RLENESAS

User Manual

DA1458x Software Developer’s
Guide

UM-B-050

Abstract

This document describes the steps required to develop Bluetooth LE applications on the
SmartBond™ DA1458x Product Family software platform, specifically for the DA14580/581/583
devices, as supported by the new v5.x SDK series. It guides the developer through a number of pillar

examples, acquainting in the developing of Bluetooth LE applications on the DA1458x software
architecture and APIs.

- LENESAS

DA1458x Software Developer’s Guide

Contents
N 1 4 = (o RS PPRRRRS 1
GO NS e 2
T L= SRR 5
1= 0] =SS PSP PS 7
1 Terms and DefinitiONS e e e e e e e st e e e e e e e e snnb e e e eaeae e s 8
A (=Y =] 4= o [o] = T PEURPS 8
I | 11 oo 1¥ o1 (o] o FO OO PP PT PP PP PRP P 9
0 A =T o =1 A 0o 1T o o ST PRTURPTPR 9
3.2 HOW t0o USE ThiS MaANUAL.........coiiiiiiiiiiiiiie ettt 9
O € 1Y] g Lo [] = 1 (=T o SRR 10
4.1 Development ENVIFONIMENT.......coiiiiiiiiiiiie ettt ettt e e e e s b e e s asbe e e s e eneas 10
4.2 Software Development Kit (SDK).......coouuiiiiiiiiieiiiie e 10
4.3 TOOIS ... 10
4.4 SMArtSNIPPELS TOOIDOX....ciiitriiiiiiiiii ettt st e e s e e s ebbe e e s abeas 10
I o o L=t o 1 = g =T [T SRS 11
5 Blinky: Your First DA1458X APPHCALION ...ccciiiiiiiiiiie et e e 12
5.1 APPICALION DESCIIPIION.cutiiiiiitietee ittt ettt et e e e e sbe et e e sbe et e e snnreeesnneeeeas 12
5.2 Hardware CONfIgUIALIONeiiiiiiiii ettt 12
5.3 RUNNING the EXAMPIE......cooiiiie et 12
6 Proximity Reporter: Your First Bluetooth® Low Energy Application..........cccccovvevevieereennnne. 14
6.1 APPIICALION DESCIIPIION. ... tiiieiitiete ettt ettt et e e s bt e e snbn e e e snnneee s 14
I 2 7= 1S (o @ o 1= - 1o o RSSO 14
SRS T U 7= o [0] 1= o - Vo= SRS 14
6.4 Loading the PrOJECE.......eiii ittt 15
6.5 GoiNG Through the COe.......cceeiiiiieiie e 16
LG 1 V1 7= 1[4 (oo PO 16
6.7 Events Processing and CallbDacks...........ccuviiiiiiei i 16
6.8 BLE Application ADSIract Code FIOWc..eiiiiiiiiiiiiiiie i 18
6.9 Building the Project for Different Targets and Development KitS...........cccccvveeeveeiiiiciinnnen. 19
6.10 Interacting With BLE APPHCAtIONccoiiiiiiiiiiiieiie e 20
6.11 LightBlue iOS APPICALIONeiiiiiiiiiiiiiiie it s 20
7 Peripheral Example APPlICAtiONScooiiiiiiiii e 21
4% S [011 To (Ve 1T o O TP PP PT RPN 21
7.2 SOWAIE DESCIIPLIONeeiiiiiiieee ittt et et e et e e s bbn e e e snneeee s 21
RS T 1< 11 0 To IR =T (=T o BRSSPI 22
7.4 Configuring the UART Interface on a DAL458X DKcoiiiiiiiiiiiiiiiiieaeiieiee e 22
7.5 DALASBX DK-BASIC ...uuvvvririeesiiiiiiiiieeteesiasitieeeesteessssssteeeeeaessssansstsaneseeesssssssseneeseesssnmnssseseeees 22
7.6 DALABBX DK-PrO....uiiiitiieiiiee ittt ettt b e bt s e nbe e s e s r e e nnre e nee s 22
7.7 Using a Serial Port Terminal with & DAL458X DK.........coiiiiiiiiiiiiiiieiiiee e 22
7.8 Connecting to a DALA58X DK-BaASIC........cuvuiiiiieeiiiiiiiieieee e e sesiiree e e e e e e s siitare e e e e e e s snnnaaee s 22
7.9 Connecting to @ DALAS8X DK-PrO ..cccooiiiiiiiiiiieie ettt 23
7.10 UART (SIMpIE) EXAMPIEccoi ettt e e e e e e e e e e e s e nanreeee e s 24
7.11 Hardware ConfigUIationuueiiiiieiiiiee et e e e e e e e e s snnbeeeaeas 24
7.12 RUNNING the EXAMPIEoiiiii et s 25
User Manual Revision 1.2 24-Dec-2021

CFR0012 2 of 110 © 2021 Renesas Electronics

UM-B-050

DA1458x Software Developer’s Guide

7.13 UART2 ASYNChronouS EXAMPIEccoooiiiiiiiiiiiiie ettt 26
7.14 Hardware ConfigUrationccuuuiiiiie i s e e e e s s e e e e e e s e st e e e e e e e e e nnnreeeees 26
7.15 RUNNING the EXAMPIE.....cciii i e s e e e e e e s snnraeee s 26
7.16 SPI Flash Memory EXAMPIEoooiiiiiiiiiiiiiiee ettt s 28
7.17 Hardware COoNfigUIAtioNooeueeiiiiie i e e e e e e snabeeee s 28
7.18 RUNNING the EXAMPIEoiiiiiii e enee e 29
7.19 12C EEPROM EXGMPIE...cciii ittt ettt e e st e e e e e e s et ae e e e e e e s e snnnrnneee s 31
7.20 Hardware CONfIQUIALIONccoiiiiiiiiiiiiee ittt e st e s e e e e sben e e e seneeee s 31
7.21 RUNNING the EXAMPIEoiiiiiiiiie et e e sabaee s 31
7.22 Quadrature Decoder EXAMPIEcooi e 33
7.23 Hardware CONfIQUIALIONcooiuiiiiiiiiiie ittt e e sabe e e e saneeee s 33
7.24 RUNNING the EXAMPIE.....cciieii e e s e e e e e e e nnnreaee s 33
7.25 SYSHUCK EXAMPIEeiiiiii ettt 35
7.26 Hardware CONfIQUIALIONccoiuiiiiiiiiiie ittt sttt sba e e sabr e e e saneeee s 35
7.27 RUNNING the EXAMPIE.....ccoiiiii et e 35
7.28 TIMERO (PWMO, PWMZL) EXAMPIEvveeieeceeeeieieeeeceeeee e eeeeeeseeesensesasesessanenneseeensenanens 36
7.29 Hardware ConfigUrationcuuiiiiiieeiiiiiiee e e e e e e e e e e e s e s e e e e e e e s e nnnreaeees 36
7.30 RUNNING the EXAMPIE....oiiiiii et 36
7.31 TIMERO General EXAmMPIEcccuiiiiiiie ettt e e s e e e e e e st e e e e e e e s nnnnreanee s 37
7.32 Hardware COoNfigUIALIONooiuuiiiiiiie et e e e e e e e snnbeeeeeas 37
7.33 RUNNING the EXAMPIEoiiiiiiii e e e ebee e s 37
7.34 TIMER2 (PWM2, PWM3, PWM4) EXaMPIEccueeeiiiiiiiie et 38
7.35 Hardware ConfigUrationc.uueeiiiie i e e e e et e e e e e e e eee s 38
7.36 RUNNING the EXAMPIE.....coiiiiiiiieiiee et 38
RS Y A == 11 (=T VA = Ln] o [USSP 40
7.38 Hardware ConfigUrationcc.uueiiiireiiiiiiiie e e e e e e e e e s e e e e e e e s e nnnreneees 40
7.39 RUNNING the EXAMPIE....ooiiiiiie e 40
8 Developing Bluetooth® Low Energy AppliCatioNSccccciiueeiiiiieiieceereee et 41
8.1 The Seven Pillar Example APPICALIONSuviiiiiiiiieiiiee et 41
o T - T R (2 7= T = Lo o =) SRS 42
ESTRC I Y o] o] o=V o] W B =2 ol 1] 1o T S PO PP P P OU PR 42
o = T T (o @ o= = 4o o P PRSP 42
8.5 USEI INTEITACE.eeiii ittt e e e s e as 42
8.6 LOAMING the PrOJECT ... et 43
8.7 GoiNg Through the COUE........ccoiciiiiiiie et e e e e e e e e aee s 44
o 7R T 1 (=142 o] o SRS 44
8.9 Events Processing and CallDacks............cooiiiiiiiiiiiiii e 44
8.10 BLE Application AbStract Code FIOWooiiiiiiiiiiiiiiiiie e 46
8.11 Building the Project for Different Targets and Development KitS..........cccccovviieeiiiienennnnen. 47
8.12 Interacting with BLE APPICALIONcoviiiiiiiiiiiiece e 48
e T W | o112 11 LI T 2 SRR 48
8.14 Pillar 2 (CUStOM PrOfil€)cce i e e e ae e 49
8.15 APPlICAtION DESCHIPION.eeiiiii ittt e e e e e e e e nb e e e e e e e e e e snnbeeeeeas 49
o T ST = 7= TS (o3 @ o 1T - o o SO 49
817 USEI INTEITACE. ...ttt e s e e s e e s e s e e s e nneas 49
8.18 LOAdING the PrOJECL....cc it 50
8.19 GoiNg Through the COE...........uuiiiiiii e e e e e e s sanrreee s 51
User Manual Revision 1.2 24-Dec-2021

CFR0012

30f 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.20 INILANZALION ...eeeiiiiieiiiieee ettt e s e e e 51
8.21 Events Processing and CallDacKS...........oocuuiiiiiiie i 51
8.22 BLE Application Abstract Code FIOWuueiiiiiiiiiiiiiicccc e 53
8.23 Building the Project for Different Targets and Development KitS..........cccccovviiiieiiiienennnnn. 53
8.24 Interacting With BLE APPHCALIONccoviiiiiiiiiiieiie e 55
8.25 LIGhtBIUE IOS ...ttt ettt ettt ettt e ab e e bt e e ene e eabe e naae e enees 55
I I o 11 F= TSl (=T T o] 1= =) USSP 56
8.27 APPIICAtION DESCIIPLION.ciiiiiiiieiiieie ettt e e e e s e e e e e anbe e e e enreas 56
8.28 BASIC OPEIALION.eiiiiiiiiiie ittt ettt sttt s bt s b e e s et e e b e areas 56
8.29 USEI INTEITACE........eeiii ittt et e st e s e e e e s 56
8.30 LOAING the PrOJECT ...t 57
8.31 GoiNg Through the COUE.........ccuuiiiiiii e e e e e e s e aeees 58
IS YA 11 1= Vi o] o [PSPPI 58
8.33 Events Processing and CallDacks............oooiiiiiiiiiiiii e 58
8.34 BLE Application AbStract Code FIOWeoiiiiiiiiiiiiiiiie e 60
8.35 Building the Project for Different Targets and Development KitS..........cccccovviiieeiiiieneennnen. 61
8.36 Interacting With BLE APPHCALIONcceieeiiiiiiiiieie e e e e 62
8.37 LIGhtBIUE IOS ...ttt ettt ettt sttt sab e e be e e be e e sabe e e saae e eaees 62
TS I =11 F= T B (ST= o {11 U PO 63
SRCTS AN o] o] [or= 14 (o] g B T=T{ox ¢ o1 (0] o IS TP UUTT T PPPPP 63
o L0 = T T (o @ o= = 1o o P PSPPI 63
S R U T o [] (=T o £= ol TSP RPUPSR PRI 63
8.42 LoAdING the PrOJECT ...ttt 63
8.43 G0oiNg Through the COUE.........cuuiiieeiie e e e e e aee s 65
oI A 1 (=42 o] o SRS 65
8.45 Events Processing and CallDacks............cooiiiiiiiiiiiic e 66
8.46 BLE Application AbStract Code FIOWeoiiiiiiiiiiiiiieiiee e 68
8.47 Building the Project for Different Targets and Development KitS..........cccccovveeiiiienennnnn. 70
8.48 Interacting with BLE APPHCALIONcoeveiiiiiiiiieeic e e e 71
e I W (o o112 [N LI T S SRR 71
8.50 Pillar 5 (SIEEP MOUE).....eeiiieei ittt e e e e e e e e s e e e e e e s e st e e e ee e e s e annraanees 74
8.51 APPIICAION DESCHPLION. ...ciiiiiiiiiiiiie ettt e e e e e e e s e abb e e e e e e e s e sannbeeeeeas 74
RS = T T (o @ o= = 1o o P PRSP 74
8.53 USEI INLEITACEei ittt e bt s e s e nan e b s 75
8.54 LoAdING the PrOJECT ...ttt 76
8.55 G0oiNg Through the COUE..........c.uuiiiiiii e e e e e s aee s 77
8.56 INILANIZALIONeciitiiiie ittt 77
8.57 Events Processing and CallDacks............cooiiiiiiiiiiiie e 77
8.58 BLE Application AbStract Code FIOWeoiiiiiiiiiiiiiiiiie e 79
8.59 Building the Project for Different Targets and Development Kits...........cccccovvieieiiiieneinine. 80
8.60 Interacting with BLE APPHCALIONcoeveeiiiiiiiiieee e 81
) R M (| o112 11 LI @ 2 S SRR 81
G 11 T G I (@ 1 I PP PT TR 82
SR AN o] o] [To= 14 (o] g B T=T{ox ¢ 011 (] o IS TP UUTT PP 82
I B = 7= TS (o3 @] o 1T - o] o RSO 82
8.65 USEI INTEITACE.......ei ittt e bt e s e s b e e e snneeenee s 83
8.66 LOAING the PrOJECT ...t e 84
User Manual Revision 1.2 24-Dec-2021
CFR0012 4 of 110 © 2021 Renesas Electronics

UM-B-050

DA1458x Software Developer’s Guide

8.67 G0oiNg Through the COe........o.eiiiiiiiie e e eas 85
8.68 INILIAIZALIONeeieieiiiee et 85
8.69 Events Processing and CallbDacks...........ccuuiiiiiii i e 85
8.70 BLE Application AbStract Code FIOWccuuiiiiiiiiiiiiiiie e 87
8.71 Building the Project for Different Targets and Development KitS............ccccveeeiiiiiinniiinenn. 87
8.72 Interacting with BLE APPHCALIONcooiiiiiiiiiiiiie e 88
S T I o | 11 =] [0 =TT 1S U PO 88
8.74 SUOTA APPIICALION ...ttt ettt et e e s b e s anbe e e nneas 89
8.75 Pillar 7 (AllIN ONE) ..ottt s 20
8.76 APPIICAION DESCHIPLION. ...ciii ittt e e e e e e e e e e e e e e e e s e sannbeeeeeas 90
A = T T (o @ o= = 1o o P P PP 20
8.78 USEI INTEITACEii ittt e et e s e e s re e e s e e nee s 91
8.79 L0oAdING the PrOJECT ...ttt 92
8.80 G0iNg Trough the COOE..........coiiiiiiiiiiiie e 93
8.81 INILANZALION ...ceeiiiiiieiite et 93
8.82 Events Processing and CallDacks............cooiiiiiiiiiiiiii e 94
8.83 BLE Application Abstract Code FIOWuuueiiieiiiiiiiiieeec e 97
8.84 Building the Project for Different Targets and Development Kits...........cccccovviireiiiiieeinnnen. 98
8.85 Interacting With BLE APPHCALIONcceveeiiiiiiiiieee e e e ae e 99
8.86 LIGNIBIUE IOSooiiiiiiiiieee ettt e b et s a e e be e e s e e b e e e nabe e ree s 99
9 Creating Your BLE APPHCALION ...t 100
9.1 Using the Empty Project TEMPIALEccooiuiiiiiiiiiii e 100
9.2 Configuring YOUr APPIICALIONceiiiii e e e e e e e e aee s 102
9.3 USING the AP ...ttt e e e e e e 103
0.4 GAP AP e 103
9.5 PIOFIIE AP ...t bbb nare e nnnes 103
9.6 Peripheral INTEIfAaCEooi e 103
0.7 SIEEP MOUE AP ...ttt e e e et e e e e e e e e e e e e e e aeee s 104
9.8 APPIICALION DESCIIPLION.cueeeieeiteete ettt ettt e s e s b e s e e e e e 105
SIS B 7= 1S (o @ o 1= - 1o o PSSR 105
LSO I U =T [] (=] 7= ol T P PP PPT O PRRP 105
9.11 LoAding the PrOJECEeiiii et 105
9.12 GoiNg Through the COAE.......c..uuiiiiiiieeee e e e 106
.13 INIHANZALION ...eeiiieiiiie it e et 106
9.14 Events Processing and CallbDacks..........ccuuuiiiieeiiiiiiiiiieic e 106
9.15 BLE Application ADSIract Code FIOWc.ueiiiiiiiiiiiiiie e 108
9.16 Building the Project for Different Targets and Development KitS..........ccccovvveiiiienennenen. 108
REVISION HISTOTMY .ottt e e e s a et e e s st bt e e e sb bt e e e sabe e e e s snbaeeeesabeeeesanee 109
Figures
Figure 1: Blinky Example OULPUL CONSOIE.........ccoiiiiiiiiiiie e 12
Figure 2: Proximity Reporter Keil ProjeCt LAYOULccuuviiiiiiiieiiiee e 15
Figure 3: Proximity Reporter - User Application Code FIOW...........ccceiiiiiiiiiiiiieei e 18
Figure 4: Building the Project for Different Targets ... 19
Figure 5: Development Kit Selection for Proximity Reporter Applicationccocvceiiiiiiiiiiieeneennnn. 19
Figure 6: LightBlue Application Connected to Proximity Reporter Applicationcccoeiiiiieeneannn. 20
Figure 7: DA1458x DK - BasiC Virtual COM POIt........ccccoiiiiiiiiiiiie et e e srnrne e e e 23
User Manual Revision 1.2 24-Dec-2021

CFR0012

50f 110 © 2021 Renesas Electronics

UM-B-050

DA1458x Software Developer’s Guide

Figure 8: DA1458X DK-Pro Virtual COM POITuuuiiiieiiiiiiiieec e e e st e e e s rntnrn e e e e e 24
Figure 9: UART SIimMPIe EXAMPIE ...cccoiiiiieieee ettt e e s e e e e e e et e e e e e e e e snnnnrneeeaeeeean 25

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

UART2 Example Console Output: WItE TeSt.......ccccuiiieiie e e e e 26
UART2 Example Console Output: Read TeSt........cccuiiiiiie e 27
UART2 Example Console Output: Loopback TeSt........ccvveeiiiiiiiiiiiie i 27
SPI Flash Memory EXamPIe..........uuveiieeiiiiiiiiiicc e e e s r e e e e e e e e s ennrnaee s 30
[2C EEPROM EXAGMPIE ..oiiiiiiiii ettt 32
Quadrature Decoder EXAMPIEocuiiiiiiiiiie et 33
Quadrature Decoder ISR-ONlY REPOISceeiiiiiiiiiiiiii e 34
Quadrature Decoder Polling-Only REPOISuuviiiiiiiiieiiiiee et 34
Quadrature Decoder Polling and ISR REPOISccuuiiiiiiiiiieiiiiie e 35
TIMERO (PWMO, PWM1) TeSt RUNNING ...cvviiiiiiiiiie et 36
TIMERO General TeSt COMPIELEA.......ooiiiiiiiiieieiie e 37
TIMER2 (PWM2, PWM3, PWM4) TeSt RUNNING......ccociiiiieiiieiiie e 39
TIMER2 (PWM2, PWMS3, PWM4) Test Completed..........ccccvveeiiiiiiiiiieece e ceciieeeeee e 39
Battery EXAMIPIE .. .uvvieieie et e e e e e e e e e e s e e e e e ann i raaeaan 40
]|V e T g o] L= o= £ SRR 41
Pillar 1 Keil ProjeCt LAYOULcccoiiiiiiiiiiie ettt ettt 43
Pillar 1 Application - User Application Code FIOW...........ccooviiiiiiiiiiie e 46
Building the Project for Different TArgetsSc.ueeiiiiiee it 47
Development Kit Selection for Pillar 1 AppliCationccoviiiiiiiiiiie e 47
LightBlue Application Connected to Pillar 1 Applicationccoccvieiiiiiieiiiieeeee, 48
Pillar 2 Keil ProjeCt LAYOULcccoiiiiiiiiiiie ettt 50
Pillar 2 Application - User Application Code FIOW..........coooiiiiiiiiiiiniiii e 53
Building the Project for Different Targetsoocuuieiiiiieiiiiieee et 54

