application.

E.5.1 aes_init

Function name void aes_init (bool reset, void (*aes_done_cb)(uint8_t status))

Function description Initiates the AES operation

Parameters reset FALSE: create the task, TRUE: reset the environment.

aes_done_cb The callback function to be called at the end of each operation.

Return values None

Notes This function will create the task when called with reset = FALSE or just setup the

environment when called with reset = TRUE. It will also set the callback function to

be called when triggered by an AES_USE_ENC_BLOCK_CMD message.

E.5.2 aes_operation

Function name int aes_operation (unsigned char *key, int key_len, unsigned char *in,

int in_len, unsigned char *out, int out_len, int enc_dec, void

(*aes_done_cb)(uint8_t status), unsigned char ble_flags)

Function description Starts an AES encrypting/decrypting operation

Parameters key The key data.

key_len The key data length in bytes. Should be 16.

in The input data block.

in_len The input data block length.

out The output data block.

out_len The output data block length.

enc_dec 0: decrypt, 1: encrypt

aes_done_cb The callback function to be called at the end of each operation.

ble_flags Specifies whether the encryption/decryption will be performed

 synchronously or asynchronously (message based).
 Also specifies, when ble_safe is specified, whether function
 rwip_schedule() will be called to avoid losing any BLE events.

Return values 0 successful

-1 userKey or key is NULL

-2 AES task is busy

-3 enc_dec is not 0/1

-4 key_len is not 16

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 159 of 170 © 2022 Renesas Electronics

The following function can be used as an example of the above crypto API functions. It must be
called in arch_main.c:

#if (BLE_APP_PRESENT)

 app_init(); // Initialize APP

#endif /* #if (BLE_APP_PRESENT) */

#if (USE_AES)

 aes_test();

#endif

unsigned char key[16]={

 0x06,0xa9,0x21,0x40,0x36,0xb8,0xa1,0x5b,0x51,0x2e,0x03,0xd5,0x34,0x12,0x00,0x06};

unsigned char Plaintext[16]={

 0x53,0x69,0x6e,0x67,0x6c,0x65,0x20,0x62,0x6c,0x6f,0x63,0x6b,0x20,0x6d,0x73,0x67};

unsigned char aes_result[16];

static void aes_done_cb(uint8_t status)

{

 //insert code to read the aes_result[] bytes in reversed order

 while(1);

}

void aes_test(void)

{

memcpy(aes_env.aes_key.iv, IV, 16);

 rwip_schedule();

 aes_init(false, NULL);

aes_operation(key, sizeof(key), Plaintext, sizeof(Plaintext), aes_out,

sizeof(aes_out), 1, NULL, 0);

 rwip_schedule();

 aes_operation(key, sizeof(key), aes_out, 16, aes_result, 16, 0, NULL, 0);

 rwip_schedule();

}

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 160 of 170 © 2022 Renesas Electronics

The Native Crypto API includes the following functions:

E.5.3 aes_set_key

Function name int aes_set_key (const unsigned char *userKey, const int bits, AES_KEY

*key, int enc_dec)

Function description Sets the AES encryption/decryption key.

Parameters userKey The key data.

bits Key number of bits. Should be 128.

key AES_KEY structure pointer.

enc_dec 0: set decryption key, 1: set encryption key.

Return values 0 successful

-1 userKey or key is NULL

-2 bits is not 128

Notes

E.5.4 aes_enc_dec

Function name int aes_enc_dec (unsigned char *in, unsigned char *out, AES_KEY *key,

int enc_dec, unsigned char ble_flags)

Function description AES encryption/decryption block.

Parameters in The data block (16 bytes).

out The encrypted/decrypted output of the operation (16 bytes).

key AES_KEY structure pointer.

enc_dec 0: decrypt, 1: encrypt.

ble_flags Specifies whether the encryption/decryption will be performed

 synchronously or asynchronously (message based).
 Also specifies, when ble_safe is specified, whether function
 rwip_schedule() will be called to avoid losing any BLE events.

Return values 0 successful

-1 SMPM uses the HW block

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 161 of 170 © 2022 Renesas Electronics

The software implementation for the AES decryption includes the following functions:

E.5.5 AES_set_key

Function name void AES_set_key (AES_CTX *ctx, const uint8_t *key, const uint8_t *iv,

AES_MODE mode)

Function description Sets up AES with the key/iv and cipher size.

Parameters ctx Key info storage.

key Key information.

iv IV information.

mode Cipher size (128, 256).

Return values None

Notes

E.5.6 AES_convert_key

Function name void AES_convert_key (AES_CTX *ctx)

Function description Prepares the key for decryption.

Parameters ctx Key info storage.

Return values None

Notes

E.5.7 AES_decrypt

Function name void AES_decrypt (const AES_CTX *ctx, uint32_t *data)

Function description Decrypts a single block (16 bytes) of data

Parameters ctx Key info storage.

data Data to be decrypted.