Development Kit Selection for Pillar 2 Applicationcccuvviiiiiiiiiiiiieieeeee e 54
LightBlue Application Connected to Pillar 2 Applicationcccccceevvicviiieeee e 55
Pillar 3 Keil ProjECt LAYOULueeiiieeeiiciiieiieee e e ettt ee e e e s st e e e e e e s st e e e e e e e s snnnrnnneeeeaeaean 57
Pillar 3 Application - User Application Code FIOW............cocciiiiiieei i 60
Building the Project for Different TArgetsSc.uvee i 61
Development Kit Selection for Pillar 3 Applicationccooiiiiiiiie i, 61
LightBlue Application Connected to Pillar 3 Applicationccoccveiniiiiiiiee, 62
Pillar 4 Keil ProjeCt LAYOULcccoiieiiiiiiiie ettt ettt 64
Pillar 4 Application - User Application Code Flow for Pairing using Passkey Entry 68
Pillar 4 Application - User Application Code Flow for Pairing using Just Works................ 69
Building the Project for Different Targetsoouuieiiiiie e 70
Development Kit Selection for Pillar 4 Applicationcccuvveiiiiiiiiiiii e 70
LightBlue Application Connected to Pillar 4 Applicationccccceevviciiiiieeeeee e 71
LightBlue Application Pairing with Pillar 4 Application using Just Works............ccccceeeenn. 72
LightBlue Application Pairing with Pillar 4 Application Using Passkey with MITM 73

Pillar 5 Keil ProjeCt LAYOULccoiiiiieiiiiiie ettt ettt 76
Pillar 5 Application - User Application Code FIOW...........cooviiiiiiiiiiieiiiec e, 79
Building the Project for Different TArgetsSc.uvee i 80
Development Kit Selection for Pillar 5 AppliCationcooiiiiiiiiiie i, 80
LightBlue Application Connected to Pillar 5 Applicationccocceveiiiiieiiieee, 81
Pillar 6 Keil ProjeCt LAYOULcccoiuiiiiiiiie ettt ettt e 84
Building the Project for Different Targetsoouuieiiiiieeiiiieiee e 87
Development Kit Selection for Pillar 6 Applicationcccuuviiiiiiiiiiiii e 87
LightBlue Application Connected to Pillar 6 Applicationcccccoiiiiiiiiiiiinniiiiiieeeeeeee 88
Dialog SUOTA Application Discovering Pillar 6 Applicationccccovveeeeeeiiiiiciineeeeeeen 89
Pillar 7 Keil ProjECE LAYOULuuiiiieeiiiiiiieiie e e e ettt e e e e st e e e e e e e st e e e e e e e s snnrnrneeeaee e s 92
Pillar 7 Application - User Application Simplified Code FIOWcccoocveiiiiiiiinceee, 97
Building the project for different targets ... 98
Development Kit Selection for the Pillar 7 Application...........cccceeevv i 98
LightBlue Application Connected to Pillar 7 Applicationccoccveiiiie i, 99
Peripheral Template Application - User Application Code FIOWcccccvevviiiiiiienneennn. 108

User Manual Revision 1.2 24-Dec-2021

CFR0012

6 of 110 © 2021 Renesas Electronics

UM-B-

. RENESAS

DA1458x Software Developer’s Guide

Tables

Table 1: Blinky Example Jumper COoNfiQUIationoooiuiiiiiiiiiiesiiiiee e 12
Table 2: UART Example Jumper ConfiguIationoc.uueeiiiioo i 24
Table 3: UART2 Example Jumper CONfIQUIALIONeeiiiiiiieeiiiiee ettt 26
Table 4: SPI Flash Memory Example Jumper Configuration without UART2 RX.......ccccoevviviieiinnnnen. 28
Table 5: SPI Flash Memory Example Jumper Configuration with UART2 RX.......ccooviiiiiiiiiiiiinniininns 28
Table 6: 12C EEPROM Example JUMPEr SELHNGSooiuueiiiiieieee ittt ettt e e e 31
Table 7: Quadrature Decoder Example Jumper SEttiNgScoooiiiiiiiiiiiiiiiieeee e 33
Table 8. Systick Example JUMPEr SEHNGSuuriiiiieeiiiiieiie e e e e e sestere e e e e e s srsir e e e e e e e e ss e eeeaeeesennenes 35
Table 9: Timer0 Example JUMPEr SEHINGSuuiiiiiieeiiiiiieiiee e s e e e e s e e e e e e s s snnre e e e e e e e sennnnes 36
Table 10: Timer0 General Example JUMPEr SEHINGSocvvviiiiiiiieeiiiiee et 37
Table 11: TIMER2 Example JUMPET SEHINGSeviiiiiiiieiiiiiee ettt 38
Table 12: Battery Example JUMPET SETHNGSiveiiii ittt 40
Table 13: Pillar 2 Custom Service Characteristic Values and Propertiescccccvvvvereriineeeiiinennn 49
Table 14. Pillar 3 Custom Service Characteristic Values and Propertiescccccvvvvereiiiieeeinnneenn 56
Table 15: Pillar 4 Custom Service Characteristic Values and Propertiescccccvvveereriivenennineens 63
Table 16. Pillar 3 Custom Service Characteristic Values and Propertiesccccceviiiiviieeneeeeniinins 74
Table 17: Pillar 6 Custom Service Characteristic Values and Propertiescccccoeviiiiiieieieeeeniinins 82
Table 18: Pillar 6 SPOTAR Service Characteristic Values and Properties..........cccccoviiiiiieieneeniinins 83
Table 19: Pillar 7 Custom Service Characteristic Values and Propertiescccccceeevivivveeeeeeeecieinnns 90
Table 20: Pillar 7 SPOTAR Service Characteristic Values and Properties.........cccccccevvvcvvveeeeeeeeiinnnns 91
Table 21: User Configuration FIlEScciii i se e s e e e e e e s s nran e e e e e e e sennees 102
User Manual Revision 1.2 24-Dec-2021
CFR0012 7 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

1 Terms and Definitions

AES Advanced Encryption Standard

BLE Bluetooth® Low Energy

CPU Central Processing Unit

DA1458x DA1458x SoC Platform of Product Family of devices, for this document
specifically referring to the DA14580/581/583 devices

DISS Device Information Service Server

DK Development Kit

GAP Generic Access Profile

GTL Generic Transport Layer

HCI Host Controller Interface

HW Hardware

MITM Man In The Middle

NVDS Non-Volatile Data Storage

OTA Over The Air

OoTP One Time Programmable (memory)

SDK Software Development Kit

SoC System on Chip

SPOTA Software Patching Over The Air

SPOTAR Software Patching Over The Air Receiver

SUOTA Software Updating Over The Air

UuID Universally Unique IDentifier

2 References
[1] UM-B-048, Getting Started with DA1458x Development Kits - Basic, User Manual, Dialog
Semiconductor.

[2] UM-B-049, Getting Started with DA1458x Development Kits - Pro, User Manual, Dialog
Semiconductor.

[3] DA14580 Data sheet, Dialog Semiconductor.

[4] DA14581 Data sheet, Dialog Semiconductor.

[5] DA14583 Data sheet, Dialog Semiconductor.

[6] UM-B-051, DA1458x Software Platform Reference, User Manual, Dialog Semiconductor.
[7] AN-B-010, DA14580 using SUOTA, Application Note, Dialog Semiconductor.

User Manual Revision 1.2 24-Dec-2021

CFR0012 8 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

3 Introduction

This document aims to serve as a guide to the embedded software developer by providing a step by
step practical understanding on how to develop Bluetooth® Low Energy standard applications, when
using the system architecture of the DA1458x System on Chip (SoC) family of integrated circuit (IC)
devices, consisting of the DA14580/581/583, through its development environment and tool chain.

3.1 Target Audience

This is a document for embedded software developers, also called embedded firmware engineers
that are working on developing applications on any of the SmartBond™ DA1458x Product Family of
devices which are based on the DA1458x System on Chip (SoC) platform.

Developers that are new to the DA1458x System on Chip (SoC) platform are advised to first read
Ref. [6], especially the first chapters, and then scan through the rest of the reference documents,
both to get familiar with the software platform and to learn where to find specific information as
needed. Then spend some time reading through the sections of this guide.

Experienced embedded firmware engineers after going through the contents of Ref. [6], can focus on
the pillar examples as provided in this document, and then take a deep dive into the SDK and deeper
detailed technical documentation. This should allow to get a clear idea of how applications can be
developed and are executed on Dialog's DA1458x Bluetooth® Low Energy devices as well as on how
to best utilize the capabilities offered by Dialog’s DA1458x SoC platform.

3.2 How to Use This Manual

This document describes the development steps through which a developer can develop BLE
applications on the DA1458x software architecture, utilizing SDK 5.x and its supporting tool chain; to
this extend, this document guides the developer, to check up the correctness of the setup of his/her
development environment, how to use the supported tool chain to produce, run, debug and test
his/her first build BLE example application, then guides him/her through the pillar BLE examples,
through which he/she gets acquainted in developing complete BLE applications that use the
DA1458x software architecture and APIs. It also explains through examples how one can use the
peripherals that the DA1458x SoC supports as well as how to create a new project.

User Manual Revision 1.2 24-Dec-2021

CFR0012 9 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

4 Getting Started

To get started it is important to check that we have in place the development environment. Ttherefore
it is assumed in this document that the developer is familiar with the DA1458x development kits and
the pVision Keil software development environment. Depending on the development kit variant, the
developer should refer to UM-B-048, Getting Started with DA1458x Development Kits - Basic, User
Manual [1], for the basic kits, and UM-B-049, Getting Started with DA1458x Development Kits - Pro,
User Manual [2], for the professional kits.

Download instructions and installation steps on how one can download and install the development
environment including drivers and tools are provided in the above mentioned Getting Started
documents, [1] for the basic kits, [2] for the professional kits.

Therefore to accompany the development kit of his choice, the developer should also have already
installed on his personal computer the following software applications.

4.1 Development Environment

The DA1458x development environment consists of:

o ARM Keil pVision IDE/Debugger, ARM C/C++ Compiler, and its essential middleware
components, Keil IDE and the Keil build tools.

e Segger ARM JTAG software that is fully supported by the Keil environment.

4.2 Software Development Kit (SDK)

The DA1458x Software Development Kit (SDK) in its latest v5.x release as downloaded from the
customer support web page: http://www.dialog-semiconductor.com/support.

4.3 Tools

The development environment is also supported by a number of other utilities and tools such as the
SmartSnippets Toolbox and Connection Manager which are downloaded from the customer
support web page: http://www.dialog-semiconductor.com/support under the “Software & Tools”
menu.

4.4 SmartSnippets Toolbox

SmartSnippets is a framework of PC based tools to control DA14580/581/583 development kit,
consisting of:

e Booter is used for downloading for downloading hex files to DA14580/581/583 SRAM over
UART and for resetting the chip to execute from there.

e UART Terminal is available only for connection over UART. After successfully downloading the
selected file to the DA14580 chip, the ‘Start Terminal’ button is activated and the user can press
it in order to receive data from UART.

e Power Profiler is used for plotting the current (and associated charge) drawn by the DA1458x on
the DK in real time over USB.

e Sleep Mode Advisor is used to help users understand how much power their application
dissipates in Deep Sleep and Extended Sleep modes and what is its impact in battery lifetime
duration.

OTP Programmer tool is used for burning the OTP Memory and OTP Header.

e SPI Flash Programmer is used for downloading an image file to the SPI Flash Memory
(DA14583).

For more details on how to use the above tools refer to the “User Guide” html document which can
be found under the “help” drop down menu of the SmartSnippets Toolbox application.

User Manual Revision 1.2 24-Dec-2021

CFR0012 10 of 110 © 2021 Renesas Electronics

http://www.dialog-semiconductor.com/support
http://www.dialog-semiconductor.com/support

UM-B-050

LENESAS

DA1458x Software Developer’s Guide

4.5

Connection Manager

Connection Manager is a PC based software tool to control the link layer of the DA14580/581/583,
with the following capabilities:

Functional in Peripheral and Central role
Set advertising parameters

Set connection parameters

Reading from Attribute database
Perform production test commands

For more details on how to use the tool, refer to the “Help Document” which can be found under the
“Help” drop down menu of the Connection Manager application.

User Manual Revision 1.2 24-Dec-2021

CFR0012 11 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

5 Blinky: Your First DA1458x Application

The Getting Started guides for the development kits provide in their “Using the Development Kit”
section an example application called Blinky. It demonstrates step-by-step how one can load the
Blinky example as a project in the Keil environment, how to set up and build, and lastly how to
execute via the debug environment on any of the DA14580/581/583 devices, depending on the
development kit and the exact device that the developer uses.

5.1 Application Description

Blinky is a simple application example which demonstrates basic initialization of DA1458x and LED
blinking.

The project is located in the projects\target apps\peripheral examples\blinky SDK
directory.The Keil v5 project file is the:

projects\target apps\peripheral examples\blinky\Keil 5\blinky.uvprojx

5.2 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 1: Blinky Example Jumper Configuration

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14
P10 LED Connect J9.1 — J9.2 Connect J9.1 — J9.2

5.3 Running the Example

Please follow the step-by-step instructions as described in the Getting Started guides for the
development kits in their “Using the Development Kit” section.

After the Blinky example has been built and downloaded to the DK the LED will start to blink and
following output from program will be visible in the console.

. COM22:115200baud - Tera Term VT = | O

File Edit 5etup Control Window Help

* BLINKY DEMO *

Figure 1: Blinky Example Output Console
User Manual Revision 1.2 24-Dec-2021

CFR0012 12 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

The source code for this example is located in function blinky test () inside:

projects\target apps\peripheral examples\blinky\src\main.c

User Manual Revision 1.2 24-Dec-2021

CFR0012 13 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

6 Proximity Reporter: Your First Bluetooth® Low Energy
Application

6.1 Application Description

The Proximity profile defines the behavior of a Bluetooth® device when this moves away from a peer
device so that the connection is dropped or the path loss increases above a predefined level, causing
an immediate alert. This alert can be used to notify the user that the devices have become
separated.

The Proximity profile can also be used to define the behavior of two devices coming closer together
such that a connection is made or the path loss decreases below a predefined level.

The Proximity profile defines two roles:
e Proximity Monitor (PM). The Proximity Monitor shall be a GATT client.
e Proximity Reporter (PR). The Proximity Reporter shall be a GATT server.

This section describes only the Proximity Reporter application.

6.2 Basic Operation
The Proximity Reporter application supports the following services.

Immediate Alert service (UUID 0x1802).

Link Loss service (UUID 0x1803).

Tx Power service (UUID 0x1804).

Device Information service (UUID 0x180A).

Battery service (UUID Ox180F).

Software Patching Over The Air Receiver (SPOTAR) service (UUID OxFEF5).

The Proximity Reporter application has the following features:

Two levels of Alert Indications. Mild/High -> Slow/Fast green LED blinking.
500 ms advertising interval.

Deep Sleep mode after 3 minutes of inactivity.

Push button.

Stop Alert indications.

Exit Deep Sleep mode.

Pairing / bonding / encryption.

Supports Extended Sleep mode.

The Proximity Reporter operation is implemented in C source file user proxr.c.

6.3 User Interface

The application will notify the user when an alert indication, link loss and immediate alert are
triggered. The Alert Notification will be:

e High level alert: A fast (500 ms) LED blinking.
e Mild level alert: A slow (1500 ms) LED blinking.
The user can stop alert notification by pressing a push button.

The selected LED and push button (port and pin number of the DA14580/581/583) are defined by the
user configuration depending on the underlying hardware (Development Kit). The user file
user periph setup.h holds the peripheral configuration settings of the LED and push button.

User Manual Revision 1.2 24-Dec-2021

CFR0012 14 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

6.4 Loading the Project

The Proximity Reporter application is developed under the Keil v5 tool. The respective Keil project
file is the prox reporter.uvprojx.

Figure 2 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platformand user app. These folders contain the user
configuration files of the Proximity Reporter application.

File Edit View Project Flash Debug Per
NEd&@| 4 o @ |

Litab

AN i _-| o | prox_reporter 580
Froject o

=21 prox_reporter_580

"1:| cdk_boot

1:| sdk_arch

--{:| sdk_patches

477 sdk_patches_581

"1:| cdk_driver

{77 sdk_ble

--{:| sdk_profiles

"1:| sdk_app

"1:| sdk_driver_api

"1:| sdk_app_api

1:| sdk_arch_api

Ela user_config
----- dald58x_config_advanced.h
----- dald58x_config_basic.h
----- user_callback_config.h
----- user_config.h
----- user_modules_config.h
----- user_periph_setup.h
----- user_profiles_config.h
----- user_config_sw_ver.h

=-£5 user_platform

- [¥] user_periph_setup.c
E-E5 user_app

LISEr_proNr.C

Figure 2: Proximity Reporter Keil Project Layout

User Manual Revision 1.2 24-Dec-2021

CFR0012 15 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

6.5 Going Through the Code
6.6 Initialization

The aforementioned Keil project folders (user_config, user_platform and user_app), contain the files
that initialize and configure the Proximity Reporter application.

dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

user callback config.h, callback functions that handle various events or operations.
user config.h, holds advertising parameters, connection parameters, etc.

user config sw ver.h, holds user specific information about software version.

user modules_config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)

will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

o proxr.h, includes the Immediate Alert, Link Loss and Tx Power services.
O diss.h, includes the Device Information service.
O bass.h, includes the Battery service.
O spotar.h, includes the Software Patching Over The Air Receiver service.
® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the selected Development Kit.

6.7 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism, which is provided to the user in order to take care of the above, is the
registration of callback functions for every event or operation. The C header file

user callback config.h, which resides in user space, contains the registration of the callback
functions.

The Proximity Reporter application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection = default app on connection,
.app_on disconnect = default app on disconnect,
.app_on update params rejected NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on adv undirect complete = app advertise complete,
.app_on adv direct complete = NULL,
.app_on db init complete = default app on db init complete,
.app_on_scanning completed = NULL,
User Manual Revision 1.2 24-Dec-2021

CFR0012 16 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

.app_on adv_report ind = NULL,
.app_on pairing request = default app on pairing request,
.app_on tk exch nomitm = default app on tk exch nomitm,
.app_on irk exch = NULL,

.app_on _csrk exch = default app on csrk exch,
.app_on ltk exch default app on 1tk exch,

.app_on pairing succeded = NULL,
.app_on _encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on_encrypt req_ind = default app on encrypt req ind,

bi

e The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. app_advertise_complete()) are defined in C source file user proxr.c.

e System specific events:

static const struct arch main loop callbacks user app main loop callbacks = {
.app_on _init default user app init,

.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app_before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app _resume from sleep = NULL,

i
e The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries).

e BLE operations:

static const struct default app operations user default app operations = {
.default operation adv = default advertise operation,
i

e The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries).

User Manual Revision 1.2 24-Dec-2021

CFR0012 17 of 110 © 2021 Renesas Electronics

LENESANS

UM-B-050
DA1458x Software Developer’s Guide

6.8 BLE Application Abstract Code Flow

Figure 3 shows the abstract code flow diagram of the Proximity Reporter application. The diagram
depicts the SDK interaction with the callback functions registered in user callback config.hand
the functions implemented in user_proxr.c..

User User

Application Configuration SDK

app_on_init()

default_app_on_init()

app_on| set_dev_config_complete()

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

default [app_on_db_init_complete()

default_operation_adv()

default|advertise_operation()

app_on|adv_undirect_complete()

app_advertise_complete()

= -~

o

default_app_on_adv|undirect_complete() § S

(]

8©

. e« O o

app_on_connection() i}

O

g £

. o 2

default [app_on_connection() 2=

Figure 3: Proximity Reporter - User Application Code Flow

User Manual Revision 1.2 24-Dec-2021

CFR0012 18 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

6.9 Building the Project for Different Targets and Development Kits

The Proximity Reporter application can be built for three different target processors, DA14580,
DA14581 and DA14583.

The selection is done via the Keil tool as depicted in Figure 4.

File Edit Wiew Project Flash Debug Peripherals To
NMedad| » o@®locle s 7
@ =) [& |_|-| " Bl orox_reporter 580 E 75

E__JE prox_reporter_580 prox reporter 533 oo
B0 sdk_boot 56
D sdlc_arch 37
--1:| sdk_patches 24
i:l sdk_patches_581 23
r_“‘| sdle_driver &1
-7 sdk_ble 62
{17 sdk_profiles 63

Figure 4: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 5.

File Eat View Project Fash Debug Perphero Toom SWSE Window Hew

Gd & | BRG] e asta upane e 3~ al > all=s |
-l S | prox reparter, 380 : N ﬁ = & &
. e
(= 524 prow_reparter 380 ===, ~
& (1 vob boat _Emedd | Cemse X | R
#1150 e arch Opticn Value
2 i pachn e Bl
8 FJ sdcpatches 381 [s in Sl SE poph vtuph
5[s driver {Ssic
R
sthe_profles Expen
&) sde_app

31 (1 wee_drvwr_api

#1000 s app_api

B0 s _arch_agi

=y user_contiy
L] dalaséy_config_sdvanced h
|=] gald58s_config basich
1] vaer_catback_config.h
| uner configh
_] waer_medules configh
L) waer_pesiph_setup.h
L] wser_prafiles_configh
1] uses_config_sw_verh

4 L user_pistiorm

| £3 user_app
[5) wer_proes

] iveect [@ () Fimetin| Ol T

P Im Péey

0\ TestEdtr) Contiguention Wazard |

Figure 5: Development Kit Selection for Proximity Reporter Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 19 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

6.10 Interacting with BLE Application
6.11 LightBlue iOS Application

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 6 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-PRXR).

iPad = 5:52 p.p. 3 819 =)

< LightBlue Peripheral Clone

DIALOG-PRXR

UUID: 9806D5AC-AEB9-5F8A-4596-B1143C474380

Connected

ADVERTISEMENT DATA Show

Link Loss

Alert Level

Properties: Read Write

Immediate Alert

Alert Level

Properties: Write Without Response

Tx Power

Tx Power Level

Properties: Read

Battery Service

Battery Level

79%

Device Information
Manufacturer Name String
Dialog Semi

Model Number String
DA1458x

Firmware Revisicn String
v.5.0.1.154

Software Revision String
v_5.0.1.154

Log

Figure 6: LightBlue Application Connected to Proximity Reporter Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 20 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

7 Peripheral Example Applications

The DA1458x Software Development Kit (SDK) includes a set of engineering examples which
demonstrate the use of the drivers provided with the SDK for accessing the main peripheral devices
of DA1458x.

7.1 Introduction

The peripheral example applications demonstrate the DA1458x’s peripheral connectivity capabilities
such as interfacing to SPI Flash and 12C EEPROM memories as well as using on chip peripherals as
the timers, the quadrature decoder, and the ADC. The user interaction, when applicable, is done via
a UART terminal.

The following examples are provided:

e UART Print String Example: How to configure, initiate, and send to the UART interface.

UART2 Asynchronous Example: How to perform IRQ based 10 operations using the UART2
interface.

e SPI Flash Memory Example: How to initiate, read, write and erase an SPI Flash memory.
I2C EEPROM Example: How to initiate, read, write and erase an EEPROM memory.

e Quadrature Encoder Example: How to configure and read from the quadrature decoder
peripheral. The Wakeup Timer setup for responding to GPIO activity is also demonstrated in this
example.

e Systick Example: How to use Systick timer to generate an interrupt periodically. A LED is
changing its state upon each interrupt.

e TIMERO (PWMO, PWM1) Example: How to configure TIMERO to produce PWM signals. A
melody is produced on an externally connected buzzer.

e TIMERO general Example: How to configure TIMERO to count a specified amount of time and
generate an interrupt. LED is blinking every interrupt

e TIMER2 (PWM2, PWM3, PWM4) Example: How to configure TIMER2 to produce PWM signals.
LEDs are changing light brightness in this example.

e Battery Example: How to read the battery indication level, using the ADC.

7.2 Software Description

The peripheral example applications are located in the target apps\peripheral examples\
directory of the DA1458x Software Development Kit.

The implementation of the drivers is located in the sdk\platform\driver directory. To use the
DA1458x peripheral drivers, one should:

e Add the driver’s source code file (e.g. spi\spi.c) to the project.

e Include the driver’'s header file (e.g. spi\spi.h) whenever the driver’s APl is needed.
e Add the driver folder path to the Include Paths (C/C++ tab of Keil Target Options).
Each of the example projects includes the following files:

main.c: Includes both the main and test functions.

user periph setup.c: Includes the system initialization and GPIO configuration functions for
peripheral that is about to be presented.

user periph setup.h: Defines the hardware configuration, such as GPIO assignment for peripheral
that is about to be presented.

common_uart.c, .h: Introduces functions to printing of byte, word, double word and string variables.
It calls functions from the GPIO driver.

User Manual Revision 1.2 24-Dec-2021

CFR0012 21 0f 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

7.3 Getting Started

It is assumed that the user is familiar with the use of the DA1458x Development Kits as described in
Ref. [1] and Ref. [2].

Prior to running a desired peripheral example, the user has to configure the DA1458x development
board accordingly, depending on the required hardware configuration.

Each example contains a subsection which describes the GPIO assignment of the DA1458x
development board.

7.4 Configuring the UART Interface on a DA1458x DK
The DA1458x UART?2 interface will be used for the UART interaction terminal.

7.5 DA1458x DK-Basic

On a DA1458x DK-Basic the user has to connect PIN11 to PIN12 and PIN13 to PIN14 on the J4
connector to enable interfacing the UART2 TX/RX to the Segger chip. No UART2 CTS/RTS
functionality is required.

7.6 DA1458x DK-Pro

On a DA1458x DK-Pro the user has to connect PIN11 to PIN12 and PIN13 to PIN14 on the J5
connector to enable interfacing the UART2 TX/RX to the FT2232HL chip. No UART2 CTS/RTS
functionality is required.

7.7 Using a Serial Port Terminal with a DA1458x DK

A serial port terminal application (e.g. Tera Term) should be used for user interaction with each
peripheral example project. All examples use the following COM port settings:

Baud rate: 115200
Data: 8-bit
Parity: none
Stop: 1 bit
Flow control: none

The procedure of discovering the COM port number of a DA1458x DK is described in subsequent
paragraphs.

7.8 Connecting to a DA1458x DK-Basic

When the DA1458x DK-Basic [1] is connected via USB to a Windows machine (e.g. laptop), a J-Link
device should be discovered in the Windows Devices and Printers. The JLink CDC UART Port which
is displayed in the J-Link’s properties window (Figure 7) must be used in the serial port terminal
application.

User Manual Revision 1.2 24-Dec-2021

CFR0012 22 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

- || X
LS, .« Hardware and Sound b Oevices aad Printers » - Ssarch Devices and . 2
File Edit View Toolf U J-linkProperies 2
Add a device Addi [Ganeral| Hardware | 2]
Devices (4) J JLink
Printers and Faxes {
Device Funchons
| 4 Unspedfied (1) Name - Type
' iLnk CDC UART Port (COM106) Ports {COM & LPT)
— § JLink dnver Universal Senal Bus conrollers
e ‘ USE Composite Device Universal Senal Bus conrollars
J-Link
Device Funcbon Summary

Manufsciutéer SEGGER
Location Locaton 0
Device status. Thes devica 13 working propery

| Ppetes |

=3 J-Link Madsl J-Link
! Category. Unknown

Figure 7: DA1458x DK - Basic Virtual COM Port

7.9 Connecting to a DA1458x DK-Pro

When the DA1458x DK [2] is connected via USB with a Windows machine (e.g. laptop) a Dual
RS232-HS device should be discovered in the Windows Devices and Printers. In the Dual RS232-
HS’s properties window two USB Serial Ports are displayed. The user must select the serial port with
the smaller number (Figure 8) to provide it to a terminal console application.

User Manual Revision 1.2 24-Dec-2021

CFR0012 23 of 110 © 2021 Renesas Electronics

UM-B-050

N

fie Edit View Tod

Add a device Aad

Devices (4)

Printers and Faxes)

4 Unspedified (1)

-

o f

Dual RS232-H5

- Dual R
i,

RLENESAS

DA1458x Software Developer’s Guide

w4 * Hadtware and Sound » Devices and Printers »

. Dusl RS232-HS Properties

-

' ' Ganaral Hardware

g | Dual RS232-HS

S232-HS

Model Dual RS232-HS
Category: US8 hub

—~
|
‘ Dewce Funcsons:
Name Type
§ JLink dnver Universal Sen
§ USB20MTT Hub Universal Sen
‘ USS Compasite Davica Univarsal Sen \
' USE Senal Converter A Universal Sen |
US8 Serial Converter B Universal Sen
'? USE Senal Port (COMED) Ports (COM& L
¥ US8 Senal Port (COME1) Ports (COM & L
Dewvice Funcson Summary
Manufacturar FTDI
Location Loceson 0
Devica stadus This device 15 working propary
Propentes
o o] oo

Figure 8: DA1458x DK-Pro Virtual COM Port

7.10 UART (Simple) Example

The simple UART example demonstrates how to configure, initiate, and send some characters

synchronously to the UART interface.

The project is located in the projects\target apps\peripheral examples\uart SDK directory.

The UART example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\uart\Keil 5\uart.uvprojx

7.11 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 2: UART Example Jumper Configuration

GPIO Function DA1458x DK-Basic DA1458x DK-Pro

PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12

PO 5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14

User Manual Revision 1.2 24-Dec-2021
CFR0012 24 of 110 © 2021 Renesas Electronics

-1 J seorn Dovices .. 5|

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

7.12 Running the Example

Once the user has built and loaded the example project to the DK, the console will display the
message shown in Figure 9. The uart_test function uses printf_byte and printf_string functions to
print the message on the console.

F -

4 COM18:115200baud - Tera Term VT = |) S
File Edit Setup Contrel Window Help

UART TEST

Hello world! == UART printf_string()

UART print_hword() = OxXAABB
UART primt_word() = 0x11223344
End of test

Figure 9: UART Simple Example

The user can select the UART settings in the header file:
projects\target apps\peripheral examples\uart\include\user periph setup.h

The predefined settings are the following:

// Select UART settings

#define UART2 BAUDRATE UART BAUDRATE 115K2 // Baudrate in bits/s:
{ 9K6, 14K4, 19K2, 28KS8,
38K4, 57K6, 115K2}

#define UART2 DATALENGTH UART CHARFORMAT 8 // Datalength in bits:
{5, 6, 7, 8}
#define UART2 PARITY UART PARITY NONE // Parity: {UART PARITY NONE,

UART PARITY EVEN,
UART PARITY ODD}
#define UART2 STOPBITS UART STOPBITS 1 // Stop bits: {UART STOPBITS 1,
UART STOPBITS 2}
#define UART2 FLOWCONTROL UART FLOWCONTROL DISABLED // Flow control:
{UART FLOWCONTROL DISABLED,
UART FLOWCONTROL ENABLED}

The source code for this example can be found in function uart_test in:

projects\target apps\peripheral examples\uart\src\main.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 25 0f 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

7.13 UART2 Asynchronous Example

The UART2 asynchronous example demonstrates how to perform IRQ based 10 operations using
the UART2 driver (sdk\platform\driver\uart\uart2.c).

The project is located in the projects\target apps\peripheral examples\uart2 async SDK
directory.

The UART2 asynchronous example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\uart2 async\Keil 5\uart2 async.uvprojx

7.14 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 3: UART2 Example Jumper Configuration

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14

7.15 Running the Example

Once the user has built and loaded the example project to the DK, it executes an asynchronous write
test (in function uart2_write_test) and the following lines displayed in the terminal window.

COM103:115200baud - Tera Term VT b | B)

File Edit Setup Control Window KanjiCode Help

o e i i i e e e e e i i e e e e i

UARTZ driver example.
e e i e e i e e e e e e e

Figure 10: UART2 Example Console Output: Write Test
Next an asynchronous read test is executed (in function uart2_read_test) and the user is prompted to

enter 5 characters. Assuming that the user types the five characters a, b, ¢, d, and e, then upon
pressing e the typed characters are printed in the terminal window as shown in Figure 11.

User Manual Revision 1.2 24-Dec-2021

CFR0012 26 of 110 © 2021 Renesas Electronics

COM103:115200baud - Tera Term VT

UART2

File Edit Setup Control

uart? ert':‘ test:

&

& N

45
45
456
45
45

=)

E

driver example.
ol e i i e e e e e e e e

&

thwoLnoLnoen
&

8]

Window KanjiCode Help

uartZ read

Type 5 characters.

You typed the following character
Elslals [

uartZ loopback test:

Figure 11: UART2 Example Console Output: Read Test

The last test executed is the loopback test (in function uart2_loopback_test) ,where every received
character is echoed back to the sender. For example if the user types “Hello world!” then the
following will be output (see Figure 12):

b | o

COM103:115200baud - Tera Term VT

File Edit Setup Control Window KanjiCode Help

o e i i i e e e e e i i e e e e i

UARTZ driver example.
ol e i i e e e e e e e e

uart? ert':‘ test:
0123456789 0123
0123456789
23456789
Ill 234567

il

01234567

(8 &
0

[w)

=)

&
-]
s JNe RTs]

& N
w

(S W
=)

e e B |
o'}
s}

[T T Y T Y

w
8]
-]

thwoLnoLnoen
8]
o

[s) 0=

"
[T T Y T Y

o
WD 0w W
L

=)

0123456789

uartZ read test:

Type 5 characters.

You typed the following characters:
abcde

uartZ loopback test:
Hello world!

Figure 12: UART2 Example Console Output: Loopback Test

CFR0012 27 of 110

© 2021 Renesas Electronics

UM-B-050

LENESAS

DA1458x Software Developer’s Guide

7.16 SPI Flash Memory Example

The SPI Flash memory example demonstrates how to initiate, read, write and erase an SPI Flash
memory using the SPI Flash driver.

The project is located in the projects\target apps\peripheral examples\spi\spi flash SDK

directory.

The SPI Flash memory example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\spi\spi flash\Keil 5\spi flash.uvprojx

7.17 Hardware Configuration

The common UART terminal configuration described in section 7.4 is used but UART2 RX is left
unconnected since this example does not require input from the terminal.

Table 4: SPI Flash Memory Example Jumper Configuration without UART2 RX

GPIO Function

DA1458x DK-Basic

DA1458x DK-Pro

PO_0O SPI CLK

Connect J4.21 - J4.22

Connect J5.21 — J5.22

PO_3 SPICS

Connect J4.19 - J4.20

Connect J5.19 — J5.20

PO_4 UART2 TX

Connect J4.11 - J4.12

Connect J5.11 - J5.12

PO_5 UART2 RX, SPI DI

Connect J6.1 - J4.13
(J4.14 is not connected)

Connect J6.1 - J5.13
(J5.14 is not connected)

PO_6 SPI DO

Connect J6.2 — J4.15

Connect J6.2 — J5.15

If reading from UART?2 is necessary because of modifications made by the user then, since the
UART2 RX default pin conflicts with the SPI MISO pin (P0_5), a separate pin will have to be used for
UART2 RX. Assuming that PO_7 is used for UART2 RX then the header file user periph setup.h

must be edited accordingly and following configuration can be used.

Table 5: SPI Flash Memory Example Jumper Configuration with UART2 RX

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_0O SPI CLK Connect J4.21 - J4.22 Connect J5.21 — J5.22
PO_3 SPICS Connect J4.19 - J4.20 Connect J5.19 — J5.20
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO 5 SPI DI Connect J6.1 - J4.13 Connect J6.1 - J5.13
PO _6 SPI DO Connect J6.2 — J4.15 Connect J6.2 — J5.15
PO_7 UART2 RX Connect J4.17 - J4.14 Connect J5.17 - J5.14
(with a jumper wire) (with a jumper wire)
User Manual Revision 1.2 24-Dec-2021
CFR0012 28 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

7.18 Running the Example

Once the user has built and loaded the example project to the DK, a series of read and write
operations will be performed on the SPI Flash memory (as shown in Figure 13).

The user also has to enter the characteristics of the SPI Flash in the header file:
projects\target apps\peripheral examples\spil\spi flash\include\user periph setup.h
The predefined characteristics are the following:

#define SPI FLASH SIZE 131072 // SPI Flash memory size in bytes
#define SPI FLASH PAGE 256 // SPI Flash memory page size in bytes

The user can also select the SPI module’s parameters, such as word mode, polarity, phase and
frequency:

#define SPI WORD MODE SPI 8BIT MODE // Select SPI bit mode
#define SPI_SMN MODE SPI MASTER MODE // {SPI_MASTER MODE, SPI SLAVE MODE}
#define SPI_POL MODE SPI CLK INIT HIGH // {SPI_CLK INIT LOW, SPI CLK INIT HIGH}
#define SPI_PHA MODE SPI PHASE 1 // {SPI_PHA MODE 0, SPI PHA MODE 1}
#define SPI MINT EN SPI NO MINT // {SPI MINT DISABLE, SPI MINT ENABLE}
#define SPI CLK DIV SPI XTAL DIV 2 // Select SPI clock divider between

// 8, 4, 2 and 14

The spi_test function performs the following tests:

1. The GPIO pins used for the SPI Flash and the SPI module are initialized.

2. The SPI Flash device memory is erased. To erase a device on which protection has been
activated, the full test has to be run once (see step 11a).

The contents of the SPI Flash are read and printed to the console.

The JEDEC ID is read and the device is detected, if a corresponding entry is found in the
supported devices list (UM-B-004, DA14580 Peripheral drivers, Dialog Semiconductor).

The Manufacturer/Device ID and the Unique ID are read, if the device is known to support it.
256 bytes of data is written to the SPI Flash using the Program Page instruction.

The contents of the SPI Flash are read and printed out on the console.

A sector of the SPI Flash is erased.

512 bytes of data is written to the SPI Flash using the spi_write_data function, which is used for
writing data longer than the SPI Flash page.

10. The 512 bytes of data are read back and printed to the console.

11. If supported by the SPI Flash memory device, a suitable test for the device’s memory protection
capabilities is performed:

a. The whole memory area is configured as unprotected and a full memory array erase is
performed.

b. The memory is tested in various configurations to demonstrate the effect the memory
protection of the various blocks of memory has on data storage and how previously stored
data is affected by overwrite.

c. Finally, one again the whole memory area is configured as unprotected and a full memory
array erase is performed.

A w

© ® N U

User Manual Revision 1.2 24-Dec-2021

CFR0012 29 of 110 © 2021 Renesas Electronics

UM-B-050
DA1458x Software Developer’s Guide

‘L COM18:115200baud - Tera Term VT

Eile Edit Setup Control Window Help

Flash

PI flash device.
Manufacturer, i ID iz EF10
SPI flash Unique ID Number 1 5348840F5C1F2E

Performing Program Page...Page programmed. (00)

Reading SPI
1C 1D 1E 1F
Y c

C4 C5 €6 C
3 EC ED EE

. Sector

written. (00)

Reading SPI Flas i 1 / 00
C 1D lE_ 1F 20 ? 1

oing a full eras
X1 0000

been cleared)
ected memory

Yy array.
) to the fully protected mes
Reading
must be [Ox00000] = O
Enabling mem
iting
Reading
[nly the upper half 1
ion O T the memor
) and
Reading
must be [
hole memory
End of test

Figure 13: SPI Flash Memory Example
In case you use a supported external SPI Flash device other than W25X10, the results of the SPI
memory protection features test will differ.

The user can change the test procedure by editing the function spi_test. The SPI Flash driver APl is
described in detail in Ref. [6].

The source code for this example can be found in function spi_test inside:

projects\target apps\peripheral examples\\spi\spi flash\src\main.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 30 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

7.19 12C EEPROM Example

The 12C EEPROM example demonstrates how to initiate, read, write and erase an 12C EEPROM
memory.

The project is located in the projects\target apps\peripheral examples\i2c\i2c eeprom SDK
directory.

The 12C EEPROM example is developed under the Keil v5 tool. The Keil project file is the:

projects/target apps/peripheral examples/i2c/i2c eeprom/Keil 5/i2c eeprom.uvprojx

7.20 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 6: 2C EEPROM Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_2 12C SCL

PO_3 12C SDA

PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14

An external I2C EEPROM must be connected to the DA1458x DK using the pins shown in Table 6:
PO_2 for SCL and P0_3 for SDA. If a different selection of GPIO pins is needed, the user should edit
the 12C_GPIO_PORT, 12C_SCL_PIN and 12C_SDA_PIN defines in user periph setup.h.

7.21 Running the Example

Once the user has built and loaded the example project to the DK, a series of read and writes
operations will be performed on the I2C EEPROM, as shown in Figure 14.

The predefined 12C EEPROM characteristics are the following:

#define I2C EEPROM SIZE 0x20000 // EEPROM size in bytes
#define I2C EEPROM PAGE 256 // EEPROM's page size in bytes

The user can also select the 12C module’s parameters, such as slave address, speed mode, address
mode and addressing scheme (1-byte/2-byte):

#define I2C SLAVE ADDRESS 0x50 // Set slave device address
#define I2C SPEED MODE I2C FAST // Speed mode: I2C STANDARD (100 kbits/s),
I2C FAST: (400 kbits/s)

#define I2C ADDRESS MODE I2C 7BIT ADDR // Addressing mode: {I2C 7BIT ADDR,
I2C 10BIT ADDR}

#define I2C ADDRESS SIZE I2C 2BYTES ADD // Address width: {I2C 1BYTE ADLR,
I2C 2BYTES ADDR,

I2C 2BYTES ADDR}

The i2c_test function performs the following tests:

Initializes the GPIO pins used for the 12C EEPROM and the 12C module.

Writes 256 bytes of data to the 1I2C EEPROM.

Reads the contents of the I2C EEPROM.

Writes and reads bytes 0x5A, 0x6A, 0x7A and OxFF at addresses 22, 0, 255 and 30 respectively.
Reads the contents of the 12C EEPROM.

Releases the configured GPIO pins and the 12C module.

This is shown in detail in Figure 14.

User Manual Revision 1.2 24-Dec-2021

CFR0012 31 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

' COM18:115200baud - Tera Term VT = | E |t

Eile Edit Setup Control Window Help

Writing page to EEPROM (values 0x00-FF)...Page written.

rReading EEPROM. ..