Return values None

Notes

E.5.8 AES_cbc_decrypt

Function name void AES_cbc_decrypt (AES_CTX *ctx, const uint8_t *msg, uint8_t *out,

int length)

Function description Decrypts a byte sequence (block size: 16 bytes) using the AES CBC cipher.

Parameters ctx Key info.

msg Data to be decrypted.

out Buffer to save the result.

length Size of the message.

Return values None

Notes

A software implementation of the encryption/decryption based on the axTLS open source package
(http://axtls.sourceforge.net/index.htm) is used for the encrypted firmware image in the following
applications:

● mkimage: Software encryption for AES-CBC().

● secondary_bootloader: Software decryption for AES-CBC().

http://axtls.sourceforge.net/index.htm
http://axtls.sourceforge.net/index.htm

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 162 of 170 © 2022 Renesas Electronics

E.6 Coexistence API

The following functions have been added in SDK 3.0.8 or later for enabling the WLAN Coexistence
handling.

E.6.1 wlan_coex_init

Function name void wlan_coex_init (void)

Function description Initializes the WLAN_COEX module and enables it.

Parameters None

Return values None

Notes Called once from arch_main.c.

E.6.2 wlan_coex_enable

Function name void wlan_coex_enable (void)

Function description Configures and enables the WLAN_COEX module.

Parameters None

Return values None

Notes Called from wlan_coex_init() and after each wakeup.

E.6.3 wlan_coex_reservations

Function name void wlan_coex_reservations (void)

Function description Reserves WLAN_COEX related GPIOs.

Parameters None

Return values None

Notes Called from GPIO_reservations().

E.6.4 wlan_coex_prio_criteria_add

Function name void wlan_coex_prio_criteria_add (uint16_t type, uint16_t conhdl,

uint16_t missed)

Function description Adds priority case for a specific connection.

Parameters type Event type that has priority. Defined types are:

 #define BLEMPRIO_SCAN 0x01 //active scan

 #define BLEMPRIO_ADV 0x02 //advertise

 #define BLEMPRIO_CONREQ 0x04 //connection request

 #define BLEMPRIO_LLCP 0x10 //control packet

 #define BLEMPRIO_DATA 0x20 //data packet

 #define BLEMPRIO_MISSED 0x40 //missed events

conhdl Connection handle that the event will belong to.

missed Number of missed connection events that will trigger the priority

 (only applicable for type = BLEMPRIO_MISSED).

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 163 of 170 © 2022 Renesas Electronics

E.6.5 wlan_coex_prio_criteria_del

Function name void wlan_coex_prio_criteria_del (uint16_t type, uint16_t conhdl,

uint16_t missed)

Function description Delete priority case for a specific connection.

Parameters type Event type that will be deleted.

conhdl Connection handle that the event will belong to.

missed Not used.

Return values None

Notes

The following steps must be followed for adding the wlan_coex module in an application:

1. Add sdk\platform\core_modules\wlan_coex\wlan_coex.c in Keil project.

2. Add sdk\platform\core_modules\wlan_coex in the Keil project's include path.

3. Add and customise the following defines in da14580_config.h:

 #define WLAN_COEX_ENABLED

 #define WLAN_COEX_BLE_EVENT 7

 #define WLAN_COEX_PORT GPIO_PORT_0

 #define WLAN_COEX_PIN GPIO_PIN_0

 #define WLAN_COEX_IRQ 1

 #define WLAN_COEX_PORT_2 GPIO_PORT_2

 #define WLAN_COEX_PIN_2 GPIO_PIN_6

 #define WLAN_COEX_IRQ_2 2

 #define WLAN_COEX_PRIO_PORT GPIO_PORT_0

 #define WLAN_COEX_PRIO_PIN GPIO_PIN_6

 #define WLAN_COEX_DEBUG 0

4. Include wlan_coex.h in periph_setup.c.

5. Reserve GPIOs used by the module by calling wlan_coex_reservations() from

GPIO_reservations() in periph_setup.c.

6. Initialize GPIOs used by the module by calling wlan_coex_init() from set_pad_functions() in

periph_setup.c.

E.7 Preferred RF settings

Preferred radio settings for the DA14580/581/583 are stored in the file
sdk\platform\arch\system_settings.h.

The user should not modify this file as the RF performance and compliance to the Bluetooth
specification may be violated.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 164 of 170 © 2022 Renesas Electronics

E.8 Packet Error Rate (PER)

An application that needs Packet Error Rate metrics must:

1. Add the METRICS flag in file da14580_config.h:

 #define METRICS

2. Define the following hook function:

E.8.1 metrics_packet_rx_func

Function name void metrics_packet_rx_func(uint8_t packet_error_status)

Function description The metrics_packet_rx_func() hook function is called for each received packet

and it is passed the packet error status as an argument.