00 01 02 03 04 05 06 O7 OB 09 0A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 18 1C 1D 1
E 1F 20 21 22 23 24 25 26 27 28 29 2A 26 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3
3D 3E 3F 40 41 42 43 44 45 46 47 48 A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58
56 5C 5D 5E 5F 60 61 62 63 64 65 6A 6B 6C 6D OE 6F 70 71 72 73 74 7
9 7A 7B 7C 7D 7E 7F 80 81 82 B3 B4 8 88 89 8A 8B BC 8D 8E BF 90 91 92 93 9
98 99 9a 98 9C 9D 9E 9F a0 Al a2 A3 Ad A5 Ab A7 AB A9 Aa AB AC AD AE AF BO Bl B2
} B9 BA BE BC BD BE BF €0 C1 €2 C3 C4 C5 C6 C7Y CE CO CACB CC CD CE CF DO D1 D2 D3 D
6 D7 DB D9 DA DB DC DD DE DF EQ E1 E2 E3 E4 E5 E6 E7 EB E9 EA EB EC ED EE EF FO F1 F2
F3 F4 F3 F& F7 F8 F9 FA FB FC FD FE FF

Bytes Read: O0x0100

wWriting byte (0x5A) @ add 5 22 (zero based)
Byte Read @ address 22: Ox

writing byte (0x @ 0 (zero based)...done.
Byte Read @ E >

wWriting byte (0 (zero based)...done.
Byte Read @ address 255:

writing byte (0xFF) @ addr 30 (zero based)...done.
Byte Read @ address 30: Ox

6aA 01 02 03 04 05 06 O7 OB 09 Oa OB OC OD OE OF 10 11 12 13 14 15 5a 17 18 19 1A 1B 1C
F 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3a

3D 3E 3F 40 41 42 43 44 45 46 47 48 A 4B 4C 4D 4E 4F 50 51 532 53 54 55 56 57 58
58 5C 5D 5E 5F ©0 61 62 63 64 65 66 67 69 6A 6B ©C 6D ©E OF 70 71 72 73 74 75 76 7i
9 7A 7B 7C 7D YE 7F 80 B1 82 B3 8B4 85 B6 B7Y B8 B9 Ba 8B BC BD BE BF 90 91 92 93 94 95 96

8 99 0A 9B 9C 9D 9E 9F AD Al A2 A3 A4 A5 AG A7 AB A9 AA AB AC AD AE AF BO Bl B2 B3 B4 BS
B0 BY B8 B9 BA BEBE BC ED BE BF CO C1 C2 C3 C4 C5 C6 C7 CB C9 CACB CC CD CE CF DO D1 D2 D3 D
4 D5 D6 D7 DE DY DA DE DC DD DE DF EQ E1 E2 E3 E4 E5 E6 E7 EE EQ EA EBE EC ED EE EF FO F1 F2
F3 F4 F5 F6 F7 FB F9 FA FB FC FD FE 7A
End of test

Figure 14: 12C EEPROM Example

The user can change the test procedure by editing the function i2c_test. The 12C EEPROM driver
API is described in detail in Ref. [6].

The source code for this example is located in function i2c_test inside:

projects\target apps\peripheral examples\i2c\i2c eeprom\src\main.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 32 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

7.22 Quadrature Decoder Example

The Quadrature decoder example demonstrates how to configure and read from the quadrature
decoder peripheral. The Wakeup Timer setup for responding to GPIO activity is also demonstrated in
this example.

The project is located in the projects\target apps\peripheral examples\quadrature decoder
SDK directory.

The Quadrature decoder example is developed under the Keil v5 tool. The Keil project file is the:

..\quadrature decoder\Keil 5\quadrature decoder.uvprojx

7.23 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 7: Quadrature Decoder Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro

PO 0 CHX_A

PO 1 CHX_A

PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 -J4.14 Connect J5.13 - J5.14
PO_6 K1 BUTTON Not available SW2

P11 K2 BUTTON Not available SW3

The quadrature encoder CHX_A and CHX_B pins have to be connected to PO_0 and PO_1
respectively. The common terminal of the quadrature decoder must be connected to ground. To
enable the K1 and K2 buttons functionality on a DK-Basic, the user has to connect external HW to
PO_6 and P1_1.

7.24 Running the Example

Once the user has built and loaded the example project to the DK, the console will display the screen
shown in Figure 15.

P 5

. COM18:115200baud - Tera Term VT = | E] |t

File Edit Setup Control Window Help
Quadrature Decoder / WKUP controller
K1 button to start/stop Quadec polling
K2 button to terminate Quadec test

Quadrature Decoder Test started!.
Press K2 button to terminate test.

Figure 15: Quadrature Decoder Example

User Manual Revision 1.2 24-Dec-2021

CFR0012 33 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

If the rotary decoder is activated (e.g. the mouse wheel is scrolled and the rotary decoder is attached
to a mouse) the quadrature decoder-wakeup timer interrupt will be triggered, and after each trigger
the terminal screen will report the axes relative coordinates. In this configuration, only the X channel
terminals are configured and connected (see Figure 16).

-

i COM18:115200baud - Tera Term VT = | B S

File Edit Setup Control Window Help

Quadec ISR report: P
Dx: 0012 Dy: 0000 DZ: 0000

Quadec ISR report:
Dx: 0014 Dy: 0000 DZ: Q000

Quadec ISR report:
DX: 0014 DY: Q000 DZ: 0000

Quadec ISR report:
Dx: 0016 Dy: 0000 DZ: 0000

Quadec ISR report:
DX: 0016 DY: Q000 DZ: 0000

Quadec ISR report:
Dx: 0018 Dy: 0000 DZ: 0000

Quadec ISR report:
Dx: 0018 DY: 0000 DZ: D[i[![ll =

Figure 16: Quadrature Decoder ISR-Only Reports

If at any time the K1 button is pressed (the user should make sure that correct jumper configuration
for buttons K1 and K2 is selected, as described in Ref. [2]), polling of the relative coordinates will be
enabled. Then the terminal window will start polling the quadrature decoder driver (see Figure 17). If
the quadrature decoder is activated, a mixture of ISR and polling generated reports are displayed
(see Figure 18).

' COM18:115200baud - Tera Term VT = | B S

File Edit Setup Control Window Help

Quadec Polling DX: 0018 P
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018
Quadec Polling DX: 0018

Figure 17: Quadrature Decoder Polling-Only Reports

User Manual Revision 1.2 24-Dec-2021

CFR0012 34 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

F =

' COM18:115200baud - Tera Term VT = | B |l

File Edit 5Setup Control Window Help

Quadec Polling DX: 0004 P
Quadec Polling DX: :

Quadec Polling DX:

Quadec Polling DX:

Quadec Polling DX:

Quadec Polling DX:

Quadec Polling DX:

Quadec ISR report:
DX: 0006 DY: Q000 DZ: 0000

Quadec Polling DX: 0005

Quadec ISR report:

Dx: 0005 Dy: 0000 DZ: 0000

Quadec Polling DX: 0005

Quadec Polling DX:

Quadec Polling DX:

Quadec Polling DX: 0005

Quadec Polling DX: 0005

Quadec Polling DX: 0005 -

Figure 18: Quadrature Decoder Polling and ISR Reports
The polling can be stopped by pressing K1 button again. To terminate the test, one can press K2 at
any time. The message “Quadrature Decoder Test terminated!” will be printed.

If the count of events needs to be changed before an interrupt is triggered, the parameter
QDEC_EVENTS COUNT TO INTin user periph setup.hcan be modified accordingly. In the same file,
one can change the clock divisor of the quadrature decoder by altering the parameter

QDEC CLOCK DIVIDER.

The source code for this example is located in function quad_decoder_test inside:

projects\target apps\peripheral examples\quadrature decoder\src\main.c.

7.25 Systick Example

The Systick example demonstrates how to use the systick timer to generate an interrupt periodically.
LED is changing its state upon each interrupt.

The project is located in the projects\target apps\peripheral examples\systick SDK directory.
The Systick example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\systick\Keil 5\systick.uvprojx

7.26 Hardware Configuration

This example does not use the UART terminal.

Table 8. Systick Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro

P10 LED Connect J9.1 — J9.2 Connect J9.1 — J9.2

7.27 Running the Example

Once the user has built and loaded the example project to the DK, the LED will startto blinkina ls
rhythm. The source code for this example is located in function systick_test inside:

projects\target apps\peripheral examples\systick\src\main.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 35 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

7.28 TIMERO (PWMO, PWM1) Example

The TIMERO (PWMO, PWM1) example demonstrates how to configure TIMERO to produce PWM
signals. A melody is produced on an externally connected buzzer.

The project is located in the projects\target apps\peripheral examples\timerO\timer(Q pwm
SDK directory.

The TIMERO (PWMO, PWM1) example is developed under the Keil v5 tool. The Keil project file is
the:

projects\target apps\peripheral examples\timerO\timer(0 pwm\Keil 5\timer0 pwm.uvprojx

7.29 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 9: TimerO Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_2 PWMO

PO_3 PWM1

PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14

In order to have an audio indication of the produced PWM signals, the user can connect a
buzzer in PO_2 and ground (PWMO) or in PO_3 and ground (PWM1).

7.30 Running the Example

Once the user has built and loaded the example project to the DK, the PWMO and PWML1 signals will
become active and start producing an audible melody if a buzzer is connected to PO_2 or PO_3.
While the melody is playing, stars are being drawn in the terminal window on each beat (interrupt
handling - Figure 19).

' COM22:115200baud - Tera Term VT = | B S

File Edit 5Setup Control Window Help

: TIMERO PWM TEST .

TIMERO starts!

You can hear the sound produced by PWMO or PwM1

if you attach a buzzer on p1nr PO_2 or P0O_3 respectively.
lease wait.

Figure 19: TIMERO (PWMO, PWM1) Test Running

Upon completion, the following message will appear:

User Manual Revision 1.2 24-Dec-2021

CFR0012 36 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide
“Timer(O stopped
End of test”

The source code for this example is located in function timerQ_test inside:

projects\target apps\peripheral examples\timerO\timer(0 pwm\src\main.c.

7.31 TIMERO General Example

The TIMERO general example demonstrates how to configure TIMERO to count a specified amount
of time and generate an interrupt. A LED is changing state upon each timer interrupt.

The project is located in the projects\target apps\peripheral examples\timerO\timerO general
SDK directory.

The TIMERO general example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\timerO\timer(O genera\Keil 5\timerO general.uv
projx

7.32 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 10: TimerO General Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14
P10 LED Connect J9.1 — J9.2 Connect J9.1 — J9.2

7.33 Running the Example

Once the user has built and loaded the example project to the DK, the LED will be changing its state
every second until the end of the test. The duration of the test (expressed in seconds) can be set by
user and it will also be printed in the console. See Figure 20.

L ~

. COM22:115200baud - Tera Term VT = | B
File Edit 5etup Control Window Help

TIMERO GENERAL TEST .

LED will change state every second.
Test will run for: 0A seconds.

TIMERO started!
TIMERQ stopped!

End of test

Figure 20: TIMERO General Test Completed

User Manual Revision 1.2 24-Dec-2021

CFR0012 37 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

The source code for this example is located in function timerO_general_test in the file:

projects\target apps\peripheral examples\timerO\timer(O general\src\main.c.

7.34 TIMER2 (PWM2, PWM3, PWM4) Example

The TIMER2 (PWM2, PWM3, PWM4) example demonstrates how to configure TIMER2 to produce
PWM signals. LEDs are changing light brightness in this example.

The project is located in the projects\target apps\peripheral examples\timer2\timer2 pwm
SDK directory.

The TIMER2 (PWM2, PWM3, PWM4) example is developed under the Keil v5 tool. The Keil project
file is the:

projects\target apps\peripheral examples\timer2\timer2 pwm\Keil 5\timer2 pwm.uvprojx

7.35 Hardware Configuration

The common UART terminal configuration described in 7.4 is required.

Table 11: TIMER2 Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO_5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14
P1 2 PWM2

PO_7 PWM3

P10 PWM4

To use the LED segments inside D1 and D2 as a visual indication for signals PWM2, PWM3 and
PWM4, the user has to connect PIN3 to PIN4 on connector J16 (PWM3), PIN1 to PIN2 on connector
J16 (PWM4) and PIN3 to PIN4 on connector J15 (PWMZ2). The brightness of the LED segments is
then directly influenced by the duty cycle of the PWM signals.

7.36 Running the Example

Once the user has built the Timer2 (PWM2, PWM3, PWM4) example and loaded to DK, the PWM2,
PWM3 and PWM4 signals will become active. If the jumper configuration described in section 7.35
has been selected, there will be a visible indication of the PWM3 and PWM4 signals on segments of
the D2 and D1 LED segments, as their brightness will be directly influenced by the PWM signals’
duty cycle. The brightness will be changing automatically because each PWM duty cycle will be
changed in a loop function. The screen shown in Figure 21 will appear.

User Manual Revision 1.2 24-Dec-2021

CFR0012 38 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

" COM18:115200baud - Tera Term VT = | B |t

File Edit 5Setup Control Window Help

TIMERZ? started!

Figure 21: TIMER2 (PWM2, PWM3, PWM4) Test Running

After the test has been completed, the screen shown in Figure 22 will then appear.

. COM18:115200baud - Tera Term VT = |] |l

Eile Edit Setup Centrol Window Help

TIMER2 started!
TIMER2 stopped!

End of test

Figure 22: TIMER2 (PWM2, PWM3, PWM4) Test Completed

The source code for this example is located in function timer2 test inside:

projects\target apps\peripheral examples\timer2\timer2 pwm\src\main.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 39 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

7.37 Battery Example
The Battery example demonstrates how to read the battery level using the ADC.

The project is located in the projects\target apps\peripheral examples\adc\batt 1lvl SDK
directory. The Battery example is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\peripheral examples\adc\batt 1vl\Keil 5\batt lvl.uvprojx

7.38 Hardware Configuration

The common UART terminal configuration described in section 7.4 is required.

Table 12: Battery Example Jumper Settings

GPIO Function DA1458x DK-Basic DA1458x DK-Pro
PO_4 UART2 TX Connect J4.11 - J4.12 Connect J5.11 - J5.12
PO 5 UART2 RX Connect J4.13 - J4.14 Connect J5.13 - J5.14

Refer to [1] and [2] for details on how to set up a DA1458x DK for CR2032 battery operation.

7.39 Running the Example

Once the user has built and loaded the example project to the DK, the ADC is configured to provide a
measurement of the battery level. The percentage left indication calculated for the coin-cell battery
CR2032 is displayed on the terminal screen (see Figure 23).

. COM22:115200baud - Tera Term VT = | B [l
File Edit Setup Control Window Help

Battery type: CR2032)
Current battery Tevel (max.O0xFF%): 0x38% Tleft
End of test

Figure 23: Battery Example

This example can be verified using an external voltage source (well-stabilized in the range 2.5V to
3 V) instead of a 3 V battery. The DK must have been configured for 3 V operation.

/. CAUTION

The voltage of the external voltage source must never exceed 3 V.

For details about the configuration of the ADC, one should consult [3].

The source code for this example is located in function batt_test in:

User Manual Revision 1.2 24-Dec-2021

CFR0012 40 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

projects\target apps\peripheral examples\adc\batt lvl\src\main.c.

8 Developing Bluetooth® Low Energy Applications

8.1 The Seven Pillar Example Applications

The DA1458x SDK 5.x includes seven pillar BLE example application projects, to assist and guide on
the development of Bluetooth® Low Energy applications. Every pillar project inherits the functionality
of a previous pillar project and adds also extra features. The base pillar project is the Pillar 1 (bare
bone), as it is depicted in Figure 24. The goal of the pillar example projects is to provide, in a step-by-
step approach, an introduction and explanation of the BLE features and functionality as supported by
the DA14580/581/583 software platform and devices.

Project 7 (all in one)

Project 4 (Security)
Project 5 (Sleep)
Project 6 (OTA)

—
©
| -
[}

-
(@N

e
[0}

al

S

(p]

—
(&)

o
O
| -

al

Project 2 (a custom profile)

Project 1 (bare bone)

Figure 24: Pillar Example Projects

User Manual Revision 1.2 24-Dec-2021

CFR0012 41 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.2 Pillar 1 (Bare Bone)
8.3 Application Description

The Pillar 1 (bare bone) BLE example application demonstrates basic BLE procedures such as
advertising, connection, connection parameters update and implementation of the Device Information
Service Server (DISS). The application uses the “Integrated processor” configuration.

8.4 Basic Operation

Supported services:

e Device Information service (UUID 0x180A).
Features:

e Supports Extended Sleep mode
e Basic Configuration Settings:
o Advertising interval
o Connection interval.
o Slave latency
O Supervision timeout
e Advertising data:
Device name.
Device information service support.
Manufacturer specific data (for advertising data update feature):
- Company identifier
- Proprietary data: 16-bit counter
e Advertising data is updated every 10 s as follows:

O O O O O

o Cancel on-going advertising operation

o Change proprietary data (increment by 1 the 16-bit counter)
o Restart advertising update timer

o Start advertising

The Pillar 1 application behavior is included in C source file user barebone.c.

8.5 User Interface
A peer connected to Pillar 1 application is able to.

Check the advertising device name.

Check that the advertising data 16-bit counter is incremented in every advertising event or when
the respective timer expires.

e Use the Device information service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 42 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.6 Loading the Project
The Pillar 1 application is developed under the Keil v5 tool. The Keil project file is the:
projects\target apps\ble examples\ble app barebone\Keil 5\ble app barebone.uvprojx.

Figure 25 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platformand user app. These folders contain the user
configuration files of the Pillar 1 application.

File Edit Wiew Project Flash Debug Peripherals

NEdad| & @ | |
SN AN _'| Lg?n| ble_app_barebone_ 530 |E|
Project i} [

=2 ble_app_barebone 580

-7 sdk_boot

--E sdk_arch

D sdk_patches

i:l sdk_patches 581

--G sdk_driver

E-{07 sdk_ble

ﬁ sdk_profiles

B3 sdk_app

--E sdk_driver_api

--D sdk_app_api

"1:| sdk_arch_api

E{ﬂ user_config
----- dal458x_config_advanced.h
----- dal458x_config_basic.h
----- user_callback_config.h

----- user_config.h
----- user_modules_config.h

..... user_periph_setup.h
----- user_profiles_config.h
----- user_config_sw_ver.h
E-25 user_platform
- [#] user_periph_setup.c
E-£5 user_app

- [#] user_barebone.c

Figure 25: Pillar 1 Keil Project Layout

User Manual Revision 1.2 24-Dec-2021

CFR0012 43 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.7 Going Through the Code
8.8 Initialization

The aforementioned Keil project folders (user config, user platformand user app) contain the
files that initialize and configure the Pillar 1 application.

® dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
® dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

® user callback config.h, callback functions that handle various events or operations.
® user config.h, holds advertising parameters, connection parameters, etc.

® user config sw ver.h, holds user specific information about software version.

® user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)
will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

O diss.h, includes the Device Information service.
® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.9 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Pillar 1 application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app connection,
.app_on disconnect = user app disconnect,
.app_on update params rejected = NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on_adv_nonconn_complete = NULL,

.app_on adv undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,

.app_on db init complete = default app on db init complete,
.app_on_scanning completed = NULL,

.app_on adv_report ind = NULL,

#if (BLE APP SEC)

.app_on pairing request = NULL,

.app_on tk exch nomitm = NULL,

User Manual Revision 1.2 24-Dec-2021

CFR0012 44 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

.app_on_irk exch = NULL,
.app_on csrk exch = NULL,
.app_on ltk exch = NULL,
.app_on pairing succeded = NULL,
.app_on_encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on _encrypt req_ ind = NULL,

#endif // (BLE APP SEC)
i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_connection(), user_app_disconnect() and user_app_adv_undirect_complete())
are defined in C source file user barebone.c.

e System specific events:
static const struct arch main loop callbacks user app main loop callbacks = {

.app_on init = user app init,
.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app_resume from sleep = NULL,

i
The above structure defines that a certain event will be processed by a default handler or by a

user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_init()) are defined in C source file user barebone.c.

e BLE operations:
static const struct default app operations user default app operations = {
.default operation adv = user app adv start,
i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_adv_start()) is defined in C source file user barebone.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 45 of 110 © 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

8.10 BLE Application Abstract Code Flow

Figure 26 shows the abstract code flow diagram of the Pillar 1 application. The diagram depicts the
SDK interaction with the callback functions registered in user _callback config.h and the functions
implemented in user barebone.c.

User

Application Configuration

User SDK

app_on_init()

user_app_init()

default_app_on_init()

app_on| set_dev_config_complete()

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

default [app_on_db_init_complete()

default_operation_adv()

user_app_adv_start()

app_easy_gap_undirected |advertise_start()

app_on |adv_undirect_complete() *8)
O
c S
user_app_adv_undirect [complete() 52
(&)
S
app_on_connection() ' 2 3
user_app_connection() g £
o 2
L=
default_app_on_|connection()
Figure 26: Pillar 1 Application - User Application Code Flow
User Manual Revision 1.2 24-Dec-2021
CFR0012 46 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.11 Building the Project for Different Targets and Development Kits

The Pillar 1 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 27.

File Edit VWiew Project Flash Debug Peripherals

NMEdd@| » @2 | | P

. ble app barebone 580
o i ble_app_barebone_531 E

=23 ble_app_barebone 580 ble_app_barebone_583
--1:| sdk_boot
1:| sdk_arch
r_“‘| sdk_patches
i:l sdk_patches_581
--1:| sdk_driver
27 sdk_ble
--1:| sdk_profiles

Figure 27: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 28.

SF Al S
O o
Eped i | Cobene | Hep | T Sowiee
Option Yaboe

Reter TN -]

As bt dai453 _panps uetup.h
e

B

Exgent

| Teteats \ Cosfiguration Wirard |

Figure 28: Development Kit Selection for Pillar 1 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 47 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.12 Interacting with BLE Application
8.13 LightBlue iOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 29 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-BRBN).

iPad = 4:21 pp. B 86 @)

< LightBlue Peripheral Clone

DIALOG-BRBN

UUID: 153E8185-D473-49BC-DOCB-FACAAA4F4688

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String

Dialog Semi

Model Number String
DA1458x

Firmware Revision String
v_5.0.1,146

Software Revision String
XN.Z
System ID

<123456ff feQabede>

PnP ID

<01d20080 050001 >

Log

Figure 29: LightBlue Application Connected to Pillar 1 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 48 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.14 Pillar 2 (Custom Profile)
8.15 Application Description

The Pillar 2 (custom profile) BLE example application demonstrates the same as the Pillar 1
application, plus the implementation of a custom service (128-bit UUID) defined by the user. The
application demonstrates only the custom database creation. It uses the “Integrated processor”
configuration.

8.16 Basic Operation
Supported services:

e Inherits the services from the Pillar 1 application, plus:
e Custom service defined by the user with 128-bit UUID.

Features:

e Inherits the features from Pillar 1 application, plus:
e Advertising data:
o Custom service support

The Pillar 2 behavior is included in C source file user profile.c.

Table 13 shows the Custom service characteristic values along with their properties.

Table 13: Pillar 2 Custom Service Characteristic Values and Properties

Name Properties Length (B) | Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE | 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC VAL 2 READ 2 Reads sample from an ADC channel

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push
button connected a GPIO

INDICATEABLE CHAR READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY 50 Demonstrate writes to long
characteristic value

The Pillar 2 application does not provide any behavior for the new added Custom service. It just
demonstrates the database creation of the Custom service.

8.17 User Interface
A peer connected to the Pillar 2 application is able to do the same as in the Pillar 1 application, plus:

® Inspect the Custom service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 49 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.18 Loading the project
The Pillar 2 application is developed under the Keil v5 tool. The Keil project file is the:
projects\target apps\ble examples\ble app profile\Keil 5\ble app profile.uvprojx.

Figure 30 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platform user custom profile and user app. These folders
contain the user configuration files of the Pillar 2 application.

File Edit View Project Flash Debug Perip

Project n E
= Project: ble_app_profile
=N ble_app_profile_580

--ﬁ sdk_boot

--ﬁ sdk_arch

--ﬁ sdk_patches

Q sdk_patches_581

--ﬁ sdk_driver

5 C0 sdk_ble

--ﬁ sdk_profiles

--ﬁ sdk_app

--ﬁ sdk_driver_api

--ﬁ sdk_app_api

ﬁ sdk_arch_api

-5 user_config

----- |j dal458x_config_advanced.h
----- _1 dal458x_config_basic.h
----- |j user_callback_config.h
----- |j user_config.h

----- |j user_modules_config.h

----- |j user_periph_setup.h
----- |j user_profiles_config.h

----- Ij user_config_sw_ver.h

EI-lF user_custom_profile

Ij user_custs_config.c
IJ user_custsl_def.c
E-F user_platform

IJ user_periph_setup.c
E- L5 user_app

IJ user_profile.c

Figure 30: Pillar 2 Keil Project Layout

The newly added folder, compared to Pillar 1, is the user custom profile.

User Manual Revision 1.2 24-Dec-2021

CFR0012 50 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.19 Going Through the Code
8.20 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 2 application.
dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

user callback config.h, callback functions that handle various events or operations.

user config.h, holds advertising parameters, connection parameters, etc.

user config sw ver.h, holds user specific information about software version.

user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.
® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)

will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

O diss.h, includes the Device Information service.
O custsl.h, includes the Custom 1 service.

® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs|] array, which contains the Custom profiles API
functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.21 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Pillar 2 application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection user app connection,
.app_on disconnect = user app disconnect,
.app_on update params rejected = NULL,

.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,
.app_on_adv_nonconn_complete = NULL,
.app_on adv undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,
.app on db init complete = default app on db init complete,
User Manual Revision 1.2 24-Dec-2021

CFR0012 51 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

.app_on_scanning completed = NULL,
.app_on adv_report ind = NULL,
#if (BLE APP SEC)

.app_on pairing request = NULL,
.app_on_tk exch nomitm = NULL,
.app_on_irk exch = NULL,
.app_on csrk exch = NULL,
.app_on 1tk exch = NULL,
.app_on pairing succeded = NULL,
.app_on_encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on _encrypt req ind = NULL,

#endif // (BLE APP SEC)
i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g user_app_connection(), user_app_disconnect() and user_app_adv_undirect_complete()) are
defined in C source file user profile.c.

e System specific events:
static const struct arch main loop callbacks user app main loop callbacks = {

.app_on init = user app init,
.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app_resume from sleep = NULL,

i
The above structure defines that a certain event will be processed by a default handler or by a

user defined handler or it will not be processed at all (NULL entries). The user defined handler
(e.g. user_app_init()) is defined in C source file user profile.c.

e BLE operations:
static const struct default app operations user default app operations = {
.default operation adv = user app adv start,
i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_adv_start()) is defined in C source file user profile.c.

e Custom profile message handling:

static const catch rest event func t app process catch rest cb =
(catch rest event func t)user catch rest hndl;

Callback function that contains the Custom profile messages handling in user application space.
For Pillar 2 application this function is totally unused, since Pillar 2 application does not include
any behavior related to the Custom service. Next Pillar examples will make use of it.

User Manual Revision 1.2 24-Dec-2021

CFR0012 52 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.22 BLE Application Abstract Code Flow

Figure 31 shows the abstract code flow diagram of the Pillar 2 application. The diagram depicts the
SDK interaction with the callback functions registered in user _callback config.h and the functions

implemented in user_profile.c.

User User

Application Configuration SDK

app_on_init()

user_app_init()

default_app_on_init()

app_on| set_dev_config_complete()

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

default [app_on_db_init_complete()

default_operation_adv()

user_app_adv_start()

app_easy_gap_undirected |advertise_start()

app_on |adv_undirect_complete()

user_app_adv_undirect [complete()

app_on_connection()

user_app_connection()

Request to connect
(from peer device)

default_app_on_|connection()

Figure 31: Pillar 2 Application - User Application Code Flow

8.23 Building the Project for Different Targets and Development Kits

The Pillar 2 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 32.

User Manual Revision 1.2 24-Dec-2021

CFR0012 53 of 110 © 2021 Renesas Electronics

- RLENESAS

DA1458x Software Developer’s Guide

File Edit “iew Project Flash Debug Peripherals

Ned@| » s@&|lo | |®
B ¥ E o ._I.| Laae | ble_app_profile 580 |=] ,

Project ble_app_profile_551

= ble_app_profile_580 ble_app_profile_583
[-23 sdk_boot
1:| sdk_arch
--1:| sdk_patches
E:I sdk_patches 581
--1:| ck_driver
-2 sdk_ble
1:| sdk_profiles

e R e R T v I

Figure 32: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 33.

TR B e m

s —

Eped i | Coleme | Hp | T Swowiee

Option Yikse

R . 1457 -]

[Ax i 2224530 _pmpn_ustup.h
e

Barivc

Exgent

mo—l—m wsard |

Figure 33: Development Kit Selection for Pillar 2 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 54 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.24 Interacting with BLE Application
8.25 LightBlue iOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 34 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-PRFL).

iPad & 5:57 p.p. B 869 @)

< LightBlue Peripheral Clone

DIALOG-PRFL

UUID: AFACFEBA-7473-2DC2-5C63-1468E64873E6

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String

Dialog Semi

Model Number String
DA1458x

Firmware Revision String

v_5.0.1.141

Software Revision String

XNZ
System ID

<123456ff feSabcde>

PnP ID

<01d20080 05C001>

UUID: EDFEC62E-9910-0BAC-5241-D8BDA6932A2F

Control Point
Properties: Write
UUID: 2DB6686A-53DC-25B3-0C4A-FOET10C8DEE20

LED State
Properties: Write Without Response

UUID: 5AB7B4EF-3BFA-76A8-E642-920933C31434F
ADC Value 1

Froperties: Read Notify
UUID: 15005891-B131-3396-014C-6684C3867B917

ADC Value 2

Properties: Read

UUID: 6EBG75AB-8BD1-1B0A-7444-621E52ECE823
Button State

Log

Figure 34: LightBlue Application Connected to Pillar 2 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 55 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.26 Pillar 3 (Peripheral)
8.27 Application Description

The Pillar 3 (peripheral) BLE example application demonstrates the same as the Pillar 2 application.
The application also adds some basic interaction over the provided custom service (read/write/notify
values). It uses the “Integrated processor” configuration.

8.28 Basic Operation

Supported services:

e Inherits the services from Pillar 2 application.
Features:

e Inherits the features from Pillar 2 application, plus:

e CONTROL POINT, LED STATE and ADC VAL 1 characteristic values introduce some behavior
with a connected peer device.

The Pillar 3 application behavior is included in C source file user peripheral.c.

Table 14 shows the Custom service characteristic values along with their properties.

Table 14. Pillar 3 Custom Service Characteristic Values and Properties

Name Properties Length (B) Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC VAL 2 READ 2 Reads sample from an ADC channel

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push
button connected a GPIO

INDICATEABLE CHAR READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY 50 Demonstrate writes to long
characteristic value

The Pillar 3 application provides behavior only for the highlighted characteristic values of the Custom
service. The implementation code of the Custom service is included in C source file
user custsl impl.c.

8.29 User Interface
A peer connected to the Pillar 3 application is able to do the same as in the Pillar 2 application, plus:

e Use the Custom service.
Write to Control Point of the Custom Service:
o Byte 0x00 disables ADC VAL 1 auto notifications (disables respective timer).
o Byte 0x01 enables ADC VAL 1 auto notifications (enables respective timer).
e Write to LED STATE of the Custom Service:
o Byte 0x00 turns an LED off.
o Byte 0x01 turns an LED on.

e Read/notify ADC VAL 1 value. When the ADC VAL 1 auto notifications are turned on and the
notify operation is required by the peer, a 16-bit counter is incremented. This counter value
emulates the Analog value of the ADC VAL 1 (there is no hardware support for reading an
Analog value).

User Manual Revision 1.2 24-Dec-2021

CFR0012 56 of 110 © 2021 Renesas Electronics

V- RLENESAS

DA1458x Software Developer’s Guide

The selected LED (port and pin number of the DA14580/581/583) is defined by the user configuration
depending on the underlying hardware (Development Kit). The user files user periph setup.hand
user periph setup.c hold the peripheral configuration settings of the LED.

8.30 Loading the Project

The Pillar 3 application is developed under the Keil v5 tool. The Keil project file is the:
projects\target apps\ble examples\ble app peripheral\ble app peripheral.uvprojx.

Figure 35 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platform, user custom profile and user app. These folders
contain the user configuration files of the Pillar 3 application.

File Edit View Projet Flash Debug Peripher

NEd@| 4 aB]|9 o @«

@ %” ble_app_peripheral_580

Project 1 [H
= Project: ble_app_peripheral
El@ ble_app_peripheral_580

--E] sdk_boot

E] sdk_arch

--Ei sdk_patches

Q& sdk_patches 581

--ﬁ sdk_driver

@ 3 sdk_ble

--ﬁ sdk_profiles

--E] sdk_app

E] sdk_driver_api

E] sdk_app_api

--ﬁ sdk_arch_api

EE‘ user_config
----- |j dald58x_config_advance
-----] dal458x_config_basic.h
----- IJ user_callback_config.h
----- Ij user_config.h

----- |j user_modules_cenfig.h

----- |j user_periph_setup.h
----- |J user_profiles_config.h

----- IJ user_config_sw_ver.h
-5 user_custom_profile
IJ user_custs_config.c
Ij user_custsl_def.c
- user_platform
|j user_periph_setup.c
=5 user_app
H-L] user_custsl_impl.c

- | user_peripheral.c

Figure 35: Pillar 3 Keil Project Layout

User Manual Revision 1.2 24-Dec-2021

CFR0012 57 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

The newly added file, compared to Pillar 2, is the user custsl impl.c.

8.31 Going Through the Code
8.32 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 3 application.

® dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
® dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

® user callback config.h, callback functions that handle various events or operations.
e user config.h, holds advertising parameters, connection parameters, etc.

® user config sw ver.h, holds user specific information about software version.

[]

user modules_config.h, defines which application modules are included or excluded from the
user’'s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)

will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.h file are:

O diss.h, includes the Device Information service.
O custsl.h, includes the Custom 1 service.
® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.33 Events Processing and Callbacks

Several events can occur during the lifetime of the application. It depends on the application which of
these events are handled and how. The SDK is flexible enough to either call a default handler or call
the user’s defined event handler upon the occurrence of a particular event. The configuration file
user callback config.h contains the configuration array that defines if an event is processed or not
(callback function is present or not). For example, in the Pillar 3 application the user_app_callbacks[]
array has the following entries:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app_ connection,
.app_on_disconnect = user app disconnect,
.app_on update params rejected = NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on_adv_nonconn_complete = NULL,
.app_on adv _undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,
.app on db init complete = default app on db init complete,
.app_on_scanning completed = NULL,
.app_on adv_report ind = NULL,

#if (BLE APP SEC)

User Manual Revision 1.2 24-Dec-2021

CFR0012 58 of 110 © 2021 Renesas Electronics

UNLBL050 LENESAS

DA1458x Software Developer’s Guide

.app_on pairing request = NULL,
.app_on_tk exch nomitm = NULL,
.app_on _irk exch = NULL,
.app_on csrk exch = NULL,
.app_on ltk exch = NULL,
.app_on pairing succeded = NULL,
.app_on_encrypt ind = NULL,
.app_on mitm passcode reg = NULL,
.app_on _encrypt req ind = NULL,

#endif // (BLE APP SEC)
i

The above array defines that a certain event will be processed by a default handler or by a user
defined handler or it will not be processed at all (NULL entries). The user defined handlers (e.g.
user_app_connection(), user_app_disconnect() and user_app_adv_undirect_complete()) are defined
in C source file user_peripheral.c.

An important addition to Pillar 3 application is the user_catch_rest_hndl() handler that catches all the
Custom profile messages and handles them in the user application space. The implementation of this
handler is in C source file user custsl impl.c. These Custom profile messages are application
specific and their handling is transferred to user space. The SDK is agnostic of the specific Custom
profile messages and it is the user’s application responsibility to handle them.

The user callback config.h configuration header file contains the registration of the callback
function user_catch_rest_hndl(), as is described below.

static const catch rest event func t app process catch rest cb =
(catch rest event func t)user catch rest hndl;

User Manual Revision 1.2 24-Dec-2021

CFR0012 59 of 110 © 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

8.34 BLE Application Abstract Code Flow

Figure 36 shows the abstract code flow diagram of the Pillar 3 application. The diagram depicts the
SDK interaction with the callback functions registered in user _callback config.h and the functions
implemented in user peripheral.c.

User

Application Configuration

User SDK

app_on_init()

user_app_init()

default_app_on_init()

app_on| set_dev_config_complete()

default_app_on_set_dev_config_complete()

app_on_db_init_complete()

default [app_on_db_init_complete()

default_operation_adv()

user_app_adv_start()

app_easy_gap_undirected |advertise_start()

app_on |adv_undirect_complete() *8)
O
c S
user_app_adv_undirect [complete() 52
(&)
S
app_on_connection() ' 2 3
user_app_connection() g £
o 2
L=
default_app_on_|connection()
Figure 36: Pillar 3 Application - User Application Code Flow
User Manual Revision 1.2 24-Dec-2021
CFR0012 60 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.35 Building the Project for Different Targets and Development Kits

The Pillar 3 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 37.

File Edit View Project Flash Debug Peripherals

NSl @| + @2 | |

A2 BN b I_L| "°:§m| ble_app_peripheral_580 i:l 4
Project ble app peripheral 580 5

ble_app_peripheral_531
E__E ble_app_peripheral_580 ble_app_peripheral_533

r_“‘| sdk_boot

--1:| sdk_arch

--1:| sdk_patches
471 sdk_patches 581
--1:| sdk_driver

:]
"1:| sdl_ble 1
{7 sdk_profiles 1

Figure 37: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 38.

RS-

O ‘

Epad i | Cobeee ¥ | Hb | T Showiee

Option Wakse

[or smien e r—m—" -]

A bt daldSe penph tup.h

Barivc

Exgent

| Tettaty | Comfiguraticn Wirard |

Figure 38: Development Kit Selection for Pillar 3 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 61 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.36 Interacting with BLE Application
8.37 LightBlue iOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 39 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-PRPH).

iPad = 6:31 p.p. $ 869 @)

< LightBlue Peripheral Clone

DIALOG-PRPH

UUID: 3E9858C4-BC25-75FC-40F2-E32B93039404

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String
Dialog Semi

Model Numiber String
DA1458x

Firmware Revision String
v_5.0.1.146

Software Revision String

X\Z

System ID

<123456ff feSabede>

PnP ID

<01d20080 050001>

UUID: EDFEC62E-9910-0BAC-5241-D8BDAG932A2F

Control Point
Properties: Write
UUID: 2D86686BA-53DC-25B3-0C4A-FOE1OC8DEE20

LED State
Properties: Write Without Response
UUID: 5A87B4EF-3BFA-76A8-E642-92933C31434F

ADC Value 1
Froperties: Read Notify
UUID: 156005891-B131-3396-014C-664C3867B917

ADC Value 2

Properties: Read

UUID: 6EBG75AB-8BD1-1BOA-7444-621E52ECE6823
Button State

Log

Figure 39: LightBlue Application Connected to Pillar 3 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 62 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.38 Pillar 4 (Security)
8.39 Application Description

The Pillar 4 (security) BLE example application demonstrates the same as the Pillar 2 application.
The application’s main purpose is the testing of the various security models and bonding procedures
which are selected in compile time. It uses the “Integrated processor” configuration.

8.40 Basic Operation

Supported services:

e Inherits the services from Pillar 2 application.
Features:

e Inherits the features from Pillar 2 application, plus:

e Access to the service inherited from Pillar 2 is protected according to current security
configuration set through the APP_SECURITY PRESET CONFIG flag.

The Pillar 4 application behavior is included in C source file user security.c.

Table 15 shows the Custom service characteristic values along with their properties.

Table 15: Pillar 4 Custom Service Characteristic Values and Properties

Name Properties Length (B) Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channe

ADC VAL 2 READ 2 Reads sample from an ADC channe

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push button
connected a GPIO

INDICATEABLE CHAR READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY 50 Demonstrate writes to long characteristic
value

The Pillar 4 application does not provide any behavior for the added Custom service. It just
demonstrates the various security features and the creation of the Custom service. Every access to
the Custom service is possible only when certain security conditions are met. This may include valid
bond and/or encrypted connection. It depends on the currently selected security setup.

8.41 User Interface
A peer connected to the Pillar 4 application is able to do the same as in the Pillar 2 application, plus:
e Use the Custom service with certain preconditions.

The preconditions required reading from or writing to a Custom service’s characteristics or reading
their descriptors depends on the currently selected security preset.

8.42 Loading the Project
The Pillar 4 application is developed under the Keil v5 tool. The Keil project file is the:
projects\target apps\ble examples\ble app security\Keil 5\ble app security.uvprojx

The following picture shows the Keil project layout with emphasis on the user related files, included in
the Keil project folders user config, user platform, user custom profile and user app. These
folders contain the user configuration files of the Pillar 4 application.

User Manual Revision 1.2 24-Dec-2021

CFR0012 63 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

File Edit Wiew Project Flash Debug Perip

NEZ d @ & 2B 2 |

Project n E
--E] sdk_arch ;I
E] sdk_patches
Q sdk_patches 581
--ﬁ sdk_driver

@0 sdk_ble

--ﬁ sdk_profiles

=R sdk_app
Ij app_default_handlers.c
" app.c
-- app_task.c
-- app_security.c
-- app_security_task.c
-- app_bass.c
-- app_bass_task.c
-- app_findme.c
-- app_findme_task.c

app_proxr.c
app_proxr_task.c

app_diss.c
app_diss_task.c

app_spotar.c
app_spotar_task.c

app_entry_point.c

app_msg_utils.c

app_easy_msg_utils.c

app_easy_timer.c

app_easy_security.c
app_customs.c

[
PEPPPEPPPEPEEEEDEEEEEE B

app_customs_task.c

app_customs_common.c

app_bond_db.c

[+]- sdk_driver_api
H-L0 sdk_app_api

=3 sdk_arch_api

[+ user_config

-0 user_custom_profile
=3 user_platform

E-EF user_app
Ij UsEr_security.c

Figure 40: Pillar 4 Keil Project Layout

The newly added file, compared to Pillar 2, is the app_bond db.c. It contains a simple bond
information database API.