Parameters error_status 0: no error in packet, other values: error in packet

Return values None

Notes

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 165 of 170 © 2022 Renesas Electronics

Appendix F Development Environment Known Issues

F.1 Issues When Opening Your Project in Keil for the First Time

F.1.1 Keil IDE Crashes When Clicking on “J-LINK/J-TRACE Cortex” Settings

When on a Keil uVision project some entries in file .uvoptx are missing or the file itself is missing,
uVision crashes when the user clicks on the button 'settings' (options{debug tag}) with the{J-LINK/J-
TRACE Cortex} selected.

F.1.2 Possible Causes

Some important information concerning the j-link driver is missing. Calling the driver’s DLL probably
causes the crash.

F.1.3 Affected Versions of Keil uVision

At least uVision versions 5.11.1.0 and 5.10.0.2 are affected.

F.1.4 Circumstances of the Error

When a local GIT repository is first created, the file .uvoptx does not exist, since it is not included in
the remote repository. When the user opens the project for the first time, this file is created but some
keys/values are missing.

F.1.5 Proposed Solution

Ensure that the .uvoptx file does not exist in the folder of your project. If the file exists and a crash
has been identified to happen, delete the .uvoptx file.

Open the Keil project and close it. The .uvoptx file is created automatically in the project folder where
the .uvprojx is located.

Open the .uvoptx file, using your favorite text editor.

Under the key <TargetOption> add the flowing lines:

<TargetDriverDllRegistry>

<SetRegEntry>

<Number>0</Number>

<Key>JL2CM3</Key>

<Name>-U228202424 -O78 -S0 -A0 -C0 -JU1 -JI127.0.0.1 -JP0 -RST0 -N00("ARM CoreSight

SW-DP") -D00(0BB11477) -L00(0) -TO18 -TC10000000 -TP21 -TDS8007 -TDT0 -TDC1F -

TIEFFFFFFFF -TIP8 -TB1 -TFE0 -FO7 -FD20000000 -FC800 -FN0</Name>

</SetRegEntry>

</TargetDriverDllRegistry>

Save the .uvoptx file and close the text editor.

Open the Keil project in uVision.

Click on Project→Options for Project ‘XXX’.

On the ‘Debug’ Tab, select J-Link / J-TRACE Cortex debugger and click on the ‘Settings’ button for
the debugger (not the simulator). This is the instance where the crash would happen.

The ‘Cortex JLink/JTrace Target Driver Setup’ Dialog opens. Select your debugger as you would
normally do.

Close the dialog windows by clicking OK.

Now, normal operation of j-link debugger is resumed. After you have finished your work, close the
Keil uVision IDE to allow for updates to the .uvoptx file to be saved.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 166 of 170 © 2022 Renesas Electronics

F.2 Keil 5 ARMCM0 device is not recognized by J-Link

The issue occurs the first time that the “J-LINK / J-TRACE” settings are accessed in a
DA14580/581/583 Keil 5 project, by clicking the “Settings” button as shown below:

J-Link reports the ARMCM0 device as an unknown device.

The solution is to select “No”.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 167 of 170 © 2022 Renesas Electronics

F.3 Keil 5 IDE Reports Flash Download Failure

The issue occurs when a new DA14580/581/583 Keil 5 project is created or when the project’s
.uvoptx file is deleted. When the developer attempts to start a new debugging session the following

error message appears:

The solution is the following:

Open menu Project -> Options for Target ’xxx’ and go to the Utilities tab page.

There select the Use External Tool for Flash Programming radio button:

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 168 of 170 © 2022 Renesas Electronics

Appendix G Support for Custom Handling of ATT Read Requests

Custom ATT read request handling behaves as follows:

1. When an ATT read request arrives then its validity is checked first.

a. If OK, continue to next step.

b. Otherwise reply with an ATT error.

2. Find the task that manages the service of the handle being read.

3. If the task is registered to receive ATTS_READ_REQ_IND messages then:

a. Prepare and send the ATTS_READ_REQ_IND to the task and stop further processing.

b. The task takes responsibility to reply by calling the dg_atts_read_cfm() function.

4. Else:

a. Read the attribute value from the DB.

b. Send an ATT read response (also taking the current ATT MTU into account).

A task that requires this mechanism will typically register for ATTS_READ_REQ_IND messages at DB

creation time using the dg_register_task_for_read_request() API. Thereafter it shall receive an

ATTS_READ_REQ_IND message whenever a peer sends an ATT read request on any of the attribute

handles it manages.

Upon reception of the ATTS_READ_REQ_IND message a task can modify the ATT DB and then it must

reply by calling dg_atts_read_cfm(). There are two use cases:

1. The task decides that the read request is valid, (optionally) modifies the value in ATT DB and
finally replies by passing ATT_ERR_NO_ERROR in the status_code argument of

dg_atts_read_cfm(). This results to sending the ATT read response to the peer device.