User Manual Revision 1.2 24-Dec-2021

CFR0012 64 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.43 Going Through the Code
8.44 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 4 application.

dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.
user callback config.h, callback functions that handle various events or operations.

user config.h, holds advertising parameters, connection parameters, etc. It also holds the flag

used for configuring the security features at compile time. For example:

o #define USER_CFG_PAIR_METHOD_JUST_WORKS, the device is using the Just Works
pairing method.

o #define USER_CFG_PAIR_METHOD_PASSKEY, the device is using Pass Key pairing
method.

o #define USER_CFG_PAIR_METHOD_OOB, the device is using the Out of Band (OOB)
pairing method.

o Note: At the time of writing this document, neither Android nor iOS support the Out of Band
(OOB) mechanism for Bluetooth® pairing.

o The user can define one of the above pairing methods, if the application requires it. If none of
the above flag is defined, then the security features are turned off.

e This configuration header file allows also for selecting Privacy Feature of the peripheral device.
This feature allows the device to use random addresses to prevent peers from tracking it. Privacy
feature is selected through the following two flags. For example:

o #define USER_CFG_PRIV_GEN_STATIC_RND, the device is using a random address
generated automatically by the BLE stack. This address is static during device’s power cycle.

o #define USER_CFG_PRIV_GEN_RSLV_RND, the device is using a resolvable random
address, generated automatically by the BLE stack. This address is changing in certain time
intervals. Only bonded devices that own the Identity Resolving Key, distributed during the
pairing procedure, can resolve the Random Address and track the device.

o If none of the above flags is selected the device is not using any Privacy Feature, and will use
its public address.

Peer device’s bond data can be stored on an external SPI Flash or I2C EEPROM memory.
#define USER_CFG_APP_BOND_DB_USE_SPI_FLASH, for SPI Flash

#define USER_CFG_APP_BOND_DB_USE_I2C_EEPROM, for I2C EEPROM.

If none of the above flags is defined the bond data have to be stored in the application RAM.
® user config sw ver.h, holds user specific information about software version.

O O O O

® user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

o #define EXCLUDE_DLG_SEC (0), the Security application module is included in this
Pillar application.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)
will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.h file are:

O diss.h, includes the Device Information service.
O custsl.h, includes the Custom 1 service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 65 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit. In
this particular application it also defines the 12C pin configuration for the EEPROM module.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.45 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Pillar 4 application registers the following callback functions:

o General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app connection,
.app_on disconnect = user app disconnect,
.app_on update params rejected NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on adv_nonconn_complete = NULL,

.app_on adv undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,

.app on db init complete = default app on db init complete,
.app_on scanning completed = NULL,

.app_on adv_report ind = NULL,

#if (BLE APP SEC)

.app_on pairing request = default app on pairing request,
.app_on tk exch nomitm = user app on tk exch nomitm,
.app_on irk exch = NULL,

.app_on csrk exch = NULL,
.app_on ltk exch default app on 1tk exch,

.app_on pairing succeded = user app on pairing succeded,
.app_on encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on encrypt req ind = user app on _encrypt req ind,

#endif // (BLE APP SEC)
i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g user_app_connection(), user_app_disconnect(), user_app_adv_undirect_complete(),
user_app_on_tk _exch_nomitm(), user_app_on_pairing_succeded() and
user_app_on_encrypt_reqg_ind()) are defined in C source file user security.c. Note that most of
them will be called from the newly enabled security application module (the preprocessor value
BLE_APP_SEC must be defined).

e System specific events:
static const struct arch main loop callbacks user app main loop callbacks = {

.app_on _init = user app init,
.app_on ble powered = NULL,
User Manual Revision 1.2 24-Dec-2021

CFR0012 66 of 110 © 2021 Renesas Electronics

UNLBL050 LENESAS

DA1458x Software Developer’s Guide

.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app_resume from sleep = NULL,

i
The above structure defines that a certain event will be processed by a default handler or by a

user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_init()) is defined in C source file user security.c.

e BLE operations:
static const struct default app operations user default app operations = {
.default operation adv = user app adv start,
i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_adv_start()) is defined in C source file user security.c.

e Custom profile message handling:

static const catch rest event func t app process catch rest cb =

(catch rest event func t)user catch rest hndl;

Callback function that contains the Custom profile messages handling in user application space.
For Pillar 4 application this function is totally unused, since Pillar 4 application does not include
any behavior related to the Custom service. Service is protected from the unauthorised access
automatically at database level and requires no additional action from the user application space.

User Manual Revision 1.2 24-Dec-2021

CFR0012 67 of 110 © 2021 Renesas Electronics

T RENESAS

DA1458x Software Developer’s Guide

8.46 BLE Application Abstract Code Flow

Figure 41 shows the abstract code flow diagram of the Pillar 4 application. The diagram depicts the
SDK interaction with the callback functions registered in user _callback config.h and the functions
implemented in user security.c. It shows only the part that is new, compared to the previous Pillar
application. The connection establishment procedure is the exactly the same as in the previous
application and the following function flow diagram shows the subsequent pairing procedure using
the passkey entry method.

User User
. . . SDK
Application Configuration
g 8
€ 3
S
23
app_on_connection() 2 o
user_app_connection() | g £
< o O
L=
default_app_on [connection()
g o
£ 0
83
o ©
-
. +—
app_on_pairing_request() («—— § 2
« % E
defgult_app_on_pairing_request() o L.:_%

»

~app_on_tk_exch_nomitm()

user_app_on_tk_exch_nomitm(

app_easy_secufity_set_tk()

Y

app_easy_security tk_exchange()

app_on_ltk_exchange()

«

default_app_on_Itk_exchange(

app_on_pairing_succeeded(

user_gpp_on_pairing_succeeded()

Figure 41: Pillar 4 Application - User Application Code Flow for Pairing using Passkey Entry

app_easy security set tk() and app easy security tk exchange () are called from the

user app on tk exchange nomitm(). Note that app on tk exch nomitm() is called also in case of
a pairing method that uses passkey entry. This is because the Pillar 4 application requires no user
input due to the current input/output capabilities. It is the peer device that needs to enter the passkey.

One of the alternative security configurations allows the use of the Just Works method of pairing. In
such case the function call diagram looks slightly different. See Figure 42.

User Manual Revision 1.2 24-Dec-2021

CFR0012 68 of 110 © 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

User User

Application Configuration SDK

app_on_connection()

user_app_connection()

A

Request to connect
(from peer device)

default_app_on_[connection()

app_on_pairing_request()

«

Request to pair
(from peer device)

defgult_app_on_pairing_request

»

~

app_on_lItk_exchange()

«

default_app_on_Itk_exchange(

app_on_pairing_succeeded(

user_ppp_on_pairing_succeeded|()

Figure 42: Pillar 4 Application - User Application Code Flow for Pairing using Just Works

User Manual Revision 1.2 24-Dec-2021

CFR0012 69 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.47 Building the Project for Different Targets and Development Kits

The Pillar 4 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 43.

File Edit VWiew Project Flash Debug Peripherals
MNMed@| » s@&|9 0@ | ®
e Y 82 ,_Ll %?{| ble_app_security_580 i:l

o ble app security 580
Project ‘ ble_app_security 531
o4 Project: ble_app_securitble_app_security 583

%5 ble_app_security_580
[d sdk_boot
[0 =dk_arch
[J sdk_patches
E sdl_patches 581
[=dk_driver
[sdk_ble
[sdk_profiles

Figure 43: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 44.

P4l R

i =

Eped i | Coleme | b | T Sowiee
Option Yiakoe

for et P ——n -]

As bt dald53e_parps uatup i

Barivc

Exgent

| Twteatr | Configuration Wiard [

Figure 44: Development Kit Selection for Pillar 4 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 70 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.48 Interacting with BLE Application
8.49 LightBlueiOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 45 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-SECURITY). Depending on
the currently selected security setup you can be asked to allow devices to pair or to enter passkey.
By default the Pillar 4 application is using 123456 as passkey value.

No SIM & 13:56 R .

< LightBlue Peripheral Clone

DIALOG-SECURITY

UUID: CAF8814D-
DC77-479F-8A9E-33D948C6E75E

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String
Dialog Semi

Model Number String
DA1458x

Firmware Revision String
v_5.0.3.175

Software Revision String

X.Y.Z

% 1 [N o N

Log

Figure 45: LightBlue Application Connected to Pillar 4 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 71 0f 110 © 2021 Renesas Electronics

V- RLENESAS

DA1458x Software Developer’s Guide

Bluetooth Pairing Request

“DIALOG-SECURITY" would like to pair
with your iPhone.

Cancel Pair

Figure 46: LightBlue Application Pairing with Pillar 4 Application using Just Works

User Manual Revision 1.2 24-Dec-2021

CFR0012 72 of 110 © 2021 Renesas Electronics

V- RLENESAS

DA1458x Software Developer’s Guide

Bluetooth Pairing Request

“DIALOG-SECURITY" would like to pair
with your iPhone. Enter the code
shown on “DIALOG-SECURITY".

esecel

Cancel

Figure 47: LightBlue Application Pairing with Pillar 4 Application Using Passkey with MITM

For Pillar 4 application the default passkey is set to 123456.

User Manual Revision 1.2 24-Dec-2021

CFR0012 73 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.50 Pillar 5 (Sleep Mode)
8.51 Application Description

The Pillar 5 (sleep mode) BLE example application demonstrates the same as the Pillar 2
application. The application also adds some basic interaction over the provided custom service
(read/write/notify values). The main purpose of this application example is to show how to use the
sleep mode API and change in runtime the sleep mode. The available sleep modes are:

e Extended sleep mode
e Deep sleep mode

The application uses the “Integrated processor” configuration.

8.52 Basic Operation

Supported services:

e Inherits the services from Pillar 2 application.
Features:

e Inherits the features from Pillar 2 application, plus:

e CONTROL POINT, ADC VAL 2 and BUTTON STATE characteristic values introduce some
behavior with a connected peer device.

The Pillar 5 application behavior is included in C source file user sleepmode.c.

Table 16 shows the Custom service characteristic values along with their properties.

Table 16. Pillar 3 Custom Service Characteristic Values and Properties

Name Properties Length (B) Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC VAL 2 READ 2 Reads sample from an ADC channel

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push
button connected a GPIO

INDICATEABLE CHAR READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY 50 Demonstrate writes to long
characteristic value

The Pillar 5 application provides behavior only for the highlighted characteristic values of the Custom
service. The implementation code of the Custom service is included in C source file
user sleepmode task.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 74 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.53 User Interface

When the device is powered up or disconnected:

e Device advertises for a defined amount of time (APP ADV DATA UPDATE TO), default value is 10 s.
As long as the device is in the advertising state its sleep mode is set to deep sleep.

e After the expiration of the above timeout, and if the device does not enter the connected state, it
stops advertising. Now the device does nothing and waits for an external event to exit the
sleeping state.

e The user can wake up the device by pressing a button. After the button press the device will start
to advertise again for the predefined time.

e When the device enters the connected state then the sleep mode is turned to extended sleep.
A peer connected to the Pillar 5 application is able to do the same as in the Pillar 3 application, plus:

e Use Custom Service.
e Write to Control Point of Custom Service.
o Byte 0x00 disables PWM timer (turns LED off and restores sleep mode).

©0 Byte 0x01 enables PWM timer (turns LED on and puts device into active mode) — user can
attach speaker to selected pin to hear PWM frequency change.

o Byte 0x02 disables ADC VAL 2 update.

o Byte 0x03 enables ADC VAL 2 update. ADC VAL 2 characteristic is updated at every
connection event.

e Read/notify BUTTON STATE value. When the button is pressed or released characteristic value
is updated accordingly.

e Read ADC VAL 2. When functionality is enabled in Control Point user can read value from ADC
input.

User Manual Revision 1.2 24-Dec-2021

CFR0012 75 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.54 Loading the Project
The Pillar 5 application is developed under the Keil v5 tool. The Keil project name is the:
projects\target apps\ble examples\ble app sleepmode\Keil 5\ble app sleepmode.uvprojx

Figure 48 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platform, user custom profile and user app. These folders
contain the user configuration files of the Pillar 5 application.

File Edit Wiew Project Flash Debug Peripher

NE @ 4 aBd| 9 o @

@ %) |ﬂ| @ b:‘i E?I” ble_app_sleepmnde_ESﬂ|
Project o =

chg Project: ble_app_sleepmode
Eﬁ ble_app_sleepmode_580

--ﬁ sdk_boot

E.i sdk_arch

--ﬁ sdk_patches

E sdk_patches_581

--ﬁ sdk_driver

0 sdk_ble

--ﬁ sdk_profiles

E.i sdk_app

--ﬁ sdk_driver_api

E.i sdk_app_api

--ﬁ sdk_arch_api

EE user_config
----- D dald58x_config_advance
----- D dald58x_config_basic.h
----- D user_callback_config.h
----- D user_config.h
----- D user_modules_config.h
----- D user_periph_setup.h
----- D user_profiles_config.h

----- D user_config_sw_ver.h
=-L5 user_custom_profile
user_custs_config.c
user_custsl_def.c
-5 user_platform
user_periph_setup.c
-5 user_app
user_sleepmode.c
user_sleepmode_task.c

Figure 48: Pillar 5 Keil Project Layout

User Manual Revision 1.2 24-Dec-2021

CFR0012 76 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.55 Going Through the Code
8.56 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 5 application.
dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

user callback config.h, callback functions that handle various events or operations.

user config.h, holds advertising parameters, connection parameters, etc.

user config sw ver.h, holds user specific information about software version.

user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.
® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)

will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

O diss.h, includes the Device Information service.
O custsl.h, includes the Custom 1 service.
® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.57 Events Processing and Callbacks

Several events can occur during the lifetime of the application. It depends on the application which of
these events are handled and how. The SDK is flexible enough to either call a default handler or call
the user’s defined event handler upon the occurrence of a particular event. The configuration file
user callback config.h contains the configuration array that defines if an event is processed or not
(callback function is present or not). For example, in the Pillar 5 application the user_app_callbacks[]
array has the following entries:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app connection,
.app_on_disconnect = user app disconnect,
.app_on update params rejected = NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on adv nonconn_complete = NULL,

.app_on adv_undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,

.app on db init complete = default app on db init complete,
.app_on scanning completed = NULL,

.app_on adv_report ind = NULL,

#if (BLE APP SEC)

.app_on pairing request = NULL,

.app_on tk exch nomitm = NULL,

User Manual Revision 1.2 24-Dec-2021

CFR0012 77 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

.app_on_irk exch = NULL,
.app_on _csrk exch = NULL,
.app_on ltk exch = NULL,
.app_on pairing succeded = NULL,
.app_on_encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on _encrypt req ind = NULL,

#endif // (BLE APP SEC)
}i

The above array defines that a certain event will be processed by a default handler or by a user
defined handler or it will not be processed at all (NULL entries). The user defined handlers (e.g
user_app_connection(), user_app_disconnect() and user_app_adv_undirect_complete()) are defined
in C source file user_sleepmode.c.

Similar to Pillar 3 project Pillar 5 also defines user_catch_rest_hndl() handler that catches all the
Custom service messages and handles them in the user application space. The implementation of
this handler is in C source file user_sleepmode_task.c.

An important addition to Pillar 5 application is the app_button_enable()function, which is called from
the user_app_adv_undirect_complete() event handler. After the advertising is completed it configures
one of the user buttons as a wake up trigger, just before the application goes to sleep. The registered
wakeup callback function app_button_press_ch() is set to restore the BLE core stack and peripherals
back to fully functional state.

The user callback config.h configuration header file contains the registration of the callback
function user_catch_rest_hndl(), as is described below.

static const catch rest event func t app process catch rest cb =
(catch rest event func t)user catch rest hndl;

The user callback config.h configuration header file contains the registration of the callback
function user_app_on_wakeup(), as is described below.

static const struct arch main loop callbacks user app main loop callbacks = {

.app _on init = user app init,
.app_on ble powered = NULL,
.app_on_system powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app resume from sleep = NULL,
}i
User Manual Revision 1.2 24-Dec-2021

CFR0012 78 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.58 BLE Application Abstract Code Flow

Figure 49 shows the abstract code flow diagram of the Pillar 5 application. The diagram depicts the
SDK interaction with the callback functions registered in user _callback config.h and the functions
implemented in user sleepmode.c. It shows only the part that is new, compared to the Pillar 2
application. The connection establishment procedure is the exactly the same as in previous
application and the following function flow diagram shows the platform entering sleep mode and the
wakeup calls triggered by the button press. Advertising is restarted after wakeup.

User User
- . . SDK
Application Configuration
app_easy_gap_undirected|advertise_start()
app_on_|adv_undirect_complete()
user_app_adv_undirect |complete()
app_easy_wakeup|set(app_wakeup_cb) R
wkupct_register_callback(app_button_press_cb) N o]
v wn Q
88
o e
«—— € o
5 0
Lo
':.'6 7}
a
v o
Q c
) app_button| press_cb() 32 S
= 3
app_easy| wakeup() R =2
’ app_walkeup_cb()
app_easy_gap_undirected [advertise_start()
Figure 49: Pillar 5 Application - User Application Code Flow
User Manual Revision 1.2 24-Dec-2021

CFR0012 79 of 110 © 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.59 Building the Project for Different Targets and Development Kits

The Pillar 5 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 50.

File Edit View Project Flash Debug Peripherals
m@uam 2|9 o B
£ & & | %% | |app_sleepmode_580 :l i

app sleepmode 580
PI'OJECt ‘app sleepmode_581 lg
= ‘fo Pro;ect ble app_SIEEP app_sleepmode, 583

39 2pp_sleepmode_580
@-d sdk_boot
@1 sdk_arch
- sdk_patches
€3] & sdk_patches_581
-1 sdk_driver
[+ sdk_ble
- sdk_profiles

Figure 50: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 51.

:: ‘(w 6 L &
Epndi | Cohegee i | Hep | [Swowiee
Option Yakse
Y 1455 5+ v <]
[As bt 422453 _pampn_untup |
Baiec
Exgent
OK sefection
| TextEass | Comfguraticn Wrard |

Figure 51: Development Kit Selection for Pillar 5 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 80 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.60 Interacting with BLE Application
8.61 LightBlueiOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 52 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-SLEEP).

< LightBlue Peripheral Clone

DIALOG-SLEEP

UUID: E63764B2-
E22B-25A5-3FC6-7636565452AD

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String
Dialog Semi

Model Number String
DA1458x

Firmware Revision String
v_5.0.3.175

Software Revision String

X.y.Z

Figure 52: LightBlue Application Connected to Pillar 5 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 81 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.62 Pillar 6 (OTA)
8.63 Application Description

The Pillar 6 (OTA) BLE example application demonstrates the same as the Pillar 2 application, plus
the SPOTAR service (16-bit UUID). The SPOTAR service requires no action on user space side and
can be used by peer device for Software Updates Over The Air (SUOTA). The project uses the
“Integrated processor” configuration.

8.64 Basic Operation
Supported services:

e Inherits the services from Pillar 2 application.
e SPOTAR service defined by the user with 16-bit UUID.

Features:

e Inherits the features from Pillar 2 application, plus:
e SUOTA firmware updates to external SP1/I2C memories

The Pillar 6 behavior is included in C source file user ota.c.

Table 17 shows the Custom service characteristic values along with their properties.

Table 17: Pillar 6 Custom Service Characteristic Values and Properties

Name Properties Length (B) | Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE | 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC VAL 2 READ 2 Reads sample from an ADC channel

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push button
connected a GPIO

INDICATEABLE CHAR | READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY | 50 Demonstrate writes to long characteristic
value

The Pillar 6 application does not provide any behavior for the Custom service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 82 of 110 © 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

Table 18: Pillar 6 SPOTAR Service Characteristic Values and Properties

Name Properties Length (B) | Description/Purpose

SPOTA MEMORY DEVICE | READ, WRITE 4 Defines what is the target physical
memory and base address of the patch.

GPIO MAP READ, WRITE 4 Port and pin map for the physical
memory device as well as device
address in case of 12C EEPROMs.

MEMORY INFORMATION READ 4 Information about the already applied
patches and the entire patch area for
SPOTA. In case of SUOTA: Number of
bytes transferred.

SPOTA PATCH LENGTH READ, WRITE 2 Length of a new SPOTA patch or block
length of SUOTA image to be sent at a
time.

SPOTA PATCH DATA READ, WRITE, WRITE | 20 20 bytes of SPOTA data, word aligned.

NO RESPONSE MS byte first.
SPOTA SERVICE STATUS | READ, NOTIFY 1 SPOTA Service Status.

More detailed description of the SPOTAR service internals can be found in Ref. [7].