2. The task decides that the read request is invalid and responds by passing an ATT error code to
dg_atts_read_cfm(). This results to sending the ATT error response to the peer device.

Notes:

● This mechanism is supported on both DA14580 and DA14581. The old DA14581-specific
GATTC_READ_CMD_IND was kept for backwards compatibility. Now it is also available for DA14580.

● The atts_util.obj object file must be added in DA14580/583 Keil projects when porting from

SDK 5.0.2.1/5.0.3 to SDK 5.0.4.

● API function declarations are located in arch_patch.h.

● Code size overhead:

○ dg_atts_read_cfm(): 82 bytes.

○ dg_register_task_for_read_request(): 26 bytes.

○ dg_unregister_task_from_read_request(): 32 bytes.

○ atts_read_resp_patch(): 126 bytes.

● Retention memory overhead:

○ uint64_t dg_registered_tasks: 8 bytes.

● For examples, please refer to the UDS server role implementation (udss_task.c), which uses

the custom ATT read request handling mechanism in order to return custom read error codes.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 169 of 170 © 2022 Renesas Electronics

Revision History

Revision Date Description

1.0 27-Aug-2015 Initial version. Applies to SDK 5.x for DA14580/581/583.

1.1 01-Aug-2016 Added comment about watchdog in app_on_ble_powered(),
app_on_system_powered().

Updated I2C EEPROM API.

Updated SDK tree structures.

Added Appendix G (Custom Handling of ATT Read Requests).

1.2 20-Dec-2016 Removed systick_usec_units() API details as it is no longer supported

1.3 18-Feb-2022 Updated logo, disclaimer, copyright.

UM-B-051

DA1458x Software Platform Reference

User Manual Revision 1.3 18-Feb-2022

CFR0012 170 of 170 © 2022 Renesas Electronics

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	3.1 Target Audience
	3.2 How to Use This Document
	3.3 Device Modes
	3.3.1 Single Mode Devices
	3.3.2 Dual Mode Devices

	3.4 Main Building Blocks
	3.5 Hardware Configurations
	3.5.1 Integrated Processor
	3.5.2 External Processor

	3.6 Network Modes
	3.6.1 Broadcasting
	3.6.2 Connecting

	3.7 Profiles
	3.7.1 Generic Profiles
	3.7.2 Use-Case-Specific Profiles
	3.7.2.1 SIG-Defined GATT-Based Profiles
	3.7.2.2 Vendor-Specific Profiles

	3.7.3 Generic Access Profile Layer
	3.7.4 Generic Attribute Profile Layer

	3.8 Protocol Stack
	3.9 Controller
	3.9.1 Physical Layer (PHY)
	3.9.2 Link Layer (LL)
	3.9.2.1 Bluetooth Device Address
	3.9.2.2 Advertising and Scanning

	3.9.3 Host Controller Interface – Controller side

	3.10 Host
	3.10.1 Host Controller Interface – Host Side
	3.10.2 Logical Link Control and Adaptation Protocol
	3.10.3 Attribute Protocol
	3.10.4 Security Manager
	3.10.5 Application

	3.11 DA1458x System on Chip Platform
	3.11.1 Overview
	3.11.2 ARM Cortex-M0 CPU
	3.11.2.1 Features

	3.11.3 Memory
	3.11.3.1 ROM
	3.11.3.2 OTP
	3.11.3.3 System SRAM
	3.11.3.4 Retention RAM

	3.11.4 BLE Core and Radio Transceiver
	3.11.4.1 Features

	3.11.5 Peripheral Interfaces
	3.11.5.1 UARTs
	3.11.5.2 SPI+
	3.11.5.3 I2C
	3.11.5.4 ADC
	3.11.5.5 Quadrature Decoder
	3.11.5.6 Keyboard Controller

	3.11.6 Timers
	3.11.6.1 General Purpose Timers
	3.11.6.2 Wake-Up Timer
	3.11.6.3 Watchdog Timer

	3.11.7 Clock and Reset
	3.11.8 Power Management (PMU)
	3.11.9 SmartBond™ DA1458x Product Family Devices
	3.11.9.1 DA14580
	3.11.9.2 DA14581
	3.11.9.3 DA14583

	4 DA1458x Software Platform Overview
	4.1 System Software and Main Loop
	4.2 Peripheral and Radio Drivers
	4.3 Real Time Kernel
	4.4 Bluetooth Low Energy Software
	4.5 Application Software
	4.6 Memory Organization
	4.7 Supported Hardware Configurations
	4.7.1 Integrated Processor
	4.7.2 External Processor

	4.8 Development Environment

	5 Real Time Kernel
	5.1 Overview
	5.2 Scheduler
	5.3 Tasks
	5.4 Dynamic Memory Allocation
	5.5 Messages
	5.6 Timer

	6 Bluetooth Low Energy Software
	6.1 Overview
	6.2 GAP
	6.3 BLE Data Services
	6.3.1 GATT
	6.3.2 ATTDB

	6.4 Bluetooth LE Profiles

	7 System Software
	7.1 Main Loop and Sleep Modes
	7.1.1 Sleep Modes
	7.1.2 Wake-Up Events
	7.1.3 Main Loop

	7.2 System API
	7.2.1 Main Loop Callbacks
	7.2.2 Sleep API
	7.2.3 Serial Logging Interface API
	7.2.4 BLE Statistics API
	7.2.5 Development Mode API
	7.2.5.1 GPIO Reservation
	7.2.5.2 Assert, NMI and Hard Fault Handlers

	7.2.6 Advanced Features API
	7.2.6.1 Wake-Up and External Processor Configuration
	7.2.6.2 True Random Number Generator (TRNG)
	7.2.6.3 Boost Output Voltage (DCDC_VBAT3V)
	7.2.6.4 Near Field Control
	7.2.6.5 AES Crypto
	7.2.6.6 Co-Existence

	8 Application Software
	8.1 Overview
	8.2 API
	8.2.1 Message API
	8.2.2 Mid Layer API
	8.2.3 Easy API
	8.2.4 app_<profile> API
	8.2.5 App Entry Point API
	8.2.6 User Callback API
	8.2.7 Default Handlers

	9 Memory Organization
	9.1 Overview
	9.2 Memory Map
	9.3 ARM Scatter File

	10 Peripheral Drivers
	10.1 Overview
	10.2 UART
	10.2.1 How to Use this Driver
	10.2.2 Initialization and Configuration
	10.2.3 Function Reference
	10.2.3.1 uart_init
	10.2.3.2 uart_flow_on
	10.2.3.3 uart_flow_off
	10.2.3.4 uart_finish_transfers
	10.2.3.5 uart_write
	10.2.3.6 uart_read

	10.2.4 Definitions

	10.3 GPIO
	10.3.1 How to Use this Driver
	Typical Use
	Other Functionality
	DA14583 Specific Functionality

	10.3.2 Initialization and Configuration
	10.3.3 Interrupt Handling
	10.3.4 Function Reference: Initialization and Configuration Functions
	10.3.4.1 GPIO_init
	10.3.4.2 GPIO_SetPinFunction
	10.3.4.3 GPIO_ConfigurePin
	10.3.4.4 GPIO_SetActive
	10.3.4.5 GPIO_SetInactive
	10.3.4.6 GPIO_GetPinStatus
	10.3.4.7 GPIO_ConfigurePinPower

	10.3.5 Function Reference: Interrupt Handling Functions
	10.3.5.1 GPIO_EnableIRQ
	10.3.5.2 GPIO_ResetIRQ
	10.3.5.3 GPIO_RegisterCallback

	10.3.6 Definitions

	10.4 Analog to Digital Converter
	10.4.1 How to Use this Ddriver
	10.4.2 Initialization and Configuration
	10.4.3 Function Reference: Initialization and Configuration Functions
	10.4.3.1 adc_calibrate
	10.4.3.2 adc_init
	10.4.3.3 adc_enable_channel
	10.4.3.4 adc_disable

	10.4.4 Function Reference: ADC Sampling Functions
	10.4.4.1 adc_get_sample
	10.4.4.2 adc_get_vbat_sample

	10.4.5 Definitions
	ADC_channels

	10.5 Serial Peripheral Interface (SPI) driver
	10.5.1 How to Use this Driver
	10.5.2 Initialization and Configuration
	10.5.3 Function Reference: Initialization and Configuration Functions
	10.5.3.1 spi_init
	10.5.3.2 SPI modes
	10.5.3.3 setSpiBitmode
	10.5.3.4 spi_release

	10.5.4 Function Reference: Sending and Receiving Functions
	10.5.4.1 spi_access
	10.5.4.2 spi_transaction
	10.5.4.3 spi_cs_low
	10.5.4.4 spi_cs_high

	10.5.5 Definitions

	10.6 Quadrature Decoder
	10.6.1 How to Use this Driver
	Important Notes:
	10.6.1.1 Usage with Polling
	10.6.1.2 Usage with Interrupts
	10.6.1.3 Initialization and Configuration
	10.6.1.4 Reading Quadrature Decoder Counters

	10.6.2 Function Reference: Initialization and Configuration Functions
	10.6.2.1 quad_decoder_init
	10.6.2.2 quad_decoder_release
	10.6.2.3 quad_decoder_register_callback
	10.6.2.4 quad_decoder_enable_irq
	10.6.2.5 quad_decoder_disable_irq