8.65 User Interface

A peer connected to the Pillar 6 application is able to do the same as in the Pillar 2 application, plus:

e Download patches or the whole firmware image over a Bluetooth® Low Energy link. The detailed
procedure description as well as image preparation process can be found in Ref. [7].

User Manual

Revision 1.2

24-Dec-2021

CFR0012

83 of 110

© 2021 Renesas Electronics

RLENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.66 Loading the Project
The Pillar 6 application is developed under the Keil v5 tool. The Keil project file is the:
projects\target apps\ble examples\ble app ota\Keil 5\ble app ota.uvprojx

Figure 53 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platform, user custom profile and user app. These folders
contain the user configuration files of the Pillar 6 application.

File Edit View Project Flash Debug Pe

NS d@| & o@|2 o

Project o E
=% Project: ble_app_ota
545 ble_app_ota_580

ﬁ sdk_boot

--ﬁ sdk_arch

ﬁ sdk_patches

Q sdk_patches 581

ﬁ sdk_driver

wL sdk_ble

ﬁ sdk_profiles

--ﬁ sdk_app

ﬁ sdk_driver_api

--ﬁ sdk_app_api

ﬁ sdk_arch_api

- user_config
----- |j dal458x_config_advance
----- _1 dal458x_config_basic.h
----- |j user_callback_config.h
----- W] user_config.h

----- |j user_modules_config.h

----- |j user_periph_setup.h
----- |j user_profiles_config.h

----- Ij user_config_sw_ver.h
E-lL5 user_cu stom_profile
Ij user_custs_config.c
|j user_custsl_def.c
-5 user_platform
|j user_periph_setup.c
=L user_app

|j user_ota.c

Figure 53: Pillar 6 Keil Project Layout

There is no new file added compared to the Pillar 2 project.

User Manual Revision 1.2 24-Dec-2021

CFR0012 84 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.67 Going Through the Code
8.68 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 6 application.
dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

user callback config.h, callback functions that handle various events or operations.

user config.h, holds advertising parameters, connection parameters, etc.

user config sw ver.h, holds user specific information about software version.

user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)
will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

O diss.h, includes the Device Information service.
O spotar.h, includes the SPOTAR service.
O custsl.h, includes the Custom 1 service.

® Tt also exposes some configuration flags for the SPOTAR service:

o #define SPOTAR_PATCH_AREA (1), Place where the SPOTAR service is placed. O for
RetRAM and 1 for SYSRAM.

o #define CFG_SPOTAR_I12C_DISABLE , Disable 12C external memory module

o #define CFG_SPOTAR_SPI_DISABLE , Disable SPI external memory module

® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.69 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Pillar 6 application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app connection,

User Manual Revision 1.2 24-Dec-2021

CFR0012 85 of 110 © 2021 Renesas Electronics

T RENESAS

DA1458x Software Developer’s Guide

.app_on disconnect = user app disconnect,

.app_on update params rejected = NULL,

.app_on update params complete = NULL,

.app_on set dev config complete = default app on set dev config complete,

.app_on_adv_nonconn_complete = NULL,

.app_on adv undirect complete = user app adv undirect complete,
.app_on adv direct complete = NULL,

.app_on db init complete = default app on db init complete,
.app_on scanning completed = NULL,

.app_on adv_report ind = NULL,

#if (BLE APP SEC)

.app_on pairing request = default app on pairing request,
.app_on tk exch nomitm = default app on tk exch nomitm,
.app_on_irk exch = NULL,

.app_on _csrk exch = default app on csrk exch,
.app_on ltk exch = default app on 1tk exch,
.app_on pairing succeded = NULL,

.app_on encrypt ind = NULL,

.app_on mitm passcode req = NULL,

.app_on_encrypt req_ind = default app on encrypt req ind,

#endif // (BLE APP SEC)
i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_connection(), user_app_disconnect() and user_app_adv_undirect_complete())
are defined in C source file user ota.c.

e System specific events:

static const struct arch main loop callbacks user app main loop callbacks = {
.app _on init = user app init,

.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,

.app_resume from sleep NULL,

i

The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers

(e.g. user_app_init()) is defined in C source file user ota.c.

e BLE operations:
static const struct default app operations user default app operations = {
.default operation adv = user app adv_ start,
i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_adv_start()) is defined in C source file user ota.c.

e Custom profile message handling:

static const catch rest event func t app process catch rest cb =
(catch rest event func t)user catch rest hndl;

Callback function that contains the Custom profile messages handling in user application space.
For Pillar 6 application this function is totally unused, since Pillar 6 application does not include
any behavior related to the Custom service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 86 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.70 BLE Application Abstract Code Flow

The code flow of the functions implemented in user ota.c for the Pillar 6 application is the same as
shown in Figure 31 for the Pillar2 application. The whole OTA functionality requires no custom user
application code to be written.

8.71 Building the Project for Different Targets and Development Kits

The Pillar 6 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 54.

File Edit View Project Flash Debug Peripherals
() E EI ﬂl @A | | | m
: | 2% | |ble_app_ota_580 i:]

— ble app ota 580
Project ble_app_ota_581
=% Project: ble_app_ota [ble_app_ota 553

45 ble app_ota_580
[J sdk_boot
[J sdk_arch
[sdk_patches
fe@ sdk_patches 581
3 sdk_driver
[sdk_ble
[sdk_profiles

Figure 54: Building the Project for Different Targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 55.

- N s e -
i y
Epad i | Coleme | e | T Sowiee
Option Yabse

Y . 55 5o v

As it el perph ustup

Barivc

Exgent

| Textfats \ Comfiguration Wirard |

Figure 55: Development Kit Selection for Pillar 6 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 87 of 110 © 2021 Renesas Electronics

- RLENESAS

DA1458x Software Developer’s Guide

8.72 Interacting with BLE Application
8.73 LightBlue iOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
The following picture shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-OTA).

No SIM = 13:09 3 -

< LightBlue Peripheral Clone

DIALOG-OTA

UUID: 37583381-369B-
F3F2-0BD5-9C06431BBBBC

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String
Dialog Semi

Model Number String
DA1458x

Firmware Revision String
v_5.0.3.175

Software Revision String

X.Y.Z

i~ 1 ¥ o

Log

Figure 56: LightBlue Application Connected to Pillar 6 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 88 of 110 © 2021 Renesas Electronics

UM-B-050

RLENESAS

DA1458x Software Developer’s Guide

8.74 SUOTA Application

The Dialog SUOTA application can be installed from the App Store on iOS devices and from the
Google Play Store on Android based platforms. Only devices that are advertising the SPOTAR
service are shown to the user. The detailed SUOTA update procedure is described in Ref. [7].

4 Back to App Store

DIALOG-OTA

13:12

Devices

4 W | | 4Back to App Store

< Devices

Device name

Manufacturer

Model nr.

Firmware rev.

Software rev.

Update

13:12

DIALOG-OTA

Dialog Semi

DA1458x

v.5.0.3.175

Figure 57: Dialog SUOTA Application Discovering Pillar 6 Application

User Manual

Revision 1.2

24-Dec-2021

CFR0012

89 of 110

© 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.75 Pillar 7 (All in One)
8.76 Application Description

The Pillar 7 (All in One) BLE example application demonstrates the same functionality as all previous
applications. The project uses the “Integrated processor” configuration.

8.77 Basic Operation

Supported services:

e Inherits the services from Pillar 2 application.

e Inherits the SPOTAR service from Pillar 6.

Features:

Inherits the features from Pillar 2 (Custom Profile) application.
Inherits the features from Pillar 3 (Peripheral) application.
Inherits the features from Pillar 4 (Security) application.

Inherits the features from Pillar 5 (Sleep) application.
Inherits the SUOTA functionality from Pillar 6 application.

The Pillar 7 behavior is included in C source file user all in one.c.

Table 19 shows the Custom service characteristic values along with their properties.

Table 19: Pillar 7 Custom Service Characteristic Values and Properties

Name Properties Length (B) | Description/Purpose

CONTROL POINT WRITE 1 Accept commands from peer

LED STATE WRITE NO RESPONSE 1 Toggles a LED connected to a GPIO

ADC VAL 1 READ, NOTIFY 2 Reads sample from an ADC channel

ADC VAL 2 READ 2 Reads sample from an ADC channel

BUTTON STATE READ, NOTIFY 1 Reads the current state of a push button
connected a GPIO

INDICATEABLE CHAR | READ, INDICATE 20 Demonstrate indications

LONG VAL CHAR READ, WRITE. NOTIFY 50 Demonstrate writes to long characteristic
value

The Pillar 7 application provides the same behavior for the Custom Service as Pillar 3 (Peripheral)
and Pillar 5 (Sleep). The implementation code of the Custom service is included in C source file
user custsl impl.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 90 of 110 © 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

Table 20: Pillar 7 SPOTAR Service Characteristic Values and Properties

Name Properties Length (B) Description/Purpose

SPOTA MEMORY DEVICE READ, WRITE 4 Defines what is the target physical
memory device and base address of
the patch.

GPIO MAP READ, WRITE 4 Port and pin map for the physical
memory device as well as device
address in case of 12C EEPROMSs.

MEMORY INFORMATION READ 4 Information about the already applied
patches and the entire patch area for
SPOTA. In case of SUOTA: Number
of bytes transferred.

SPOTA PATCH LENGTH READ, WRITE 2 Length of a new SPOTA patch or
block length of SUOTA image to be
sent at a time.

SPOTA PATCH DATA READ, WRITE, WRITE | 20 20 bytes of SPOTA data, word

NO RESPONSE aligned. MS byte first.

SPOTA SERVICE STATUS | READ, NOTIFY 1 SPOTA Service Status.

Pillar 7 provides the same SUOTA functionality as Pillar 6.

8.78 User Interface

A peer connected to the Pillar 7 application is able to do the same as in the Pillars 2, 3, 4, 5, plus:

e Perform software updates and patching as in the Pillar 6 application.

User Manual

Revision 1.2

24-Dec-2021

CFR0012

91 of 110

© 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

8.79 Loading the Project

The Pillar 7 application is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\ble examples\ble app all in one\Keil 5\ble app ota.uvprojx

Figure 58 shows the Keil project layout with emphasis on the user related files, included in the Keil
project folders user config, user platform, user custom profile and user app. These folders
contain the user configuration files of the Pillar 7 application.

Edit Wiew Project Flash Debug

IR

ARN=-2=N- I

Loal
$i| ble_app_all_in_one_5580

" E

EIOB Project: ble_app_all_in_one

E% ble_app_all_in_ocne_580

=3
--Ei
w3
B 5e
w3
--Ei
w3
--Ei
w3
--Ei
w3
=R

sdk_boot
sdk_arch
sdk_patches
sdk_patches 581
sdb_driver
sdk_ble
sdk_profiles
sdk_app
sdk_driver_api
sdk_app_api
sdk_arch_api

user_config

|j dald58x_config_advance
_1 dal458x_config_basic.h
|j user_callback_config.h
|j user_config.h

|j user_modules_config.h
du ser_periph_setup.h

|j user_profiles_config.h

|j user_coenfig_sw_ver.h

E-15 user_custom_profile
|j user_custs_config.c
|j user_custsl_def.c
E-5 user_platform

-5 user_app
|j user_custsl_impl.c
|j user_all_in_one.c

Figure 58: Pillar 7 Keil Project Layout

|j user_periph_setup.c

Just like in Pillar 3 the user custsl impl.c contain the implementation code of the Custom service.

User Manual

Revision 1.2

24-Dec-2021

CFR0012

92 of 110

© 2021 Renesas Electronics

- LENESAS

DA1458x Software Developer’s Guide

8.80 Going Through the Code
8.81 Initialization

The aforementioned Keil project folders (user config, user platform, user custom profile and
user app) contain the files that initialize and configure the Pillar 7 application.

dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
dal458x config basic.h, holds DA14580/581/583 basic configuration settings.
user callback config.h, callback functions that handle various events or operations.

user config.h, holds advertising parameters, connection parameters. It also contains all the

security configuration defines that the Pillar 4 (Security) application was using. For example:

o #define USER_CFG_PAIR_METHOD_JUST_WORKS, the device is using the Just Works
pairing method.

o #define USER_CFG_PAIR_METHOD_PASSKEY, the device is using Pass Key pairing
method.

o #define USER_CFG_PAIR_METHOD_OOB, the device is using the Out of Band (OOB)
pairing method.

o Note: At the time of writing this document, neither Android nor iOS support the Out of Band
(OOB) mechanism for Bluetooth® pairing.

o The user can define one of the above pairing methods, if the application requires it. If none of
the above flag is defined, then the security features are turned off.

e This configuration header file allows also for selecting Privacy Feature of the peripheral device.
This feature allows the device to use random addresses to prevent peers from tracking it. Privacy
feature is selected through the following two flags. For example:

o #define USER_CFG_PRIV_GEN_STATIC_RND, the device is using a random address
generated automatically by the BLE stack. This address is static during device’s power cycle.

o #define USER_CFG_PRIV_GEN_RSLV_RND, the device is using a resolvable random
address, generated automatically by the BLE stack. This address is changing in certain time
intervals. Only bonded devices that own the Identity Resolving Key, distributed during the
pairing procedure, can resolve the Random Address and track the device.

o If none of the above flags is selected the device is not using any Privacy Feature, and will use
its public address.

Peer device’s bond data can be stored on an external SPI Flash or 12C EEPROM memory.
#define USER_CFG_APP_BOND_DB_USE_SPI_FLASH, for SPI Flash.

#define USER_CFG_APP_BOND_DB_USE_I2C_EEPROM, for I2C EEPROM.

If none of the above flags is defined the bond data have to be stored in the application RAM.
® user config sw ver.h, holds user specific information about software version.

O O O O

® user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.

® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)
will be included in user’s application. Particularly, the C header files (each header file denotes the
respective BLE profile) that are included in the user profile config.hfile are:

O diss.h, includes the Device Information service.
O spotar.h, includes the SPOTAR service.
O custsl.h, includes the Custom 1 service.

User Manual Revision 1.2 24-Dec-2021

CFR0012 93 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

It also exposes some configuration flags for the SPOTAR service:

o #define SPOTAR_PATCH_AREA (1), Place where the SPOTAR service is placed. O for
RetRAM and 1 for SYSRAM.

o #define CFG_SPOTAR_I2C_DISABLE , Disable 12C external memory module
o #define CFG_SPOTAR_SPI_DISABLE , Disable SPI external memory module
® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit. In
this particular application it also defines the 12C pin configuration for the EEPROM module.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

8.82 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Pillar 7 application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on_connection = user app connection,
.app_on disconnect = user app disconnect,
.app_on update params rejected NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on_adv_nonconn_complete = NULL,

.app_on adv undirect complete = user app adv undirect complete,
.app _on adv direct complete = NULL,

.app on db init complete = default app on db init complete,
.app_on scanning completed = NULL,

.app_on adv_report ind = NULL,

#if (BLE APP SEC)

.app_on pairing request = default app on pairing request,

.app_on tk exch nomitm user app on tk exch nomitm,
.app_on_irk exch = NULL,

.app_on _csrk exch NULL,

.app_on ltk exch default app on 1tk exch,
.app_on pairing succeded user app on pairing succeded,

.app_on encrypt ind = NULL,
.app_on mitm passcode req = NULL,
.app_on _encrypt reqg_ind = user app on encrypt req ind,

#endif // (BLE APP SEC)
i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g user_app_connection(), user_app_disconnect(), user_app_adv_undirect_complete(),
user_app_on_tk _exch_nomitm(), user_app_on_pairing_succeded() and
user_app_on_encrypt_reqg_ind()) are defined in C source file user all in one.c.

User Manual Revision 1.2 24-Dec-2021

CFR0012 94 of 110 © 2021 Renesas Electronics

V- RLENESAS

DA1458x Software Developer’s Guide

User Manual Revision 1.2 24-Dec-2021

CFR0012 95 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

e System specific events:
static const struct arch main loop callbacks user app main loop callbacks = {

.app _on init = user app init,
.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app_resume from sleep = NULL,

i

The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_init()) is defined in C source file user_all in one.c.

e BLE operations:
static const struct default app operations user default app operations = {
.default operation adv = user app adv_start,
i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_adv_start()) is defined in C source file user all in one.c.

e Custom profile message handling:

static const catch rest event func t app process catch rest cb =
(catch rest event func t)user catch rest hndl;

Callback function that contains the Custom profile messages handling in user application space.
For the Pillar 7 application this function is handling the same write or read request as the Pillar 3
(Peripheral) and Pillar 5 (Sleep) applications do.

User Manual Revision 1.2 24-Dec-2021

CFR0012 96 of 110 © 2021 Renesas Electronics

UM-B-050

RENESAS

DA1458x Software Developer’s Guide

8.83 BLE Application Abstract Code Flow

Figure 59 shows the abstract code flow diagram of the Pillar 7 application in a simplified form. The
diagram depicts the SDK interaction with the callback functions registered in
user callback config.hand the functions implemented in user all in one.c. The initialization

sequence is the same as in the Pillar 1 application and is not shown on this diagram.

User User
s . . SDK
Application Configuration
app_easy_gap_undirected|advertise_start()
> g o
o 3
app_on |adv_undirect_complete() <—§ g
user_app_adv_undirect|complete() <"
app_easy_wakeup|set(app_wakeup_cb) R

platform goes o sleep mode... S ﬁ
o &5
app_wakeup_cb() —— % s
< 4+
Y +
app_easy_gap_undirected|advertise_start() R f;fs é

app_on |adv_undirect_complete()

user_app_adv_undirect |complete()
app_on_connection()
 user_app_connection() [
default_app_on [connection()
app_on_pairing_request()
defgult_app_on_pairing_request()
app_on_pairihg_succeeded(
user_ppp_on_pairing_succeeded|()
Figure 59: Pillar 7 Application - User Application Simplified Code Flow
User Manual Revision 1.2 24-Dec-2021
CFR0012 97 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.84 Building the Project for Different Targets and Development Kits

The Pillar 7 application can be built for three different target processors: DA14580, DA14581 and
DA14583. The selection is done via the Keil tool as depicted in Figure 60.

File Edit Wiew Project Flash Debug Peripherals

NEsda| s -ala e | m

L OB g | #8 | [ble_app_an_sso =
; ble app all 580

Project ble_app_all_581

=% Project: ble_app_all |ble_app_all 583

47 ble_app_all_580
3 sdk_boot
[J =dk_arch
[J sdk_patches
k@ sdk_patches 581
3 sdk_driver
[J sdk_ble
3 sdk_profiles

Figure 60: Building the project for different targets

The user has also to select the correct Development Kit in order to build and run the application. This
selection is done via the Configuration Wizard of the user periph setup.h file. See Figure 61.

RS-

ey

Epad i | Cobeee ¥ | Hb | T Showiee

Option Wakse

[or smien e r—m—" -]

A bt daldSe penph tup.h

Barivc

Exgent

| Tettaty | Comfiguraticn Wirard |

Figure 61: Development Kit Selection for the Pillar 7 Application

After the proper selection of the target processor and development kit, the application is ready to be
built.

User Manual Revision 1.2 24-Dec-2021

CFR0012 98 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

8.85 Interacting with BLE Application
8.86 LightBlueiOS

The LightBlue iOS application can be used to connect an iPad/iPod/iPhone device to the application.
In such a case the iPad/iPod/iPhone acts as a BLE Central and the application as a BLE Peripheral.
Figure 62 shows the result when the iPad/iPod/iPhone device manages to connect to the
DA14580/581/583 (the application’s advertising device name is DIALOG-ALL-IN). Please note that
during the device interrogation you can be asked to accept pairing or enter passkey. It depends on
security settings that are currently defined in user config.h.

No SIM & 15:37 3 -

< LightBlue Peripheral Clone

DIALOG-ALL-IN

UUID: 55622FE8-17C3-5F90-6A5F-
A7C3C3730BF4

Connected

ADVERTISEMENT DATA Show

Device Information

Manufacturer Name String
Dialog Semi

Model Number String

DA1458x

Firmware Revision String
v_5.0.3.175

Software Revision String
XV.Z

~ 1 [N s

Log

Figure 62: LightBlue Application Connected to Pillar 7 Application

User Manual Revision 1.2 24-Dec-2021

CFR0012 99 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

9 Creating Your BLE Application

This section describes the steps needed for creating a new application project starting from the
application template provided in the DA1458x SDK.

9.1 Using the Empty Project Template

Open Windows Explorer, locate the DA1458x SDK distribution and open the folder:
projects\target apps\template

2. If the new application is for a peripheral device in Integrated Processor configuration then make a
clone of the empty peripheral template. For a device in External Processor configuration,
make a clone of the empty template ext. In this example the empty peripheral template will
be used in order to walk thought the process. The steps for the empty template ext case are
quite similar.

3. Rename the newly created folder to e.g. my application.

b projects b target_apps » template

Mame

| empty_peripheral_template
| empty_template_ext

. my_application

Note: Make sure the newly created directory has the same depth as the original one. This is
required since the Keil projects have inclusion path dependencies.

4. Open folder my application and depending on the Keil version installed (in this example Keil_5
is used) open the respective Keil folder and rename the project files to:
my application.uvprojx
my application.uvoptx

5. Open folder projects\target apps\template\my application\src and rename the files:
user empty peripheral template.c10 €.g.user my application.c
user empty peripheral template.ht0 €.g. user my application.h

6. Open file user my application.c, change the file name in the file header comments and
change the include header user empty peripheral template.hto user my application.has
shown below:

* INCLUDE FILES

#include "app api.h"
#include "user my application.h”

7. Similarly, open file
projects\target apps\template\my application\src\config\user callback config.hand
change the include header file from user empty peripheral template.hto
user my application.h.

8. Open file user my application.h, change the file name in the file header comments and edit
the preprocessor directives as follows:

User Manual Revision 1.2 24-Dec-2021

CFR0012 100 of 110 © 2021 Renesas Electronics

- LENESANS

DA1458x Software Developer’s Guide

|#ifndef USER MY APPLICATICN H_
#define USER MY APPLICATION H

Edit the comment at the end of the file to match the changes:
#endif //USER MY APPLICATICN H

9. At this point the Keil project can be opened for the final changes before we build the new
application. Open folder projects\target apps\template\my application\Keil 5 and double
click on the project file my application.uvprojx. This will open the new project on the Keil
development environment.

10. In the left window the project file groups are listed. Expand the user app group. Note that it
contains the old user empty peripheral template.c file. Click on this file to highlight and press
the delete key on your keyboard to remove the file from the group. Click on the user app group
to highlight, right-click on your mouse and select the menu option “Add Files to Group
‘user_app’...”. Browse to the new file
projects\target apps\template\my application\src\user my application.c, click on the
file and press the “Add” button and close the window. Check that the user app group now
contains the correct file user my application.c.

11. Click on the |£| “File extensions” button to change the project target names. Double click on the
empty peripheral template 580 and change to my application 580. Repeat for 581 and 583.
as shown below and close the window.

my_application_581
my_application_b83

12. Click on the EA | “Target Options” button to change the executable name from
empty peripheral template 580 to my application proj 580 as shown below (this step
needs to be repeated for the other targets: my application_581 and my_application_583).

Options for Target 'my_application_580"
Device] Target Output lListing] User l C/C++| Asm l Linker] Debugl Utilitiesl
Select Folderfor Objects... I Name of Executable: Imy_appﬁcation_proj_SSOi

13. At this point the new project is ready and it can be built. Open the user periph setup.hfile.
Click on the “Configuration Wizard” tab at the bottom of the window. Chose the right board
configuration from the drop down menu, as shown below, and press “F7” to build.

user_my_application.c user_callback_config.h user_periph_setup.c user_periph_setup.h
Bpand Al | Collapse Al | Hep | 1 ShowGid
Option Value
-]
Asin dal458x_periph_setup.h
Basic
Pro
Expert
14. To save the changes in the new project close the Keil program or close the project.
User Manual Revision 1.2 24-Dec-2021

CFR0012 101 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

9.2 Configuring Your Application
The user configuration files and a short description for each file are shown in Table 21.

The user configuration files can be found under the Keil project file group user config.

Table 21: User Configuration Files

File Name Description

dal458x config basic.h The basic configuration options are included in this file, such as:
Integrated or external processor configuration

BLE security functionality

Enable/Disable Watchdog

Sleep mode memory map configuration

Maximum concurrent connections supported by application
Enable/Disable development and debug mode

UART Console Print

dal458x config advanced.h In this file the advanced configuration options are included, such as:
e Low Power clock selection

Wakeup from external processor

Scatter file - Memory maps configuration

NVDS configuration

Enables True Random number Generator

The list of the preprocessor directives in this file is quite extensive, thus the
user should read the comments in the file for more details.

user callback config.h Callback functions configuration file. In this file the user can replace the
default callbacks with user defined callbacks. The callbacks are grouped in
the following structures:

user app callbacks

user profile callbacks

user default app operations
user app main loop callbacks

For example, in the user_app_callbacks structure the user can add new
functions for app_on_connection and/or app_on_disconnect.

user_config.h In this file the user can configure the default behavior of the application for the
following:
Sleep mode
® Security
e Advertise
e Connection parameters update
e GAPM configuration
user_modules_config.h In this file the user can exclude or not a module in user's application code. If a
module is excluded then the user must handle in his own the module
messages.
user periph setup.h In this file the user can configure the hardware related settings relative to the

Development Kit used. For example:
12C EEPROM configuration

e SP| FLASH configuration

e |ED and button configuration

o UART GPIO configuration

user_profiles config.h In this file the user can specify which BLE profiles (Bluetooth® SIG adopted or
custom ones) will be included in user’s application. This is done by including
the C header files of the respective BLE profile. For example, to add the
Device Information Service (DIS) server role, the following line shall be

User Manual Revision 1.2 24-Dec-2021

CFR0012 102 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

File Name Description

added:

#include “diss.h”

user_config sw_ver.h Use the preprocessor directives in this file to tag the user code software
version. These defines are used by the DIS service

user_custsl def.h/c These files define the structure of the Custom profile database and the
cust_prf_funcs]] array, which contains the Custom profile API function calls

9.3 Using the API
9.4 GAP API

The Pillar 1 example (section 8.2) is a good introduction to the GAP API. Refer to this example to
understand how to configure GAP, how to define user specific callback functions for various GAP
events and how to configure advertise and create the advertise message for the new application.

9.5 Profile API

The Pillar 2 example (section 8.14) is a good introduction to the API available for the application to
interact with the relevant profile. In the example it is explained how to include a SIG profile to the
application and how to create a custom profile. All the supported profiles are included in the template
project and the relative files can be found under the project file group “sdk profiles”.

Note: The user can remove the profiles that are not relevant to his application from the group. This
will improve compilation time of the project. The final application image size is not affected since the
code which is not used will not be linked in.

9.6 Peripheral Interface

The Pillar 3 example (section 8.26) is a good introduction to the API available for the application to
handle the events triggered from the profile task and interface with peripherals (e.g. LEDs). Also,
section 7 introduces all the supported peripherals using detailed examples for each peripheral. All the
supported drivers are included in the template project and the relative files can be found under the
project file groups sdk driver and sdk driver api.

Note: The user can remove the drivers that are not relevant to his application from the group. This
will improve compilation time of the project. The final application image size is not affected since the
code which is not used will not be linked in.

User Manual Revision 1.2 24-Dec-2021

CFR0012 103 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

9.7 Sleep Mode API

The DA1458x SDK supports three operating modes listed below in order of lowest power
consumption (see Ref. [3] for more information):

e Deep Sleep. This mode could be used when the image does not exceed 32KB and can be
programmed in to OTP so that the system boots from OTP.

e Extended Sleep. This mode can be used when the system does not boot from OTP memory.
Instead the image will be loaded to SRAM from a non-volatile memory.

e Active Mode. This mode could be used during development so that the IDE debugger can be
used. Also, this mode could be used for an application running on a device with no power
constrains (device connected to mains).

e Firstly, the user has to decide what will be the lowest power consumption mode of the system
and configure the memory map so that it can accommodate this mode. This is done in
dal458x config basic.h as described below:

y map configuration. Cnly one or none 1g ives mast be defined.

f map configuration. 1 1 determined by host application sleep
ons.
nded sleep mode

sleep mode

vs active

#define CFG_MEM MAP EXT SLEEP

#undef CFG MEM MRP DEEP SLEEP

e Secondly, the user has to set, on compile time, the default mode to be used after startup. This is
done in user config.h as described below:

//default sleep mode. Fossible values ARCH SLEEP OFF, ARCH EXT SLEEF ON, ARCH DEEP SLEEP ON
const static sleep state t app default sleep mode=ARCH SLEEF OFF;

The application can change the sleep mode dynamically during program execution by calling the API
function arch_set_sleep_mode(sleep_state t sleep_state). An example can be found in the
app_default handlers.c file at the end of the default_app_on_init() function.

Note: The sleep mode shall not change dynamically to a lower power consumption mode than the
one set in the memory map configuration. For example, if CFG MEM MAP EXT SLEEP has been defined,
the sleep mode shall change dynamically between Active and Extended Sleep and NOT Deep Sleep.
If CFG MEM MAP DEEP SLEEP has been defined, the application can switch dynamically to all modes.

User Manual Revision 1.2 24-Dec-2021

CFR0012 104 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

9.8 Application Description

The Peripheral Template example application (empty peripheral template) implements by default
the basic BLE procedures such as advertising and connection. Note that no profiles are included in
this application. The application uses the “Integrated processor” configuration.

9.9 Basic Operation
Supported services:

e No services supported apart from the default Generic Access primary service (UUID 0x1800) and
Generic Attribute primary service (UUID 0x1801).

Features:
e Supports Extended Sleep mode by default.
e Basic Configuration Settings:
o Advertising interval
o Connection interval
o Slave latency
O Supervision timeout
e Advertising data:
o Device name

The Peripheral Template application behavior is included in C source file
user empty peripheral template.c

9.10 User Interface
A peer connected to the Peripheral Template application is able to:

e Check the advertising device name.

9.11 Loading the Project
The Peripheral Template application is developed under the Keil v5 tool. The Keil project file is the:

projects\target apps\template\empty peripheral template\Keil 5\empty peripheral templa
te.uvprojx.

User Manual Revision 1.2 24-Dec-2021

CFR0012 105 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

9.12 Going Through the Code
9.13 Initialization

The Keil project folders (user config, user platform, user custom profile and user app)
contain the files that initialize and configure the Peripheral Template application.

® dal458x config advanced.h, holds DA14580/581/583 advanced configuration settings.
® dal458x config basic.h, holds DA14580/581/583 basic configuration settings.

® user callback config.h, callback functions that handle various events or operations.
® user config.h, holds advertising parameters, connection parameters, etc.

® user config sw ver.h, holds user specific information about software version.

® user modules config.h, defines which application modules are included or excluded from the
user’s application. For example:

o #define EXCLUDE_DLG_DISS (0), the Device information application profile is
included. The SDK takes care of the Device information application profile message handling.
o #define EXCLUDE_DLG_DISS (1), the Device information application profile is

excluded. The user application has to take care of the Device information application profile
message handling.
® user profiles config.h, defines which BLE profiles (Bluetooth® SIG adopted or custom ones)
will be included in user’s application.

® user custsl def.c, defines the structure of the Custom 1 profile database structure.

® user custs config.c, defines the cust_prf_funcs[] array, which contains the Custom profiles
API functions calls.

® user periph setup.h, holds hardware related settings relative to the used Development Kit.

® user periph setup.c, source code file that handles peripheral (GPIO, UART, etc.) configuration
and initialization relative to the Development Kit.

9.14 Events Processing and Callbacks

Several events can occur during the lifetime of the BLE application and these events need to be
handled in a specific manner. Also, operations need to be served depending on the application
scenario. It depends on the application itself to define which events and operations are handled and
how. The SDK is flexible enough to either call a default handler or call the user’s defined event or
operation handler.

The SDK mechanism that takes care of the above requirements, is the registration of callback
functions for every event or operation. The C header file user callback config.h, which resides in
user space, contains the registration of the callback functions.

The Peripheral Template application registers the following callback functions:

e General BLE events:

static const struct app callbacks user app callbacks = {
.app_on connection = user on connection,
.app_on disconnect = user on disconnect,
.app_on update params rejected = NULL,
.app_on update params complete = NULL,
.app_on set dev config complete = default app on set dev config complete,

.app_on adv undirect complete = default app on adv undirect complete,
.app_on adv direct complete = NULL,
.app_on db init complete = default app on db init complete,
.app_on_scanning completed = NULL,
.app_on adv report ind = NULL,
.app_on pairing request = default app on pairing request,
.app_on tk exch nomitm = default app on tk exch nomitm,
.app_on_irk exch = NULL,
User Manual Revision 1.2 24-Dec-2021

CFR0012 106 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

.app_on csrk exch = default app on csrk exch,
.app_on ltk exch = default app on 1tk exch,
.app_on pairing succeded = NULL,
.app_on encrypt ind = NULL,
.app_on mitm passcode req = NULL,

.app_on_encrypt req_ind default app on encrypt req ind,

i

The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). The user defined handlers
(e.g. user_app_connection(), user_app_disconnect()) are defined in C source file

user empty peripheral template.c

e System specific events:
static const struct arch main loop callbacks user app main loop callbacks = {

.app_on _init = default app on init,
.app_on ble powered = NULL,
.app_on_sytem powered = NULL,
.app before sleep = NULL,
.app_validate sleep = NULL,
.app_going to sleep = NULL,
.app _resume from sleep = NULL,

i
The above structure defines that a certain event will be processed by a default handler or by a
user defined handler or it will not be processed at all (NULL entries). In this case there are no
user defined handlers but just one default handler default_app_on_init.

e BLE operations:
static const struct default app operations user default app operations = {

.default operation adv = default advertise operation,

i
The above structure defines that a certain operation will be processed by a default handler or by
a user defined handler or it will not be processed at all (NULL entries). In this case there are no
user defined handlers but just one default handler default_advertise_operation.

User Manual Revision 1.2 24-Dec-2021

CFR0012 107 of 110 © 2021 Renesas Electronics

RENESAS

UM-B-050
DA1458x Software Developer’s Guide

9.15 BLE Application Abstract Code Flow

Figure 63 shows the abstract code flow diagram of the Peripheral Template application. The diagram
depicts the SDK interaction with the callback functions registered in user callback config.hand

the functions implemented in user empty peripheral template.c.

User User

Application Configuration SDK

app_on_init()

default_app_on_init()

app_on| set_dev_config_complete()

default_app_on_set_dev_config_complete()

default_operation_adv()

default_advertise_operation()

app_on_adv_undirect_complete()

app_on_connection()

user_on_connection()

Request to connect
(from peer device)

A

default_app_on| connection()

Figure 63: Peripheral Template Application - User Application Code Flow

9.16 Building the Project for Different Targets and Development Kits

The Peripheral Template application can be built for three different target processors: DA14580,
DA14581 and DA14583. Also, the user has also to select the correct Development Kit in order to
build and run the application. For more details on how to build, run and use the debugger per DK see
Ref. [1] or Ref. [2].

User Manual Revision 1.2 24-Dec-2021

CFR0012 108 of 110 © 2021 Renesas Electronics

UM-B-050

LENESAS

DA1458x Software Developer’s Guide

Revision History

Revision Date Description

1.2 24-Dec-2021 Updated logo, disclaimer, copyright.

11 22-Jul-2016 Added pillar examples for Sleep Mode, Security, OTA, and All in One.
Removed Keil 4 references.

1.0 27-Aug-2015 Initial version. Applies to SDK 5.x for DA14580/581/583.

User Manual Revision 1.2 24-Dec-2021

CFR0012 109 of 110 © 2021 Renesas Electronics

LENESAS

UM-B-050
DA1458x Software Developer’s Guide

Status Definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

User Manual Revision 1.2 24-Dec-2021

CFR0012 110 of 110 © 2021 Renesas Electronics

	Abstract
	Contents
	Figures
	Tables
	1 Terms and Definitions
	2 References
	3 Introduction
	3.1 Target Audience
	3.2 How to Use This Manual

	4 Getting Started
	4.1 Development Environment
	4.2 Software Development Kit (SDK)
	4.3 Tools
	4.4 SmartSnippets Toolbox
	4.5 Connection Manager

	5 Blinky: Your First DA1458x Application
	5.1 Application Description
	5.2 Hardware Configuration
	5.3 Running the Example

	6 Proximity Reporter: Your First Bluetooth® Low Energy Application
	6.1 Application Description
	6.2 Basic Operation
	6.3 User Interface
	6.4 Loading the Project
	6.5 Going Through the Code
	6.6 Initialization
	6.7 Events Processing and Callbacks
	6.8 BLE Application Abstract Code Flow
	6.9 Building the Project for Different Targets and Development Kits
	6.10 Interacting with BLE Application
	6.11 LightBlue iOS Application

	7 Peripheral Example Applications
	7.1 Introduction
	7.2 Software Description
	7.3 Getting Started
	7.4 Configuring the UART Interface on a DA1458x DK
	7.5 DA1458x DK-Basic
	7.6 DA1458x DK-Pro
	7.7 Using a Serial Port Terminal with a DA1458x DK
	7.8 Connecting to a DA1458x DK-Basic
	7.9 Connecting to a DA1458x DK-Pro
	7.10 UART (Simple) Example
	7.11 Hardware Configuration
	7.12 Running the Example
	7.13 UART2 Asynchronous Example
	7.14 Hardware Configuration
	7.15 Running the Example
	7.16 SPI Flash Memory Example
	7.17 Hardware Configuration
	7.18 Running the Example
	7.19 I2C EEPROM Example
	7.20 Hardware Configuration
	7.21 Running the Example
	7.22 Quadrature Decoder Example
	7.23 Hardware Configuration
	7.24 Running the Example
	7.25 Systick Example
	7.26 Hardware Configuration
	7.27 Running the Example
	7.28 TIMER0 (PWM0, PWM1) Example
	7.29 Hardware Configuration
	7.30 Running the Example
	7.31 TIMER0 General Example
	7.32 Hardware Configuration
	7.33 Running the Example
	7.34 TIMER2 (PWM2, PWM3, PWM4) Example
	7.35 Hardware Configuration
	7.36 Running the Example
	7.37 Battery Example
	7.38 Hardware Configuration
	7.39 Running the Example

	8 Developing Bluetooth® Low Energy Applications
	8.1 The Seven Pillar Example Applications
	8.2 Pillar 1 (Bare Bone)
	8.3 Application Description
	8.4 Basic Operation
	8.5 User Interface
	8.6 Loading the Project
	8.7 Going Through the Code
	8.8 Initialization
	8.9 Events Processing and Callbacks
	8.10 BLE Application Abstract Code Flow
	8.11 Building the Project for Different Targets and Development Kits
	8.12 Interacting with BLE Application
	8.13 LightBlue iOS
	8.14 Pillar 2 (Custom Profile)
	8.15 Application Description
	8.16 Basic Operation
	8.17 User Interface
	8.18 Loading the project
	8.19 Going Through the Code
	8.20 Initialization
	8.21 Events Processing and Callbacks
	8.22 BLE Application Abstract Code Flow
	8.23 Building the Project for Different Targets and Development Kits
	8.24 Interacting with BLE Application
	8.25 LightBlue iOS
	8.26 Pillar 3 (Peripheral)
	8.27 Application Description
	8.28 Basic Operation
	8.29 User Interface
	8.30 Loading the Project
	8.31 Going Through the Code
	8.32 Initialization
	8.33 Events Processing and Callbacks
	8.34 BLE Application Abstract Code Flow
	8.35 Building the Project for Different Targets and Development Kits
	8.36 Interacting with BLE Application
	8.37 LightBlue iOS
	8.38 Pillar 4 (Security)
	8.39 Application Description
	8.40 Basic Operation
	8.41 User Interface
	8.42 Loading the Project
	8.43 Going Through the Code
	8.44 Initialization
	8.45 Events Processing and Callbacks
	8.46 BLE Application Abstract Code Flow
	8.47 Building the Project for Different Targets and Development Kits
	8.48 Interacting with BLE Application
	8.49 LightBlue iOS
	8.50 Pillar 5 (Sleep Mode)
	8.51 Application Description
	8.52 Basic Operation
	8.53 User Interface
	8.54 Loading the Project
	8.55 Going Through the Code
	8.56 Initialization
	8.57 Events Processing and Callbacks
	8.58 BLE Application Abstract Code Flow
	8.59 Building the Project for Different Targets and Development Kits
	8.60 Interacting with BLE Application
	8.61 LightBlue iOS
	8.62 Pillar 6 (OTA)
	8.63 Application Description
	8.64 Basic Operation
	8.65 User Interface
	8.66 Loading the Project
	8.67 Going Through the Code
	8.68 Initialization
	8.69 Events Processing and Callbacks
	8.70 BLE Application Abstract Code Flow
	8.71 Building the Project for Different Targets and Development Kits
	8.72 Interacting with BLE Application
	8.73 LightBlue iOS
	8.74 SUOTA Application
	8.75 Pillar 7 (All in One)
	8.76 Application Description
	8.77 Basic Operation
	8.78 User Interface
	8.79 Loading the Project
	8.80 Going Through the Code
	8.81 Initialization
	8.82 Events Processing and Callbacks
	8.83 BLE Application Abstract Code Flow
	8.84 Building the Project for Different Targets and Development Kits
	8.85 Interacting with BLE Application
	8.86 LightBlue iOS

	9 Creating Your BLE Application
	9.1 Using the Empty Project Template
	9.2 Configuring Your Application
	9.3 Using the API
	9.4 GAP API
	9.5 Profile API
	9.6 Peripheral Interface
	9.7 Sleep Mode API
	9.8 Application Description
	9.9 Basic Operation
	9.10 User Interface
	9.11 Loading the Project
	9.12 Going Through the Code
	9.13 Initialization
	9.14 Events Processing and Callbacks
	9.15 BLE Application Abstract Code Flow
	9.16 Building the Project for Different Targets and Development Kits

	Revision History