	10.6.3 Function Reference: Quadrature Decoder Counter Reading Functions
	10.6.3.1 quad_decoder_get_x_counter
	10.6.3.2 quad_decoder_get_y_counter
	10.6.3.3 quad_decoder_get_z_counter

	10.6.4 Definitions
	10.6.5 Defines in the Application for the QUADRATURE DECODER Driver

	10.7 Wake-Up Timer
	10.7.1 How to Use this Driver
	Important Notes:

	10.7.2 Available Functions
	10.7.3 Function Summary
	10.7.4 Function Reference
	10.7.4.1 wkupct_register_callback
	10.7.4.2 wkupct_enable_irq
	10.7.4.3 wkupct_disable_irq

	10.7.5 Definitions
	10.7.6 Defines in the Application for the WAKEUP TIMER Driver

	10.8 PWM Timers
	TIMER0
	TIMER2
	10.8.1 How to Use this Driver
	Important notes:
	TIMER0
	TIMER2

	10.8.2 Common Functions (TIMER0, TIMER2)
	10.8.3 TIMER0 functions (PWM0, PWM1)
	10.8.4 TIMER2 functions (PWM2, PWM3, PWM4)
	10.8.5 Function Summary
	10.8.5.1 Common Functions (TIMER0, TIMER2)
	10.8.5.2 TIMER0 Functions
	10.8.5.3 TIMER2 Functions

	10.8.6 Function Reference: Common Functions (TIMER0, TIMER2)
	10.8.6.1 set_tmr_enable
	10.8.6.2 set_tmr_div

	10.8.7 Function Reference: TIMER0 Functions
	10.8.7.1 timer0_init
	10.8.7.2 timer0_start
	10.8.7.3 timer0_stop
	10.8.7.4 timer0_release
	10.8.7.5 timer0_set_pwm_on_counter
	10.8.7.6 timer0_set_pwm_high_counter
	10.8.7.7 timer0_set_pwm_low_counter
	10.8.7.8 timer0_set
	10.8.7.9 timer0_enable_irq
	10.8.7.10 timer0_disable_irq
	10.8.7.11 timer0_register_callback

	10.8.8 Function Reference: TIMER2 Functions
	10.8.8.1 timer2_enable
	10.8.8.2 timer2_set_hw_pause
	10.8.8.3 timer2_set_sw_pause
	10.8.8.4 timer2_set_pwm_frequency
	10.8.8.5 timer2_init
	10.8.8.6 timer2_stop
	10.8.8.7 timer2_set_pwm2_duty_cycle
	10.8.8.8 timer2_set_pwm3_duty_cycle
	10.8.8.9 timer2_set_pwm4_duty_cycle

	10.8.9 Definitions

	10.9 SysTick Timer
	10.9.1 How to Use this Driver
	10.9.2 Available Functions
	10.9.3 Function Summary
	10.9.4 Function Reference
	10.9.4.1 systick_register_callback
	10.9.4.2 systick_start()
	10.9.4.3 systick_stop()
	10.9.4.4 systick_value()
	10.9.4.5 systick_wait()

	10.9.5 Definitions
	10.9.6 Global Variables and Constants

	10.10 SPI Flash Driver
	10.10.1 How to Use this Driver
	10.10.2 Initialization and Configuration
	10.10.3 Controlling Write Access
	10.10.4 Status Register Access
	10.10.5 Reading
	10.10.6 Writing
	10.10.7 Erasing
	10.10.8 Data protection
	10.10.9 Function Reference: Initialization and Configuration Functions
	10.10.9.1 spi_flash_auto_detect
	10.10.9.2 spi_flash_init
	10.10.9.3 spi_flash_set_write_enable
	10.10.9.4 spi_flash_write_enable_volatile
	10.10.9.5 spi_flash_write_disable
	10.10.9.6 spi_flash_read_status_reg
	10.10.9.7 spi_flash_write_status_reg

	10.10.10 Function Reference: Flash Read Functions
	10.10.10.1 spi_flash_read_data

	10.10.11 Function Reference: Flash Write Functions
	10.10.11.1 spi_flash_page_program
	10.10.11.2 spi_flash_write_data
	10.10.11.3 spi_flash_page_fill
	10.10.11.4 spi_flash_fill

	10.10.12 Function Reference: Flash Erase Functions
	10.10.12.1 spi_flash_block_erase
	10.10.12.2 spi_flash_chip_erase
	10.10.12.3 spi_flash_chip_erase_forced

	10.10.13 Function Reference: Power Management Functions
	10.10.13.1 spi_flash_power_down
	10.10.13.2 spi_flash_release_from_power_down

	10.10.14 Function Reference: Data Protection Functions
	10.10.14.1 spi_flash_configure_memory_protection

	10.10.15 Function Reference: Miscellaneous Functions
	10.10.15.1 spi_read_flash_memory_man_and_dev_id
	10.10.15.2 spi_read_flash_unique_id
	10.10.15.3 spi_read_flash_jedec_id

	10.10.16 Definitions
	10.10.17 Global Variables and Constants

	10.11 I2C EEPROM Driver
	10.11.1 How to Use this Driver
	10.11.2 Initialization and Configuration
	10.11.3 Reading
	10.11.4 Writing
	10.11.5 Function Reference: Initialization and Configuration Functions
	10.11.5.1 i2c_eeprom_init
	10.11.5.2 i2c_eeprom_release

	10.11.6 Function Reference: EEPROM Read Functions
	10.11.6.1 i2c_eeprom_read_byte
	10.11.6.2 i2c_eeprom_read_data

	10.11.7 Function Reference: EEPROM Write Functions
	10.11.7.1 i2c_eeprom_write_byte
	10.11.7.2 i2c_eeprom_write_page
	10.11.7.3 i2c_eeprom_write_data

	10.11.8 Definitions
	10.11.9 Preprocessor definitions in the application for the I2C EEPROM driver

	10.12 Battery Level
	10.12.1 How to use this driver
	10.12.2 Function reference
	10.12.2.1 battery_get_lvl

	10.12.3 Definitions

	11 Development Environment
	11.1 Overview
	11.2 Software Development Kit (SDK) Structure
	11.2.1 root Directory
	11.2.2 binaries Directory
	11.2.3 config Directory
	11.2.4 doc Directory
	11.2.5 projects Directory
	11.2.5.1 host_apps Directory
	11.2.5.2 target_apps Directory

	11.2.6 sdk Directory
	11.2.6.1 app_modules Directory
	11.2.6.2 ble_stack Directory
	11.2.6.3 common_project_files Directory
	11.2.6.4 platform Directory

	11.2.7 utilities Directory

	Appendix A Memory Mapping and Non-Volatile Data Storage
	A.1 Exchange Memory Mapping Possibilities
	A.2 Non-Volatile Data Storage

	Appendix B Interfacing to SPI Flash and I2C EEPROM Devices
	B.1 Supported SPI Flash Memory Devices
	B.2 Supporting Other SPI Flash Devices
	B.2.1 Introduction
	B.2.2 Command Set
	B.2.3 How to Proceed
	B.2.3.1 Device Is Highly Compatible
	B.2.3.2 Device Has Some Degree of Compatibility
	B.2.3.3 Device Is Not Compatible

	B.3 Using Other I2C EEPROM devices

	Appendix C Application Software APIs
	C.1 Mid Layer API
	C.1.1 app_disconnect_msg_create
	C.1.2 app_disconnect_msg_send
	C.1.3 app_connect_cfm_msg_create
	C.1.4 app_connect_cfm_msg_send
	C.1.5 app_advertise_start_msg_create
	C.1.6 app_advertise_start_msg_send
	C.1.7 app_gapm_cancel_msg_create
	C.1.8 app_gapm_cancel_msg_send
	C.1.9 app_advertise_stop_msg_create
	C.1.10 app_advertise_stop_msg_send
	C.1.11 app_param_update_msg_create
	C.1.12 app_advertise_stop_msg_send
	C.1.13 app_connect_start_msg_create
	C.1.14 app_connect_start_msg_send
	C.1.15 app_gapm_configure_msg_create
	C.1.16 app_gapm_configure_msg_send
	C.1.17 app_gapc_bond_cfm_msg_create
	C.1.18 app_gapc_bond_cfm_msg_send
	C.1.19 app_gapc_bond_cfm_pairing_rsp_msg_create
	C.1.20 app_gapc_bond_cfm_pairing_rsp_msg_send
	C.1.21 app_gapc_bond_cfm_tk_exch_msg_create
	C.1.22 app_gapc_bond_cfm_tk_exch_msg_send
	C.1.23 app_gapc_bond_cfm_csrk_exch_msg_create
	C.1.24 app_gapc_bond_cfm_csrk_exch_msg_send
	C.1.25 app_gapc_bond_cfm_ltk_exch_msg_create
	C.1.26 app_gapc_bond_cfm_ltk_exch_msg_send
	C.1.27 app_gapc_encrypt_cfm_msg_create
	C.1.28 app_gapc_encrypt_cfm_msg_send
	C.1.29 app_gapc_security_request_msg_create
	C.1.30 app_gapc_security_request_msg_send
	C.1.31 app_gapm_reset_msg_create
	C.1.32 app_gapm_reset_msg_send
	C.1.33 app_gapm_reset_op
	C.1.34 app_disconnect_op
	C.1.35 app_connect_confirm_op
	C.1.36 app_advertise_undirected_start_op
	C.1.37 app_advertise_directed_start_op
	C.1.38 app_advertise_stop_op
	C.1.39 app_param_update_op
	C.1.40 app_param_update_op_us
	C.1.41 app_gapm_configure_op
	C.1.42 app_gapm_configure_op_us
	C.1.43 app_security_request_op
	C.1.44 app_gapc_bond_cfm_pairing_rsp_op
	C.1.45 app_gapc_bond_cfm_tk_exch_op
	C.1.46 app_gapc_bond_cfm_csrk_exch_op
	C.1.47 app_gapc_bond_cfm_ltk_exch_op
	C.1.48 app_gapc_encrypt_cfm_op

	C.2 Easy API
	C.2.1 conhdl_to_conidx
	C.2.2 conidx_to_conhdl
	C.2.3 app_easy_gap_disconnect
	C.2.4 app_easy_gap_confirm
	C.2.5 app_easy_gap_undirected_advertise_start
	C.2.6 app_easy_gap_directed_advertise_start
	C.2.7 app_easy_gap_non_connectable_advertise_start
	C.2.8 app_easy_gap_advertise_stop
	C.2.9 app_easy_gap_undirected_advertise_with_timeout_start
	C.2.10 app_easy_gap_advertise_with_timeout_stop
	C.2.11 app_easy_gap_undirected_advertise_get_active
	C.2.12 app_easy_gap_directed_advertise_get_active
	C.2.13 app_easy_gap_param_update_start
	C.2.14 app_easy_gap_param_update_get_active
	C.2.15 app_easy_gap_start_connection_to
	C.2.16 app_easy_gap_start_connection_to_set
	C.2.17 app_easy_gap_start_connection_to_get_active
	C.2.18 app_easy_gap_dev_config_get_active
	C.2.19 app_easy_gap_dev_configure
	C.2.20 app_easy_security_pairing_rsp_get_active
	C.2.21 app_easy_security_tk_get_active
	C.2.22 app_easy_security_csrk_get_active
	C.2.23 app_easy_security_ltk_exch_get_active
	C.2.24 app_easy_security_encrypt_cfm_get_active
	C.2.25 app_easy_security_set_tk
	C.2.26 app_easy_security_set_ltk_exch_from_sec_env
	C.2.27 app_easy_security_set_ltk_exch
	C.2.28 app_easy_security_set_encrypt_req_valid
	C.2.29 app_easy_security_set_encrypt_req_invalid
	C.2.30 app_easy_security_send_pairing_rsp
	C.2.31 app_easy_security_tk_exch
	C.2.32 app_easy_security_csrk_exch
	C.2.33 app_easy_security_ltk_exch
	C.2.34 app_easy_security_encrypt_cfm
	C.2.35 app_easy_security_request_get_active
	C.2.36 app_easy_security_request
	C.2.37 app_easy_timer
	C.2.38 app_easy_timer_cancel
	C.2.39 app_easy_timer_modify
	C.2.40 app_easy_timer_cancel_all

	Appendix D Supporting Custom Profiles
	D.1 Custom Profile API
	D.1.1 app_custs1_create_db
	D.1.2 app_custs2_create_db
	D.1.3 app_custs1_enable
	D.1.4 app_custs2_enable

	D.2 Configuration Header Files

	Appendix E Advanced Features APIs
	E.1 How to Select the Low Power Clock
	E.2 True Random Number Generator (TRNG)
	E.2.1 trng_acquire

	E.3 DCDC_VBAT3V API
	E.3.1 syscntl_set_dcdc_vbat3v_level

	E.4 Near Field API
	E.4.1 rf_nfm_enable
	E.4.2 rf_nfm_disable
	E.4.3 rf_nfm_is_enabled

	E.5 Crypto API
	E.5.1 aes_init
	E.5.2 aes_operation
	E.5.3 aes_set_key
	E.5.4 aes_enc_dec
	E.5.5 AES_set_key
	E.5.6 AES_convert_key
	E.5.7 AES_decrypt
	E.5.8 AES_cbc_decrypt

	E.6 Coexistence API
	E.6.1 wlan_coex_init
	E.6.2 wlan_coex_enable
	E.6.3 wlan_coex_reservations
	E.6.4 wlan_coex_prio_criteria_add
	E.6.5 wlan_coex_prio_criteria_del

	E.7 Preferred RF settings
	E.8 Packet Error Rate (PER)
	E.8.1 metrics_packet_rx_func

	Appendix F Development Environment Known Issues
	F.1 Issues When Opening Your Project in Keil for the First Time
	F.1.1 Keil IDE Crashes When Clicking on “J-LINK/J-TRACE Cortex” Settings
	F.1.2 Possible Causes
	F.1.3 Affected Versions of Keil uVision
	F.1.4 Circumstances of the Error
	F.1.5 Proposed Solution

	F.2 Keil 5 ARMCM0 device is not recognized by J-Link
	F.3 Keil 5 IDE Reports Flash Download Failure

	Appendix G Support for Custom Handling of ATT Read Requests
	Revision History

